

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Contributor Covenant Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or
advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic
address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq







          

      

      

    

  

    
      
          
            
  
Contributing Guidelines

Thanks for taking the time to contribute!

The following is a set of guidelines for contributing to imagineOCR. These are just guidelines, not rules, so use your best judgement and feel free to propose changes to this document in a pull request.


Getting Started

imagineOCR is built on top of Tensorflow [http://tensorflow.org] using the Object Detection API [https://github.com/tensorflow/models]. If you are new to these frameworks, please head over to the respective links to learn more.




Community


	We are currently working on documentation. Please head over to our Wiki [https://www.notion.so/Wiki-3c27906875224f3c9509deec23a98bb0] to contribute and learn how to use the project.


	If you have any questions regarding imagineOCR, open an issue [https://github.com/marcoistasy/imagineOCR/issues/new/choose].







Issue

Ensure the bug was not already reported by searching on GitHub under issues [https://github.com/marcoistasy/imagine-ocr/issues] or our official roadmap [https://www.notion.so/39742f2396ae47d9ac848f2df7112ca3?v=48efbd1371a44f42801d0ab4b3075bc3]. If you’re unable to find an open issue addressing the bug, open a new issue [https://github.com/marcoistasy/imagineOCR/issues/new/choose].

Please pay attention to the following points while opening an issue.


Write detailed information

Detailed information is very helpful to understand an issue.

For example:


	How to reproduce the issue, step-by-step.


	The expected behavior (or what is wrong).


	Version of imagine-ocr and relevant decencies.


	The operating system.









Pull Requests

Pull Requests are always welcome.


	When you edit the code, please run npm run test to check the formatting of your code before you git commit.


	Ensure the PR description clearly describes the problem and solution. It should include:


	The operating system on which you tested.


	The relevant dependencies and versions.


	The relevant issue number, if applicable.






	Update the README.md with details of changes to the interface, this includes new environment
variables, exposed ports, useful file locations and container parameters.










          

      

      

    

  

    
      
          
            
  
ImagineOCR


    [image: Logo]

[image: _images/License-GPLv3-blue.svg]License: GPL v3 [https://www.gnu.org/licenses/gpl-3.0]  [image: _images/semver-2.0.0-blue]semver [image: _images/feb69efcabc086d5e82bbe1f1df9ef0b3f5706d6.svg]codebeat badge [https://codebeat.co/projects/github-com-marcoistasy-imagineocr-master]

ImagineOCR represents a fundamental restructuring of image-to-text software. Abandoning previous principles emphasising static models of orthography, imagine OCR approaches OCR as the province of object detection. Accordingly, it views each character on a page as a discrete object and allows training of a custom faster-rcnn implementation given as little as a single instance of the objects (read: characters) to be detected.


Using This Project

For instructions on how to get started using this project, please visit our official wiki [https://www.notion.so/Wiki-3c27906875224f3c9509deec23a98bb0].




Roadmap

For our planned features and reported bugs, please visit our official roadmap [https://www.notion.so/39742f2396ae47d9ac848f2df7112ca3?v=48efbd1371a44f42801d0ab4b3075bc3].




Built With


	Tensorflow [https://www.tensorflow.org]


	Tensorflow Object Detection API [https://github.com/tensorflow/models/tree/master/research/object_detection]


	LabelImg [https://github.com/tzutalin/labelImg]







Contributing

Please read CONTRIBUTING.md [https://github.com/marcoistasy/imagineOCR/blob/master/CONTRIBUTING] for the process for submitting pull requests to us. Also make sure to read our CODE_OF_CONDUCT.md [https://github.com/marcoistasy/imagineOCR/blob/master/CODE_OF_CONDUCT].




Versioning

We use SemVer [http://semver.org/] for versioning. For the versions available, see the tags on this repository [https://github.com/marcoistasy/imagineOCR/releases].




Authors


	Marco Istasy [https://github.com/marcoistasy]




See also the list of contributors [https://github.com/marcoistasy/imagineOCR/graphs/contributors] who participated in this project.




License

Released under the GLP-3.0 [https://github.com/marcoistasy/imagineOCR/blob/master/LICENSE] license.




Acknowledgments


	Sincerest thanks to Kieren Nicôlas and Stephen Lovell for their continued support and unwavering belief in the project.










          

      

      

    

  

    
      
          
            
  
Pull Request Template


Description

Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.

Fixes # (issue)




Type of change

Please delete options that are not relevant.


	[ ] Bug fix (non-breaking change which fixes an issue)


	[ ] New feature (non-breaking change which adds functionality)


	[ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)


	[ ] This change requires a documentation update







How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration


	[ ] Test A


	[ ] Test B




Test Configuration:


	Firmware version:


	Hardware:


	Toolchain:


	SDK:







Checklist:


	[ ] My code follows the style guidelines of this project


	[ ] I have performed a self-review of my own code


	[ ] I have commented my code, particularly in hard-to-understand areas


	[ ] I have made corresponding changes to the documentation


	[ ] My changes generate no new warnings


	[ ] I have added tests that prove my fix is effective or that my feature works


	[ ] New and existing unit tests pass locally with my changes


	[ ] Any dependent changes have been merged and published in downstream modules










          

      

      

    

  

    
      
          
            
  

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’



Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:


	Go to ‘…’


	Click on ‘….’


	Scroll down to ‘….’


	See error




Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):


	OS: [e.g. iOS]


	Browser [e.g. chrome, safari]


	Version [e.g. 22]




Smartphone (please complete the following information):


	Device: [e.g. iPhone6]


	OS: [e.g. iOS8.1]


	Browser [e.g. stock browser, safari]


	Version [e.g. 22]




Additional context
Add any other context about the problem here.



          

      

      

    

  

    
      
          
            
  

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’



Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.



          

      

      

    

  

    
      
          
            
  
Contributing to the Tensorflow Object Detection API

Patches to Tensorflow Object Detection API are welcome!

We require contributors to fill out either the individual or corporate
Contributor License Agreement (CLA).


	If you are an individual writing original source code and you’re sure you own the intellectual property, then you’ll need to sign an individual CLA [http://code.google.com/legal/individual-cla-v1.0.html].


	If you work for a company that wants to allow you to contribute your work, then you’ll need to sign a corporate CLA [http://code.google.com/legal/corporate-cla-v1.0.html].




Please follow the
Tensorflow contributing guidelines [https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING]
when submitting pull requests.





          

      

      

    

  

    
      
          
            
  
Tensorflow Object Detection API

Creating accurate machine learning models capable of localizing and identifying
multiple objects in a single image remains a core challenge in computer vision.
The TensorFlow Object Detection API is an open source framework built on top of
TensorFlow that makes it easy to construct, train and deploy object detection
models.  At Google we’ve certainly found this codebase to be useful for our
computer vision needs, and we hope that you will as well.


  
  
    
    Dockerfile for the TPU and TensorFlow Lite Object Detection tutorial
    

    
 
  

    
      
          
            
  
Dockerfile for the TPU and TensorFlow Lite Object Detection tutorial

This Docker image automates the setup involved with training
object detection models on Google Cloud and building the Android TensorFlow Lite
demo app. We recommend using this container if you decide to work through our
tutorial on “Training and serving a real-time mobile object detector in
30 minutes with Cloud TPUs” [https://medium.com/tensorflow/training-and-serving-a-realtime-mobile-object-detector-in-30-minutes-with-cloud-tpus-b78971cf1193], though of course it may be useful even if you would
like to use the Object Detection API outside the context of the tutorial.

A couple words of warning:


	Docker containers do not have persistent storage. This means that any changes
you make to files inside the container will not persist if you restart
the container. When running through the tutorial,
do not close the container.


	To be able to deploy the Android app [https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android]
(which you will build at the end of the tutorial),
you will need to kill any instances of adb running on the host machine. You
can accomplish this by closing all instances of Android Studio, and then
running adb kill-server.




You can install Docker by following the instructions here [https://docs.docker.com/install/].


Running The Container

From this directory, build the Dockerfile as follows (this takes a while):

docker build --tag detect-tf .





Run the container:

docker run --rm -it --privileged -p 6006:6006 detect-tf





When running the container, you will find yourself inside the /tensorflow
directory, which is the path to the TensorFlow source
tree [https://github.com/tensorflow/tensorflow].




Text Editing

The tutorial also
requires you to occasionally edit files inside the source tree.
This Docker images comes with vim, nano, and emacs preinstalled for your
convenience.




What’s In This Container

This container is derived from the nightly build of TensorFlow, and contains the
sources for TensorFlow at /tensorflow, as well as the
TensorFlow Models [https://github.com/tensorflow/models] which are available at
/tensorflow/models (and contain the Object Detection API as a subdirectory
at /tensorflow/models/research/object_detection).
The Oxford-IIIT Pets dataset, the COCO pre-trained SSD + MobileNet (v1)
checkpoint, and example
trained model are all available in /tmp in their respective folders.

This container also has the gsutil and gcloud utilities, the bazel build
tool, and all dependencies necessary to use the Object Detection API, and
compile and install the TensorFlow Lite Android demo app.

At various points throughout the tutorial, you may see references to the
research directory.  This refers to the research folder within the
models repository, located at
/tensorflow/models/resesarch.
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Open Images Challenge Evaluation

The Object Detection API is currently supporting several evaluation metrics used
in the
Open Images Challenge 2018 [https://storage.googleapis.com/openimages/web/challenge.html]
and
Open Images Challenge 2019 [https://storage.googleapis.com/openimages/web/challenge2019.html].
In addition, several data processing tools are available. Detailed instructions
on using the tools for each track are available below.

NOTE: all data links are updated to the Open Images Challenge 2019.


Object Detection Track

The
Object Detection metric [https://storage.googleapis.com/openimages/web/evaluation.html#object_detection_eval]
protocol requires a pre-processing of the released data to ensure correct
evaluation. The released data contains only leaf-most bounding box annotations
and image-level labels. The evaluation metric implementation is available in the
class OpenImagesChallengeEvaluator.


	Download
class hierarchy of Open Images Detection Challenge 2019 [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-label500-hierarchy.json]
in JSON format.


	Download
ground-truth boundling boxes [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-detection-bbox.csv]
and
image-level labels [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-detection-human-imagelabels.csv].


	Run the following command to create hierarchical expansion of the bounding
boxes and image-level label annotations:




HIERARCHY_FILE=/path/to/challenge-2019-label500-hierarchy.json
BOUNDING_BOXES=/path/to/challenge-2019-validation-detection-bbox
IMAGE_LABELS=/path/to/challenge-2019-validation-detection-human-imagelabels

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${BOUNDING_BOXES}.csv \
    --output_annotations=${BOUNDING_BOXES}_expanded.csv \
    --annotation_type=1

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${IMAGE_LABELS}.csv \
    --output_annotations=${IMAGE_LABELS}_expanded.csv \
    --annotation_type=2






	If you are not using Tensorflow, you can run evaluation directly using your
algorithm’s output and generated ground-truth files. {value=4}




After step 3 you produced the ground-truth files suitable for running ‘OID
Challenge Object Detection Metric 2019’ evaluation. To run the evaluation, use
the following command:

INPUT_PREDICTIONS=/path/to/detection_predictions.csv
OUTPUT_METRICS=/path/to/output/metrics/file

python models/research/object_detection/metrics/oid_challenge_evaluation.py \
    --input_annotations_boxes=${BOUNDING_BOXES}_expanded.csv \
    --input_annotations_labels=${IMAGE_LABELS}_expanded.csv \
    --input_class_labelmap=object_detection/data/oid_object_detection_challenge_500_label_map.pbtxt \
    --input_predictions=${INPUT_PREDICTIONS} \
    --output_metrics=${OUTPUT_METRICS} \





For the Object Detection Track, the participants will be ranked on:


	“OpenImagesDetectionChallenge_Precision/mAP@0.5IOU”




To use evaluation within Tensorflow training, use metric name
oid_challenge_detection_metrics in the evaluation config.




Instance Segmentation Track

The
Instance Segmentation metric [https://storage.googleapis.com/openimages/web/evaluation.html#instance_segmentation_eval]
can be directly evaluated using the ground-truth data and model predictions. The
evaluation metric implementation is available in the class
OpenImagesChallengeEvaluator.


	Download
class hierarchy of Open Images Instance Segmentation Challenge 2019 [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-label300-segmentable-hierarchy.json]
in JSON format.


	Download
ground-truth bounding boxes [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-segmentation-bbox.csv]
and
image-level labels [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-segmentation-labels.csv].


	Download instance segmentation files for the validation set (see
Open Images Challenge Downloads page [https://storage.googleapis.com/openimages/web/challenge2019_downloads.html]).
The download consists of a set of .zip archives containing binary .png
masks.
Those should be transformed into a single CSV file in the format:

ImageID,LabelName,ImageWidth,ImageHeight,XMin,YMin,XMax,YMax,GroupOf,Mask
where Mask is MS COCO RLE encoding of a binary mask stored in .png file.

NOTE: the util to make the transformation will be released soon.



	Run the following command to create hierarchical expansion of the instance
segmentation, bounding boxes and image-level label annotations: {value=4}




HIERARCHY_FILE=/path/to/challenge-2019-label300-hierarchy.json
BOUNDING_BOXES=/path/to/challenge-2019-validation-detection-bbox
IMAGE_LABELS=/path/to/challenge-2019-validation-detection-human-imagelabels

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${BOUNDING_BOXES}.csv \
    --output_annotations=${BOUNDING_BOXES}_expanded.csv \
    --annotation_type=1

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${IMAGE_LABELS}.csv \
    --output_annotations=${IMAGE_LABELS}_expanded.csv \
    --annotation_type=2

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${INSTANCE_SEGMENTATIONS}.csv \
    --output_annotations=${INSTANCE_SEGMENTATIONS}_expanded.csv \
    --annotation_type=1






	If you are not using Tensorflow, you can run evaluation directly using your
algorithm’s output and generated ground-truth files. {value=4}




INPUT_PREDICTIONS=/path/to/instance_segmentation_predictions.csv
OUTPUT_METRICS=/path/to/output/metrics/file

python models/research/object_detection/metrics/oid_challenge_evaluation.py \
    --input_annotations_boxes=${BOUNDING_BOXES}_expanded.csv \
    --input_annotations_labels=${IMAGE_LABELS}_expanded.csv \
    --input_class_labelmap=object_detection/data/oid_object_detection_challenge_500_label_map.pbtxt \
    --input_predictions=${INPUT_PREDICTIONS} \
    --input_annotations_segm=${INSTANCE_SEGMENTATIONS}_expanded.csv
    --output_metrics=${OUTPUT_METRICS} \





For the Instance Segmentation Track, the participants will be ranked on:


	“OpenImagesInstanceSegmentationChallenge_Precision/mAP@0.5IOU”







Visual Relationships Detection Track

The
Visual Relationships Detection metrics [https://storage.googleapis.com/openimages/web/evaluation.html#visual_relationships_eval]
can be directly evaluated using the ground-truth data and model predictions. The
evaluation metric implementation is available in the class
VRDRelationDetectionEvaluator,VRDPhraseDetectionEvaluator.


	Download the ground-truth
visual relationships annotations [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-vrd.csv]
and
image-level labels [https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-vrd-labels.csv].


	Run the follwing command to produce final metrics:




INPUT_ANNOTATIONS_BOXES=/path/to/challenge-2018-train-vrd.csv
INPUT_ANNOTATIONS_LABELS=/path/to/challenge-2018-train-vrd-labels.csv
INPUT_PREDICTIONS=/path/to/predictions.csv
INPUT_CLASS_LABELMAP=/path/to/oid_object_detection_challenge_500_label_map.pbtxt
INPUT_RELATIONSHIP_LABELMAP=/path/to/relationships_labelmap.pbtxt
OUTPUT_METRICS=/path/to/output/metrics/file

echo "item { name: '/m/02gy9n' id: 602 display_name: 'Transparent' }
item { name: '/m/05z87' id: 603 display_name: 'Plastic' }
item { name: '/m/0dnr7' id: 604 display_name: '(made of)Textile' }
item { name: '/m/04lbp' id: 605 display_name: '(made of)Leather' }
item { name: '/m/083vt' id: 606 display_name: 'Wooden'}
">>${INPUT_CLASS_LABELMAP}

echo "item { name: 'at' id: 1 display_name: 'at' }
item { name: 'on' id: 2 display_name: 'on (top of)' }
item { name: 'holds' id: 3 display_name: 'holds' }
item { name: 'plays' id: 4 display_name: 'plays' }
item { name: 'interacts_with' id: 5 display_name: 'interacts with' }
item { name: 'wears' id: 6 display_name: 'wears' }
item { name: 'is' id: 7 display_name: 'is' }
item { name: 'inside_of' id: 8 display_name: 'inside of' }
item { name: 'under' id: 9 display_name: 'under' }
item { name: 'hits' id: 10 display_name: 'hits' }
"> ${INPUT_RELATIONSHIP_LABELMAP}

python object_detection/metrics/oid_vrd_challenge_evaluation.py \
    --input_annotations_boxes=${INPUT_ANNOTATIONS_BOXES} \
    --input_annotations_labels=${INPUT_ANNOTATIONS_LABELS} \
    --input_predictions=${INPUT_PREDICTIONS} \
    --input_class_labelmap=${INPUT_CLASS_LABELMAP} \
    --input_relationship_labelmap=${INPUT_RELATIONSHIP_LABELMAP} \
    --output_metrics=${OUTPUT_METRICS}





The participants of the challenge will be evaluated by weighted average of the following three metrics:


	“VRDMetric_Relationships_mAP@0.5IOU”


	“VRDMetric_Relationships_Recall@50@0.5IOU”


	“VRDMetric_Phrases_mAP@0.5IOU”
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Configuring the Object Detection Training Pipeline


Overview

The Tensorflow Object Detection API uses protobuf files to configure the
training and evaluation process. The schema for the training pipeline can be
found in object_detection/protos/pipeline.proto. At a high level, the config
file is split into 5 parts:


	The model configuration. This defines what type of model will be trained
(ie. meta-architecture, feature extractor).


	The train_config, which decides what parameters should be used to train
model parameters (ie. SGD parameters, input preprocessing and feature extractor
initialization values).


	The eval_config, which determines what set of metrics will be reported for
evaluation.


	The train_input_config, which defines what dataset the model should be
trained on.


	The eval_input_config, which defines what dataset the model will be
evaluated on. Typically this should be different than the training input
dataset.




A skeleton configuration file is shown below:

model {
(... Add model config here...)
}

train_config : {
(... Add train_config here...)
}

train_input_reader: {
(... Add train_input configuration here...)
}

eval_config: {
}

eval_input_reader: {
(... Add eval_input configuration here...)
}








Picking Model Parameters

There are a large number of model parameters to configure. The best settings
will depend on your given application. Faster R-CNN models are better suited to
cases where high accuracy is desired and latency is of lower priority.
Conversely, if processing time is the most important factor, SSD models are
recommended. Read our paper [https://arxiv.org/abs/1611.10012] for a more
detailed discussion on the speed vs accuracy tradeoff.

To help new users get started, sample model configurations have been provided
in the object_detection/samples/configs folder. The contents of these
configuration files can be pasted into model field of the skeleton
configuration. Users should note that the num_classes field should be changed
to a value suited for the dataset the user is training on.




Defining Inputs

The Tensorflow Object Detection API accepts inputs in the TFRecord file format.
Users must specify the locations of both the training and evaluation files.
Additionally, users should also specify a label map, which define the mapping
between a class id and class name. The label map should be identical between
training and evaluation datasets.

An example input configuration looks as follows:

tf_record_input_reader {
  input_path: "/usr/home/username/data/train.record"
}
label_map_path: "/usr/home/username/data/label_map.pbtxt"





Users should substitute the input_path and label_map_path arguments and
insert the input configuration into the train_input_reader and
eval_input_reader fields in the skeleton configuration. Note that the paths
can also point to Google Cloud Storage buckets (ie.
“gs://project_bucket/train.record”) for use on Google Cloud.




Configuring the Trainer

The train_config defines parts of the training process:


	Model parameter initialization.


	Input preprocessing.


	SGD parameters.




A sample train_config is below:

batch_size: 1
optimizer {
  momentum_optimizer: {
    learning_rate: {
      manual_step_learning_rate {
        initial_learning_rate: 0.0002
        schedule {
          step: 0
          learning_rate: .0002
        }
        schedule {
          step: 900000
          learning_rate: .00002
        }
        schedule {
          step: 1200000
          learning_rate: .000002
        }
      }
    }
    momentum_optimizer_value: 0.9
  }
  use_moving_average: false
}
fine_tune_checkpoint: "/usr/home/username/tmp/model.ckpt-#####"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
gradient_clipping_by_norm: 10.0
data_augmentation_options {
  random_horizontal_flip {
  }
}






Model Parameter Initialization

While optional, it is highly recommended that users utilize other object
detection checkpoints. Training an object detector from scratch can take days.
To speed up the training process, it is recommended that users re-use the
feature extractor parameters from a pre-existing image classification or
object detection checkpoint. train_config provides two fields to specify
pre-existing checkpoints: fine_tune_checkpoint and
from_detection_checkpoint. fine_tune_checkpoint should provide a path to
the pre-existing checkpoint
(ie:”/usr/home/username/checkpoint/model.ckpt-#####”).
from_detection_checkpoint is a boolean value. If false, it assumes the
checkpoint was from an object classification checkpoint. Note that starting
from a detection checkpoint will usually result in a faster training job than
a classification checkpoint.

The list of provided checkpoints can be found here.




Input Preprocessing

The data_augmentation_options in train_config can be used to specify
how training data can be modified. This field is optional.




SGD Parameters

The remainings parameters in train_config are hyperparameters for gradient
descent. Please note that the optimal learning rates provided in these
configuration files may depend on the specifics of the training setup (e.g.
number of workers, gpu type).






Configuring the Evaluator

The main components to set in eval_config are num_examples and
metrics_set. The parameter num_examples indicates the number of batches (
currently of batch size 1) used for an evaluation cycle, and often is the total
size of the evaluation dataset. The parameter metrics_set indicates which
metrics to run during evaluation (i.e. "coco_detection_metrics").
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So you want to create a new model!

In this section, we discuss some of the abstractions that we use
for defining detection models. If you would like to define a new model
architecture for detection and use it in the Tensorflow Detection API,
then this section should also serve as a high level guide to the files that you
will need to edit to get your new model working.


DetectionModels (object_detection/core/model.py)

In order to be trained, evaluated, and exported for serving  using our
provided binaries, all models under the Tensorflow Object Detection API must
implement the DetectionModel interface (see the full definition in object_detection/core/model.py).  In particular,
each of these models are responsible for implementing 5 functions:


	preprocess: Run any preprocessing (e.g., scaling/shifting/reshaping) of
input values that is necessary prior to running the detector on an input
image.


	predict: Produce “raw” prediction tensors that can be passed to loss or
postprocess functions.


	postprocess: Convert predicted output tensors to final detections.


	loss: Compute scalar loss tensors with respect to provided groundtruth.


	restore: Load a checkpoint into the Tensorflow graph.




Given a DetectionModel at training time, we pass each image batch through
the following sequence of functions to compute a loss which can be optimized via
SGD:

inputs (images tensor) -> preprocess -> predict -> loss -> outputs (loss tensor)





And at eval time, we pass each image batch through the following sequence of
functions to produce a set of detections:

inputs (images tensor) -> preprocess -> predict -> postprocess ->
  outputs (boxes tensor, scores tensor, classes tensor, num_detections tensor)





Some conventions to be aware of:


	DetectionModels should make no assumptions about the input size or aspect
ratio — they are responsible for doing any resize/reshaping necessary
(see docstring for the preprocess function).


	Output classes are always integers in the range [0, num_classes).
Any mapping of these integers to semantic labels is to be handled outside
of this class.  We never explicitly emit a “background class” — thus 0 is
the first non-background class and any logic of predicting and removing
implicit background classes must be handled internally by the implementation.


	Detected boxes are to be interpreted as being in
[y_min, x_min, y_max, x_max] format and normalized relative to the
image window.


	We do not specifically assume any kind of probabilistic interpretation of the
scores — the only important thing is their relative ordering. Thus
implementations of the postprocess function are free to output logits,
probabilities, calibrated probabilities, or anything else.







Defining a new Faster R-CNN or SSD Feature Extractor

In most cases, you probably will not implement a DetectionModel from scratch
— instead you might create a new feature extractor to be used by one of the
SSD or Faster R-CNN meta-architectures.  (We think of meta-architectures as
classes that define entire families of models using the DetectionModel
abstraction).

Note: For the following discussion to make sense, we recommend first becoming
familiar with the Faster R-CNN [https://arxiv.org/abs/1506.01497] paper.

Let’s now imagine that you have invented a brand new network architecture
(say, “InceptionV100”) for classification and want to see how InceptionV100
would behave as a feature extractor for detection (say, with Faster R-CNN).
A similar procedure would hold for SSD models, but we’ll discuss Faster R-CNN.

To use InceptionV100, we will have to define a new
FasterRCNNFeatureExtractor and pass it to our FasterRCNNMetaArch
constructor as input.  See
object_detection/meta_architectures/faster_rcnn_meta_arch.py for definitions
of FasterRCNNFeatureExtractor and FasterRCNNMetaArch, respectively.
A FasterRCNNFeatureExtractor must define a few
functions:


	preprocess: Run any preprocessing of input values that is necessary prior
to running the detector on an input image.


	_extract_proposal_features: Extract first stage Region Proposal Network
(RPN) features.


	_extract_box_classifier_features: Extract second stage Box Classifier
features.


	restore_from_classification_checkpoint_fn: Load a checkpoint into the
Tensorflow graph.




See the object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py
definition as one example. Some remarks:


	We typically initialize the weights of this feature extractor
using those from the
Slim Resnet-101 classification checkpoint [https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-models],
and we know
that images were preprocessed when training this checkpoint
by subtracting a channel mean from each input
image.  Thus, we implement the preprocess function to replicate the same
channel mean subtraction behavior.


	The “full” resnet classification network defined in slim is cut into two
parts — all but the last “resnet block” is put into the
_extract_proposal_features function and the final block is separately
defined in the _extract_box_classifier_features function.  In general,
some experimentation may be required to decide on an optimal layer at
which to “cut” your feature extractor into these two pieces for Faster R-CNN.







Register your model for configuration

Assuming that your new feature extractor does not require nonstandard
configuration, you will want to ideally be able to simply change the
“feature_extractor.type” fields in your configuration protos to point to a
new feature extractor.  In order for our API to know how to understand this
new type though, you will first have to register your new feature
extractor with the model builder (object_detection/builders/model_builder.py),
whose job is to create models from config protos..

Registration is simple — just add a pointer to the new Feature Extractor
class that you have defined in one of the SSD or Faster R-CNN Feature
Extractor Class maps at the top of the
object_detection/builders/model_builder.py file.
We recommend adding a test in object_detection/builders/model_builder_test.py
to make sure that parsing your proto will work as expected.




Taking your new model for a spin

After registration you are ready to go with your model!  Some final tips:


	To save time debugging, try running your configuration file locally first
(both training and evaluation).


	Do a sweep of learning rates to figure out which learning rate is best
for your model.


	A small but often important detail: you may find it necessary to disable
batchnorm training (that is, load the batch norm parameters from the
classification checkpoint, but do not update them during gradient descent).
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Tensorflow detection model zoo

We provide a collection of detection models pre-trained on the COCO
dataset [http://mscoco.org], the Kitti dataset [http://www.cvlibs.net/datasets/kitti/],
the Open Images dataset [https://github.com/openimages/dataset], the
AVA v2.1 dataset [https://research.google.com/ava/] and the
iNaturalist Species Detection Dataset [https://github.com/visipedia/inat_comp/blob/master/2017/README.md#bounding-boxes].
These models can be useful for out-of-the-box inference if you are interested in
categories already in those datasets. They are also useful for initializing your
models when training on novel datasets.

In the table below, we list each such pre-trained model including:


	a model name that corresponds to a config file that was used to train this
model in the samples/configs directory,


	a download link to a tar.gz file containing the pre-trained model,


	model speed — we report running time in ms per 600x600 image (including all
pre and post-processing), but please be
aware that these timings depend highly on one’s specific hardware
configuration (these timings were performed using an Nvidia
GeForce GTX TITAN X card) and should be treated more as relative timings in
many cases. Also note that desktop GPU timing does not always reflect mobile
run time. For example Mobilenet V2 is faster on mobile devices than Mobilenet
V1, but is slightly slower on desktop GPU.


	detector performance on subset of the COCO validation set or Open Images test split as measured by the dataset-specific mAP measure.
Here, higher is better, and we only report bounding box mAP rounded to the
nearest integer.


	Output types (Boxes, and Masks if applicable )




You can un-tar each tar.gz file via, e.g.,:

tar -xzvf ssd_mobilenet_v1_coco.tar.gz





Inside the un-tar’ed directory, you will find:


	a graph proto (graph.pbtxt)


	a checkpoint
(model.ckpt.data-00000-of-00001, model.ckpt.index, model.ckpt.meta)


	a frozen graph proto with weights baked into the graph as constants
(frozen_inference_graph.pb) to be used for out of the box inference
(try this out in the Jupyter notebook!)


	a config file (pipeline.config) which was used to generate the graph.  These
directly correspond to a config file in the
samples/configs [https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs]) directory but often with a modified score threshold.  In the case
of the heavier Faster R-CNN models, we also provide a version of the model
that uses a highly reduced number of proposals for speed.




Some remarks on frozen inference graphs:


	If you try to evaluate the frozen graph, you may find performance numbers for
some of the models to be slightly lower than what we report in the below
tables.  This is because we discard detections with scores below a
threshold (typically 0.3) when creating the frozen graph.  This corresponds
effectively to picking a point on the precision recall curve of
a detector (and discarding the part past that point), which negatively impacts
standard mAP metrics.


	Our frozen inference graphs are generated using the
v1.12.0 [https://github.com/tensorflow/tensorflow/tree/v1.12.0]
release version of Tensorflow and we do not guarantee that these will work
with other versions; this being said, each frozen inference graph can be
regenerated using your current version of Tensorflow by re-running the
exporter [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/exporting_models],
pointing it at the model directory as well as the corresponding config file in
samples/configs [https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs].





COCO-trained models

| Model name  | Speed (ms) | COCO mAP[^1] | Outputs |
| ———— | :————–: | :————–: | :————-: |
| ssd_mobilenet_v1_coco [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz] | 30 | 21 | Boxes |
| ssd_mobilenet_v1_0.75_depth_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz] | 26 | 18 | Boxes |
| ssd_mobilenet_v1_quantized_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz] | 29 | 18 | Boxes |
| ssd_mobilenet_v1_0.75_depth_quantized_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_quantized_300x300_coco14_sync_2018_07_18.tar.gz] | 29 | 16 | Boxes |
| ssd_mobilenet_v1_ppn_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync_2018_07_03.tar.gz] | 26 | 20 | Boxes |
| ssd_mobilenet_v1_fpn_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz] | 56 | 32 | Boxes |
| ssd_resnet_50_fpn_coco ☆ [http://download.tensorflow.org/models/object_detection/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz] | 76 | 35 | Boxes |
| ssd_mobilenet_v2_coco [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz] | 31 | 22 | Boxes |
| ssd_mobilenet_v2_quantized_coco [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz] | 29 | 22 | Boxes |
| ssdlite_mobilenet_v2_coco [http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz] | 27 | 22 | Boxes |
| ssd_inception_v2_coco [http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz] | 42 | 24 | Boxes |
| faster_rcnn_inception_v2_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz] | 58 | 28 | Boxes |
| faster_rcnn_resnet50_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_coco_2018_01_28.tar.gz] | 89 | 30 | Boxes |
| faster_rcnn_resnet50_lowproposals_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_lowproposals_coco_2018_01_28.tar.gz] | 64 |  | Boxes |
| rfcn_resnet101_coco [http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz]  | 92 | 30 | Boxes |
| faster_rcnn_resnet101_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz] | 106 | 32 | Boxes |
| faster_rcnn_resnet101_lowproposals_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_lowproposals_coco_2018_01_28.tar.gz] | 82 |  | Boxes |
| faster_rcnn_inception_resnet_v2_atrous_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz] | 620 | 37 | Boxes |
| faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco_2018_01_28.tar.gz] | 241 |  | Boxes |
| faster_rcnn_nas [http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_coco_2018_01_28.tar.gz] | 1833 | 43 | Boxes |
| faster_rcnn_nas_lowproposals_coco [http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_lowproposals_coco_2018_01_28.tar.gz] | 540 |  | Boxes |
| mask_rcnn_inception_resnet_v2_atrous_coco [http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz] | 771 | 36 | Masks |
| mask_rcnn_inception_v2_coco [http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_v2_coco_2018_01_28.tar.gz] | 79 | 25 | Masks |
| mask_rcnn_resnet101_atrous_coco [http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet101_atrous_coco_2018_01_28.tar.gz] | 470 | 33 | Masks |
| mask_rcnn_resnet50_atrous_coco [http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet50_atrous_coco_2018_01_28.tar.gz] | 343 | 29 | Masks |

Note: The asterisk (☆) at the end of model name indicates that this model supports TPU training.

Note: If you download the tar.gz file of quantized models and un-tar, you will get different set of files - a checkpoint, a config file and tflite frozen graphs (txt/binary).




Kitti-trained models

Model name                                                                                                                                                        | Speed (ms) | Pascal mAP@0.5 | Outputs
—————————————————————————————————————————————————————– | :—: | :————-: | :—–:
faster_rcnn_resnet101_kitti [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_kitti_2018_01_28.tar.gz] | 79  | 87              | Boxes




Open Images-trained models

Model name                                                                                                                                                                                    | Speed (ms) | Open Images mAP@0.5[^2] | Outputs
——————————————————————————————————————————————————————————————— | :——–: | :———————: | :—–:
faster_rcnn_inception_resnet_v2_atrous_oidv2 [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_2018_01_28.tar.gz]                           | 727        | 37                     | Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_oidv2 [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid_2018_01_28.tar.gz] | 347        |                         | Boxes
facessd_mobilenet_v2_quantized_open_image_v4 [http://download.tensorflow.org/models/object_detection/facessd_mobilenet_v2_quantized_320x320_open_image_v4.tar.gz] [^3]                       | 20         | 73 (faces)              | Boxes

Model name                                                                                                                                                                                    | Speed (ms) | Open Images mAP@0.5[^4] | Outputs
——————————————————————————————————————————————————————————————— | :——–: | :———————: | :—–:
faster_rcnn_inception_resnet_v2_atrous_oidv4 [http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_v4_2018_12_12.tar.gz]                         | 425        | 54                  | Boxes
ssd_mobilenetv2_oidv4 [http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_oid_v4_2018_12_12.tar.gz]                                                                       | 89         | 36                | Boxes
ssd_resnet_101_fpn_oidv4 [http://download.tensorflow.org/models/object_detection/ssd_resnet101_v1_fpn_shared_box_predictor_oid_512x512_sync_2019_01_20.tar.gz]                                                                       | 237         | 38                | Boxes




iNaturalist Species-trained models

Model name                                                                                                                                                        | Speed (ms) | Pascal mAP@0.5 | Outputs
—————————————————————————————————————————————————————– | :—: | :————-: | :—–:
faster_rcnn_resnet101_fgvc [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_fgvc_2018_07_19.tar.gz] | 395  | 58              | Boxes
faster_rcnn_resnet50_fgvc [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_fgvc_2018_07_19.tar.gz] | 366  | 55             | Boxes




AVA v2.1 trained models

Model name                                                                                                                                                        | Speed (ms) | Pascal mAP@0.5 | Outputs
—————————————————————————————————————————————————————– | :—: | :————-: | :—–:
faster_rcnn_resnet101_ava_v2.1 [http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_ava_v2.1_2018_04_30.tar.gz] | 93  | 11              | Boxes

[^1]: See MSCOCO evaluation protocol [http://cocodataset.org/#detections-eval]. The COCO mAP numbers here are evaluated on COCO 14 minival set (note that our split is different from COCO 17 Val). A full list of image ids used in our split could be fould here [https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_minival_ids.txt].

[^2]: This is PASCAL mAP with a slightly different way of true positives computation: see Open Images evaluation protocols, oid_V2_detection_metrics.

[^3]: Non-face boxes are dropped during training and non-face groundtruth boxes are ignored when evaluating.

[^4]: This is Open Images Challenge metric: see Open Images evaluation protocols, oid_challenge_detection_metrics.







          

      

      

    

  

  
    
    Supported object detection evaluation protocols
    

    
 
  

    
      
          
            
  
Supported object detection evaluation protocols

The Tensorflow Object Detection API currently supports three evaluation protocols,
that can be configured in EvalConfig by setting metrics_set to the
corresponding value.


PASCAL VOC 2010 detection metric

EvalConfig.metrics_set='pascal_voc_detection_metrics'

The commonly used mAP metric for evaluating the quality of object detectors,
computed according to the protocol of the PASCAL VOC Challenge 2010-2012. The
protocol is available
here [http://host.robots.ox.ac.uk/pascal/VOC/voc2010/devkit_doc_08-May-2010.pdf].




Weighted PASCAL VOC detection metric

EvalConfig.metrics_set='weighted_pascal_voc_detection_metrics'

The weighted PASCAL metric computes the mean average precision as the average
precision when treating all classes as a single class. In comparison,
PASCAL metrics computes the mean average precision as the mean of the
per-class average precisions.

For example, the test set consists of two classes, “cat” and “dog”, and there
are ten times more boxes of “cat” than those of “dog”. According to PASCAL VOC
2010 metric, performance on each of the two classes would contribute equally
towards the final mAP value, while for the Weighted PASCAL VOC metric the final
mAP value will be influenced by frequency of each class.




PASCAL VOC 2010 instance segmentation metric

EvalConfig.metrics_set='pascal_voc_instance_segmentation_metrics'

Similar to Pascal VOC 2010 detection metric, but computes the intersection over
union based on the object masks instead of object boxes.




Weighted PASCAL VOC instance segmentation metric

EvalConfig.metrics_set='weighted_pascal_voc_instance_segmentation_metrics'

Similar to the weighted pascal voc 2010 detection metric, but computes the
intersection over union based on the object masks instead of object boxes.




COCO detection metrics

EvalConfig.metrics_set='coco_detection_metrics'

The COCO metrics are the official detection metrics used to score the
COCO competition [http://cocodataset.org/] and are similar to Pascal VOC
metrics but have a slightly different implementation and report additional
statistics such as mAP at IOU thresholds of .5:.95, and precision/recall
statistics for small, medium, and large objects.
See the
pycocotools [https://github.com/cocodataset/cocoapi/tree/master/PythonAPI]
repository for more details.




COCO mask metrics

EvalConfig.metrics_set='coco_mask_metrics'

Similar to the COCO detection metrics, but computes the
intersection over union based on the object masks instead of object boxes.




Open Images V2 detection metric

EvalConfig.metrics_set='oid_V2_detection_metrics'

This metric is defined originally for evaluating detector performance on Open
Images V2 dataset [https://github.com/openimages/dataset] and is fairly similar
to the PASCAL VOC 2010 metric mentioned above. It computes interpolated average
precision (AP) for each class and averages it among all classes (mAP).

The difference to the PASCAL VOC 2010 metric is the following: Open Images
annotations contain group-of ground-truth boxes (see Open Images data
description [https://github.com/openimages/dataset#annotations-human-bboxcsv]),
that are treated differently for the purpose of deciding whether detections are
“true positives”, “ignored”, “false positives”. Here we define these three
cases:

A detection is a “true positive” if there is a non-group-of ground-truth box,
such that:


	The detection box and the ground-truth box are of the same class, and
intersection-over-union (IoU) between the detection box and the ground-truth
box is greater than the IoU threshold (default value 0.5). Illustration of handling non-group-of boxes: [image: illustration of handling non-group-of boxes: yellow box - ground truth bounding box; green box - true positive; red box - false positives.]alt
groupof_case_eval


	yellow box - ground-truth box;


	green box - true positive;


	red boxes - false positives.






	This is the highest scoring detection for this ground truth box that
satisfies the criteria above.




A detection is “ignored” if it is not a true positive, and there is a group-of
ground-truth box such that:


	The detection box and the ground-truth box are of the same class, and the
area of intersection between the detection box and the ground-truth box
divided by the area of the detection is greater than 0.5. This is intended
to measure whether the detection box is approximately inside the group-of
ground-truth box. Illustration of handling group-of boxes: [image: illustration of handling group-of boxes: yellow box - ground truth bounding box; grey boxes - two detections of cars, that are ignored; red box - false positive.]alt
groupof_case_eval


	yellow box - ground-truth box;


	grey boxes - two detections on cars, that are ignored;


	red box - false positive.








A detection is a “false positive” if it is neither a “true positive” nor
“ignored”.

Precision and recall are defined as:


	Precision = number-of-true-positives/(number-of-true-positives + number-of-false-positives)


	Recall = number-of-true-positives/number-of-non-group-of-boxes




Note that detections ignored as firing on a group-of ground-truth box do not
contribute to the number of true positives.

The labels in Open Images are organized in a
hierarchy [https://storage.googleapis.com/openimages/2017_07/bbox_labels_vis/bbox_labels_vis.html].
Ground-truth bounding-boxes are annotated with the most specific class available
in the hierarchy. For example, “car” has two children “limousine” and “van”. Any
other kind of car is annotated as “car” (for example, a sedan). Given this
convention, the evaluation software treats all classes independently, ignoring
the hierarchy. To achieve high performance values, object detectors should
output bounding-boxes labelled in the same manner.

The old metric name is DEPRECATED.
EvalConfig.metrics_set='open_images_V2_detection_metrics'




OID Challenge Object Detection Metric

EvalConfig.metrics_set='oid_challenge_detection_metrics'

The metric for the OID Challenge Object Detection Metric 2018/2019 Object
Detection track. The description is provided on the
Open Images Challenge website [https://storage.googleapis.com/openimages/web/evaluation.html#object_detection_eval].

The old metric name is DEPRECATED.
EvalConfig.metrics_set='oid_challenge_object_detection_metrics'




OID Challenge Visual Relationship Detection Metric

The metric for the OID Challenge Visual Relationship Detection Metric 2018,2019
Visual Relationship Detection track. The description is provided on the
Open Images Challenge website [https://storage.googleapis.com/openimages/web/evaluation.html#visual_relationships_eval].
Note: this is currently a stand-alone metric, that can be used only through the
metrics/oid_vrd_challenge_evaluation.py util.




OID Challenge Instance Segmentation Metric

EvalConfig.metrics_set='oid_challenge_segmentation_metrics'

The metric for the OID Challenge Instance Segmentation Metric 2019, Instance
Segmentation track. The description is provided on the
Open Images Challenge website [https://storage.googleapis.com/openimages/web/evaluation.html#instance_segmentation_eval].
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Exporting a trained model for inference

After your model has been trained, you should export it to a Tensorflow
graph proto. A checkpoint will typically consist of three files:


	model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001


	model.ckpt-${CHECKPOINT_NUMBER}.index


	model.ckpt-${CHECKPOINT_NUMBER}.meta




After you’ve identified a candidate checkpoint to export, run the following
command from tensorflow/models/research:

# From tensorflow/models/research/
INPUT_TYPE=image_tensor
PIPELINE_CONFIG_PATH={path to pipeline config file}
TRAINED_CKPT_PREFIX={path to model.ckpt}
EXPORT_DIR={path to folder that will be used for export}
python object_detection/export_inference_graph.py \
    --input_type=${INPUT_TYPE} \
    --pipeline_config_path=${PIPELINE_CONFIG_PATH} \
    --trained_checkpoint_prefix=${TRAINED_CKPT_PREFIX} \
    --output_directory=${EXPORT_DIR}





NOTE: We are configuring our exported model to ingest 4-D image tensors. We can
also configure the exported model to take encoded images or serialized
tf.Examples.

After export, you should see the directory ${EXPORT_DIR} containing the following:


	saved_model/, a directory containing the saved model format of the exported model


	frozen_inference_graph.pb, the frozen graph format of the exported model


	model.ckpt.*, the model checkpoints used for exporting


	checkpoint, a file specifying to restore included checkpoint files


	pipeline.config, pipeline config file for the exported model
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Frequently Asked Questions


Q: How can I ensure that all the groundtruth boxes are used during train and eval?

A: For the object detecion framework to be TPU-complient, we must pad our input
tensors to static shapes. This means that we must pad to a fixed number of
bounding boxes, configured by InputReader.max_number_of_boxes. It is
important to set this value to a number larger than the maximum number of
groundtruth boxes in the dataset. If an image is encountered with more
bounding boxes, the excess boxes will be clipped.




Q: AttributeError: ‘module’ object has no attribute ‘BackupHandler’

A: This BackupHandler (tf.contrib.slim.tfexample_decoder.BackupHandler) was
introduced in tensorflow 1.5.0 so runing with earlier versions may cause this
issue. It now has been replaced by
object_detection.data_decoders.tf_example_decoder.BackupHandler. Whoever sees
this issue should be able to resolve it by syncing your fork to HEAD.
Same for LookupTensor.




Q: AttributeError: ‘module’ object has no attribute ‘LookupTensor’

A: Similar to BackupHandler, syncing your fork to HEAD should make it work.




Q: Why can’t I get the inference time as reported in model zoo?

A: The inference time reported in model zoo is mean time of testing hundreds of
images with an internal machine. As mentioned in
Tensorflow detection model zoo, this speed depends
highly on one’s specific hardware configuration and should be treated more as
relative timing.
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Installation


Dependencies

Tensorflow Object Detection API depends on the following libraries:


	Protobuf 3.0.0


	Python-tk


	Pillow 1.0


	lxml


	tf Slim (which is included in the “tensorflow/models/research/” checkout)


	Jupyter notebook


	Matplotlib


	Tensorflow (>=1.12.0)


	Cython


	contextlib2


	cocoapi




For detailed steps to install Tensorflow, follow the Tensorflow installation
instructions [https://www.tensorflow.org/install/]. A typical user can install
Tensorflow using one of the following commands:

# For CPU
pip install tensorflow
# For GPU
pip install tensorflow-gpu





The remaining libraries can be installed on Ubuntu 16.04 using via apt-get:

sudo apt-get install protobuf-compiler python-pil python-lxml python-tk
pip install --user Cython
pip install --user contextlib2
pip install --user jupyter
pip install --user matplotlib





Alternatively, users can install dependencies using pip:

pip install --user Cython
pip install --user contextlib2
pip install --user pillow
pip install --user lxml
pip install --user jupyter
pip install --user matplotlib





Note: sometimes “sudo apt-get install protobuf-compiler” will install
Protobuf 3+ versions for you and some users have issues when using 3.5.
If that is your case, try the manual installation.




COCO API installation

Download the
cocoapi [https://github.com/cocodataset/cocoapi] and
copy the pycocotools subfolder to the tensorflow/models/research directory if
you are interested in using COCO evaluation metrics. The default metrics are
based on those used in Pascal VOC evaluation. To use the COCO object detection
metrics add metrics_set: "coco_detection_metrics" to the eval_config message
in the config file. To use the COCO instance segmentation metrics add
metrics_set: "coco_mask_metrics" to the eval_config message in the config
file.

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <path_to_tensorflow>/models/research/








Protobuf Compilation

The Tensorflow Object Detection API uses Protobufs to configure model and
training parameters. Before the framework can be used, the Protobuf libraries
must be compiled. This should be done by running the following command from
the tensorflow/models/research/ directory:

# From tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.





Note: If you’re getting errors while compiling, you might be using an incompatible protobuf compiler. If that’s the case, use the following manual installation




Manual protobuf-compiler installation and usage

If you are on linux:

Download and install the 3.0 release of protoc, then unzip the file.

# From tensorflow/models/research/
wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
unzip protobuf.zip





Run the compilation process again, but use the downloaded version of protoc

# From tensorflow/models/research/
./bin/protoc object_detection/protos/*.proto --python_out=.





If you are on MacOS:

If you have homebrew, download and install the protobuf with
brew install protobuf

Alternately, run:

curl -OL https://github.com/google/protobuf/releases/download/v3.3.0/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
rm -f $PROTOC_ZIP





Run the compilation process again:

# From tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.








Add Libraries to PYTHONPATH

When running locally, the tensorflow/models/research/ and slim directories
should be appended to PYTHONPATH. This can be done by running the following from
tensorflow/models/research/:

# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim





Note: This command needs to run from every new terminal you start. If you wish
to avoid running this manually, you can add it as a new line to the end of your
~/.bashrc file, replacing `pwd` with the absolute path of
tensorflow/models/research on your system.






Testing the Installation

You can test that you have correctly installed the Tensorflow Object DetectionAPI by running the following command:

python object_detection/builders/model_builder_test.py
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Run an Instance Segmentation Model

For some applications it isn’t adequate enough to localize an object with a
simple bounding box. For instance, you might want to segment an object region
once it is detected. This class of problems is called instance segmentation.
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Inference and evaluation on the Open Images dataset

This page presents a tutorial for running object detector inference and
evaluation measure computations on the Open Images
dataset [https://github.com/openimages/dataset], using tools from the
TensorFlow Object Detection
API [https://github.com/tensorflow/models/tree/master/research/object_detection].
It shows how to download the images and annotations for the validation and test
sets of Open Images; how to package the downloaded data in a format understood
by the Object Detection API; where to find a trained object detector model for
Open Images; how to run inference; and how to compute evaluation measures on the
inferred detections.

Inferred detections will look like the following:

[image: ../../../../_images/oid_bus_72e19c28aac34ed8.jpg]
[image: ../../../../_images/oid_monkey_3b4168c89cecbc5b.jpg]

On the validation set of Open Images, this tutorial requires 27GB of free disk
space and the inference step takes approximately 9 hours on a single NVIDIA
Tesla P100 GPU. On the test set – 75GB and 27 hours respectively. All other
steps require less than two hours in total on both sets.


Installing TensorFlow, the Object Detection API, and Google Cloud SDK

Please run through the installation instructions to install
TensorFlow and all its dependencies. Ensure the Protobuf libraries are compiled
and the library directories are added to PYTHONPATH. You will also need to
pip install pandas and contextlib2.

Some of the data used in this tutorial lives in Google Cloud buckets. To access
it, you will have to install the Google Cloud
SDK [https://cloud.google.com/sdk/downloads] on your workstation or laptop.




Preparing the Open Images validation and test sets

In order to run inference and subsequent evaluation measure computations, we
require a dataset of images and ground truth boxes, packaged as TFRecords of
TFExamples. To create such a dataset for Open Images, you will need to first
download ground truth boxes from the Open Images
website [https://github.com/openimages/dataset]:

# From tensorflow/models/research
mkdir oid
cd oid
wget https://storage.googleapis.com/openimages/2017_07/annotations_human_bbox_2017_07.tar.gz
tar -xvf annotations_human_bbox_2017_07.tar.gz





Next, download the images. In this tutorial, we will use lower resolution images
provided by CVDF [http://www.cvdfoundation.org]. Please follow the instructions
on CVDF’s Open Images repository
page [https://github.com/cvdfoundation/open-images-dataset] in order to gain
access to the cloud bucket with the images. Then run:

# From tensorflow/models/research/oid
SPLIT=validation  # Set SPLIT to "test" to download the images in the test set
mkdir raw_images_${SPLIT}
gsutil -m rsync -r gs://open-images-dataset/$SPLIT raw_images_${SPLIT}





Another option for downloading the images is to follow the URLs contained in the
image URLs and metadata CSV
files [https://storage.googleapis.com/openimages/2017_07/images_2017_07.tar.gz]
on the Open Images website.

At this point, your tensorflow/models/research/oid directory should appear as
follows:

|-- 2017_07
|   |-- test
|   |   `-- annotations-human-bbox.csv
|   |-- train
|   |   `-- annotations-human-bbox.csv
|   `-- validation
|       `-- annotations-human-bbox.csv
|-- raw_images_validation (if you downloaded the validation split)
|   `-- ... (41,620 files matching regex "[0-9a-f]{16}.jpg")
|-- raw_images_test (if you downloaded the test split)
|   `-- ... (125,436 files matching regex "[0-9a-f]{16}.jpg")
`-- annotations_human_bbox_2017_07.tar.gz





Next, package the data into TFRecords of TFExamples by running:

# From tensorflow/models/research/oid
SPLIT=validation  # Set SPLIT to "test" to create TFRecords for the test split
mkdir ${SPLIT}_tfrecords

PYTHONPATH=$PYTHONPATH:$(readlink -f ..) \
python -m object_detection/dataset_tools/create_oid_tf_record \
  --input_box_annotations_csv 2017_07/$SPLIT/annotations-human-bbox.csv \
  --input_images_directory raw_images_${SPLIT} \
  --input_label_map ../object_detection/data/oid_bbox_trainable_label_map.pbtxt \
  --output_tf_record_path_prefix ${SPLIT}_tfrecords/$SPLIT.tfrecord \
  --num_shards=100





To add image-level labels, use the --input_image_label_annotations_csv flag.

This results in 100 TFRecord files (shards), written to
oid/${SPLIT}_tfrecords, with filenames matching
${SPLIT}.tfrecord-000[0-9][0-9]-of-00100. Each shard contains approximately
the same number of images and is defacto a representative random sample of the
input data. This enables a straightforward work
division scheme for distributing inference and also approximate measure
computations on subsets of the validation and test sets.




Inferring detections

Inference requires a trained object detection model. In this tutorial we will
use a model from the detections model zoo, which can
be downloaded and unpacked by running the commands below. More information about
the model, such as its architecture and how it was trained, is available in the
model zoo page.

# From tensorflow/models/research/oid
wget http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_14_10_2017.tar.gz
tar -zxvf faster_rcnn_inception_resnet_v2_atrous_oid_14_10_2017.tar.gz





At this point, data is packed into TFRecords and we have an object detector
model. We can run inference using:

# From tensorflow/models/research/oid
SPLIT=validation  # or test
TF_RECORD_FILES=$(ls -1 ${SPLIT}_tfrecords/* | tr '\n' ',')

PYTHONPATH=$PYTHONPATH:$(readlink -f ..) \
python -m object_detection/inference/infer_detections \
  --input_tfrecord_paths=$TF_RECORD_FILES \
  --output_tfrecord_path=${SPLIT}_detections.tfrecord-00000-of-00001 \
  --inference_graph=faster_rcnn_inception_resnet_v2_atrous_oid/frozen_inference_graph.pb \
  --discard_image_pixels





Inference preserves all fields of the input TFExamples, and adds new fields to
store the inferred detections. This allows computing evaluation
measures on the output TFRecord alone, as ground
truth boxes are preserved as well. Since measure computations don’t require
access to the images, infer_detections can optionally discard them with the
--discard_image_pixels flag. Discarding the images drastically reduces the
size of the output TFRecord.


Accelerating inference

Running inference on the whole validation or test set can take a long time to
complete due to the large number of images present in these sets (41,620 and
125,436 respectively). For quick but approximate evaluation, inference and the
subsequent measure computations can be run on a small number of shards. To run
for example on 2% of all the data, it is enough to set TF_RECORD_FILES as
shown below before running infer_detections:

TF_RECORD_FILES=$(ls ${SPLIT}_tfrecords/${SPLIT}.tfrecord-0000[0-1]-of-00100 | tr '\n' ',')





Please note that computing evaluation measures on a small subset of the data
introduces variance and bias, since some classes of objects won’t be seen during
evaluation. In the example above, this leads to 13.2% higher mAP on the first
two shards of the validation set compared to the mAP for the full set (see mAP
results).

Another way to accelerate inference is to run it in parallel on multiple
TensorFlow devices on possibly multiple machines. The script below uses
tmux [https://github.com/tmux/tmux/wiki] to run a separate infer_detections
process for each GPU on different partition of the input data.

# From tensorflow/models/research/oid
SPLIT=validation  # or test
NUM_GPUS=4
NUM_SHARDS=100

tmux new-session -d -s "inference"
function tmux_start { tmux new-window -d -n "inference:GPU$1" "${*:2}; exec bash"; }
for gpu_index in $(seq 0 $(($NUM_GPUS-1))); do
  start_shard=$(( $gpu_index * $NUM_SHARDS / $NUM_GPUS ))
  end_shard=$(( ($gpu_index + 1) * $NUM_SHARDS / $NUM_GPUS - 1))
  TF_RECORD_FILES=$(seq -s, -f "${SPLIT}_tfrecords/${SPLIT}.tfrecord-%05.0f-of-$(printf '%05d' $NUM_SHARDS)" $start_shard $end_shard)
  tmux_start ${gpu_index} \
  PYTHONPATH=$PYTHONPATH:$(readlink -f ..) CUDA_VISIBLE_DEVICES=$gpu_index \
  python -m object_detection/inference/infer_detections \
    --input_tfrecord_paths=$TF_RECORD_FILES \
    --output_tfrecord_path=${SPLIT}_detections.tfrecord-$(printf "%05d" $gpu_index)-of-$(printf "%05d" $NUM_GPUS) \
    --inference_graph=faster_rcnn_inception_resnet_v2_atrous_oid/frozen_inference_graph.pb \
    --discard_image_pixels
done





After all infer_detections processes finish, tensorflow/models/research/oid
will contain one output TFRecord from each process, with name matching
validation_detections.tfrecord-0000[0-3]-of-00004.






Computing evaluation measures

To compute evaluation measures on the inferred detections you first need to
create the appropriate configuration files:

# From tensorflow/models/research/oid
SPLIT=validation  # or test
NUM_SHARDS=1  # Set to NUM_GPUS if using the parallel evaluation script above

mkdir -p ${SPLIT}_eval_metrics

echo "
label_map_path: '../object_detection/data/oid_bbox_trainable_label_map.pbtxt'
tf_record_input_reader: { input_path: '${SPLIT}_detections.tfrecord@${NUM_SHARDS}' }
" > ${SPLIT}_eval_metrics/${SPLIT}_input_config.pbtxt

echo "
metrics_set: 'oid_V2_detection_metrics'
" > ${SPLIT}_eval_metrics/${SPLIT}_eval_config.pbtxt





And then run:

# From tensorflow/models/research/oid
SPLIT=validation  # or test

PYTHONPATH=$PYTHONPATH:$(readlink -f ..) \
python -m object_detection/metrics/offline_eval_map_corloc \
  --eval_dir=${SPLIT}_eval_metrics \
  --eval_config_path=${SPLIT}_eval_metrics/${SPLIT}_eval_config.pbtxt \
  --input_config_path=${SPLIT}_eval_metrics/${SPLIT}_input_config.pbtxt





The first configuration file contains an object_detection.protos.InputReader
message that describes the location of the necessary input files. The second
file contains an object_detection.protos.EvalConfig message that describes the
evaluation metric. For more information about these protos see the corresponding
source files.


Expected mAPs

The result of running offline_eval_map_corloc is a CSV file located at
${SPLIT}_eval_metrics/metrics.csv. With the above configuration, the file will
contain average precision at IoU≥0.5 for each of the classes present in the
dataset. It will also contain the mAP@IoU≥0.5. Both the per-class average
precisions and the mAP are computed according to the Open Images evaluation
protocol. The expected mAPs for the validation and
test sets of Open Images in this case are:

Set        | Fraction of data | Images  | mAP@IoU≥0.5
———: | :————–: | :—–: | ———–
validation | everything       | 41,620  | 39.2%
validation | first 2 shards   | 884     | 52.4%
test       | everything       | 125,436 | 37.7%
test       | first 2 shards   | 2,476   | 50.8%









          

      

      

    

  

  
    
    Preparing Inputs
    

    
 
  

    
      
          
            
  
Preparing Inputs

Tensorflow Object Detection API reads data using the TFRecord file format. Two
sample scripts (create_pascal_tf_record.py and create_pet_tf_record.py) are
provided to convert from the PASCAL VOC dataset and Oxford-IIIT Pet dataset to
TFRecords.


Generating the PASCAL VOC TFRecord files.

The raw 2012 PASCAL VOC data set is located
here [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar].
To download, extract and convert it to TFRecords, run the following commands
below:

# From tensorflow/models/research/
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_11-May-2012.tar
python object_detection/dataset_tools/create_pascal_tf_record.py \
    --label_map_path=object_detection/data/pascal_label_map.pbtxt \
    --data_dir=VOCdevkit --year=VOC2012 --set=train \
    --output_path=pascal_train.record
python object_detection/dataset_tools/create_pascal_tf_record.py \
    --label_map_path=object_detection/data/pascal_label_map.pbtxt \
    --data_dir=VOCdevkit --year=VOC2012 --set=val \
    --output_path=pascal_val.record





You should end up with two TFRecord files named pascal_train.record and
pascal_val.record in the tensorflow/models/research/ directory.

The label map for the PASCAL VOC data set can be found at
object_detection/data/pascal_label_map.pbtxt.




Generating the Oxford-IIIT Pet TFRecord files.

The Oxford-IIIT Pet data set is located
here [http://www.robots.ox.ac.uk/~vgg/data/pets/]. To download, extract and
convert it to TFRecrods, run the following commands below:

# From tensorflow/models/research/
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar -xvf annotations.tar.gz
tar -xvf images.tar.gz
python object_detection/dataset_tools/create_pet_tf_record.py \
    --label_map_path=object_detection/data/pet_label_map.pbtxt \
    --data_dir=`pwd` \
    --output_dir=`pwd`





You should end up with two 10-sharded TFRecord files named
pet_faces_train.record-?????-of-00010 and
pet_faces_val.record-?????-of-00010 in the tensorflow/models/research/
directory.

The label map for the Pet dataset can be found at
object_detection/data/pet_label_map.pbtxt.
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Running Locally

This page walks through the steps required to train an object detection model
on a local machine. It assumes the reader has completed the
following prerequisites:


	The Tensorflow Object Detection API has been installed as documented in the
installation instructions. This includes installing library
dependencies, compiling the configuration protobufs and setting up the Python
environment.


	A valid data set has been created. See this page for
instructions on how to generate a dataset for the PASCAL VOC challenge or the
Oxford-IIIT Pet dataset.


	A Object Detection pipeline configuration has been written. See
this page for details on how to write a pipeline configuration.





Recommended Directory Structure for Training and Evaluation

+data
  -label_map file
  -train TFRecord file
  -eval TFRecord file
+models
  + model
    -pipeline config file
    +train
    +eval








Running the Training Job

A local training job can be run with the following command:

# From the tensorflow/models/research/ directory
PIPELINE_CONFIG_PATH={path to pipeline config file}
MODEL_DIR={path to model directory}
NUM_TRAIN_STEPS=50000
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python object_detection/model_main.py \
    --pipeline_config_path=${PIPELINE_CONFIG_PATH} \
    --model_dir=${MODEL_DIR} \
    --num_train_steps=${NUM_TRAIN_STEPS} \
    --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \
    --alsologtostderr





where ${PIPELINE_CONFIG_PATH} points to the pipeline config and
${MODEL_DIR} points to the directory in which training checkpoints
and events will be written to. Note that this binary will interleave both
training and evaluation.




Running Tensorboard

Progress for training and eval jobs can be inspected using Tensorboard. If
using the recommended directory structure, Tensorboard can be run using the
following command:

tensorboard --logdir=${MODEL_DIR}





where ${MODEL_DIR} points to the directory that contains the
train and eval directories. Please note it may take Tensorboard a couple minutes
to populate with data.
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Quick Start: Jupyter notebook for off-the-shelf inference

If you’d like to hit the ground running and run detection on a few example
images right out of the box, we recommend trying out the Jupyter notebook demo.
To run the Jupyter notebook, run the following command from
tensorflow/models/research/object_detection:

# From tensorflow/models/research/object_detection
jupyter notebook





The notebook should open in your favorite web browser. Click the
object_detection_tutorial.ipynb link to
open the demo.
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Running on Google Cloud ML Engine

The Tensorflow Object Detection API supports distributed training on Google
Cloud ML Engine. This section documents instructions on how to train and
evaluate your model using Cloud ML. The reader should complete the following
prerequistes:


	The reader has created and configured a project on Google Cloud Platform.
See the Cloud ML quick start guide [https://cloud.google.com/ml-engine/docs/quickstarts/command-line].


	The reader has installed the Tensorflow Object Detection API as documented
in the installation instructions.


	The reader has a valid data set and stored it in a Google Cloud Storage
bucket. See this page for instructions on how to generate
a dataset for the PASCAL VOC challenge or the Oxford-IIIT Pet dataset.


	The reader has configured a valid Object Detection pipeline, and stored it
in a Google Cloud Storage bucket. See this page for
details on how to write a pipeline configuration.




Additionally, it is recommended users test their job by running training and
evaluation jobs for a few iterations
locally on their own machines.


Packaging

In order to run the Tensorflow Object Detection API on Cloud ML, it must be
packaged (along with it’s TF-Slim dependency and the
pycocotools [https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools]
library). The required packages can be created with the following command

# From tensorflow/models/research/
bash object_detection/dataset_tools/create_pycocotools_package.sh /tmp/pycocotools
python setup.py sdist
(cd slim && python setup.py sdist)





This will create python packages dist/object_detection-0.1.tar.gz,
slim/dist/slim-0.1.tar.gz, and /tmp/pycocotools/pycocotools-2.0.tar.gz.




Running a Multiworker (GPU) Training Job on CMLE

Google Cloud ML requires a YAML configuration file for a multiworker training
job using GPUs. A sample YAML file is given below:

trainingInput:
  runtimeVersion: "1.12"
  scaleTier: CUSTOM
  masterType: standard_gpu
  workerCount: 9
  workerType: standard_gpu
  parameterServerCount: 3
  parameterServerType: standard






Please keep the following guidelines in mind when writing the YAML
configuration:


	A job with n workers will have n + 1 training machines (n workers + 1 master).


	The number of parameters servers used should be an odd number to prevent
a parameter server from storing only weight variables or only bias variables
(due to round robin parameter scheduling).


	The learning rate in the training config should be decreased when using a
larger number of workers. Some experimentation is required to find the
optimal learning rate.




The YAML file should be saved on the local machine (not on GCP). Once it has
been written, a user can start a training job on Cloud ML Engine using the
following command:

# From tensorflow/models/research/
gcloud ml-engine jobs submit training object_detection_`date +%m_%d_%Y_%H_%M_%S` \
    --runtime-version 1.12 \
    --job-dir=gs://${MODEL_DIR} \
    --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz,/tmp/pycocotools/pycocotools-2.0.tar.gz \
    --module-name object_detection.model_main \
    --region us-central1 \
    --config ${PATH_TO_LOCAL_YAML_FILE} \
    -- \
    --model_dir=gs://${MODEL_DIR} \
    --pipeline_config_path=gs://${PIPELINE_CONFIG_PATH}





Where ${PATH_TO_LOCAL_YAML_FILE} is the local path to the YAML configuration,
gs://${MODEL_DIR} specifies the directory on Google Cloud Storage where the
training checkpoints and events will be written to and
gs://${PIPELINE_CONFIG_PATH} points to the pipeline configuration stored on
Google Cloud Storage.

Users can monitor the progress of their training job on the ML Engine
Dashboard [https://console.cloud.google.com/mlengine/jobs].

Note: This sample is supported for use with 1.12 runtime version.




Running a TPU Training Job on CMLE

Launching a training job with a TPU compatible pipeline config requires using a
similar command:

gcloud ml-engine jobs submit training `whoami`_object_detection_`date +%m_%d_%Y_%H_%M_%S` \
--job-dir=gs://${MODEL_DIR} \
--packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz,/tmp/pycocotools/pycocotools-2.0.tar.gz \
--module-name object_detection.model_tpu_main \
--runtime-version 1.12 \
--scale-tier BASIC_TPU \
--region us-central1 \
-- \
--tpu_zone us-central1 \
--model_dir=gs://${MODEL_DIR} \
--pipeline_config_path=gs://${PIPELINE_CONFIG_PATH}





In contrast with the GPU training command, there is no need to specify a YAML
file and we point to the object_detection.model_tpu_main binary instead of
object_detection.model_main. We must also now set scale-tier to be
BASIC_TPU and provide a tpu_zone. Finally as before pipeline_config_path
points to a points to the pipeline configuration stored on Google Cloud Storage
(but is now must be a TPU compatible model).




Running an Evaluation Job on CMLE

Note: You only need to do this when using TPU for training as it does not
interleave evaluation during training as in the case of Multiworker GPU
training.

Evaluation jobs run on a single machine, so it is not necessary to write a YAML
configuration for evaluation. Run the following command to start the evaluation
job:

gcloud ml-engine jobs submit training object_detection_eval_`date +%m_%d_%Y_%H_%M_%S` \
    --runtime-version 1.12 \
    --job-dir=gs://${MODEL_DIR} \
    --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz,/tmp/pycocotools/pycocotools-2.0.tar.gz \
    --module-name object_detection.model_main \
    --region us-central1 \
    --scale-tier BASIC_GPU \
    -- \
    --model_dir=gs://${MODEL_DIR} \
    --pipeline_config_path=gs://${PIPELINE_CONFIG_PATH} \
    --checkpoint_dir=gs://${MODEL_DIR}





Where gs://${MODEL_DIR} points to the directory on Google Cloud Storage where
training checkpoints are saved (same as the training job), as well as
to where evaluation events will be saved on Google Cloud Storage and
gs://${PIPELINE_CONFIG_PATH} points to where the pipeline configuration is
stored on Google Cloud Storage.

Typically one starts an evaluation job concurrently with the training job.
Note that we do not support running evaluation on TPU, so the above command
line for launching evaluation jobs is the same whether you are training
on GPU or TPU.




Running Tensorboard

You can run Tensorboard locally on your own machine to view progress of your
training and eval jobs on Google Cloud ML. Run the following command to start
Tensorboard:

tensorboard --logdir=gs://${YOUR_CLOUD_BUCKET}





Note it may Tensorboard a few minutes to populate with results.
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Running on mobile with TensorFlow Lite

In this section, we will show you how to use TensorFlow
Lite [https://www.tensorflow.org/mobile/tflite/] to get a smaller model and
allow you take advantage of ops that have been optimized for mobile devices.
TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded
devices. It enables on-device machine learning inference with low latency and a
small binary size. TensorFlow Lite uses many techniques for this such as
quantized kernels that allow smaller and faster (fixed-point math) models.

For this section, you will need to build TensorFlow from
source [https://www.tensorflow.org/install/install_sources] to get the
TensorFlow Lite support for the SSD model. At this time only SSD models are supported.
Models like faster_rcnn are not supported at this time. You will also need to install the
bazel build
tool [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android#bazel].

To make these commands easier to run, let’s set up some environment variables:

export CONFIG_FILE=PATH_TO_BE_CONFIGURED/pipeline.config
export CHECKPOINT_PATH=PATH_TO_BE_CONFIGURED/model.ckpt
export OUTPUT_DIR=/tmp/tflite





We start with a checkpoint and get a TensorFlow frozen graph with compatible ops
that we can use with TensorFlow Lite. First, you’ll need to install these
python
libraries [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation].
Then to get the frozen graph, run the export_tflite_ssd_graph.py script from the
models/research directory with this command:

object_detection/export_tflite_ssd_graph.py \
--pipeline_config_path=$CONFIG_FILE \
--trained_checkpoint_prefix=$CHECKPOINT_PATH \
--output_directory=$OUTPUT_DIR \
--add_postprocessing_op=true





In the /tmp/tflite directory, you should now see two files: tflite_graph.pb and
tflite_graph.pbtxt. Note that the add_postprocessing flag enables the model to
take advantage of a custom optimized detection post-processing operation which
can be thought of as a replacement for
tf.image.non_max_suppression [https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression].
Make sure not to confuse export_tflite_ssd_graph with export_inference_graph in
the same directory. Both scripts output frozen graphs: export_tflite_ssd_graph
will output the frozen graph that we can input to TensorFlow Lite directly and
is the one we’ll be using.

Next we’ll use TensorFlow Lite to get the optimized model by using
TOCO [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/toco],
the TensorFlow Lite Optimizing Converter. This will convert the resulting frozen
graph (tflite_graph.pb) to the TensorFlow Lite flatbuffer format (detect.tflite)
via the following command. For a quantized model, run this from the tensorflow/
directory:

bazel run --config=opt tensorflow/lite/toco:toco -- \
--input_file=$OUTPUT_DIR/tflite_graph.pb \
--output_file=$OUTPUT_DIR/detect.tflite \
--input_shapes=1,300,300,3 \
--input_arrays=normalized_input_image_tensor \
--output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3' \
--inference_type=QUANTIZED_UINT8 \
--mean_values=128 \
--std_values=128 \
--change_concat_input_ranges=false \
--allow_custom_ops





This command takes the input tensor normalized_input_image_tensor after resizing
each camera image frame to 300x300 pixels. The outputs of the quantized model
are named ‘TFLite_Detection_PostProcess’, ‘TFLite_Detection_PostProcess:1’,
‘TFLite_Detection_PostProcess:2’, and ‘TFLite_Detection_PostProcess:3’ and
represent four arrays: detection_boxes, detection_classes, detection_scores, and
num_detections. The documentation for other flags used in this command is
here [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/convert/cmdline_reference].
If things ran successfully, you should now see a third file in the /tmp/tflite
directory called detect.tflite. This file contains the graph and all model
parameters and can be run via the TensorFlow Lite interpreter on the Android
device. For a floating point model, run this from the tensorflow/ directory:

bazel run --config=opt tensorflow/lite/toco:toco -- \
--input_file=$OUTPUT_DIR/tflite_graph.pb \
--output_file=$OUTPUT_DIR/detect.tflite \
--input_shapes=1,300,300,3 \
--input_arrays=normalized_input_image_tensor \
--output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3'  \
--inference_type=FLOAT \
--allow_custom_ops








Running our model on Android

To run our TensorFlow Lite model on device, we will use Android Studio to build
and run the TensorFlow Lite detection example with the new model. The example is
found in the
TensorFlow examples repository [https://github.com/tensorflow/examples] under
/lite/examples/object_detection. The example can be built with
Android Studio [https://developer.android.com/studio/index.html], and requires
the
Android SDK with build tools [https://developer.android.com/tools/revisions/build-tools.html]
that support API >= 21. Additional details are available on the
TensorFlow Lite example page [https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android].

Next we need to point the app to our new detect.tflite file and give it the
names of our new labels. Specifically, we will copy our TensorFlow Lite
flatbuffer to the app assets directory with the following command:

mkdir $TF_EXAMPLES/lite/examples/object_detection/android/app/src/main/assets
cp /tmp/tflite/detect.tflite \
  $TF_EXAMPLES/lite/examples/object_detection/android/app/src/main/assets





You will also need to copy your new labelmap labelmap.txt to the assets
directory.

We will now edit the gradle build file to use these assets. First, open the
build.gradle file
$TF_EXAMPLES/lite/examples/object_detection/android/app/build.gradle. Comment
out the model download script to avoid your assets being overwritten: // apply from:'download_model.gradle' ```

If your model is named detect.tflite, and your labels file labelmap.txt, the
example will use them automatically as long as they’ve been properly copied into
the base assets directory. If you need to use a custom path or filename, open up
the
$TF_EXAMPLES/lite/examples/object_detection/android/app/src/main/java/org/tensorflow/demo/DetectorActivity.java
file in a text editor and find the definition of TF_OD_API_LABELS_FILE. Update
this path to point to your new label map file:
“file:///android_asset/labels_list.txt”. Note that if your model is quantized,
the flag TF_OD_API_IS_QUANTIZED is set to true, and if your model is floating
point, the flag TF_OD_API_IS_QUANTIZED is set to false. This new section of
DetectorActivity.java should now look as follows for a quantized model:

  private static final boolean TF_OD_API_IS_QUANTIZED = true;
  private static final String TF_OD_API_MODEL_FILE = "detect.tflite";
  private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/labels_list.txt";





Once you’ve copied the TensorFlow Lite model and edited the gradle build script
to not use the downloaded assets, you can build and deploy the app using the
usual Android Studio build process.
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Quick Start: Distributed Training on the Oxford-IIIT Pets Dataset on Google Cloud

This page is a walkthrough for training an object detector using the Tensorflow
Object Detection API. In this tutorial, we’ll be training on the Oxford-IIIT Pets
dataset to build a system to detect various breeds of cats and dogs. The output
of the detector will look like the following:

[image: ../../../../_images/oxford_pet.png]


Setting up a Project on Google Cloud

To accelerate the process, we’ll run training and evaluation on Google Cloud
ML Engine [https://cloud.google.com/ml-engine/] to leverage multiple GPUs. To
begin, you will have to set up Google Cloud via the following steps (if you have
already done this, feel free to skip to the next section):


	Create a GCP project [https://cloud.google.com/resource-manager/docs/creating-managing-projects].


	Install the Google Cloud SDK [https://cloud.google.com/sdk/downloads] on
your workstation or laptop.
This will provide the tools you need to upload files to Google Cloud Storage and
start ML training jobs.


	Enable the ML Engine
APIs [https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component&_ga=1.73374291.1570145678.1496689256].
By default, a new GCP project does not enable APIs to start ML Engine training
jobs. Use the above link to explicitly enable them.


	Set up a Google Cloud Storage (GCS)
bucket [https://cloud.google.com/storage/docs/creating-buckets]. ML Engine
training jobs can only access files on a Google Cloud Storage bucket. In this
tutorial, we’ll be required to upload our dataset and configuration to GCS.




Please remember the name of your GCS bucket, as we will reference it multiple
times in this document. Substitute ${YOUR_GCS_BUCKET} with the name of
your bucket in this document. For your convenience, you should define the
environment variable below:

export YOUR_GCS_BUCKET=${YOUR_GCS_BUCKET}





It is also possible to run locally by following
the running locally instructions.




Installing Tensorflow and the Tensorflow Object Detection API

Please run through the installation instructions to install
Tensorflow and all it dependencies. Ensure the Protobuf libraries are
compiled and the library directories are added to PYTHONPATH.




Getting the Oxford-IIIT Pets Dataset and Uploading it to Google Cloud Storage

In order to train a detector, we require a dataset of images, bounding boxes and
classifications. For this demo, we’ll use the Oxford-IIIT Pets dataset. The raw
dataset for Oxford-IIIT Pets lives
here [http://www.robots.ox.ac.uk/~vgg/data/pets/]. You will need to download
both the image dataset images.tar.gz [http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz]
and the groundtruth data annotations.tar.gz [http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz]
to the tensorflow/models/research/ directory and unzip them. This may take
some time.

# From tensorflow/models/research/
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar -xvf images.tar.gz
tar -xvf annotations.tar.gz





After downloading the tarballs, your tensorflow/models/research/ directory
should appear as follows:

- images.tar.gz
- annotations.tar.gz
+ images/
+ annotations/
+ object_detection/
... other files and directories





The Tensorflow Object Detection API expects data to be in the TFRecord format,
so we’ll now run the create_pet_tf_record script to convert from the raw
Oxford-IIIT Pet dataset into TFRecords. Run the following commands from the
tensorflow/models/research/ directory:

# From tensorflow/models/research/
python object_detection/dataset_tools/create_pet_tf_record.py \
    --label_map_path=object_detection/data/pet_label_map.pbtxt \
    --data_dir=`pwd` \
    --output_dir=`pwd`





Note: It is normal to see some warnings when running this script. You may ignore
them.

Two 10-sharded TFRecord files named pet_faces_train.record-* and
pet_faces_val.record-* should be generated in the
tensorflow/models/research/ directory.

Now that the data has been generated, we’ll need to upload it to Google Cloud
Storage so the data can be accessed by ML Engine. Run the following command to
copy the files into your GCS bucket (substituting ${YOUR_GCS_BUCKET}):

# From tensorflow/models/research/
gsutil cp pet_faces_train.record-* gs://${YOUR_GCS_BUCKET}/data/
gsutil cp pet_faces_val.record-* gs://${YOUR_GCS_BUCKET}/data/
gsutil cp object_detection/data/pet_label_map.pbtxt gs://${YOUR_GCS_BUCKET}/data/pet_label_map.pbtxt





Please remember the path where you upload the data to, as we will need this
information when configuring the pipeline in a following step.




Downloading a COCO-pretrained Model for Transfer Learning

Training a state of the art object detector from scratch can take days, even
when using multiple GPUs! In order to speed up training, we’ll take an object
detector trained on a different dataset (COCO), and reuse some of it’s
parameters to initialize our new model.

Download our COCO-pretrained Faster R-CNN with Resnet-101
model [http://storage.googleapis.com/download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz].
Unzip the contents of the folder and copy the model.ckpt* files into your GCS
Bucket.

wget http://storage.googleapis.com/download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz
tar -xvf faster_rcnn_resnet101_coco_11_06_2017.tar.gz
gsutil cp faster_rcnn_resnet101_coco_11_06_2017/model.ckpt.* gs://${YOUR_GCS_BUCKET}/data/





Remember the path where you uploaded the model checkpoint to, as we will need it
in the following step.




Configuring the Object Detection Pipeline

In the Tensorflow Object Detection API, the model parameters, training
parameters and eval parameters are all defined by a config file. More details
can be found here. For this tutorial, we will use some
predefined templates provided with the source code. In the
object_detection/samples/configs folder, there are skeleton object_detection
configuration files. We will use faster_rcnn_resnet101_pets.config as a
starting point for configuring the pipeline. Open the file with your favourite
text editor.

We’ll need to configure some paths in order for the template to work. Search the
file for instances of PATH_TO_BE_CONFIGURED and replace them with the
appropriate value (typically gs://${YOUR_GCS_BUCKET}/data/). Afterwards
upload your edited file onto GCS, making note of the path it was uploaded to
(we’ll need it when starting the training/eval jobs).

# From tensorflow/models/research/

# Edit the faster_rcnn_resnet101_pets.config template. Please note that there
# are multiple places where PATH_TO_BE_CONFIGURED needs to be set.
sed -i "s|PATH_TO_BE_CONFIGURED|"gs://${YOUR_GCS_BUCKET}"/data|g" \
    object_detection/samples/configs/faster_rcnn_resnet101_pets.config

# Copy edited template to cloud.
gsutil cp object_detection/samples/configs/faster_rcnn_resnet101_pets.config \
    gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config








Checking Your Google Cloud Storage Bucket

At this point in the tutorial, you should have uploaded the training/validation
datasets (including label map), our COCO trained FasterRCNN finetune checkpoint and your job
configuration to your Google Cloud Storage Bucket. Your bucket should look like
the following:

+ ${YOUR_GCS_BUCKET}/
  + data/
    - faster_rcnn_resnet101_pets.config
    - model.ckpt.index
    - model.ckpt.meta
    - model.ckpt.data-00000-of-00001
    - pet_label_map.pbtxt
    - pet_faces_train.record-*
    - pet_faces_val.record-*





You can inspect your bucket using the Google Cloud Storage
browser [https://console.cloud.google.com/storage/browser].




Starting Training and Evaluation Jobs on Google Cloud ML Engine

Before we can start a job on Google Cloud ML Engine, we must:


	Package the Tensorflow Object Detection code.


	Write a cluster configuration for our Google Cloud ML job.




To package the Tensorflow Object Detection code, run the following commands from
the tensorflow/models/research/ directory:

# From tensorflow/models/research/
bash object_detection/dataset_tools/create_pycocotools_package.sh /tmp/pycocotools
python setup.py sdist
(cd slim && python setup.py sdist)





This will create python packages dist/object_detection-0.1.tar.gz,
slim/dist/slim-0.1.tar.gz, and /tmp/pycocotools/pycocotools-2.0.tar.gz.

For running the training Cloud ML job, we’ll configure the cluster to use 5
training jobs and three parameters servers. The
configuration file can be found at object_detection/samples/cloud/cloud.yml.

Note: The code sample below is supported for use with 1.12 runtime version.

To start training and evaluation, execute the following command from the
tensorflow/models/research/ directory:

# From tensorflow/models/research/
gcloud ml-engine jobs submit training `whoami`_object_detection_pets_`date +%m_%d_%Y_%H_%M_%S` \
    --runtime-version 1.12 \
    --job-dir=gs://${YOUR_GCS_BUCKET}/model_dir \
    --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz,/tmp/pycocotools/pycocotools-2.0.tar.gz \
    --module-name object_detection.model_main \
    --region us-central1 \
    --config object_detection/samples/cloud/cloud.yml \
    -- \
    --model_dir=gs://${YOUR_GCS_BUCKET}/model_dir \
    --pipeline_config_path=gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config





Users can monitor and stop training and evaluation jobs on the ML Engine
Dashboard [https://console.cloud.google.com/mlengine/jobs].




Monitoring Progress with Tensorboard

You can monitor progress of the training and eval jobs by running Tensorboard on
your local machine:

# This command needs to be run once to allow your local machine to access your
# GCS bucket.
gcloud auth application-default login

tensorboard --logdir=gs://${YOUR_GCS_BUCKET}/model_dir





Once Tensorboard is running, navigate to localhost:6006 from your favourite
web browser. You should see something similar to the following:

[image: ../../../../_images/tensorboard.png]

Make sure your Tensorboard version is the same minor version as your Tensorflow (1.x)

You will also want to click on the images tab to see example detections made by
the model while it trains. After about an hour and a half of training, you can
expect to see something like this:

[image: ../../../../_images/tensorboard2.png]

Note: It takes roughly 10 minutes for a job to get started on ML Engine, and
roughly an hour for the system to evaluate the validation dataset. It may take
some time to populate the dashboards. If you do not see any entries after half
an hour, check the logs from the ML Engine
Dashboard [https://console.cloud.google.com/mlengine/jobs]. Note that by default
the training jobs are configured to go for much longer than is necessary for
convergence.  To save money, we recommend killing your jobs once you’ve seen
that they’ve converged.




Exporting the Tensorflow Graph

After your model has been trained, you should export it to a Tensorflow graph
proto. First, you need to identify a candidate checkpoint to export. You can
search your bucket using the Google Cloud Storage
Browser [https://console.cloud.google.com/storage/browser]. The file should be
stored under ${YOUR_GCS_BUCKET}/model_dir. The checkpoint will typically
consist of three files:


	model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001


	model.ckpt-${CHECKPOINT_NUMBER}.index


	model.ckpt-${CHECKPOINT_NUMBER}.meta




After you’ve identified a candidate checkpoint to export, run the following
command from tensorflow/models/research/:

# From tensorflow/models/research/
gsutil cp gs://${YOUR_GCS_BUCKET}/model_dir/model.ckpt-${CHECKPOINT_NUMBER}.* .
python object_detection/export_inference_graph.py \
    --input_type image_tensor \
    --pipeline_config_path object_detection/samples/configs/faster_rcnn_resnet101_pets.config \
    --trained_checkpoint_prefix model.ckpt-${CHECKPOINT_NUMBER} \
    --output_directory exported_graphs





Afterwards, you should see a directory named exported_graphs containing the
SavedModel and frozen graph.




Configuring the Instance Segmentation Pipeline

Mask prediction can be turned on for an object detection config by adding
predict_instance_masks: true within the MaskRCNNBoxPredictor. Other
parameters such as mask size, number of convolutions in the mask layer, and the
convolution hyper parameters can be defined. We will use
mask_rcnn_resnet101_pets.config as a starting point for configuring the
instance segmentation pipeline. Everything above that was mentioned about object
detection holds true for instance segmentation. Instance segmentation consists
of an object detection model with an additional head that predicts the object
mask inside each predicted box once we remove the training and other details.
Please refer to the section on Running an Instance Segmentation
Model for instructions on how to configure a model
that predicts masks in addition to object bounding boxes.




What’s Next

Congratulations, you have now trained an object detector for various cats and
dogs! There different things you can do now:


	Test your exported model using the provided Jupyter notebook.


	Experiment with different model configurations.


	Train an object detector using your own data.
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TPU compatible detection pipelines

[TOC]

The Tensorflow Object Detection API supports TPU training for some models. To
make models TPU compatible you need to make a few tweaks to the model config as
mentioned below. We also provide several sample configs that you can use as a
template.


TPU compatibility


Static shaped tensors

TPU training currently requires all tensors in the Tensorflow Graph to have
static shapes. However, most of the sample configs in Object Detection API have
a few different tensors that are dynamically shaped. Fortunately, we provide
simple alternatives in the model configuration that modifies these tensors to
have static shape:


	Image tensors with static shape - This can be achieved either by using a
fixed_shape_resizer that resizes images to a fixed spatial shape or by
setting pad_to_max_dimension: true in keep_aspect_ratio_resizer which
pads the resized images with zeros to the bottom and right. Padded image
tensors are correctly handled internally within the model.

image_resizer {
  fixed_shape_resizer {
    height: 640
    width: 640
  }
}





or

image_resizer {
  keep_aspect_ratio_resizer {
    min_dimension: 640
    max_dimension: 640
    pad_to_max_dimension: true
  }
}







	Groundtruth tensors with static shape - Images in a typical detection
dataset have variable number of groundtruth boxes and associated classes.
Setting max_number_of_boxes to a large enough number in the
train_input_reader and eval_input_reader pads the groundtruth tensors
with zeros to a static shape. Padded groundtruth tensors are correctly
handled internally within the model.

train_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  max_number_of_boxes: 200
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-0010"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  max_number_of_boxes: 200
}












TPU friendly ops

Although TPU supports a vast number of tensorflow ops, a few used in the
Tensorflow Object Detection API are unsupported. We list such ops below and
recommend compatible substitutes.


	Anchor sampling - Typically we use hard example mining in standard SSD
pipeliens to balance positive and negative anchors that contribute to the
loss. Hard Example mining uses non max suppression as a subroutine and since
non max suppression is not currently supported on TPUs we cannot use hard
example mining. Fortunately, we provide an implementation of focal loss that
can be used instead of hard example mining. Remove hard_example_miner from
the config and substitute weighted_sigmoid classification loss with
weighted_sigmoid_focal loss.

loss {
  classification_loss {
    weighted_sigmoid_focal {
      alpha: 0.25
      gamma: 2.0
    }
  }
  localization_loss {
    weighted_smooth_l1 {
    }
  }
  classification_weight: 1.0
  localization_weight: 1.0
}







	Target Matching - Object detection API provides two choices for matcher
used in target assignment: argmax_matcher and bipartite_matcher.
Bipartite matcher is not currently supported on TPU, therefore we must
modify the configs to use argmax_matcher. Additionally, set
use_matmul_gather: true for efficiency on TPU.

matcher {
  argmax_matcher {
    matched_threshold: 0.5
    unmatched_threshold: 0.5
    ignore_thresholds: false
    negatives_lower_than_unmatched: true
    force_match_for_each_row: true
    use_matmul_gather: true
  }
}












TPU training hyperparameters

Object Detection training on TPU uses synchronous SGD. On a typical cloud TPU
with 8 cores we recommend batch sizes that are 8x large when compared to a GPU
config that uses asynchronous SGD. We also use fewer training steps (~ 1/100 x)
due to the large batch size. This necessitates careful tuning of some other
training parameters as listed below.


	Batch size - Use the largest batch size that can fit on cloud TPU.

train_config {
  batch_size: 1024
}







	Training steps - Typically only 10s of thousands.

train_config {
  num_steps: 25000
}







	Batch norm decay - Use smaller decay constants (0.97 or 0.997) since we
take fewer training steps.

batch_norm {
  scale: true,
  decay: 0.97,
  epsilon: 0.001,
}







	Learning rate - Use large learning rate with warmup. Scale learning rate
linearly with batch size. See cosine_decay_learning_rate or
manual_step_learning_rate for examples.

learning_rate: {
  cosine_decay_learning_rate {
    learning_rate_base: .04
    total_steps: 25000
    warmup_learning_rate: .013333
    warmup_steps: 2000
  }
}





or

 learning_rate: {
  manual_step_learning_rate {
    warmup: true
    initial_learning_rate: .01333
    schedule {
      step: 2000
      learning_rate: 0.04
    }
    schedule {
      step: 15000
      learning_rate: 0.004
    }
  }
}














Example TPU compatible configs

We provide example config files that you can use to train your own models on TPU


	ssd_mobilenet_v1_300x300 
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Object Detection TPU Inference Exporter

This package contains SavedModel Exporter for TPU Inference of object detection
models.


Usage

This Exporter is intended for users who have trained models with CPUs / GPUs,
but would like to use them for inference on TPU without changing their code or
re-training their models.

Users are assumed to have:


	PIPELINE_CONFIG: A pipeline_pb2.TrainEvalPipelineConfig config file;


	CHECKPOINT: A model checkpoint trained on any device;




and need to correctly set:


	EXPORT_DIR: Path to export SavedModel;


	INPUT_PLACEHOLDER: Name of input placeholder in model’s signature_def_map;


	INPUT_TYPE: Type of input node, which can be one of ‘image_tensor’,
‘encoded_image_string_tensor’, or ‘tf_example’;


	USE_BFLOAT16: Whether to use bfloat16 instead of float32 on TPU.




The model can be exported with:

python object_detection/tpu_exporters/export_saved_model_tpu.py \
    --pipeline_config_file=<PIPELINE_CONFIG> \
    --ckpt_path=<CHECKPOINT> \
    --export_dir=<EXPORT_DIR> \
    --input_placeholder_name=<INPUT_PLACEHOLDER> \
    --input_type=<INPUT_TYPE> \
    --use_bfloat16=<USE_BFLOAT16>
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Preparing Inputs

[TOC]

To use your own dataset in Tensorflow Object Detection API, you must convert it
into the TFRecord file format [https://www.tensorflow.org/api_guides/python/python_io#tfrecords_format_details].
This document outlines how to write a script to generate the TFRecord file.


Label Maps

Each dataset is required to have a label map associated with it. This label map
defines a mapping from string class names to integer class Ids. The label map
should be a StringIntLabelMap text protobuf. Sample label maps can be found in
object_detection/data. Label maps should always start from id 1.




Dataset Requirements

For every example in your dataset, you should have the following information:


	An RGB image for the dataset encoded as jpeg or png.


	A list of bounding boxes for the image. Each bounding box should contain:


	A bounding box coordinates (with origin in top left corner) defined by 4
floating point numbers [ymin, xmin, ymax, xmax]. Note that we store the
normalized coordinates (x / width, y / height) in the TFRecord dataset.


	The class of the object in the bounding box.













Example Image

Consider the following image:

[image: Example Image]Example Image

with the following label map:

item {
  id: 1
  name: 'Cat'
}


item {
  id: 2
  name: 'Dog'
}





We can generate a tf.Example proto for this image using the following code:


def create_cat_tf_example(encoded_cat_image_data):
   """Creates a tf.Example proto from sample cat image.

  Args:
    encoded_cat_image_data: The jpg encoded data of the cat image.

  Returns:
    example: The created tf.Example.
  """

  height = 1032.0
  width = 1200.0
  filename = 'example_cat.jpg'
  image_format = b'jpg'

  xmins = [322.0 / 1200.0]
  xmaxs = [1062.0 / 1200.0]
  ymins = [174.0 / 1032.0]
  ymaxs = [761.0 / 1032.0]
  classes_text = ['Cat']
  classes = [1]

  tf_example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(filename),
      'image/source_id': dataset_util.bytes_feature(filename),
      'image/encoded': dataset_util.bytes_feature(encoded_image_data),
      'image/format': dataset_util.bytes_feature(image_format),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
  }))
  return tf_example






Conversion Script Outline {#conversion-script-outline}

A typical conversion script will look like the following:


import tensorflow as tf

from object_detection.utils import dataset_util


flags = tf.app.flags
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


def create_tf_example(example):
  # TODO(user): Populate the following variables from your example.
  height = None # Image height
  width = None # Image width
  filename = None # Filename of the image. Empty if image is not from file
  encoded_image_data = None # Encoded image bytes
  image_format = None # b'jpeg' or b'png'

  xmins = [] # List of normalized left x coordinates in bounding box (1 per box)
  xmaxs = [] # List of normalized right x coordinates in bounding box
             # (1 per box)
  ymins = [] # List of normalized top y coordinates in bounding box (1 per box)
  ymaxs = [] # List of normalized bottom y coordinates in bounding box
             # (1 per box)
  classes_text = [] # List of string class name of bounding box (1 per box)
  classes = [] # List of integer class id of bounding box (1 per box)

  tf_example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(filename),
      'image/source_id': dataset_util.bytes_feature(filename),
      'image/encoded': dataset_util.bytes_feature(encoded_image_data),
      'image/format': dataset_util.bytes_feature(image_format),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
  }))
  return tf_example


def main(_):
  writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

  # TODO(user): Write code to read in your dataset to examples variable

  for example in examples:
    tf_example = create_tf_example(example)
    writer.write(tf_example.SerializeToString())

  writer.close()


if __name__ == '__main__':
  tf.app.run()





Note: You may notice additional fields in some other datasets. They are
currently unused by the API and are optional.

Note: Please refer to the section on Running an Instance Segmentation
Model for instructions on how to configure a model
that predicts masks in addition to object bounding boxes.




Sharding datasets

When you have more than a few thousand examples, it is beneficial to shard your
dataset into multiple files:


	tf.data.Dataset API can read input examples in parallel improving
throughput.


	tf.data.Dataset API can shuffle the examples better with sharded files which
improves performance of the model slightly.




Instead of writing all tf.Example protos to a single file as shown in
conversion script outline, use the snippet below.

import contextlib2
from object_detection.dataset_tools import tf_record_creation_util

num_shards=10
output_filebase='/path/to/train_dataset.record'

with contextlib2.ExitStack() as tf_record_close_stack:
  output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
      tf_record_close_stack, output_filebase, num_shards)
  for index, example in examples:
    tf_example = create_tf_example(example)
    output_shard_index = index % num_shards
    output_tfrecords[output_shard_index].write(tf_example.SerializeToString())





This will produce the following output files

/path/to/train_dataset.record-00000-00010
/path/to/train_dataset.record-00001-00010
...
/path/to/train_dataset.record-00009-00010





which can then be used in the config file as below.

tf_record_input_reader {
  input_path: "/path/to/train_dataset.record-?????-of-00010"
}
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