Imbo Documentation
Release 0.3.3-beta

Christer Edvartsen

January 30, 2014

Contents

Imbo Documentation, Release 0.3.3-beta

Imbo is an image “server” that can be used to add/get/delete images using a RESTful HTTP API. There is also support
for adding meta data to the images stored in Imbo. The main idea behind Imbo is to have a place to store high quality
original images and to use the API to fetch variations of the images. Imbo will resize, rotate and crop (amongst other
transformations) images on the fly so you won’t have to store all the different variations. See Image transformations
for a complete list of the supported transformations.

Imbo is an open source project written in PHP and is available on GitHub. If you find any issues or missing features
please add an issue in the issue tracker.

Feel free to join the #imbo channel on the Freenode IRC network (chat.freenode.net).

Contents 1

http://php.net/
http://github.com/imbo/imbo
https://github.com/imbo/imbo/issues
http://freenode.net

Imbo Documentation, Release 0.3.3-beta

2 Contents

L Y N

CHAPTER 1

Documentation

1.1 Requirements

Imbo requires a web server running PHP >= 5.4 and the Imagick extension for PHP.
You will also need a backend for storing image information, like for instance MongoDB or MySQL.

Optional requirements are Doctrine Database Abstraction Layer (for some storage and database drivers), and Mem-
cached and/or APC for caching.

1.2 Installation

The easiest way to install Imbo is to clone the repository, and then use Composer to install the dependencies:

git clone git@github.com:imbo/imbo.git

cd imbo

curl -s https://getcomposer.org/installer | php
S php composer.phar install

wn N

After installing the PHP files you will need to configure your web server.

1.2.1 Web server configuration

Imbo ships with sample configuration files for Apache and Nginx that can be used with a few minor adjustments. Both
configuration files assumes you run your httpd on port 80. If you use Varnish or some other HTTP accelerator, simply
change the port number to the port that your httpd listens to.

Apache

You will need to enable mod_rewrite if you want to use Imbo with Apache.

<VirtualHost =:80>
Servername of the virtual host
ServerName imbo

Define aliases to use multiple hosts
ServerAlias imbol imbo2 imbo3

Document root where the index.php file is located

http://php.net/
http://pecl.php.net/package/imagick
http://www.mongodb.org/
http://www.mysql.com
http://www.doctrine-project.org/projects/dbal.html
http://pecl.php.net/package/memcached
http://pecl.php.net/package/memcached
http://pecl.php.net/package/apc
http://getcomposer.org/
http://httpd.apache.org/
http://nginx.org/
https://www.varnish-cache.org/
http://httpd.apache.org/docs/current/mod/mod_rewrite.html

20

21

22

23

24

25

26

27

28

Imbo Documentation, Release 0.3.3-beta

DocumentRoot /path/to/imbo/public

Logging
CustomLog /var/log/apache2/imbo.access_log combined
ErrorLog /var/log/apache2/imbo.error_log

Rewrite rules that rewrite all requests to the index.php script
<Directory /path/to/imbo/public>
RewriteEngine on
RewriteCond %${REQUEST_FILENAME} !-f
RewriteRule .* index.php
</Directory>
</VirtualHost>

You will need to update ServerName to match the host name you will use for Imbo. If you want to use several host
names you can update the ServerAlias line as well. You must also update DocumentRoot and Directory to
point to the public directory in the Imbo installation. If you want to enable logging update the Cust omLog and
ErrorLog lines.

Nginx

The sample Nginx configuration uses PHP via FastCGI.

server {
Listen on port 80
listen 80;

Define the server name
server_name imbo;

Use the line below instead of the server_name above if you want to use multiple host names
server_name imbo imbol imbo2 imbo3;

Path to the public directory where index.php is located
root /path/to/imbo/public;
index index.php;

Logs
error_log /var/log/nginx/imbo.error_log;
access_log /var/log/nginx/imbo.access_log main;

location / {
try_files Suri $Suri/ /index.php?$args;
location ~ \.php$ {
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /path/to/imbo/public/index.php;
include fastcgi_params;

You will need to update server_name to match the host name you will use for Imbo. If you want to use several
host names simply put several host names on that line. root must point to the public directory in the Imbo
installation. If you want to enable logging update the error_log and access_log lines. You must also update
the fastcgi_param SCRIPT_FILENAME line to point to the public/index . php file in the Imbo installation.

4 Chapter 1. Documentation

http://www.fastcgi.com/

Imbo Documentation, Release 0.3.3-beta

1.2.2 Varnish

Imbo strives to follow the HTTP Protocol, and can because of this easily leverage Varnish.
The only required configuration you need in your VCL is a default backend:

backend default {
.host = "127.0.0.1";
.port = "81";
}
where .host and . port is where Varnish can reach your web server.

If you use the same host name (or a sub-domain) for your Imbo installation as other services, that in turn uses Cookies,
you might want the VCL to ignore these Cookies for the requests made against your Imbo installation (unless you
have implemented event listeners for Imbo that uses Cookies). To achieve this you can put the following snippet into
your VCL file:

sub vcl_recv {
if (reg.http.host == "imbo.example.com") {
unset reqg.http.Cookie;

}

or, if you have Imbo installed in some path:

sub vcl_recv {
if (reqg.http.host ~ "” (www.)?example.com$" && reg.url ~ "~/imbo/") {
unset reqg.http.Cookie;

}

if you have Imbo installed in example . com/imbo.

1.3 Configuration

Imbo ships with a default configuration file named config/config.default.php that Imbo will load. You
can specify your own configuration file, config/config.php, that Imbo will merge with the default. You should
never update config/config.default.php.

1.3.1 User key pairs

Every user that wants to store images in Imbo needs a public and private key pair. These keys are stored in the auth
part of the configuration file:

<?php
namespace Imbo;

return array (

VYA

"auth’” => array(

"username’ => ’95f02d701b8dcl19ee7d3710c4d477£d5f4633cec32087£562264e4975659029%9af7",
"otheruser’ => "b312ff29d5da23dcd230b61ff4dble2515¢c862b9fb0bb59%9e7dd54celede94a53",

)y

1.3. Configuration 5

http://www.ietf.org/rfc/rfc2616.txt
https://www.varnish-cache.org/
https://www.varnish-cache.org/docs/3.0/reference/vcl.html
http://en.wikipedia.org/wiki/HTTP_cookie

Imbo Documentation, Release 0.3.3-beta

/).
) ;

The public keys can consist of the following characters:
* a-z (only lowercase is allowed)
* 09
e and-

and must be at least 3 characters long.

For the private keys you can for instance use a SHA-256 hash of a random value. The private key is used by clients
to sign requests, and if you accidentally give away your private key users can use it to delete all your images. Make
sure not to generate a private key that is easy to guess (like for instance the MD5 or SHA-256 hash of the public key).
Imbo does not require the private key to be in a specific format, so you can also use regular passwords if you want.

Imbo ships with a small command line tool that can be used to generate private keys for you using the
openssl_random_pseudo_bytes function. The script is located in the scripts directory and does not require any ar-
guments:

S php scripts/generatePrivateKey.php
3b98dde5£67989a878b8b268d82£81£0858d4£1954597¢cc713aelblcdffcc84a

The private key can be changed whenever you want as long as you remember to change it in both the server configu-
ration and in the client you use. The public key can not be changed easily as database and storage drivers use it when
storing images and metadata.

1.3.2 Database configuration

The database driver you decide to use is responsible for storing metadata and basic image information, like width and
height for example. Imbo ships with some different implementations that you can use. Remember that you will not be
able to switch the driver whenever you want and expect all data to be automatically transferred. Choosing a database
driver should be a long term commitment unless you have migration scripts available.

In the default configuration file the MongoDB storage driver is used, and it is returned via a Closure. You can choose
to override this in your config. php file by specifying a closure that returns a different value, or you can specify an
implementation of the Imbo\Database\DatabaseInterface interface directly. Which database driver to use
is specified in the database key in the configuration array:

<?php
namespace Imbo;

return array (

VAR
"database’ => function () {
return new Database\MongoDB (array (
"databaseName’ => ’imbo’,
"collectionName’ => ’images’,
)) i
b
// or

"database’ => new Database\MongoDB (array (
"databaseName’ => ’"imbo’,
"collectionName’ => ’images’,

6 Chapter 1. Documentation

http://en.wikipedia.org/wiki/SHA-2
http://php.net/openssl_random_pseudo_bytes

20
21

22

Imbo Documentation, Release 0.3.3-beta

Available database drivers

The following database drivers are shipped with Imbo:

¢ Doctrine
* MongoDB

Doctrine

This driver uses the Doctrine Database Abstraction Layer. The options you pass to the constructor of this driver is
passed to the underlying classes, so have a look at the Doctrine-DBAL documentation over at doctrine-project.org.

Database schema When using this driver you need to create a couple of tables in the DBMS you choose to use.
Below you will find statements to create the necessary tables for SQLite and MySQL.

SQLite

CREATE TABLE IF NOT EXISTS imageinfo (
id INTEGER PRIMARY KEY NOT NULL,
publicKey TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
size INTEGER NOT NULL,
extension TEXT NOT NULL,
mime TEXT NOT NULL,
added INTEGER NOT NULL,
updated INTEGER NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
checksum TEXT NOT NULL,

UNIQUE (publicKey, imageIdentifier)

CREATE TABLE IF NOT EXISTS metadata (
id INTEGER PRIMARY KEY NOT NULL,
imageId KEY INTEGER NOT NULL,
tagName TEXT NOT NULL,
tagValue TEXT NOT NULL

MySQL

CREATE TABLE IF NOT EXISTS ‘imageinfo‘ (
*id" int (10) unsigned NOT NULL AUTO_INCREMENT,
‘publicKey ' varchar (255) COLLATE utf8_danish_ci NOT NULL,
‘imageIdentifier' char (32) COLLATE utf8_danish_ci NOT NULL,
‘size' int (10) unsigned NOT NULL,
‘extension' varchar (5) COLLATE utf8_danish_ci NOT NULL,

1.3. Configuration 7

http://www.doctrine-project.org/projects/dbal.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html
http://en.wikipedia.org/wiki/Relational_database_management_system
http://www.sqlite.org/
http://www.mysql.com/

20
21
22
23

24

Imbo Documentation, Release 0.3.3-beta

‘mime" varchar (20) COLLATE utf8_danish_ci NOT NULL,
‘added' int (10) unsigned NOT NULL,

‘updated' int (10) unsigned NOT NULL,

‘width' int (10) unsigned NOT NULL,

‘height' int (10) unsigned NOT NULL,

‘checksum' char (32) COLLATE utf8_danish_ci NOT NULL,

PRIMARY KEY (‘id‘),

UNIQUE KEY ‘image‘' (‘publicKey‘, ‘imageIdentifier?‘)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS

‘metadata‘ (

*id" int (10) unsigned NOT NULL AUTO_INCREMENT,
‘imageId' int (10) unsigned NOT NULL,

‘tagName ' varchar (255)

‘tagValue' varchar (255) COLLATE utf8_danish_ci NOT NULL,

PRIMARY KEY (‘id‘),

COLLATE utf8_danish_ci NOT NULL,

KEY ‘imageId‘' (‘imageId?)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci AUTO_INCREMENT=1 ;

Note: Imbo will not create these tables automatically.

Examples Here are some examples on how to use the Doctrine driver in the configuration file:

1. Use a PDO instance to connect to a SQLite database:

<?php
namespace Imbo;

return array (

"pdo’ => new \PDO(’sglite:/path/to/database’),

//

"database’ => function () {
return new Database\Doctrine (array (
)) i

}y

//

)i

2. Connect to a MySQL database using PDO:

<?php
namespace Imbo;

return array (

/7
"database’ => function () {
return new Database\Doctrine (array (

" dbname’ => ’'database’,
"user’ => 'username’,
"password’ => ’password’,
"host’ => ’"hostname’,
"driver’ => ’"pdo_mysqgl’,

Chapter 1. Documentation

http://php.net/pdo

Imbo Documentation, Release 0.3.3-beta

/7

MongoDB

This driver uses PHP’s mongo extension to store data in MongoDB. The following parameters are supported:
databaseName Name of the database to use. Defaults to imbo.

collectionName Name of the collection to use. Defaults to images.

server The server string to use when connecting. Defaults to mongodb://localhost:27017.

options Options passed to the underlying driver. Defaults to array (’ connect’ => true, 'timeout’
=> 1000). See the manual for the Mongo constructor at php.net for available options.

Examples

1. Connect to a local MongoDB instance using the default databaseName and collectionName:

<?php
namespace Imbo;

return array (

//
"database’ => function () ({
return new Database\MongoDB () ;
}I
//

)i
2. Connect to a replica set:

<?php
namespace Imbo;

return array (

/7
"database’ => function() {
return new Database\MongoDB (array (
"server’ => 'mongodb://serverl,server2,server3’,
"options’ => array (
"replicaSet’ => ’"nameOfReplicaSet’,
)I
)) i
}I
//

)i

1.3. Configuration 9

http://pecl.php.net/package/mongo
http://www.mongodb.org/
http://php.net/manual/en/mongo.construct.php
http://php.net
http://www.mongodb.org/display/DOCS/Replica+Sets

Imbo Documentation, Release 0.3.3-beta

1.3.3 Storage configuration

Storage drivers are responsible for storing the original images you put into imbo. Like with the database driver it is
not possible to simply switch a driver without having migration scripts available to move the stored images. Choose a
driver with care.

In the default configuration file the GridFS storage driver is used, and it is returned via a Closure. You can choose
to override this in your config.php file by specifying a closure that returns a different value, or you can specify
an implementation of the Imbo\Storage\StorageInterface interface directly. Which storage driver to use is
specified in the st orage key in the configuration array:

<?php
namespace Imbo;

return array (

VY2
"storage’ => new function() {
return new Storage\Filesystem (array (
"dataDir’ => ' /path/to/images’,
)) i
}y
V2R

Available storage drivers

The following storage drivers are shipped with Imbo:

e Doctrine
* Filesystem
e GridFS

Doctrine

This driver uses the Doctrine Database Abstraction Layer. The options you pass to the constructor of this driver is
passed to the underlying classes, so have a look at the Doctrine-DBAL documentation over at doctrine-project.org.

Database schema When using this driver you need to create a table in the DBMS you choose to use. Below you
will find a statement to create this table in SQLite and MySQL.

SQLite

CREATE TABLE storage_images (
publicKey TEXT NOT NULL,
imageIdentifier TEXT NOT NULL,
data BLOB NOT NULL,
updated INTEGER NOT NULL,
PRIMARY KEY (publicKey,imageIdentifier)

10 Chapter 1. Documentation

http://www.doctrine-project.org/projects/dbal.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html
http://en.wikipedia.org/wiki/Relational_database_management_system
http://www.sqlite.org/
http://www.mysql.com/

Imbo Documentation, Release 0.3.3-beta

MySQL

CREATE TABLE IF NOT EXISTS ‘storage_images' (
‘publicKey ' varchar (255) COLLATE utf8_danish_ci NOT NULL,
‘imageIdentifier' char (32) COLLATE utf8_danish_ci NOT NULL,
‘data' blob NOT NULL,
‘updated' int (10) unsigned NOT NULL,
PRIMARY KEY (‘publicKey‘, ‘imagelIdentifier’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci;

Note: Imbo will not create the table automatically.

Examples Here are some examples on how to use the Doctrine driver in the configuration file:

1. Use a PDO instance to connect to a SQLite database:

<?php
namespace Imbo;

return array (

//
"storage’ => function() {
return new Storage\Doctrine (array (
"pdo’ => new \PDO(’sglite:/path/to/database’),
)) i
b
//

)i
2. Connect to a MySQL database using PDO:

<?php
namespace Imbo;

return array (

//
"storage’ => function() {
return new Storage\Doctrine (array (
" dbname’ => ’'database’,
"user’ => ’'username’,
"password’ => ’password’,
"host’ => "hostname’,
"driver’ => ’'pdo_mysqgl’,
)) i
by
//
)i
Filesystem

This driver simply stores all images on the file system. This driver only has one parameter, and that is the directory
where you want your images stored:

1.3. Configuration 11

http://php.net/pdo

R Y B N e

Imbo Documentation, Release 0.3.3-beta

dataDir The base path where the images are stored.

This driver is configured to create subdirectories inside of dataDir based on the public key of the user and the
checksum of the images added to Imbo. If you have configured this driver with /path/to/images as dataDir
and issue the following command:

S curl -XPUT http://imbo/users/username/images/bbd%ae7bbfcefb0cc9a52f03£89dd3f9 —--data-binary @somelr

the image will be stored in:
/path/to/images/u/s/e/username/b/b/d/bbd%ae7bbfcefb0cc9a52£03£89dd3£9

The algorithm that generates the path simply takes the three first characters of <user> and creates directories for
each of them, then the full public key, then a directory of each of the first characters in <image> and lastly it stores
the image in a file with a filename equal to <image>.

Read more about the API in the RESTful API topic.

Examples Default configuration:

<?php
namespace Imbo;

return array (

VIR
"storage’ => function() {
new Storage\Filesystem (array (
"dataDir’ => ' /path/to/images’,
)) i
by
/S
)i
GridFS

The GridFS driver is used to store the images in MongoDB using the GridFS specification. This driver has the
following parameters:

databaseName The name of the database to store the images in. Defaults to imbo_storage.
server The server string to use when connecting to MongoDB. Defaults to mongodb://localhost:27017

options Options passed to the underlying driver. Defaults to array (’ connect’ => true, ’timeout’
=> 1000). See the manual for the Mongo constructor at php.net for available options.

Examples
1. Connect to a local MongoDB instance using the default databaseName:

<?php
namespace Imbo;

return array (

V2

"storage’ => function() {

12 Chapter 1. Documentation

http://www.mongodb.org/display/DOCS/GridFS
http://php.net/manual/en/mongo.construct.php
http://php.net

)

Imbo Documentation, Release 0.3.3-beta

return new Storage\GridFS();
b

//
)

2. Connect to a replica set:

<?php
namespace Imbo;

return array (

//
"storage’ => function() {
return new Storage\GridFS (array (
"server’ => 'mongodb://serverl, server2, server3’,
"options’ => array (
"replicaSet’ => ’'nameOfReplicaSet’,
) ’
)) i
}I
//

1.3.4 Event listeners

Imbo also supports event listeners that you can use to hook into Imbo at different phases without having to edit Imbo
itself. An event listener is simply a piece of code that will be executed when a certain event is triggered from Imbo.
Event listeners are added to the eventListeners part of the configuration array as associative arrays. The keys
are short names used to identify the listeners, and are not really used for anything in the Imbo application, but exists
so you can override/disable event listeners specified in config.default .php. If you want to disable the default
event listeners simply specify the same key in the config.php file and set the value to null or false.

Event listeners can be added in the following ways:

1. Use an instance of a class implementing the Imbo\EventListener\ListenerInterface interface:

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array(
"accessToken’ => new EventListener\AccessToken (),

)y

//
) ;

2. A closure returning an instance of the Imbo\EventListener\ListenerInterface interface

<?php
namespace Imbo;

return array (

1.3. Configuration 13

http://www.mongodb.org/display/DOCS/Replica+Sets

Imbo Documentation, Release 0.3.3-beta

/7

"eventListeners’ => array (
"accessToken’ => function() {
return new EventListener\AccessToken () ;
}I
)I

//
)i

3. Use an instance of a class implementing the Imbo\EventListener\ListenerInterface interface to-
gether with a public key filter:

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array (
"maxImageSize’ => array (
"listener’ => new EventListener\MaxImageSize (1024, 768),
"publicKeys’ => array (
"include’ => array(’user’),
// ’exclude’ => array(’someotheruser’),

//
)i

where listener is an instance of the Imbo\EventListener\ListenerInterface interface, and
publicKeys is an array that you can use if you want your listener to only be triggered for some users (public
keys). The value of this is an array with one of two keys: include or exclude where include is an array
you want your listener to trigger for, and exclude is an array of users you don’t want your listener to trigger for.
publicKeys is optional, and per default the listener will trigger for all users.

4. Use a closure:

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array (
"customListener’ => array (
"callback’ => function (EventManager\EventInterface Sevent) ({
// Custom code
}l
"events’ => array(’image.get’),
"priority’ => 1,
"publicKeys’ => array (
"include’ => array(’user’),
// ’exclude’ => array(’someotheruser’),
)l

14 Chapter 1. Documentation

http://php.net/manual/en/functions.anonymous.php

Imbo Documentation, Release 0.3.3-beta

VYA
)i

where callback is the code you want executed, and events is an array of the events you want it triggered for.
priority is the priority of the listener and defaults to 1. The higher the number, the earlier in the chain your listener
will be triggered. This number can also be negative. Imbo’s internal event listeners uses numbers between 1 and 100.
publicKeys uses the same format as described above.

Events
When configuring an event listener you need to know about the events that Imbo triggers. The most important events
are combinations of the accessed resource along with the HTTP method used. Imbo currently provides five resources:
* status
* user
* images
* image
* metadata
Examples of events that is triggered:
* image.get
* image.put
* image.delete

As you can see from the above examples the events are built up by the resource name and the HTTP method, separated
by ..

Some other notable events:
* storage.image.insert
* storage.image.load
* storage.image.delete
* db.image.insert
e db.image.load
e db.image.delete
* db.metadata.update
* db.metadata.load
* db.metadata.delete
* route
* response.send

Below you will see the different event listeners that Imbo ships with and the events they subscribe to.

1.3. Configuration 15

Imbo Documentation, Release 0.3.3-beta

Event listeners

Imbo ships with a collection of event listeners for you to use. Some of them are enabled in the default configuration
file.

* Access token

* Authenticate

* Auto rotate image

* CORS (Cross-Origin Resource Sharing)
 Exif metadata

* Image transformation cache

* Max image size

* Metadata cache

Access token

This event listener enforces the usage of access tokens on all read requests against user-specific resources. You can
read more about how the actual access tokens works in the Access tokens topic in the RESTful API section.

To enforce the access token check for all read requests this event listener subscribes to the following events:
* user.get
* images.get
* image.get
* metadata.get
* user.head
* images.head
* image.head
* metadata.head

This event listener has a single parameter that can be used to whitelist and/or blacklist certain image transforma-
tions, used when the current request is against an image resource. The parameter is an array with a single key:
transformations. This is another array with two keys: whitelist and blacklist. These two values are
arrays where you specify which transformation(s) to whitelist or blacklist. The names of the transformations are the
same as the ones used in the request. See Image transformations for a complete list of the supported transformations.

Use whitelist if you want the listener to skip the access token check for certain transformations, and blacklist
if you want it to only check certain transformations:

array (' transformations’ => array(
"whitelist’ => array(
"border’,

))

means that the access token will not be enforced for the border transformation.

array ('transformations’ => array(
"blacklist’ => array(
"border’,

16 Chapter 1. Documentation

Imbo Documentation, Release 0.3.3-beta

means that the access token will be enforced only for the border transformation.

If both whitelist and blacklist are specified all transformations will require an access token unless it’s in-
cluded in whitelist.

This event listener is included in the default configuration file without specifying any filters (which means that the
access token will be enforced for all requests):

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array (
"accessToken’ => function() {
return new EventListener\AccessToken () ;

by
)y

//
)

Disable this event listener with care. Clients can easily DDoS your installation if you let them specify image transfor-
mations without limitations.

Authenticate

This event listener enforces the usage of signatures on all write requests against user-specific resources. You can read
more about how the actual signature check works in the Signing write requests topic in the RESTful API section.

To enforce the signature check for all write requests this event listener subscribes to the following events:
* image.put
* image.post
* image.delete
* metadata.put
* metadata.post
* metadata.delete

This event listener does not support any parameters and is enabled per default like this:

<?php
namespace Imbo;

return array (

//

"eventListeners’ => array (
"authenticate’” => function () {
return new EventListener\Authenticate();
s
)I

//

1.3. Configuration 17

http://en.wikipedia.org/wiki/DDoS

Imbo Documentation, Release 0.3.3-beta

Disable this event listener with care. Clients can delete all your images and metadata when this listener is not enabled.

Auto rotate image

This event listener will auto rotate new images based on metadata embedded in the image itself (EXIF).

The listener does not support any parameters and can be enabled like this:

<?php
namespace Imbo;

return array (

//

"eventListeners’ => array (
"autoRotate’ => function() {
return new EventListener\AutoRotateImage () ;

by
)l

//
)i

If you enable this listener all new images added to Imbo will be auto rotated based on the EXIF data.

CORS (Cross-Origin Resource Sharing)

This event listener can be used to allow clients such as web browsers to use Imbo when the client is located on a
different origin/domain than the Imbo server is. This is implemented by sending a set of CORS-headers on specific
requests, if the origin of the request matches a configured domain.

The event listener can be configured on a per-resource and per-method basis, and will therefore listen to any related
events. If enabled without any specific configuration, the listener will allow and respond to the GET, HEAD and
OPTIONS methods on all resources. Note however that no origins are allowed by default and that a client will still
need to provide a valid access token, unless the Access token listener is disabled.

To enable the listener, use the following:

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array (
"cors’ => function() {
return new EventListener\Cors (array (
"allowedOrigins’ => array(’'http://some.origin’),
"allowedMethods’ => array (
"image’ => array ('GET’, ’'HEAD’, ’'PUT’),
"images’ => array('GET’, 'HEAD'’),
)I
"maxAge’ => 3600,
V)i
}!

18 Chapter 1. Documentation

http://en.wikipedia.org/wiki/Exchangeable_image_file_format

20

21

Imbo Documentation, Release 0.3.3-beta

/).
) ;

allowedOrigins is an array of allowed origins. Specifying = as a value in the array will allow any origin.

allowedMethods is an associative array where the keys represent the resource (image, images, metadata,
status and user). The value is an array of HTTP methods you wish to open up.

maxAge specifies how long the response of an OPTIONS-request can be cached for, in seconds. Defaults to 3600
(one hour).

Exif metadata

This event listener can be used to fetch the EXIF-tags from uploaded images and adding them as metadata. Enabling
this event listener will not populate metadata for images already added to Imbo.

The event listener subscribes to the following events:
* image.put
e db.image.insert
and has the following parameters:
$allowedTags The tags you want to be populated as metadata, if present. Optional - by default all tags are added.

and is enabled like this:

<?php
namespace Imbo;

return array (

VA

"eventListeners’ => array (
"exifMetadata’ => function() {
return new EventListener\ExifMetadata (array (
"exif:Make’,
"exif:Model’,

/).
)

which would allow only exif :Make and exif:Model as metadata tags. Not passing an array to the constructor
will allow all tags.

Image transformation cache

This event listener enables caching of image transformations. Read more about image transformations in the Image
transformations topic in the RESTful API section.

To achieve this the listener subscribes to the following events:
* image.get (both before and after the main application logic)

* image.delete

1.3. Configuration 19

Imbo Documentation, Release 0.3.3-beta

The event listener has one parameter:
$path Root path where the cached images will be stored.

and is enabled like this:

<?php
namespace Imbo;

return array (

//

"eventListeners’ => array (
"imageTransformationCache’ => function() {
return new EventListener\ImageTransformationCache (’ /path/to/cache’);
}I
),

//
)i

Note: This event listener uses a similar algorithm when generating file names as the Filesystem storage driver.

Warning: It can be wise to purge old files from the cache from time to time. If you have a large amount of images
and present many different variations of these the cache will use up quite a lot of storage.
An example on how to accomplish this:

$ find /path/to/cache -ctime +7 -type f —-delete

The above command will delete all files in /path/to/cache older than 7 days and can be used with for instance
crontab.

Max image size

This event listener can be used to enforce a maximum size (height and width, not byte size) of new images. Enabling
this event listener will not change images already added to Imbo.

The event listener subscribes to the following event:
* image.put
and has the following parameters:
$width The max width in pixels of new images. If a new image exceeds this limit it will be downsized.
Sheight The max height in pixels of new images. If a new image exceeds this limit it will be downsized.

and is enabled like this:

<?php
namespace Imbo;

return array (

/7

"eventListeners’ => array(
"maxImageSize’ => function() {
return new EventListener\MaxImageSize (1024, 768);

by

20 Chapter 1. Documentation

http://en.wikipedia.org/wiki/Cron

Imbo Documentation, Release 0.3.3-beta

)y

VYA
)i

which would effectively downsize all images exceeding awidth of 1024 or a height of 768. The aspect ratio will
be kept.

Metadata cache

This event listener enables caching of metadata fetched from the backend so other requests won’t need to go all the
way to the backend to fetch metadata. To achieve this the listener subscribes to the following events:

e db.metadata.load

e db.metadata.delete

* db.metadata.update
and has the following parameters:

Imbo\Cache\CacheInterface $cache An instance of a cache adapter. Imbo ships with APC and Mem-
cached adapters, and both can be used for this event listener. If you want to use another form of caching you
can simply implement the Imbo\Cache\CacheInterface interface and pass an instance of the custom
adapter to the constructor of the event listener. Here is an example that uses the APC adapter for caching:

<?php
namespace Imbo;

return array (

YV
"eventListeners’ => array (
"metadataCache’ => function () {
return new EventListener\MetadataCache (new Cache\APC (’ imbo’));
b
) ’
VAR

The event object

The object passed to the event listeners (and closures) is an instance of the
Imbo\EventManager\EventInterface interface. This interface has some methods that event listeners
can use:

getName () Get the name of the current event. For instance image .delete.

getRequest () Get the current request object (an instance of Imbo\Http\Request \Request)
getResponse () Get the current response object (an instance of Imbo\Http\Response\Response)
getDatabase () Get the current database adapter (an instance of Imbo\Database\DatabaseInterface)
getStorage () Get the current storage adapter (an instance of Imbo\Storage\StorageInterface)

getManager () Get the current event manager (an instance of Imbo\EventManager\EventManager)

1.3. Configuration 21

Imbo Documentation, Release 0.3.3-beta

1.3.5 Image transformations

Imbo supports a set of image transformations out of the box using the Imagick PHP extension. All supported image
transformations are included in the configuration, and you can easily add your own custom transformations or create
presets using a combination of existing transformations.

Transformations are triggered using the t [] query parameter together with the image resource (read more about the
image resource and the included transformations and their parameters in the Image resource section). This parameter
should be used as an array so that multiple transformations can be made. The transformations are applied in the order
they are specified in the URL.

All transformations are registered in the configuration array under the imageTransformations key:

<?php
namespace Imbo;

return array (

//
"imageTransformations’ => array (
"border’” => function (array Sparams) {
return new Image\Transformation\Border (Sparams);
}I
"canvas’ => function (array Sparams) {
return new Image\Transformation\Canvas (Sparams);
}I
//
)I
//

)

where the keys are the names of the transformations as specified in the URL, and the values are closures which all
receive a single argument. This argument is an array that matches the parameters for the transformation as specified in
the URL. If you use the following query parameter:

t []=border:width=1,height=2,color=£00
the Sparams array given to the closure will look like this:

<?php

array (
"width’ => "1’,
"height’” => "17,
"color’ => "£00’

)

The return value of the closure must either be an instance of the Tmbo\ Image\Transformation\TransformationInterface

interface, or code that is callable (for instance another closure, or a class that includes an ___invoke method). If the re-
turn value is a callable piece of code it will receive a single parameter which is an instance of Imbo\Model\ Image,
which is the image you want your transformation to modify. See some examples in the Custom transformations
section below.

Presets

Imbo supports the notion of transformation presets by using the Imbo\ Image\Transformation\Collection
transformation. The constructor of this transformation takes an array containing other transformations.

22 Chapter 1. Documentation

http://pecl.php.net/package/imagick

20

21

22

23

24

25

26

27

28

Imbo Documentation, Release 0.3.3-beta

<?php
namespace Imbo;

return array (

//
"imageTransformations’ => array(
"graythumb’ => function (S$params) {
return new Image\Transformation\Collection (array (
new Image\Transformation\Desaturate(),
new Image\Transformation\Thumbnail (Sparams),
))i
}I
)’
//

)i
which can be triggered using the following query parameter:

t[]=graythumb

Custom transformations

You can also implement your own transformations by implementing the
Imbo\Image\Transformation\TransformationInterface interface, or by specifying a callable
piece of code. An implementation of the border transformation as a callable piece of code could for instance look like
this:

<?php
namespace Imbo;

return array (

/7

"imageTransformations’ => array(
"border’ => function (array Sparams) {
return function (ModellImage $image) use (Sparams) {

Scolor = !empty ($params[’color’]) ? Sparams[’color’] : "#000’;
Swidth = l!empty (Sparams[’width’]) ? S$params[’width’] : 1;
Sheight = l!empty(Sparams[’height’]) ? S$params[’height’] : 1;
try {

Simagick = new \Imagick();

$imagick->readImageBlob ($Simage—->getBlob ());
Simagick->borderImage ($Scolor, $width, Sheight);

S$Ssize = Simagick->getImageGeometry () ;

Simage->setBlob ($imagick->getImageBlob ())
->setWidth ($size [’ width’])
—->setHeight ($size["height’]);
} catch (\ImagickException S$Se) {
throw new Image\Transformation\TransformationException ($Se->getMessage (), 400,

1.3. Configuration 23

Se.

)

Imbo Documentation, Release 0.3.3-beta

)y

VYA
)i

It’s not recommended to use this method for big complicated transformations. It’s better to implement the interface
mentioned above, and refer to your class in the configuration array instead:

<?php
namespace Imbo;

return array (

/S

"imageTransformations’ => array (
"border’” => function (array Sparams) {
return new My\Custom\BorderTransformation (Sparams);
}I
)I

/).
)

where My \Custom\BorderTransformation implements Imbo\Image\Transformation\TransformationInterfac

1.4 RESTful API

Imbo uses a RESTful API to manage the stored images and metadata. Each image is identified by a public key (the
“username”) and an MDS5 checksum of the file itself. The public key and the image identifier will be referred to as
<user> and <image> respectively for the remainder of this document. For all cURL examples imbo will be used
as a host name. The examples will also omit access tokens and authentication signatures.

1.4.1 Content types
Currently Imbo responds with images (jpg, gif and png), JSON and XML, but only accepts images (jpg, gif and png)
and JSON as input.

Imbo will do content negotiation using the Accept header found in the request, unless you specify a file extension, in
which case Imbo will deliver the type requested without looking at the Accept header.

The default Content-Type for non-image responses is JSON, and for most examples in this document you will see the
. json extension being used. Change that to .xml to get XML data. You can also skip the extension and force a
specific Content-Type using the Accept header:

S curl http://imbo/status. json

and

S curl -H "Accept: application/json" http://imbo/status

will end up with the same content-type. Use application/xml for XML.

If you use JSON you can wrap the content in a function (JSONP) by using one of the following query parameters:

e callback

* jsonp

24 Chapter 1. Documentation

http://en.wikipedia.org/wiki/REST
http://curl.haxx.se/
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://en.wikipedia.org/wiki/JSONP

Imbo Documentation, Release 0.3.3-beta

* json
$ curl http://imbo/status.json?callback=func

will result in:

func (
{
"date": "Mon, 05 Nov 2012 19:18:40 GMT",
"database": true,
"storage": true

1.4.2 Resources

In this section you will find information on the different resources Imbo’s RESTful API expose, along with their
capabilities:

Available resources

 Status resource

* User resource

» Images resource

* Image resource

¢ Metadata resource

Status resource

Imbo includes a simple status resource that can be used with for instance monitoring software.

> curl http://imbo/status. json

results in:

{
"timestamp": "Tue, 24 Apr 2012 14:12:58 GMT",
"database": true,
"storage": true

}

where t imestamp is the current timestamp on the server, and database and st orage are boolean values inform-
ing of the status of the current database and storage drivers respectively. If both are t rue the HTTP status code is
200 OK, and if one or both are false the status code is 500. When the status code is 500 the status message will
inform you whether it’s the database or the storage driver (or both) that is having issues.

Typical response codes:
* 200 OK

¢ 500 Internal Server Error

User resource

The user resource represents a single user on the current Imbo installation.

1.4. RESTful API 25

Imbo Documentation, Release 0.3.3-beta

GET /users/<user>

Fetch information about a specific user. The output contains basic user information:

$ curl http://imbo/users/<user>.Jjson

results in:
{
"publicKey": "<user>",
"numImages": 42,
"lastModified": "Wed, 18 Apr 2012 15:12:52 GMT"

}

where publicKey is the public key of the user, numImages is the number of images the user has stored in Imbo
and lastModified is when the user last uploaded an image or updated metadata of an image.

Typical response codes:
* 200 OK
* 304 Not modified
* 404 Not found

Images resource

The images resource represents a collection of images owned by a specific user.

GET /users/<user>/images

Get information about the images stored in Imbo for a specific user. Supported query parameters are:
page The page number. Defaults to 1.

limit Number of images pr. page. Defaults to 20.

metadata Whether or not to include metadata in the output. Defaults to O, set to 1 to enable.
from Fetch images starting from this Unix timestamp.

to Fetch images up until this timestamp.

$ curl "http://imbo/users/<user>/images.json?limit=1smetadata=1"

results in:
[
{
"added": "Mon, 10 Dec 2012 11:57:51 GMT",
"extension": "png",
"height": 77,
"imageIdentifier": "<image>",
"metadata": {
"key": "value",
"foo": "bar"
}y
"mime": "image/png",
"publicKey": "<user>",

"size": 6791,

26 Chapter 1. Documentation

Imbo Documentation, Release 0.3.3-beta

"updated": "Mon, 10 Dec 2012 11:57:51 GMT",
"width": 1306

]

where added is a formatted date of when the image was added to Imbo, extension is the original image extension,
height is the height of the image in pixels, imageIdentifier is the image identifier (MDS5 checksum of the file
itself), metadata is a JSON object containing metadata attached to the image, mime is the mime type of the image,
publicKey is the public key of the user who owns the image, size is the size of the image in bytes, updated is
a formatted date of when the image was last updated (read: when metadata attached to the image was last updated, as
the image itself never changes), and width is the width of the image in pixels.

The metadata field is only available if you used the metadata query parameter described above.
Images in the array are ordered on the added field in a descending fashion.
Typical response codes:

* 200 OK

* 304 Not modified

* 404 Not found

Image resource

The image resource represents specific images owned by a user.

GET /users/<user>/images/<image>

Fetch the image identified by <image> owned by <user>. Without any query parameters this will return the original
image.

S curl http://imbo/users/<user>/images/<image>

results in:

<binary data of the original image>

Typical response codes:
* 200 OK
* 304 Not modified
* 400 Bad Request
* 404 Not found

Image transformations

Below you can find information on the transformations shipped with Imbo along with their parameters.

1.4. RESTful API 27

Imbo Documentation, Release 0.3.3-beta

border This transformation will apply a border around the image.
Parameters:

color Color of the border in hexadecimal. Defaults to 000000 (You can also specify short values like £00
(££0000)).

width Width of the border in pixels on the left and right sides of the image. Defaults to 1.
height Height of the border in pixels on the top and bottom sides of the image. Defaults to 1.

mode Mode of the border. Can be inline or outbound. Defaults to outbound. Outbound places the border
outside of the image, increasing the dimensions of the image. inline paints the border inside of the image,
retaining the original width and height of the image.

Examples:
e t[]=border
e t[]=border:mode=inline
e t[]=border:color=000
e t[]=border:color=f00,width=2, height=2

canvas This transformation can be used to change the canvas of the original image.

Parameters:

width Width of the surrounding canvas in pixels. If omitted the width of <image> will be used.
height Height of the surrounding canvas in pixels. If omitted the height of <image> will be used.

mode The placement mode of the original image. free, center, center-x and center-y are available values.
Defaults to free.

x X coordinate of the placement of the upper left corner of the existing image. Only used for modes: free and
center-y.

y Y coordinate of the placement of the upper left corner of the existing image. Only used for modes: free and
center—x.

bg Background color of the canvas. Defaults to ££ £ £ ff (also supports short values like £00 (££0000)).
Examples:

e t[]=canvas:width=200, mode=center

e t[]=canvas:width=200, height=200,x%x=10,y=10,bg=000

e t[]=canvas:width=200, height=200,x=10, mode=center-y

e t[]=canvas:width=200, height=200, y=10, mode=center-x

compress This transformation compresses images on the fly resulting in a smaller payload.
Parameters:

quality Quality of the resulting image. 100 is maximum quality (lowest compression rate).
Examples:

e t[]=compress:quality=40

Warning: This transformation currently only works as expected for image/ jpeg images.

28 Chapter 1. Documentation

Imbo Documentation, Release 0.3.3-beta

convert This transformation can be used to change the image type. It is not applied like the other transformations,
but is triggered when specifying a custom extension to the <image>. Currently Imbo can convert to:

* Jrg
* png
e gif

Examples:
e curl http://imbo/users/<user>/images/<image>.gif
e curl http://imbo/users/<user>/images/<image>.jpg
e curl http://imbo/users/<user>/images/<image>.png

It is not possible to explicitly trigger this transformation via the t [] query parameter.

crop This transformation is used to crop the image.
Parameters:

x The X coordinate of the cropped region’s top left corner.
y The Y coordinate of the cropped region’s top left corner.
width The width of the crop in pixels.

height The height of the crop in pixels.

Examples:

e t[]=crop:x=10,y=25,width=250, height=150

desaturate This transformation desaturates the image (in practice, gray scales it).
Examples:

e t []=desaturate

flipHorizontally This transformation flips the image horizontally.
Examples:

e t[]=flipHorizontally

flipVertically This transformation flips the image vertically.
Examples:

e t[]=flipVertically

maxSize This transformation will resize the image using the original aspect ratio. Two parameters are supported and
at least one of them must be supplied to apply the transformation.

Note the difference from the resize transformation: given both width and height, the resulting image will not be
the same width and height as specified unless the aspect ratio is the same.

Parameters:

width The max width of the resulting image in pixels. If not specified the width will be calculated using the same
aspect ratio as the original image.

1.4. RESTful API 29

Imbo Documentation, Release 0.3.3-beta

height The max height of the resulting image in pixels. If not specified the height will be calculated using the same
aspect ratio as the original image.

Examples:
e t[]=maxSize:width=100
e t[]=maxSize:height=100
e t[]=maxSize:width=100,height=50

resize This transformation will resize the image. Two parameters are supported and at least one of them must be
supplied to apply the transformation.

Parameters:

width The width of the resulting image in pixels. If not specified the width will be calculated using the same aspect
ratio as the original image.

height The height of the resulting image in pixels. If not specified the height will be calculated using the same
aspect ratio as the original image.

Examples:
e t[]=resize:width=100
* t[]=resize:height=100

e t[]=resize:width=100, height=50

rotate This transformation will rotate the image clock-wise.
Parameters:
angle The number of degrees to rotate the image (clock-wise).
bg Background color in hexadecimal. Defaults to 000000 (also supports short values like £00 (££0000)).
Examples:
* t[]=rotate:angle=90

e t[]=rotate:angle=45,bg=fff

sepia This transformation will apply a sepia color tone transformation to the image.
Parameters:

threshold Threshold ranges from O to QuantumRange and is a measure of the extent of the sepia toning. Defaults
to 80

Examples:
e t[]=sepia

e t[]=sepia:threshold=70

thumbnail This transformation creates a thumbnail of <image>.
Parameters:

width Width of the thumbnail in pixels. Defaults to 50.

height Height of the thumbnail in pixels. Defaults to 50.

30 Chapter 1. Documentation

Imbo Documentation, Release 0.3.3-beta

fit Fitstyle. Possible values are: inset or outbound. Default to outbound.
Examples:
e t[]=thumbnail

e t[]=thumbnail:width=20,height=20, fit=inset

transpose This transformation transposes the image.
Examples:

e t[]=transpose

transverse This transformation transverses the image.
Examples:

e t[]=transverse

PUT /users/<user>/images/<image>

Store a new image on the server.
The body of the response contains a JSON object containing the image identifier of the resulting image:

S curl —-XPUT http://imbo/users/<user>/images/<checksum of file to add> --data-binary @<file to add>

results in:

{
"imageIdentifier": "<image>"

}

where <image> can be used to fetch the added image and apply transformations to it. The output from this method is
important as the <image> in the response might not be the same as <checksum of file to add> inthe URI
in the above example (which might occur if for instance event listeners transform the image in some way before Imbo
stores it).

Typical response codes:
* 200 OK
* 201 Created
* 400 Bad Request

DELETE /users/<user>/images/<image>

Delete the image identified by <image> owned by <user> along with all metadata attached to the image.

S curl -XDELETE http://imbo/users/<user>/images/<image>

results in:

{

"imageIdentifier": "<image>"

1.4. RESTful API 31

Imbo Documentation, Release 0.3.3-beta

where <image> is the image identifier of the image that was just deleted (the same as the one used in the URI).
Typical response codes:

* 200 OK

* 404 Not found

Metadata resource
Imbo can also be used to attach metadata to the stored images. The metadata is based on a simple key => value
model, for instance:

* category: Music

* band: Koldbrann

* genre: Black metal

e country: Norway

Metadata is handled via the met a resource in the URI, which is a sub-resource of <image>.

GET /users/<user>/images/<image>/meta

Get all metadata attached to <image> owned by <user>. The output from Imbo is an empty list if the image has no
metadata attached, or a JSON object with keys and values if metadata exists:

$ curl http://imbo/users/<user>/images/<image>/meta.json

results in:

[]

when there is not metadata, or for example

{

"category": "Music",
"band": "Koldbrann",
"genre": "Black metal",
"country": "Norway"

}

if the image has metadata attached to it.
Typical response codes:

* 200 OK

* 304 Not modified

* 404 Not found

PUT /users/<user>/images/<image>/meta

Replace all existing metadata attached to <image> owned by <user> with the metadata contained in a JSON object
in the request body. The response body contains a JSON object with the image identifier:

32 Chapter 1. Documentation

Imbo Documentation, Release 0.3.3-beta

&

"brewery":"Nggne @",
"style":"Imperial Stout"
} 4
results in:

{ "imageIdentifier": "<image>"
}
where <image> is the image that just got updated.
Typical response codes:
* 200 OK
* 400 Bad Request

¢ 404 Not found

POST /users/<user>/images/<image>/meta

> curl —-XPUT http://imbo/users/<user>/images/<image>/meta.json —-d ' {
"beer":"Dark Horizon First Edition",

Edit existing metadata and/or add new keys/values to <image> owned by <user> with the metadata contained in a
JSON object in the request body. The response body contains a JSON object with the image identifier:

S curl —-XPOST http://imbo/users/<user>/images/<image>/meta.json —-d ’{

"ABV" R n l 6% n ,
"score":"100/100"
} 14
results in:

{ "imageIdentifier": "<image>"
}
where <image> is the image that just got updated.
Typical response codes:
* 200 OK
* 400 Bad Request

¢ 404 Not found

DELETE /users/<user>/images/<image>/meta

Delete all existing metadata attached to <image> owner by <user>. The response body contains a JSON object

with the image identifier:

S curl —-XDELETE http://imbo/users/<user>/images/<image>/meta. json

results in:

{

"imageIdentifier":"<image>"

1.4. RESTful API

33

20

21

22

23

24

Imbo Documentation, Release 0.3.3-beta

where <image> is the image identifier of the image that just got all its metadata deleted.
Typical response codes:

* 200 OK

* 400 Bad Request

* 404 Not found

1.4.3 Authentication

Imbo uses two types of authentication mechanisms out of the box. It requires access tokens for all GET and HEAD
requests made against all resources (with the exception of the status resource), and a valid request signature for all PUT,
POST and DELETE requests made against all resources that support these methods. Both mechanisms are enforced
by event listeners that is enabled in the default configuration file.

Access tokens

Access tokens for all read requests are enforced by an event listener that is enabled per default. The access tokens are
used to prevent DoS attacks so think twice (or maybe even some more) before you remove the listener. More about
how to remove the listener in Event listeners.

The access token, when enforced, must be supplied in the URI using the accessToken query parameter and without
it all GET and HEAD requests will result in a 400 Bad Request response. The value of the accessToken
parameter is a Hash-based Message Authentication Code (HMAC). The code is a hash of the URI itself (hashed with
the SHA-256 algorithm) using the private key of the user as the secret key. Below is an example on how to generate a
valid access token for a specific image using PHP:

<?php

SpublicKey = ’<user>’; // The public key of the user

privateK = ’<secret value>'; // The private key of the user

Simage = ’<image>'; // The image identifier

// The URI

Surl = sprintf ('http://example.com/users/%s/images/%s’, SpublicKey, S$image);

// Add some transformations

Stransformations = array (
"t []=thumbnail:width=40,height=40, fit=outbound’,
"t []=border:width=3, height=3,color=000",
"t[]=canvas:width=100,height=100, mode=center’

)i

Squery = implode(’&’, Stransformations);

// Data for the HMAC

Surl .= '?" . Squery;

// Generate the token
SaccessToken = hash_hmac (’sha256’, Surl, SprivateKey);

// Output the URI with the access token
echo Surl . ’&accessToken=’ . SaccessToken;

If you request a resource from Imbo without a valid access token it will respond with a 400 Bad Request. If
the event listener enforcing the access token check is removed, Imbo will ignore the accessToken query parameter
completely. If you wish to implement your own form of access token you can do this by implementing an event listener
of your own (see Custom event listeners for more information).

34 Chapter 1. Documentation

http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/SHA-2

20

21

22

23

24

25

26

27

28

29

Imbo Documentation, Release 0.3.3-beta

Signing write requests

Imbo uses a similar method when authenticating write operations. To be able to write to Imbo the
user agent will have to specify two request headers: X-Imbo-Authenticate-Signature and
X-Imbo-Authenticate-Timestamp, or two query parameters: signature and timestamp.
X-Imbo-Authenticate-Signature/signature is, like the access token, an HMAC (also using SHA-
256 and the private key of the user), and is generated using the following elements:

e HTTP method (PUT, POST or DELETE)

e The URI

* Public key of the user

e GMT timestamp (YYYY-MM-DDTHH:MM: SSZ, for instance: 2011-02-01T14:33:032)

These elements are concatenated in the above order with | as a delimiter character, and a hash is generated using the
private key of the user. The following snippet shows how this can be accomplished in PHP when deleting an image:

<?php

$SpublicKey = '<user>’; // The public key of the user
SprivateKey = ’<secret value>'; // The private key of the user
Stimestamp = gmdate ('Y-m-d\TH:1:s\Z’); // Current timestamp

$image = ’<image>'; // The image identifier

// The URI
Surl = sprintf ('http://example.com/users/%s/images/%s’, SpublicKey, S$image);

// The method to request with
Smethod = 'DELETE’;

// Data for the hash
$data = Smethod . 7|’ . Surl . "]’ . SpublicKey . "|’ . Stimestamp;

// Generate the token
Ssignature = hash_hmac(’sha256’, S$data, SprivateKey);

// Request using request headers

Scontext = stream_context_create (array (
"http’ => array(
"method’ => Smethod,
"header’ => array (
'X-Imbo-Authenticate-Signature: ’ . $signature,
"X-Imbo-Authenticate-Timestamp: ' . S$timestamp,

),
)
)) i

file_get_contents(Surl, false, Scontext);
// or, request using query parameters
Scontext = stream_context_create (array (

"http’ => array (
"method’ => Smethod,

Surl = sprintf (’%s?signature=%s×tamp=%s’,
Surl,

1.4. RESTful API 35

42
43
44

45

Imbo Documentation, Release 0.3.3-beta

rawurlencode (Ssignature),
rawurlencode (Stimestamp)) ;

file_get_contents(Surl, false, Scontext);
Imbo requires that X—-Imbo-Authenticate-Timestamp/t imestamp is within &+ 120 seconds of the current
time on the server. Both the signature and the timestamp must be URL-encoded when used as query parameters.

As with the access token the signature check is enforced by an event listener that can also be disabled. If you want to
implement your own authentication paradigm you can do this by creating a custom event listener.

1.4.4 Errors

When an error occurs Imbo will respond with a fitting HTTP response code along with a JSON object explaining what
went wrong.

$ curl "http://imbo/users/<user>/images/<image>. jpg?t\[\]=foobar"

results in:
{
"error": {
"code": 400,
"message": "Unknown transformation: foobar",
"date": "Wed, 12 Dec 2012 21:15:01 GMT",

"imboErrorCode":0
o

"imageIdentifier": "<image>"

}

The code is the HTTP response code, me s sage is a human readable error message, date is when the error occurred
on the server, and imboErrorCode is an internal error code that can be used by the user agent to distinguish between
similar errors (such as 400 Bad Request).

The JSON object will also include imageIdentifier if the request was made against the image or the metadata
resource.

If the user agent specifies a nonexistent username the following occurs:

S curl http://imbo/users/<user>.json

results in:
{
"error": {
"code": 404,
"message": "Unknown public key",
"date": "Mon, 13 Aug 2012 17:22:37 GMT",

"imboErrorCode": 100

}

if <user> does not exist.

36 Chapter 1. Documentation

CHAPTER 2

Extending Imbo

2.1 Cache adapters

If you want to leverage caching in a custom event listener, Imbo ships with some different solutions:

2.1.1 APC

This adapter uses the APC extension for caching. If your Imbo installation consists of a single httpd this is a good
choice. The adapter has the following parameters:

$namespace (optional) A namespace for your cached items. For instance: “imbo”

Example

<?php
Sadapter = new Imbo\Cache\APC (' imbo’);
Sadapter—->set ("key’, ’'value’);

echo Sadapter->get ('key’); // outputs "value"

2.1.2 Memcached

This adapter uses Memcached for caching. If you have multiple httpd instances running Imbo this adapter lets you
share the cache between all instances automatically by letting the adapter connect to the same Memcached daemon.
The adapter has the following parameters:

$memcached An instance of the pecl/memcached class.

$namespace (optional) A namespace for your cached items. For instance: “imbo”.

Example

<?php

Smemcached = new Memcached () ;
Smemcached->addServer (' hostname’, 11211);

Sadapter = new Imbo\Cache\Memcached ($Smemcached, ’imbo’);

Sadapter->set (' key’, ’'value’);

37

http://pecl.php.net/apc
http://pecl.php.net/memcached

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Imbo Documentation, Release 0.3.3-beta

echo Sadapter->get ('key’); // outputs "value"

2.1.3 Custom adapter

If you want to use some other cache mechanism an interface exists (Imbo\Cache\CacheInterface) for you to

implement:

<?php
/%
* This file 1is part of the Imbo package
*
* (c) Christer Edvartsen <cogo@starzinger.net>
*
* For the full copyright and license information,
* distributed with this source code.

*/
namespace Imbo\Cache;

VEz:
* Cache driver interface

*

please view the LICENSE file that was

* This is an interface for different database drivers.

*

* @author Christer Edvartsen <cogo@starzinger.net>

* (@package Cache

*/
interface CachelInterface {

J ok k
* Get a cached value by a key
*
* @param string Skey The key to get
* @return mixed Returns the cached value or null if key does not exist
*/

function get (Skey);

J ok k
* Store a value in the cache
*
* @param string Skey The key to associate with the item
* @param mixed Svalue The value to store
* @param int Sexpire Number of seconds to keep the item in the cache
* @return boolean True on success, false otherwise
*/

function set (Skey, S$Svalue, Sexpire = 0);

VAT
* Delete an item from the cache
*
* @param string Skey The key to remove
* @return boolean True on success, false otherwise
*/

function delete (Skey);

J ok k
* Increment a value

38 Chapter 2. Extending Imbo

50

51

53

54

55

56

57

59

60

61

62

63

64

65

20

21

22

23

24

25

26

27

28

Imbo Documentation, Release 0.3.3-beta

*

* @param string $key The key to use

* @param int Samount The amount to increment with

* @return int|/boolean Returns new value on success or false on failure
*/

function increment ($key, Samount = 1);

J ok k

* Decrement a value

*

* @param string Skey The key to use

* @param int Samount The amount to decrement with

*# @return int|/boolean Returns new value on success or false on failure
*/

function decrement ($key, Samount = 1);

If you choose to implement this interface you can also use your custom cache adapter for all the event listeners Imbo
ships with that leverages a cache.

If you implement an adapter that you think should be a part of Imbo feel free to send a pull request to the project over
at GitHub.

2.2 Custom database drivers

If you wish to implement your own database driver you are free to do so. The only requirement is that you implement
the Imbo\Database\DatabaseInterface interface that comes with Imbo. Below is the complete interface
with comments:

<?php
VEZ:
* This file is part of the Imbo package
*
* (c) Christer Edvartsen <cogo@starzinger.net>
*
* For the full copyright and license information, please view the LICENSE file that was
* distributed with this source code.

*/
namespace Imbo\Database;

use Imbo\Model\Image,
Imbo\Resource\Images\Query,
Imbo\Exception\DatabaseException,
DateTime;

/%

* Database driver interface
* This is an interface for different database drivers.

* @Qauthor Christer Edvartsen <cogo@starzinger.net>
* @package Database
*/
interface DatabaseInterface {
J %k

* Insert a new image

2.2. Custom database drivers 39

https://github.com/imbo/imbo
https://github.com/imbo/imbo

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Imbo Documentation, Release 0.3.3-beta

*

* % %

*

*
*

*

This method will insert a new image into the database. If the same image already exists,

just update the "updated" information.

@param string SpublicKey The public key of the user

@param string Simageldentifier Image identifier

@param Image Simage The image to insert

@return boolean Returns true on success or false on failure
@throws DatabaseException

*/

function insertImage (SpublicKey, S$imageldentifier, Image Simage);

J K x

*

*
*
*
*

*

Delete an image from the database

@param string SpublicKey The public key of the user

@param string Simageldentifier Image identifier

@return boolean Returns true on success or false on failure
@throws DatabaseException

*/
function deletelImage ($publicKey, S$imageldentifier);

J ok k

*
*
*
*
*
*

*

Edit metadata

@param string SpublicKey The public key of the user

@param string Simageldentifier Image identifier

@param array $metadata An array with metadata

@return boolean Returns true on success or false on failure
@throws DatabaseException

*/

function updateMetadata (SpublicKey, S$imageldentifier, array Smetadata);

J %k

*

*

*
*
*
*

Get all metadata associated with an image

@param string $publicKey The public key of the user
@param string Simageldentifier Image identifier
@return array Returns the metadata as an array
@throws DatabaseException

*/
function getMetadata (SpublicKey, S$imageldentifier);

J x ok

*

*

*
*
*
*

Delete all metadata associated with an image

@param string SpublicKey The public key of the user

@param string Simageldentifier Image identifier

@return boolean Returns true on success or false on failure
@throws DatabaseException

*/
function deleteMetadata (SpublicKey, S$imageldentifier);

J K *

*

*

*

*

Get images based on some query parameters

@param string SpublicKey The public key of the user
@param Query Squery A query instance

40

Chapter 2. Extending Imbo

Imbo Documentation, Release 0.3.3-beta

87 * @return array

88 * @throws DatabaseException

89 */

9 function getImages (SpublicKey, Query Squery);

91

%) J %k

93 * Load information from database into the image object
94 *

95 * @param string $SpublicKey The public key of the user

9% * @param string Simageldentifier The image identifier

97 * @param Image Simage The image object to populate

98 * (@return boolean

99 * @throws DatabaseException

100 */

101 function load(SpublicKey, Simageldentifier, Image S$image);
102

103 VEs:

104 * Get the last modified timestamp of a user

105 *

106 * If the Simageldentifier parameter is set, return when that image was last updated. If not
107 * set, return when the user last updated any image. If the user does not have any images
108 * stored, return the current timestamp.

109 *

110 * @param string $SpublicKey The public key of the user

1 * @param string S$imageIdentifier The image identifier

12 * @return DateTime Returns an instance of DateTime

113 * @throws DatabaseException

14 */

115 function getlLastModified (SpublicKey, S$imageldentifier = null);
116

117 J kk

118 * Fetch the number of images owned by a given user

119 *

120 * @param string SpublicKey The public key of the user

121 * @return int Returns the number of images

122 * @throws DatabaseException

123 */

124 function getNumImages ($publicKey);

125

126 /A

127 * Get the current status of the database connection

128 *

129 * This method is used with the status resource.

130 *

131 * @return boolean

132 */

133 function getStatus();

134

135 /A

136 * Get the mime type of an image

137 *

138 * @param string SpublicKey The public key of the user who owns the image
139 * @param string $imageldentifier The image identifier

140 * @return string Returns the mime type of the image

141 * @throws DatabaseException

142 */

143 function getImageMimeType (SpublicKey, Simageldentifier);

144

2.2. Custom database drivers 41

145

146

147

148

149

150

151

152

153

154

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Imbo Documentation, Release 0.3.3-beta

J ok k
* Check i1f an image already exists

*
*

* @param string Simageldentifier The image identifier

@param string SpublicKey The public key of the user who owns the image

* @return boolean Returns true of the image exists, false otherwise

* @throws DatabaseException
*/
function imageExists ($publicKey, S$imageldentifier);

Have a look at the existing implementations of this interface for more details. If you implement a driver that you think

should be a part of Imbo feel free to send a pull request to the project over at GitHub.

2.3 Custom storage drivers

If you wish to implement your own storage driver you are free to do so. The only requirement is that you implement
the Imbo\Storage\StorageInterface interface that comes with Imbo. Below is the complete interface with

comments:

<?php
/%
* This file is part of the Imbo package
*
* (c) Christer Edvartsen <cogo@starzinger.net>
*
* For the full copyright and license information, please view
* distributed with this source code.

*/
namespace Imbo\Storage;

use Imbo\Model\Image,
Imbo\Exception\StorageException;

J ko

* Storage driver interface
* This is an interface for different storage drivers for Imbo.

* @Qauthor Christer Edvartsen <cogo@starzinger.net>
* @package Storage

the LICENSE file that was

*/
interface Storagelnterface {
J %k

* Store an image
*
* This method will receive the binary data of the image and store it somewhere suited for the
* actual storage driver. If an error occurs the driver should throw an
* Imbo\Exception\StorageException exception.
*
* If the image already exists, simply overwrite 1it.
*
* @param string SpublicKey The public key of the user
* @param string Simageldentifier The image identifier
* @param string SimageData The image data to store

42 Chapter 2. Extending Imbo

https://github.com/imbo/imbo

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Imbo Documentation, Release 0.3.3-beta

* @return boolean Returns true on success or false on failure

*/

fun

J %k
*

*

*
*

*

*
*
*

*/

fun

J %k
*

*
*
*
*

*

*/

@throws StorageException

ction store(SpublicKey,

Delete an image

This method will delete

SimageIdentifier, $imageData);

the file associated with Simageldentifier from the storage medium

@param string SpublicKey The public key of the user

@param string S$imagelden

@return boolean Returns true on success or false on failure

@throws StorageException

ction delete (SpublicKey,

Get image content

tifier Image identifier

SimageIdentifier);

@param string SpublicKey The public key of the user

@param string SimageIden

tifier Image identifier

@return string The binary content of the image

@throws StorageException

function getImage (SpublicKey, S$imageldentifier);

/

*

%%k % ok % % %

*/

Get the last modified timestamp

@param string SpublicKey The public key of the user

@param string Simagelden
@return DateTime Returns
@throws StorageException

tifier Image identifier
an instance of DateTime

function getLastModified(SpublicKey, Simageldentifier);

/

*
*
*
*
*
*

*/

fun

J K *
*

*
*
*
*

*

*/

Get the current status o
This method is used with
@return boolean

ction getStatus();

f the storage

the status resource.

See 1f the image already exists

@param string SpublicKey The public key of the user

@param string S$imagelden
@return DateTime Returns
@throws StorageException

tifier Image identifier
an instance of DateTime

function imageExists ($publicKey, S$imageldentifier);

Have a look at the existing implementations of this interface for more details. If you implement a driver that you think

2.3. Custom storage drivers

43

20

21

22

23

24

25

26

Imbo Documentation, Release 0.3.3-beta

should be a part of Imbo feel free to send a pull request to the project over at GitHub.

2.4 Custom event listeners

If you wish to implement your own event listeners you are free to do so. The only requirement is that you implement
the Imbo\EventListener\ListenerInterface interface that comes with Imbo. Below is the complete
interface with comments:

<?php

J ko

* For the full copyright and license information,

%

*/

This file is part of the Imbo package

(c) Christer Edvartsen <cogol@starzinger.net>

distributed with this source code.

namespace Imbo\EventListener;

J ok

* Event listener interface

*

please view the LICENSE file that was

* @Qauthor Christer Edvartsen <cogo@starzinger.net>

*
*/
int

@package Event\Listeners

erface ListenerInterface {
J %k
* Return a 1list of listener definitions
*
*# @return ListenerDefinition/[]
*/
function getDefinition();

Have a look at the existing implementations of this interface for more details. If you implement a listener that you
think should be a part of Imbo feel free to send a pull request to the project over at GitHub.

44

Chapter 2. Extending Imbo

https://github.com/imbo/imbo
https://github.com/imbo/imbo

