

Welcome to impyte

Impyte is a Python module to impute missing values by prediction using machine learning algorithms.

Introduction

One essential problem for any person dealing with data is missing values.
There are several possibilities to deal with missing information, ranging
from dropping data points to estimating the value based on other values
in that column (i.e. average or median values).
A more recent method involves machine-learning algorithms.
This module offers a lightweight Python solution to calculate missing
information based on the underlying relationship between data points.

The main goal of this module is to support people who are dealing
with missing information to gather additional insights about the
different patterns and impute them in an easy way.

There are two essential features to this module:

	Visualization of Patterns

	Imputation of missing information

Yet impyte is only one piece of the equation. In order to
maximize the return in any value imputation process a deep understanding
of the data is needed. As well as thorough pre-processing and cleaning
of the data. Imyte takes on some of the challenges but tends to work best
in concert with additional data science endeavors.

To get started with impyte is as simple as:

from impyte import impyte
imp = impyte.Impyter()
imp.load_data(missing_data)
imp.impute()

Installation

Since this module is still in beta, you can install the latest version
through its github [https://github.com/andirs/impyte] repository via pip.

pip install git+git://github.com/andirs/impyte.git

There is also a manual way of importing the module in your project. To do so, download the repository [https://github.com/andirs/impyte] to the folder you are performing your data work in. Afterwards you’ll be able to import the impyte functionality through following command:

from impyte import impyte

Requirements

The requirements are listed in requirements.txt and will usually
be installed when proceeding through pip. When installing manually,
please make sure following modules are already installed:

	Python 3.6 [https://www.python.org/]

	sklearn 0.19 [https://scikit-learn.org/]

	pandas 0.21 [http://pandas.pydata.org/]

	scipy 0.19 [https://www.scipy.org/]

	pathlib 1.0.1 [https://pypi.python.org/pypi/pathlib/]

API Reference

	
class impyte.impyte.Impyter(data=None)

	Bases: object

Example usage:

from impyte import impyte

df = pd.read_csv("missing_values.csv")
imp = impyte.Impyter(df)

show nan-patterns of data in one data frame
imp.pattern() # shows nan-patterns

imputation of all single-nans using random forest
imp.impute(estimator='rf')

imputation of all nan-patterns
imp.impute(estimator='rf', multi_nans=True)

use f1 and r2 thresholds
imp.impute(estimator='rf', threshold={"r2": .7, "f1_macro": .7})

	Parameters

	data (pd.DataFrame, optional) – Data on which to perform imputation.

The data can also be a list of lists but will be converted
into a pandas DataFrame once loaded. If none, data can be loaded
at a later point through impyte.Impyter.load_data.

	Variables

	
	data (pd.DataFrame) – The original data, loaded by user through
instantiation or impyte.Impyter.load_data method.

	result (pd.DataFrame) – Copy of original data on which imputation is being performed.

	clf (dict) – Holds estimator for given imputation. (Deprecated)

	self.pattern_log (Pattern object) – An instantiated impyte.Pattern object,
that holds information about the NaN-pattern.

	self.model_log (dict) – Python dictionary, storing all models once
impyte.Impyter.impute has been run

	self.error_string (str) – String representation of error messages that
occured during the imputation process.

	self.pattern_predictor_dict (dict) – Python dictionary storing a pattern string and
its connected list of predictors.

	self.pattern_dependent_variable_dict (dict) – Python dictionary storing a pattern string and
its connected list of dependent variables.

	
__init__(data=None)

	
	Parameters

	data (pd.DataFrame|list[list], optional) – When initialized, data can be loaded directly. An alternative
way is loading it with impyte.Impyter.load_data

	
static compare_features(list_one, list_two)

	Compares two lists given its objects based on
a comparison of Counter dicts. The order of
elements is unimportant.

	Parameters

	
	list_one (list)

	list_two (list)

	Returns

	True – If list_one and list_two contain the same elements.

	Return type

	Boolean

	
drop_imputation(threshold, verbose=True, drop_pattern=False)

	Method to drop imputation results based on threshold values.
Threshold values are compared against the cross-validation
scores of all imputation models. If the score is lower than
the threshold value, the imputation will be dropped.

An example:

imp = impyte.imputer(data)
imp.impute(estimator='rf')
imp.drop_imputation({"f1_macro": .8, "r2": .7})

Note

In the case of multi-nan, drop_imputation will average the score
of all models. Yet, performing this method for multi-nan
patterns is discouraged.

Further individual treatment of the data set might be more helpful
in order to preprocess the information correctly.
One potential action could be, to drop multi-nan columns
if they contain no information.

	Parameters

	
	threshold (dict{str, float}) – Threshold dictionary including values for r2 and f1 scores.

An example:

{
 "r2" : .5,
 "f1_macro" : .7
}

At this point only f1 and r2 scores are being supported.

	verbose (Boolean) – Boolean flag to indicate whether results should be written
to stdout.

Note

At this point there is a verbose system that distinguishes
multiple layers of verbosity. This flag can also simply set to
True in order to print out the minimum verbosity.
A multi verbosity level might be enforced at a later stage.

	drop_pattern (Boolean) – Indicator if not only imputation but also pattern should be dropped.

	
drop_pattern(pattern_no, inplace=False)

	Method to drop pattern referenced by pattern number.
Drops pattern from data set and returns preliminary result.
If inplace flag is set to True, internal storage of impyte
object is being manipulated as well. Otherwise, a copy
without the dropped pattern will be returned and the
stored data set stays intact.

	Parameters

	
	pattern_no (int)

	inplace (Boolean)

	
get_data()

	Returns a copy of the loaded data for quick reference.

	Returns

	Original Data – A copy of the original data set can be retrieved through
this method.

	Return type

	pd.DataFrame

	
get_model(pattern_no)

	Returns model that matches pattern number.

	Parameters

	pattern_no (int) – Pattern number to receive fitting model.

	Returns

	model

	Return type

	ImpyterModel|ImpyterMultiModel

	
get_pattern(pattern_no, result=False)

	Returns data points for a specific pattern_no for further
investigation.

	Parameters

	
	pattern_no (int) – Index value that indicates pattern

	result (Boolean) – Flag to show if original or result data should be sliced.

	Returns

	data – Data points that have a certain pattern,
if result is set to True
the data is result data, otherwise a slice
of the original data is being returned.

	Return type

	pd.DataFrame

	
get_result()

	Returns a copy of the result data for reference.

	Returns

	Result Data – A copy of the result data.

	Return type

	pd.DataFrame

	
get_summary(importance_filter=True)

	Shows simple overview of missing values. Returns table
with information on missing values per column,
its percentage and the count of unique values within that column.

Setting the importance filter flag to True shows only columns
that have some missing values. This is helpful for data sets
with a large amount of variables and only few nan-values.

	Parameters

	importance_filter (Boolean) – Show only features with at least one missing value.

	Returns

	Summary table

	Return type

	pd.DataFrame

	
impute(data=None, cv=5, verbose=True, estimator='rf', multi_nans=False, one_hot_encode=True, auto_scale=True, threshold={'r2': None, 'f1_macro': None}, recompute=False)

	Impute is the core method of impyte. The method works out of the box
and uses Random Forest estimators per default to impute missing values.
It automatically performs cross-validation to showcase the
potential accuracy of the imputation.

Scoring that is being used is f1_macro score for classifiers
(supporting binary and multi-class) and r2 for regression models.

In order to fill in only columns that surpass a certain scoring threshold
(i.e. f1 score > .7), the threshold parameter can be set.
The threshold values are being transmitted through a dictionary.

Note

Multi Nans

Prediction of values with multi-nan is a last resort option.
This might be suitable for certain edge cases but if the score
values are low it should be considered dropping
the feature or the data points all together.

	Parameters

	
	data (pd.DataFrame) – Data to be imputed.

	cv (int) – Amount of cross-validation runs.

	verbose (Boolean) – Indicator, whether prediction results should be printed out.

	estimator (str) – Estimators can be chosen through a simple string abbreviation.
This table outlines the potential options.

	Abbreviation

	Estimator

	‘rf’

	Random Forest

	‘svm’

	Support Vector Machine

	‘sgd’

	Stochastic Gradient Descent

	‘knn’

	KNearest Neighbor

	‘bayes’

	(Naive) Bayes

	‘dt’

	Decision Tree

	‘gb’

	Gradient Boosting

	multi_nans (Boolean) – Indicator if data points with multiple NaN values should be imputed as well

	one_hot_encode (Boolean) – If set to True one-hot-encoding of categorical variables happens

	auto_scale (Boolean) – If set to True continuous variables are automatically scaled
and transformed back after imputation.

	threshold (dict{str, float}) – Classification and regression threshold cut-offs.
At this point f1 score and R2.

	recompute (Boolean) – Indicator whether the system should recompute the imputation or
use stored models if possible.

Note

Impyte will print a warning to the stdout if the data set might
contain too few rows in general to properly compute any imputation
method.

	
load_data(data)

	Function to load data into Impyter class.
Requires a pandas DataFrame to load. Otherwise,
the input is being transformed into a DataFrame.
While loading the data is being copied into the object,
to stay clear of consistency issues with the original data set.

	Parameters

	data – preferably pandas DataFrame

	
load_model(filename, path='models/')

	Load a stored machine learning model to perform value imputation.

	Parameters

	
	filename (str) – Filename of model

	path (str) – Path to model (default value is ‘models/’)

	
map_model_to_pattern(mdl)

	Checks model for similarity to stored patterns and
returns pattern number if a match is found.

	Parameters

	mdl (ImpyterModel)

	Returns

	pattern_no – If no pattern number can be found, a None value
will be returned.

	Return type

	int

	
map_multimodel_to_pattern(mmdl)

	Checks multi-model for similarity to stored patterns and
returns pattern number if a match is found.

	Parameters

	mmdl (ImpyterMultiModel)

	Returns

	pattern_no – If no pattern number can be found, a None value
will be returned.

	Return type

	int

	
one_hot_decode(data)

	Decodes one-hot-encoded features into single column again.
Generally speaking, this function inverses the one-hot-encode function.

	Parameters

	data (pd.DataFrame) – DataFrame that has one-hot-encoded columns processed by
impyte.Impyter.one_hot_encode.

	Returns

	Data set – Data set with collapsed information.

	Return type

	pd.DataFrame

	
one_hot_encode(data, verbose=False)

	Uses pandas get_dummies method to return a one-hot-encoded
DataFrame.

	Parameters

	
	data (pd.DataFrame)

	verbose (Boolean)

	Returns

	DataFrame with one-hot-encoded categorical values.

	Return type

	Data set - pd.DataFrame

	
pattern(recompute=False)

	Returns missing value patterns of data set.
Leverages impyte.Pattern._compute_pattern
and impyte.Pattern.get_pattern methods to compute and
return an overview of all existant NaN patterns in the data set.
The overview shows a NaN in the column where a data point
was missing and 1 for all complete slots.
On the right hand side is a count variable to indicate
how often that pattern was found.
The patterns are always sorted by count and it is not given,
that pattern 0 is always the pattern with only complete cases.

A potential result table could look like this, where NaN
indicates the column contains missing values in this pattern.
The Count column shows how many observations of this NaN-pattern
are in the data set.

	Pattern

	left_socks

	right_socks

	Count

	0

	1

	1

	15

	1

	NaN

	1

	6

	2

	1

	NaN

	6

	3

	NaN

	NaN

	4

For additional information (and a rather sad joke) please
head over to impyte.Pattern.

	Parameters

	recompute (Boolean) – Flag to indicate whether patterns should be recomputed from
the original data set. This is an important feature if for
example a pattern has been dropped and should be incorporated
again.

	Returns

	NaN-Pattern Table – Table with overview of NaN-patterns.

	Return type

	pd.DataFrame

	
save_model(pattern_no=None, filename=None, path='models/')

	Stores an imputation model for either the whole data set
or a particular pattern in a pickle file. If pattern_no is not set,
the method stores all models. If filename is not set,
an automated name is being produced including a timestamp.

	Parameters

	
	pattern_no (int, optional) – Pattern number that points to a certain NaN-Pattern model which
in turn references a impyte.ImpyteModel or
impyte.ImpyteMultiModel.

	filename (str, optional) – If value is not set, an automated name is being created.

	path (str) – (default value is ‘models/’ which will automatically
create a model for that)

	
set_unique(unique_no)

	Set unique values for imputation.

	Parameters

	unique_no (int) – Positive number that indicates a threshold for unique values
needed in a column for it to be counted as continuous variable.

	
class impyte.impyte.ImpyterModel(estimator_name, model=None, pattern_no=None, feature_name=None, scores=None, scoring=None, predictor_variables=None, pattern_string=None, y_scaler=None)

	Bases: object

Stores computed Impyter machine learning models and relevant
information that is linked to the model and pattern.

	Variables

	
	model (sklearn Machine Learning Model) – Contains a trained machine learning model for given imputation task.

	pattern_no (int) – Indicator for pattern number.

	feature_name (str|int) – Name of the dependent variable.

	scores (list) – List of all cross-validation scores. The average of this list is being
used as the threshold score.

	estimator_name (str) – String representation of the Machine Learning model.

	scoring (str) – String representation of the scoring measurement
(‘r2’ or ‘f1_macro’ right now)

	predictor_variables (list) – Contains names of all independent variables used for the imputation task.

	pattern_string (tuple) – Tuple representation of pattern string. Can be used for identification of
patterns.

	y_scaler (sklearn.preprocessing.StandardScaler object) – StandardScaler object that contains additional information
in case the model was used with auto_scale = True.

	
__init__(estimator_name, model=None, pattern_no=None, feature_name=None, scores=None, scoring=None, predictor_variables=None, pattern_string=None, y_scaler=None)

	
	Parameters

	
	estimator_name (str) – Name of machine learning model

	model (sklearn Machine Learning Model) – Sklearn machine learning estimator object

	pattern_no (int) – Pattern number associated with nan-pattern.

	feature_name (str|int) – Name of dependent variable.

	scores (list[float]) – Collection of all cross-validation scores.

	scoring (str) – String representation of scoring function. (i.e. “r2” or “f1_macro”)

	predictor_variables (list[str|int]) – List of names of all independent variables.

	pattern_string (tuple) – Tuple representation of a certain pattern.

	y_scaler (sklearn.preprocessing.StandardScaler object) – StandardScaler object that contains additional information
in case the model was used with auto_scale = True.

	
class impyte.impyte.ImpyterMultiModel(pattern_string)

	Bases: object

Stores multi-nan imputations in the form of a list
of impyte.ImpyterModel objects.

	Variables

	
	_model_list (list) – Collection of all ImpyterModel that are needed to
compute the given multi-nan pattern.

	count (int) – Amount of models that are stored in ImpyterModels.

	pattern_string (tuple) – Tuple representation of multi-nan pattern.

	
__init__(pattern_string)

	
	Parameters

	pattern_string (tuple) – References a pattern by tuple.

	
append(model)

	Appends an additional ImpyterModel object to the list of models.

	Parameters

	model (ImpyterModel object) – The model to be appended to the model list

	
static check_and_append(input_list, storage_list)

	Extension helper method to append items
to a pre-existing list if not included.

	Parameters

	
	input_list (list) – List with items to append.

	storage_list (list) – List that serves as storage item for all items.

	Returns

	storage_list – Collection of all unique elements from input_list and storage_list

	Return type

	list

	
static combine_in_list(input_list, *args)

	Extension helper method to add multiple and
single arguments to a pre-existing list.

	Parameters

	
	input_list (list) – Pre-existing list.

	args (list) – List or single values to be extended to list.

	Returns

	extended input_list

	Return type

	list

	
get_dependend_and_independent_variables()

	For all models stored in the object, collect their
dependent and independent variables.

As an example, if we had a multi-nan model that stored two
ImpyterModels to predict right_socks and left_socks,
the variables stored in the response would look like this:

{
 "independent_variables": ["time_of_year", "pants", "hat"],
 "dependent_variables": ["right_socks", "left_socks"]
}

	Returns

	Variables – Dictionary including independent and dependent variables.
Can be accessed through “independent_variables” and
“dependent_variables”.

	Return type

	dict{str, list}

	
class impyte.impyte.NanChecker

	Bases: object

Class that checks data set, lists or single
values for NaN occurrence.

Examples

Testing list for NaN values:

nan_array = ["Test", None, '', 23, [None, "42"]]
nan_checker = impyte.NanChecker()
print(nan_checker.is_nan(nan_array))
>>> [False, True, True, False, [True, False]]

	
static is_nan(data, nan_vals=None, recursive=True)

	Detect missing values (NaN in numeric arrays, empty strings in string arrays).

	Parameters

	
	data ({numpy.ndarray|str|list|int|float}) – Data to be investigated for NaN values.

	nan_vals (list) – Array of values that count as NaN values - if empty, “” and None are being used

	recursive (boolean) – Flag that determines whether the lists should be handled in recursive manner

	Returns

	result – Array or bool indicating whether an object is null or if an array is
given which of the element is null.

	Return type

	Boolean

	
class impyte.impyte.Pattern(unique_instances=10)

	Bases: object

Class that calculates, stores and visualizes NaN patterns and their indices.

	Variables

	
	column_names (list) – Python list storing names of all columns that are in data set.

	complete_idx (int) – Integer containing pattern number with only complete cases

	continuous_variables (list) – Python list containing column names of all continuous variables.
(i.e. columns that contain values in a range from 0.0 to 1.0)

	discrete_variables (list) – Python list containing column names of all discrete variables.
(i.e. columns that contain values such as “red”, “blue”, “green”)

	easy_access (dict{tuple, list}) – Python dictionary holding NaN-pattern strings and mapping them
to a list of the names of columns that contain NaN values
in the given NaN-pattern.

As an example:

{
 ('NaN', 1): ['left_socks'],
 (1, 'NaN'): ['right_socks'],
 ('NaN', 'NaN'): ['left_socks', 'right_socks']
}

	missing_per_column (list) – Python list used to store summarization results, to make the use
of impyte.Pattern.get_missing_value_percentage
more efficient (the default is None)

	nan_checker (NanChecker object) – An instantiated impyte.NanChecker object, that can be used
to analyze values and rows regarding their NaN values.

	pattern_index_store (dict{int, list}) – Python dictionary holding a list of indices for every pattern number.
This dictionary is being used to look up the corresponding
data points in a pandas DataFrame.

As an example:

{
 0: [0, 1, 2, 3, 4], # pattern_number: indices
 1: [5, 6, 7, 8, 9]
}

This pattern log consists out of 2 patterns (0 and 1)
each pointing to 5 indices.

	pattern_store (dict{str, pd.DataFrame}) – Python dictionary storing the pattern table. The table
(in pd.DataFrame form) can be accessed by self.pattern_store['result'].

A potential result table could look like this, where NaN
indicates the column contains missing values in this pattern.
The Count column shows how many observations of this NaN-pattern
are in the data set.

	Pattern

	left_socks

	right_socks

	Count

	0

	1

	1

	15

	1

	NaN

	1

	6

	2

	1

	NaN

	6

	3

	NaN

	NaN

	4

Let’s hope these left and right socks are of the same color at least…

	result_pattern (dict{tuple, int}) – Python dictionary version of pattern counts. Makes computation
and alterations easier.

	tuple_counter (int) – Value storing the amount of different patterns after performing
pattern analysis. (the default is 0)

	tuple_counter_dict (dict) – Python dictionary mapping pattern strings to pattern number.

	tuple_dict (dict{tuple, int}) – As an example:

{
 ('NaN', 1): 1, # points to pattern 1
 (1, 'NaN'): 2,
 ('NaN', 'NaN'): 3
}

	unique_instances (int) – Value indicating the minimum value for a column of unique values
to be considered as continuous variable when having the proper dtype

(the default is 10, which implies that columns with over 10 unique
values are being labeled as continuous variables if containing
numbers).

	pattern_predictor_dict (dict) – Python dictionary mapping pattern strings to their
independent variable names.

	pattern_dependent_dict (dict) – Python dictionary mapping pattern string to their
dependent variable names.

	
__init__(unique_instances=10)

	When instantiating a impyte.Pattern object, most values
are being initialized as being empty or None.

	Parameters

	unique_instances (int) – Value indicating the minimum value for a column of unique values
to be considered as continuous variable when having the proper dtype

(the default is 10, which implies that columns with over 10 unique
values are being labeled as continuous variables if containing
decimal numbers).

	
get_column_name(patter_no)

	Returns the column name(s) that contain missing information
of a certain NaN-pattern.

	Parameters

	patter_no (int) – Number or identifier of pattern

	Returns

	Column names – If patter_no has been computed, a list of all column
names associated with pattern_no are being returned.

	Return type

	list

	
get_complete_id()

	Returns pattern number of observations that don’t contain any missing information.

	Returns

	Pattern number

	Return type

	int

	
get_complete_indices()

	Function to determine complete cases based on results table.
Leverages pre-computed information and is quicker than pandas dropna method.

	Returns

	Indices – List of indices that point to rows with complete cases

	Return type

	list

	
get_continuous()

	Returns copy of continuous variable names.

	Returns

	Continuous variable names

	Return type

	list

	
get_discrete()

	Returns copy of discrete variable names.

	Returns

	Discrete variable names

	Return type

	list

	
get_missing_value_percentage(data, importance_filter=False)

	Combines information regarding the values in the data set
and returns them in a concise way.

A potential summary table could look like this.

	Column

	Complete

	Missing

	Percentage

	Unique

	left_socks

	21

	6

	19.4 %

	2

	right_socks

	21

	6

	19.4 %

	2

	Parameters

	
	data (pd.DataFrame) – data refers to the information the user wants to analyze
(Usually the result data set stored in Impyte.impyter)

	importance_filter (Boolean) – Flag, to don’t show columns that have no missing values.
This might make sense for data sets with a lot of columns
that have no missing values.

(default value is False, stating that all columns are important)

	Returns

	Summary table – Contains information regarding complete, missing and unique values
in the data set.

	Return type

	pd.DataFrame

	
get_multi_nan_pattern_nos(multi=True)

	Returns all pattern numbers of multi-nans or single-nans

	Parameters

	multi (Boolean) – Flag indicating whether the user wants to retrieve multi or
single-nan pattern numbers.

	Returns

	Pattern Numbers – All single or multi-nan pattern numbers.

	Return type

	list

	
get_pattern(data=None, recompute=False)

	Returns NaN-patterns based on primary computation or
initiates new computation of NaN-patterns.

	Parameters

	
	data (pd.DataFrame)

	recompute (Boolean) – If set True, stored results are being disregarded

	Returns

	Pattern overview – Table representation of all NaN-patterns and their counts.

	Return type

	pd.DataFrame

	
get_pattern_indices(pattern_no)

	Returns data points for a specific pattern_no for further
investigation.

	Parameters

	pattern_no (int) – Index value that indicates pattern number.

	Returns

	Indices – Indices that correspond to a pattern number.

	Return type

	list

	
get_single_nan_pattern_nos()

	Returns all pattern numbers that contain only single nans.

	Returns

	Pattern Numbers – All single pattern numbers containing single-nans.

	Return type

	list

	
remove_pattern(pattern_no)

	Removes a certain pattern. Deletes dictionary entry in the pattern index store
as well as drops the entry in the results table.

	Parameters

	pattern_no (int) – Index value that indicates pattern.

Help

FAQs

Below are some pointers towards the right direction if something breaks.
If you encounter any other error please feel free to reach out.

When imputing my estimator raises ValueError: Unknown label type: ‘continuous’

Hint

This might happen, if there is too little information for impyte to
correctly distinguish your data type. This error essentially means,
you’re handing a continuous data type [i.e. a float] to a classifier
which expects a class or discrete value.

To solve this problem, you can set the unique value threshold to a
lower value. (standard value is 10 unique instances).

Index

The index stores an alphabetical list of the API reference.

	Index

License

Copyright 2017 Andreas Rubin-Schwarz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contact

Feel free to contact me here or add me on linkedin [https://www.linkedin.com/in/andirs/].

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 impyte	

 	
 	
 impyte.impyte	

Index

 _
 | A
 | C
 | D
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S

_

 	
 	__init__() (impyte.impyte.Impyter method)

 	(impyte.impyte.ImpyterModel method)

 	(impyte.impyte.ImpyterMultiModel method)

 	(impyte.impyte.Pattern method)

A

 	
 	append() (impyte.impyte.ImpyterMultiModel method)

C

 	
 	check_and_append() (impyte.impyte.ImpyterMultiModel static method)

 	
 	combine_in_list() (impyte.impyte.ImpyterMultiModel static method)

 	compare_features() (impyte.impyte.Impyter static method)

D

 	
 	drop_imputation() (impyte.impyte.Impyter method)

 	
 	drop_pattern() (impyte.impyte.Impyter method)

G

 	
 	get_column_name() (impyte.impyte.Pattern method)

 	get_complete_id() (impyte.impyte.Pattern method)

 	get_complete_indices() (impyte.impyte.Pattern method)

 	get_continuous() (impyte.impyte.Pattern method)

 	get_data() (impyte.impyte.Impyter method)

 	get_dependend_and_independent_variables() (impyte.impyte.ImpyterMultiModel method)

 	get_discrete() (impyte.impyte.Pattern method)

 	get_missing_value_percentage() (impyte.impyte.Pattern method)

 	
 	get_model() (impyte.impyte.Impyter method)

 	get_multi_nan_pattern_nos() (impyte.impyte.Pattern method)

 	get_pattern() (impyte.impyte.Impyter method)

 	(impyte.impyte.Pattern method)

 	get_pattern_indices() (impyte.impyte.Pattern method)

 	get_result() (impyte.impyte.Impyter method)

 	get_single_nan_pattern_nos() (impyte.impyte.Pattern method)

 	get_summary() (impyte.impyte.Impyter method)

I

 	
 	impute() (impyte.impyte.Impyter method)

 	impyte.impyte (module)

 	Impyter (class in impyte.impyte)

 	
 	ImpyterModel (class in impyte.impyte)

 	ImpyterMultiModel (class in impyte.impyte)

 	is_nan() (impyte.impyte.NanChecker static method)

L

 	
 	load_data() (impyte.impyte.Impyter method)

 	
 	load_model() (impyte.impyte.Impyter method)

M

 	
 	map_model_to_pattern() (impyte.impyte.Impyter method)

 	
 	map_multimodel_to_pattern() (impyte.impyte.Impyter method)

N

 	
 	NanChecker (class in impyte.impyte)

O

 	
 	one_hot_decode() (impyte.impyte.Impyter method)

 	
 	one_hot_encode() (impyte.impyte.Impyter method)

P

 	
 	Pattern (class in impyte.impyte)

 	
 	pattern() (impyte.impyte.Impyter method)

R

 	
 	remove_pattern() (impyte.impyte.Pattern method)

S

 	
 	save_model() (impyte.impyte.Impyter method)

 	
 	set_unique() (impyte.impyte.Impyter method)

 nav.xhtml

 Table of Contents

 		
 Welcome to impyte

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

