

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

IMHOTEP

IMHOTEP (Immersive Medical Hands-On Operation Teaching and Planning System) [http://imhotep-medical.org] is a
Virtual-Reality framework used for visualizing medical data for surgeons.
It is compatible with the Oculus Rift [https://www.oculus.com] and the HTC Vive [https://www.vive.com].
The software is being developed by the Translational Surgical Oncology Division at the National Center for Tumor Diseases (NCT) [https://www.nct-dresden.de/en/research/professorships/translational-surgical-oncology.html] in Dresden in association with the Heidelberg University Hospital [https://www.heidelberg-university-hospital.com] and the University Hospital Dresden (UKD) [https://www.uniklinikum-dresden.de/de/das-klinikum/kliniken-polikliniken-institute/vtg/patienten-und-zuweiser/international-patients/english].
Using the VR technology, it can be used to visualize 3D organs and structures, 2D medical images and information.
The framework can be applied in the areas of visualization, simulation, planning of surgeries and teaching.
Currently, its main goal is to be used in pre-operative planning (using patient-specific 3D data).

Disclaimer:

This Software is provided “as is”, without warranty of any kind, express or implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose and noninfringement. It is not a medical
product and is only intended for research purposes. Use at your own risk. See the Licenses/IMHOTEP.txt for further
details.

License:

The source code in this project is licensed under the BSD License (see Licenses/IMHOTEP.txt). The project uses
various third-party plugins and assets, a list of which can be seen in ThirdParty.md. Their licenses are in the
“Licenses” subfolder.

Features:

	Load and display segmented 3D models of patient organs

	Load display 2D MRI/CT images in DICOM format

	Display case-specific additional information (med. indication, patient history, …)

	Supports Occulus Rift and HTC Vive

	Intuitive interaction using HTC Vive controllers or Mouse

	3D User-Interface to maximize workspace

	3D/2D Annotation System

	Predefined views and orientations of the organs

	Volumetric Rendering (can be slow on lower end systems, might need more optimization)

Usage:

To run the project, you need a VR Headset (HTC Vive is recommended, although the framework will also work with an
Oculus Rift), Unity3D (tested with Version 2017.1 and 2017.2) and Blender3D. Set up your VR Headset, then download this project and load it using the Unity3D editor. In the Assets Folder, load the “Workstation” scene and then run the project. To select the correct HMD (Vive or Rift), please consult the documentation (documentation.imhotep-medical.org, “VR Setup” section).
You can find a sample patient data set in the download section of our website [http://imhotep-medical.org/].

Contribution:

We welcome contributions to the project!
Developers and researchers can contribute in the following areas:

	Building your own tools. Please consult the documentation on how to do this.

	Supplying test patient data. We would like to build up a small set of very diverse test cases. Make sure the data has been anonymized!

	Testing with more DICOM data. Even though DICOM is a well defined standard, we keep on being surprised by all the different formats it can take.

To Do:

See here to get a list of much needed features, some of which we are working on. We will try to keep this list up to date.

Documentation:

The documentation can be found here [https://documentation.imhotep-medical.org/]. This is kept up to date with the current master branch.

Alternatively, generate the documentation yourself with the doxygen program. There is a Doxyfile included in the root of the project.

List of ThirdParty plugins and assets used:

	SteamVR Unity Plugin (https://www.assetstore.unity3d.com/en/#!/content/32647)

	HTMLRenderer (Jos? Manuel Men?ndez Poo and Arthur Teplitzki)

	LitJson (https://lbv.github.io/litjson/)

	SimpleITK (http://www.simpleitk.org/)

	System.Drawing (Microsoft)

	HDR Sky (by ProAssets)

To Do

	Loading indicator while loading volume data

	Re-add automatic label positioning.

	Queue for loading multiple DICOMs consequently? When a DICOM volume is being loaded, the loading of DICOM 2D slices is currently blocked.

	Graph function to graph 2D and 3D data from tables

	Volumetrics:

	Volumetric rendering of Saggital and Coronal volumes (i.e. volumes where the saved slices are oriented in non-transverse direction). These are currently disabled because they would be rendered using a wrong orientation.

	Option to precompute the volume’s gradient (and uploading it as a texture) instead of computing it on the fly. Will require much more graphic card memory, so it should be optional.

	Possibly a better UI for loading the volume?

[Done] Text input method in VR. Currently, text input is done via keyboard. We are working on this.
[Done] Screenshot tool

Documentation:

To generate the documentation, download “Doxygen”.
Then run: ‘doxygen Doxyfile’.

Building Custom Tools and Widgets

Custom Tools should go into individual subfolders in the “Tools” folder.
To start of, we strongly recommend to duplicate one of the standard tools (for example the Opacity Control) and then modifying this to fit your needs.

If you want to build your own tool (which is displayed in the list of tools after a patient is loaded), the tool needs to be a child of the “ToolScene” GameObject and needs to have a “ToolWidget” Script attached to it. If this ToolWidget is given a Tool Icon sprite, this will be displayed in the list of tools. Note that tools are automatically disabled when you run the project and are enabled when the user selects them. Note also that the ToolScene is 50 meters below the real scene. To navigate there, simply select it in the Hierarchy, then move your cursor over the Scene View and press “F” on your keyboard.

If you want to build a widget for the curved 2D screen, this needs to be a child of the UIScene/UI GameObject. Again, we recommend to copy one of our widgets to get you started. The UI Widget needs to have a “Widget” component where you can control where it should be placed on the 2D screen. Note that the UIScene is 40 meters below the real scene. To navigate there, simply select it in the Hierarchy, then move your cursor over the Scene View and press “F” on your keyboard.

Merging:

Since Unity3D and Git sometimes do not work well together and merging a scene which has been modified by two developers fails most of the time, we recommend the following procedure when merging (until we find a better solution):

Build the tool inside your scene. Once you are satisfied and you want to merge with another branch, save the tool as a prefab inside your tool folder (drag the Tool’s main game object from the Hierarchy to the tool folder in Unity). Then commit everything and attempt the merge, for example by doing:

git pull origin master

If there is a merge conflict in the Workstation scene, you can now simply checkout the remote’s scene:

git checkout --theirs Assets/Workstation.unity

Then git commit to finalize the merge. Afterwards, you can re-add your tool to the scene simply by dragging it from the tool folder back to the Hierarchy in Unity.

Input

The IMHOTEP input system contains an abstract interface to the input devices, so that - for the most part - the developer does not need to worry about whether a mouse or controller is active.

It also tries to stay as close as possible to the standard Unity input system, which means that events are raised in a similar manner. However, there are places where the system is slightly different to the standard Unity input system, for example because we need additional buttons for the controllers.

Note: To simplify things, the trigger of the right controller is handled in the same way as a click with the left mouse button.

Generally, any GameObject can receive input events when it is being clicked, pointed at etc.
To receive these events, you need to:

	Make sure that an active collider is attached to the GameObject

	Attach a script to the GameObject which implements the specific event-interface (see below)

Implementing an interface

To be able to receive events, the specific interface needs to be implemented. For example, the ToolChoise class listenes to the click event. This is done by “inheriting” the interface IPointerClickHandler and implementing its method “OnPointerClick”:

 public class ToolChoise : MonoBehaviour, IPointerClickHandler {
 // ...

 public void OnPointerClick(PointerEventData eventData)
 {
 toolControl.chooseTool (this);
 }

 // ...
 }

Note: You’ll need to include the Unity EventSystem at the top of your file:

 using UnityEngine.EventSystems;

The PointerEventData can be used to check where the object was clicked, which button was clicked (right, middle, left), what the texture-coordinates at that position are etc. See the Unity documentation on ‘PointerEventData’ for more details.

A lot of the Unity event interfaces are also implemented in IMHOTEP. The most commonly used events are probably:

	IPointerClickHandler - void OnPointerClick(PointerEventData data)
Called when the mouse (or controller trigger) is clicked and released over the object.

	IPointerEnterHandler - void OnPointerEnter(PointerEventData data)
Called when the mouse/controller pointer moves onto the object.

	IPointerExitHandler - void OnPointerExit(PointerEventData data)
Called when the mouse/controller pointer moves off the object.

	IPointerDownHandler - void OnPointerDown(PointerEventData data)
Called when the mouse/controller is pressed while on the object.

	IPointerUpHandler - void OnPointerUp(PointerEventData data)
Called when the mouse/controller is released while on the object.

	IScrollHandler - void OnScroll(PointerEventData data)
Called when the mouse wheel was used while hovering over the object.
Note: This is also called when using the controller’s touchpad.

Custom events added by us:

	IPointerHoverHandler - void OnPointerHover(PointerEventData data)
Called whenever the mouse is over an object.

Note:
When you’ve clicked on (or hovered over) an object, the texture coordinates are passed along as well.
However, since Unity does not pass these along, the PointerEventData which we send to the above events
is actually a CustomEventData, which holds this extra information (it inherits from PointerEventData.
To access the texture coordinate of the hit position, you can cast the PointerEventData to a
CustomEventData:

 public class MyClass : MonoBehaviour, IPointerClickHandler {

 public void OnPointerClick(PointerEventData eventData)
 {
 CustomEventData cEventData = eventData as CustomEventData;
 if(cEventData != null)
 {
 Debug.Log("u,v coordinates: " + cEventData.textureCoord);
 }
 }
 }

See also CustomEventData.

Get Raw Input

The interface above abstracts the events so that in many cases, you don’t need to worry about whether the mouse or the controllers are active. However, there are some times when you do need to handle the mouse and the controllers differently. For this, you can retrieve the current input device:

 InputDevice inputDevice = InputDeviceManager.instance.currentInputDevice;

First, you should check which type of input we’re currently getting:

 if (inputDevice.getDeviceType () == InputDeviceManager.InputDeviceType.ViveController)
 {
 // ...
 } else if(inputDevice.getDeviceType () == InputDeviceManager.InputDeviceType.Mouse) {
 // ...
 }

In case the mouse is active, you can use Unity’s standard Input class to get the Mouse Position and speed etc. For example:

 Input.GetAxis("Mouse X")

If the Vive controllers are active, you can cast the input device to a Controller:

 Controller c = inputDevice as Controller;
 if (c != null) {
 // ...
 }

If the Vive controller is active then the other controller can be accessed by (Note: always check if lc is not null - it might not be set if the controller is currently not tracked!)

 LeftController lc = InputDeviceManager.instance.leftController;
 if (lc != null) {
 Controller c = inputDevice as Controller;
 if (c != null) {
 // ...
 }
 }

In both cases, you can check whether the trigger is pressed, where the controller is, how it’s oriented etc. (see Controller for details):

 // Check if trigger is pressed all the way:
 if(c.triggerPressed()) {
 // ...
 }

 // Check how much the trigger is pressed down:
 float pressAmount = c.triggerValue();

 // Let the controller shake briefly (please don't overuse!)
 c.shake(1000);

 // Get the world position of the controller:
 Vector3 pos = c.transform.position;

IMHOTEP Framework {#mainpage}

Welcome to the IMHOTEP Documentation.

The IMHOTEP Framework can be used to view medical data in a Virtual Reality (VR) setting.
Supported VR-Devices are:
- Oculus Rift (Consumer Version)
- HTC Vive

Supported Input options:
- Mouse/Keyboard
- HTC Vive controllers

To compile the Framework, you need:
- Unity3D (tested with Version 5.x)
- Steam and %SteamVR
- Blender (tested with Version 2.70)

VR Setup:

To run the project using the Oculus Rift or normal computer screen (for developping purposes):
1. Search for the “Camera” GameObject in the Hierarchy
2. The “Camera” has a child called “Camera(Rift)”. Set it to active.
3. The “Camera” also has a child called “[CameraRig(Vive)]”. Set it to inactive.
4. Connect the Oculus Rift.
5. Run the project from within Unity.

To run the project using the HTC Vive:
1. Search for the “Camera” GameObject in the Hierarchy
2. The “Camera” has a child called “[CameraRig(Vive)]”. Set it to active.
3. The “Camera” also has a child called “Camera(Rift)”. Set it to inactive.
4. Connect the HTC Vive and start %SteamVR.
5. Run the project from within Unity.

Getting Started:

Input: Describes how the IMHOTEP Input system differs from Unitys default system.

User Interface: Describes how %UI elements are set up in IMHOTEP.

Building your own tools: Hints on how to build your own tools and %UI widgets.

Patient Event System: Describes how to make your tools react to %Patient load/close events.

Patient Event System

The [PatientEventSystem] can be used to react to events which happen when loading or closing a patient. Generally, every tool should react to these events, for example to load tool-specific data after a patient is loaded or to hide buttons when there’s no patient loaded.

To register a method which should be called when a specific event is fired, call the function PatientEventSystem.startListening. For example:

 PatientEventSystem.startListening(PatientEventSystem.Event.MESH_LoadedAll, createContent);

This line will make sure that every time the MESH_LoadedAll event happens, the createContent function will be called.
Note that create content should be a method of the class you’re programming and it should have the following signature:

public void createContent(object obj = null)
{
 //...
}

Some of the events will fill the variable, some will not. For example, the PATIENT_Loaded event will pass the newly loaded Patient object to the callback.
In the callback you can use this patient by casting the object:

public void onPatientLoaded(object obj = null)
{
 Patient p = obj as Patient;
 if(p != null)
 {
 // ...
 }
}

A list of Events can be found in PatientEventSystem.Event.

You can un-register callbacks by calling the function PatientEventSystem.stopListening with the same parameters as the startListening call.

Note: We recommend calling the startListening function in your MonoBehavior’s OnEnable function and the stopListening in OnDisable only.
This is because your MonoBehaviour might be enabled and disabled multiple times (for example if the user switches tools back and forth). This way,
you will make sure that you will get notified only while your tool/widget is actually active.

For examples, check out the source code for OpacityControl.cs and DicomDisplay.cs.

User Interface

The user interface (UI) in IMHOTEP is designed in such a way that it should work with and without VR controllers.

In most 3D applications, UI Elements are glued to the camera. This is achieved by rendering them after rendering the 3D scene. However, in VR applications, this can have negative effects: The Elements can overlap objects in the scene in weird ways and the perceived distance of the object from the eyes is hard to control. Also, interaction with such elements using the controllers would be very difficult.
Instead, IMHOTEP places all UI Elements - even those which are 2D - into the 3D scene. This is achieved by using Unity’s “World Space Canvas” components for all 2D UI elements.

In addition to this, the UI is split into two parts: The Main UI Mesh which is fixed in the scene and displayed around the user’s position and the Tool UI:

Main UI:

The main UI is made up of widgets which are placed into the “UIScene” GameObject in the Hierarchy.
This UIScene is on the “UI” layer and is ignored by the main rendering process. Instead, the UIScene contains the UICamera, which renders the UI elements once each frame. The result is placed into a RenderTexture, which is then displayed on the UIMesh (which is generated at startup) in the main scene.
This UIMesh is fixed to the platform which the user is standing on. When using the Rift, the UIMesh has the form of a cylinder which is centered around the user’s chair. In case the HTC Vive (and with it, Room-Scale-VR) is used, the UIMesh is a cuboid mesh which spans the sides of the room/platform.
At runtime, the elements in the UIScene will be displayed on one of the virtual screens (currently “Left”, “Center” and “Right”). These screens are automatically generated at runtime to fit the current UIMesh.

Each UI element in the UIScene should have the Canvas, Canvas Scaler, Graphic Raycaster and Widget components attached to it.
The Widget script has public attributes which control on which virtual Screen it should be placed and how it should be aligned there (vertical and horizontal alignment). As soon as a UI element is enabled, the layout system will look up these values and place/scale the UI element accordingly. Because of this, each UI Element should be scalable (i.e. when you resize the canvas in the Unity Editor using the rect transform tool, all elements inside the canvas should scale and move to fit).

Troubleshooting when UI element doesn’t work:

	Make sure the layer of the element is set to “UI”.

	Compare position and scale of the element to the

	Make sure the element is centered

(TODO: Explain how UI Elements automatically get enabled or disabled depending on the selected tool).

Tool UI:

The Tool UI Scene holds all those UI elements which should be connected to the left controller when the tool is picked up.

To create a new tool:

	Create a GameObject which is a direct child of the ToolScene. Attach a ToolWidget component to this GameObject. We’ll call this GameObject the “Tool” from now on.

	Add your tool’s UI elements to the Tool: Add a GameObject with a Canvas (set it to WorldSpace) and then add Lists, Buttons etc. as Children of this canvas. You can do this again for multiple Canvases. See the other tools for a good setup. These elements will be attached to the controller whenever the tool is picked up.

	Any Object which has a Canvas component should have a scale of 0.0025 in x, y, and z direction.

	Any Object which has a Canvas should be rotated to 90,0,0.

	Any Object which has a Canvas also needs a CreateBoxColliderForCanvas component attached to it.

	Any Object which has a Canvas also needs a CanvasRaycaster component attached to it.

	Set the Layer of the Tool and its children to be “UITool” in the inspector.

This should be enough to have a first UI ready for your tool. To add functionality, add your own script to the Tool GameObject. You can use normal Unity callbacks (Start, Update, OnEnable, OnDisable…) to program the tool’s functions. Note that OnEnable is called when the tool is picked up and OnDisable is called when the tool is placed back on the ToolStand (i.e. another Tool is picked up). Initialize things you need to initialize only once in Start. Things that you need to set up when the tool is picked up should be placed in OnEnable. Also make sure to “clean up” in OnDisable.

Note: The Tool GameObject should be inactive when you start to run, otherwise it is enabled at startup (which can be nice for debugging, but remember that no patient is loaded at startup).
Note: You can skip steps 1 and 2 by simply pulling the ToolExample from Assets/Scripts/UI/Prefabs into the ToolScene (and then change the “Tool Example” to the name you want your tool to have).
Note: If there are no controllers found then the tool’s UI is connected to the camera instead, acting like a helmet heads-up-display. This UI can then be controlled using the mouse.

Prefabs:

The easiest way to get started with your own tool is to copy already existing tools in the project’s hierarchy (for example, you can copy the “Opacity Control” in the ToolScene and the “Patient Briefing” in the UIScene.

Additionally, the project contains UI prefabs in Assets/Scripts/UI/Prefabs. The “Tool Example” is an empty tool which can be pulled into the ToolScene. The “Widget” is an empty widget which can be pulled into the UIScene/UI.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

