
ign_transport Documentation
Release 2.1.0

Open Source Robotics Foundation

Apr 07, 2017

Contents

1 What is Ignition Transport? 3

2 Installation 5
2.1 Ubuntu Linux . 5
2.2 Mac OS X . 6
2.3 Windows . 6
2.4 Install from sources (Ubuntu Linux) . 8

3 Understanding nodes and topics 11
3.1 Nodes . 11
3.2 Topics . 11
3.3 Topic scope . 12
3.4 Partition and namespaces . 12

4 Node communication via messages 15
4.1 Publisher . 15
4.2 Subscriber . 17
4.3 Building the code . 18
4.4 Running the examples . 19

5 Node communication via services 21
5.1 Responser . 21
5.2 Synchronous requester . 23
5.3 Asynchronous requester . 24
5.4 Oneway responser . 26
5.5 Oneway requester . 27
5.6 Service without input parameter . 28
5.7 Empty requester sync and async . 29
5.8 Building the code . 30
5.9 Running the examples . 30

6 Configuration via environment variables 33

7 How to contribute 35
7.1 Development process . 35
7.2 Debugging Ignition Transport . 38
7.3 Code Check . 39

i

8 Internal architecture 41
8.1 Discovery service . 42

9 API 47

10 Indices and tables 49

ii

ign_transport Documentation, Release 2.1.0

Contents:

Contents 1

ign_transport Documentation, Release 2.1.0

2 Contents

CHAPTER 1

What is Ignition Transport?

Ignition Transport is an open source communication library that allows sharing data between clients. In our context, a
client is called a node. Nodes might be running within the same process in the same machine or in machines located
in different continents. Ignition Transport is multi-platform (Linux, Mac OS X, and Windows), so all the low level
details, such as data alignment or endianness are hidden for you.

Ignition Transport uses Google Protocol buffers as the data type for communicating between nodes. Users can define
their own messages using the Protobuf utils, and then, exchange them between the nodes. Ignition Transport discovers,
serializes and delivers messages to the destinations using a combination of custom code and ZeroMQ.

• What programming language can I use to interface Ignition Transport?

C++ is our native implementation and so far the only way to use the library. We might offer different wrappers for the
most popular languages in the future.

3

https://developers.google.com/protocol-buffers/?hl=en
http://zeromq.org/

ign_transport Documentation, Release 2.1.0

4 Chapter 1. What is Ignition Transport?

CHAPTER 2

Installation

Instructions to install Ignition Transport on all the platforms supported: major Linux distributions, Mac OS X and
Windows.

Next, you can see the major Ignition Transport versions, their availability and lifetime.

Ver-
sion

Available on
Ubuntu directly

Available on Ubuntu
via OSRF

Available on MacOS via
Homebrew tab

Since EOL

0.y Ubuntu X Ubuntu T – February
2015

April
2021

1.y Ubuntu Y,Z Ubuntu T,X Yosemite,El Capitan February
2016

January
2018

2.y – Ubuntu T,X,Y Yosemite,El Capitan August
2016

TBD

3.y – Ubuntu T,X,Y Yosemite,El Capitan January
2017

TBD

Ubuntu Linux

Setup your computer to accept software from packages.osrfoundation.org:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable
`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install Ignition Transport:

sudo apt-get update
sudo apt-get install libignition-transport2-dev

5

ign_transport Documentation, Release 2.1.0

Mac OS X

Ignition Transport and several of its dependencies can be compiled on OS X with Homebrew using the osrf/simulation
tap. Ignition Transport is straightforward to install on Mac OS X 10.9 (Mavericks) or higher. Installation on older
versions requires changing the default standard library and rebuilding dependencies due to the use of c++11. For
purposes of this documentation, I will assume OS X 10.9 or greater is in use. Here are the instructions:

Install homebrew, which should also prompt you to install the XCode command-line tools:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install)"

Run the following commands:

brew tap osrf/simulation
brew install ignition-transport2

Windows

At this moment, compilation has been tested on Windows 7 and 8.1 and is supported when using Visual Studio 2013.
Patches for other versions are welcome.

This installation procedure uses pre-compiled binaries in a local workspace. To make things easier, use a MinGW shell
for your editing work (such as the Git Bash Shell with Mercurial), and only use the Windows cmd for configuring and
building. You might also need to disable the Windows firewall.

Make a directory to work in, e.g.:

mkdir ign-ws
cd ign-ws

Download the following dependencies into that directory:

• cppzmq

• Protobuf 2.6.0 (32-bit)

• Protobuf 2.6.0 (64-bit)

Choose one of these options:

• ZeroMQ 4.0.4 (32-bit)

• ZeroMQ 4.0.4 (64-bit)

Unzip each of them. The Windows unzip utility will likely create an incorrect directory structure, where a directory
with the name of the zip contains the directory that has the source files. Here is an example:

ign-ws/cppzmq-noarch/cppzmq

The correct structure is

ign-ws/cppzmq

To fix this problem, manually move the nested directories up one level.

Clone and prepare the Ignition Math dependency:

6 Chapter 2. Installation

http://brew.sh/
https://github.com/osrf/homebrew-simulation
https://github.com/osrf/homebrew-simulation
https://www.visualstudio.com/downloads/
https://msysgit.github.io/
http://tortoisehg.bitbucket.org/download/index.html
http://windows.microsoft.com/en-us/windows/turn-windows-firewall-on-off#turn-windows-firewall-on-off=windows-7
http://packages.osrfoundation.org/win32/deps/cppzmq-noarch.zip
http://packages.osrfoundation.org/win32/deps/protobuf-2.6.0-win32-vc12.zip
http://packages.osrfoundation.org/win32/deps/protobuf-2.6.0-win64-vc12.zip
http://packages.osrfoundation.org/win32/deps/zeromq-4.0.4-x86.zip
http://packages.osrfoundation.org/win32/deps/zeromq-4.0.4-amd64.zip

ign_transport Documentation, Release 2.1.0

hg clone https://bitbucket.org/ignitionrobotics/ign-math
cd ign-math
mkdir build

In a Windows Command Prompt, load your compiler setup, e.g.:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" amd64

In the Windows Command Prompt, configure and build:

cd ign-math\build
..\configure
nmake install

Clone and prepare the Ignition Msgs dependency:

hg clone https://bitbucket.org/ignitionrobotics/ign-msgs
cd ign-msgs
mkdir build

In the Windows Command Prompt, configure and build:

cd ign-msgs\build
..\configure
nmake install

Clone ign-transport:

hg clone https://bitbucket.org/ignitionrobotics/ign-transport
cd ign-transport

In a Windows Command Prompt, load your compiler setup, e.g.:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" amd64

Configure and build:

mkdir build
cd build
..\configure
nmake
nmake install

You should now have an installation of ign-transport in ign-ws/ign-transport/build/install.

Before running any executables, you need to modify your PATH to include the bin subdirectory of ZeroMQ to let
Windows find dynamic libs (similar to LD_LIBRARY_PATH on Linux). Don’t put quotes around the path, even if it
contains spaces. E.g., if you’re working in C:\My Stuff\ign-ws:

set PATH %PATH%;C:\My Stuff\ign-ws\ZeroMQ 4.0.4\bin

Now build the examples:

cd ign-ws\ign-transport\example
mkdir build
cd build
..\configure
nmake

2.3. Windows 7

ign_transport Documentation, Release 2.1.0

Now try an example. In one Windows terminal run:

responser

In another Windows terminal run:

requester

Install from sources (Ubuntu Linux)

For compiling the latest version of Ignition Transport you will need an Ubuntu distribution equal to 14.04.2 (Trusty)
or newer.

Make sure you have removed the Ubuntu pre-compiled binaries before installing from source:

sudo apt-get remove libignition-transport2-dev

Install prerequisites. A clean Ubuntu system will need:

sudo apt-get install mercurial cmake pkg-config python ruby-ronn libprotoc-dev
→˓libprotobuf-dev protobuf-compiler uuid-dev libzmq3-dev libignition-msgs-dev

Clone the repository into a directory and go into it:

hg clone https://bitbucket.org/ignitionrobotics/ign-transport /tmp/ign-transport
cd /tmp/ign-transport

Create a build directory and go there:

mkdir build
cd build

Configure Ignition Transport (choose either method a or b below):

1. Release mode: This will generate optimized code, but will not have debug symbols. Use this mode
if you don’t need to use GDB.

cmake ../

Note: You can use a custom install path to make it easier to switch between source and debian installs:

cmake -DCMAKE_INSTALL_PREFIX=/home/$USER/local ../

B. Debug mode: This will generate code with debug symbols. Ignition Transport will run slower, but
you’ll be able to use GDB.

cmake -DCMAKE_BUILD_TYPE=Debug ../

The output from cmake ../ may generate a number of errors and warnings about missing packages. You must
install the missing packages that have errors and re-run cmake ../. Make sure all the build errors are resolved
before continuing (they should be there from the earlier step in which you installed prerequisites).

Make note of your install path, which is output from cmake and should look something like:

-- Install path: /home/$USER/local

8 Chapter 2. Installation

ign_transport Documentation, Release 2.1.0

Build Ignition Transport:

make -j4

Install Ignition Transport:

sudo make install

If you decide to install gazebo in a local directory you’ll need to modify your LD_LIBRARY_PATH:

echo "export LD_LIBRARY_PATH=<install_path>/local/lib:$LD_LIBRARY_PATH" >> ~/.bashrc

Uninstalling Source-based Install

If you need to uninstall Ignition Transport or switch back to a debian-based install when you currently have installed
the library from source, navigate to your source code directory’s build folders and run make uninstall:

cd /tmp/ign-transport/build
sudo make uninstall

2.4. Install from sources (Ubuntu Linux) 9

ign_transport Documentation, Release 2.1.0

10 Chapter 2. Installation

CHAPTER 3

Understanding nodes and topics

Nodes

The communication in Ignition Transport follows a pure distributed architecture, where there is no central process,
broker or similar. All the nodes in the network can act as publishers, subscribers, provide services and request services.

A publisher is a node that produces information and a subscriber is a node that consumes information. There are two
categories or ways to communicate in Ignition Transport. First, we could use a publish/subscribe approach, where
a node advertises a topic, and then, publishes periodic updates. On the other side, one or more nodes subscribe
to the same topic registering a function that will be executed each time a new message is received. An alternative
communication paradigm is based on service calls. A service call is a remote service that a node offers to the rest of
the nodes. A node can request a service in a similar way a local function is executed.

Topics

A topic is just a name for grouping a specific set of messages or a particular service. Imagine that you have a camera
and want to periodically publish its images. Your node could advertise a topic called /image, and then, publish a
new message on this topic every time a new image is available. Other nodes, will subscribe to the same topic and will
receive the messages containing the image. A node could also offer an echo service in the topic /echo. Any node
interested in this service will request a service call on topic /echo. The service call will accept arguments and will
return a result. In our echo service example, the result will be similar to the input parameter passed to the service.

There are some rules to follow when selecting a topic name. It should be any alphanumeric name followed by zero or
more slashes. For example: /image, head_position, /robot1/joints/HeadPitch are examples of valid
topic names. The next table summarizes the allowed and not allowed topic rules.

11

ign_transport Documentation, Release 2.1.0

Topic name Validity Comment
/topicA Valid
/topicA/ Valid Equivalent to /topicA
topicA Valid
/a/b Valid

Invalid Empty string is invalid
my topic Invalid Contains white space
//image Invalid Contains two consecutive //
/ Invalid / topic is not allowed
~myTopic Invalid Symbol ~ not allowed

Topic scope

A topic can be optionally advertised with a scope. A scope allows you to set the visibility of this topic. The available
scopes are Process, Host, and All. A Process scope means that the advertised topic will only be visible in the
nodes within the same process as the advertiser. A topic with a Host scope restricts the visibility of a topic to nodes
located in the same machine as the advertiser. Finally, by specifying a scope with an All value, you’re allowing your
topic to be visible by any node.

Partition and namespaces

When you create your node you can specify some options to customize its behavior. Among those options you can set
a partition name and a namespace.

A partition is used to isolate a set of topics or services within a group of nodes that share the same partition name.
E.g.: Node1 advertises topic /foo and Node2 advertises /foo too. If we don’t use a partition, a node subscribed to
/foo will receive the messages published from Node1 and Node2. Alternatively, we could specify p1 as a partition
for Node1 and p2 as a partition for Node2. When we create the node for our subscriber, if we specify p1 as a partition
name, we’ll receive the messages published only by Node1. If we use p2, we’ll only receive the messages published
by Node2. If we don’t set a partition name, we won’t receive any messages from Node1 or Node2.

A partition name is any alphanumeric string with a few exceptions. The symbol / is allowed as part of a partition
name but just / is not allowed. The symbols @, ~ or white spaces are not allowed as part of a partition name. Two or
more consecutive slashes (//) are not allowed.

The default partition name is created using a combination of your hostname, followed by : and your username. E.g.:
bb8:caguero . It’s also possible to use the environment variable IGN_PARTITION for setting a custom partition
name.

A namespace is considered a prefix that might be potentially applied to some of the topic/services advertised in a node.

E.g.: Node1 sets a namespace ns1 and advertises the topics t1, t2 and /t3. /t3 is considered an absolute topic
(starts with /) and it won’t be affected by a namespace. However, t1 and t2 will be advertised as /ns1/t1 and
/ns1/t2.

A namespace is any alphanumeric string with a few exceptions. The symbol / is allowed as part of a namespace
but just / is not allowed. The symbols @, ~ or white spaces are not allowed as part of a namespace. Two or more
consecutive slashes (//) are not allowed. If topic name or namespace is invalid than fully qualified topic name is

invalid too.

12 Chapter 3. Understanding nodes and topics

ign_transport Documentation, Release 2.1.0

Namespace Topic name Fully qualified topic Validity Comment
ns1 /topicA /topicA Valid Absolute topic

/topicA /topicA Valid Absolute topic
ns1 topicA /ns1/topicA Valid

topicA /topicA Valid
ns1 topic A Invalid Topic contains white space

topic A Invalid Topic contains white space
my ns topicA Invalid Namespace contains white space
//ns topicA Invalid Namespace contains two consecutive //
/ topicA Invalid / namespace is not allowed
~myns topicA Invalid Symbol ~ not allowed

3.4. Partition and namespaces 13

ign_transport Documentation, Release 2.1.0

14 Chapter 3. Understanding nodes and topics

CHAPTER 4

Node communication via messages

In this tutorial, we are going to create two nodes that are going to communicate via messages. One node will be a
publisher that generates the information, whereas the other node will be the subscriber consuming the information.
Our nodes will be running on different processes within the same machine.

mkdir ~/ign_transport_tutorial
cd ~/ign_transport_tutorial

Publisher

Download the publisher.cc file within the ign_transport_tutorial folder and open it with your favorite editor:

#include <atomic>
#include <chrono>
#include <csignal>
#include <iostream>
#include <string>
#include <thread>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

/// \brief Flag used to break the publisher loop and terminate the program.
static std::atomic<bool> g_terminatePub(false);

//
/// \brief Function callback executed when a SIGINT or SIGTERM signals are
/// captured. This is used to break the infinite loop that publishes messages
/// and exit the program smoothly.
void signal_handler(int _signal)
{

if (_signal == SIGINT || _signal == SIGTERM)
g_terminatePub = true;

}

15

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/publisher.cc

ign_transport Documentation, Release 2.1.0

//
int main(int argc, char **argv)
{

// Install a signal handler for SIGINT and SIGTERM.
std::signal(SIGINT, signal_handler);
std::signal(SIGTERM, signal_handler);

// Create a transport node and advertise a topic.
ignition::transport::Node node;
std::string topic = "/foo";

auto pubId = node.Advertise<ignition::msgs::StringMsg>(topic);
if (!pubId)
{
std::cerr << "Error advertising topic [" << topic << "]" << std::endl;
return -1;

}

// Prepare the message.
ignition::msgs::StringMsg msg;
msg.set_data("HELLO");

// Publish messages at 1Hz.
while (!g_terminatePub)
{
if (!node.Publish(pubId, msg))

break;

std::cout << "Publishing hello on topic [" << topic << "]" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(1000));

}

return 0;
}

Walkthrough

#include <ignition/msgs.hh>
#include <ignition/transport.hh>

The line #include <ignition/transport.hh> contains all the Ignition Transport headers for using the
transport library.

The next line includes the generated protobuf code that we are going to use for our messages. We are going to publish
StringMsg type protobuf messages.

// Create a transport node and advertise a topic.
ignition::transport::Node node;
std::string topic = "/foo";

auto pubId = node.Advertise<ignition::msgs::StringMsg>(topic);
if (!pubId)
{

std::cerr << "Error advertising topic [" << topic << "]" << std::endl;
return -1;

16 Chapter 4. Node communication via messages

ign_transport Documentation, Release 2.1.0

}

First of all we declare a Node that will offer all the transport functionality. In our case, we are interested on publishing
topic updates, so the first step is to announce our topic name and its type. Once a topic name is advertised, we can
start publishing periodic messages.

// Prepare the message.
ignition::msgs::StringMsg msg;
msg.set_data("HELLO");

// Publish messages at 1Hz.
while (!g_terminatePub)
{

if (!node.Publish(pubId, msg))
break;

std::cout << "Publishing hello on topic [" << topic << "]" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(1000));

}

In this section of the code we create a protobuf message and fill it with content. Next, we iterate in a loop that publishes
one message every second. The method Publish() sends a message to all the subscribers.

Subscriber

Download the subscriber.cc file within the ign_transport_tutorial folder and open it with your favorite
editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Function called each time a topic update is received.
void cb(const ignition::msgs::StringMsg &_msg)
{

std::cout << "Msg: " << _msg.data() << std::endl << std::endl;
}

//
int main(int argc, char **argv)
{

ignition::transport::Node node;
std::string topic = "/foo";

// Subscribe to a topic by registering a callback.
if (!node.Subscribe(topic, cb))
{
std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
return -1;

}

// Zzzzzz.
ignition::transport::waitForShutdown();

4.2. Subscriber 17

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/subscriber.cc

ign_transport Documentation, Release 2.1.0

return 0;
}

Walkthrough

//
/// \brief Function called each time a topic update is received.
void cb(const ignition::msgs::StringMsg &_msg)
{

std::cout << "Msg: " << _msg.data() << std::endl << std::endl;
}

We need to register a function callback that will execute every time we receive a new topic update. The signature of
the callback is always similar to the one shown in this example with the only exception of the protobuf message type.
You should create a function callback with the appropriate protobuf type depending on the type of the topic advertised.
In our case, we know that topic /foo will contain a Protobuf StringMsg type.

ignition::transport::Node node;
std::string topic = "/foo";

// Subscribe to a topic by registering a callback.
if (!node.Subscribe(topic, cb))
{

std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
return -1;

}

After the node creation, the method Subscribe() allows you to subscribe to a given topic name by specifying your
subscription callback function.

// Zzzzzz.
ignition::transport::waitForShutdown();

If you don’t have any other tasks to do besides waiting for incoming messages, you can use the call waitForShutdown()
that will block your current thread until you hit CTRL-C. Note that this function captures the SIGINT and SIGTERM
signals.

Building the code

Download the CMakeLists.txt file within the ign_transport_tutorial folder.

Once you have all your files, go ahead and create a build/ directory within the ign_transport_tutorial
directory.

mkdir build
cd build

Run cmake and build the code.

cmake ..
make publisher subscriber

18 Chapter 4. Node communication via messages

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/CMakeLists.txt

ign_transport Documentation, Release 2.1.0

Running the examples

Open two new terminals and from your build/ directory run the executables.

From terminal 1:

./publisher

From terminal 2:

./subscriber

In your subscriber terminal, you should expect an output similar to this one, showing that your subscriber is receiving
the topic updates:

caguero@turtlebot:~/ign_transport_tutorial/build$./subscriber
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]

4.4. Running the examples 19

ign_transport Documentation, Release 2.1.0

20 Chapter 4. Node communication via messages

CHAPTER 5

Node communication via services

In this tutorial, we are going to create two nodes that are going to communicate via services. You can see a service
as a function that is going to be executed in a different node. Services have two main components: a service provider
and a service consumer. A service provider is the node that offers the service to the rest of the world. The service
consumers are the nodes that request the function offered by the provider. Note that in Ignition Transport the location
of the service is hidden. The discovery layer of the library is in charge of discovering and keeping and updated list of
services available.

In the next tutorial, one node will be the service provider that offers an echo service, whereas the other node will be
the service consumer requesting an echo call.

mkdir ~/ign_transport_tutorial
cd ~/ign_transport_tutorial

Responser

Download the responser.cc file within the ign_transport_tutorial folder and open it with your favorite editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Provide an "echo" service.
void srvEcho(const ignition::msgs::StringMsg &_req,

ignition::msgs::StringMsg &_rep, bool &_result)
{

// Set the response's content.
_rep.set_data(_req.data());

// The response succeed.
_result = true;

21

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/responser.cc

ign_transport Documentation, Release 2.1.0

}

//
int main(int argc, char **argv)
{

// Let's print the list of our network interfaces.
std::cout << "List of network interfaces in this machine:" << std::endl;
for (const auto &netIface : ignition::transport::determineInterfaces())
std::cout << "\t" << netIface << std::endl;

// Create a transport node.
ignition::transport::Node node;
std::string service = "/echo";

// Advertise a service call.
if (!node.Advertise(service, srvEcho))
{
std::cerr << "Error advertising service [" << service << "]" << std::endl;
return -1;

}

// Zzzzzz.
ignition::transport::waitForShutdown();

}

Walkthrough

#include <ignition/msgs.hh>
#include <ignition/transport.hh>

The line #include <ignition/transport.hh> contains the Ignition Transport header for using the transport
library.

The next line includes the generated Protobuf code that we are going to use for our messages. We are going to use
StringMsg type Protobuf messages for our services.

//
/// \brief Provide an "echo" service.
void srvEcho(const ignition::msgs::StringMsg &_req,

ignition::msgs::StringMsg &_rep, bool &_result)
{

// Set the response's content.
_rep.set_data(_req.data());

// The response succeed.
_result = true;

}

As a service provider, our node needs to register a function callback that will execute every time a new service request
is received. The signature of the callback is always similar to the one shown in this example with the exception of
the Protobuf messages types for the _req (request) and _rep (response). The request parameter contains the input
parameters of the request. The response message contains any resulting data from the service call. The _result
parameter denotes if the overall service call was considered successful or not. In our example, as a simple echo service,
we just fill the response with the same data contained in the request.

22 Chapter 5. Node communication via services

ign_transport Documentation, Release 2.1.0

// Create a transport node.
ignition::transport::Node node;
std::string service = "/echo";

// Advertise a service call.
if (!node.Advertise(service, srvEcho))
{

std::cerr << "Error advertising service [" << service << "]" << std::endl;
return -1;

}

// Zzzzzz.
ignition::transport::waitForShutdown();

We declare a Node that will offer all the transport functionality. In our case, we are interested in offering a service, so
the first step is to announce our service name. Once a service name is advertised, we can accept service requests.

If you don’t have any other tasks to do besides waiting for service requests, you can use the call waitForShutdown()
that will block your current thread until you hit CTRL-C. Note that this function captures the SIGINT and SIGTERM
signals.

Synchronous requester

Download the requester.cc file within the ign_transport_tutorial folder and open it with your favorite editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

ignition::msgs::StringMsg rep;
bool result;
unsigned int timeout = 5000;

// Request the "/echo" service.
bool executed = node.Request("/echo", req, timeout, rep, result);

if (executed)
{
if (result)

std::cout << "Response: [" << rep.data() << "]" << std::endl;
else

std::cout << "Service call failed" << std::endl;
}
else
std::cerr << "Service call timed out" << std::endl;

}

5.2. Synchronous requester 23

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/requester.cc

ign_transport Documentation, Release 2.1.0

Walkthrough

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

ignition::msgs::StringMsg rep;
bool result;
unsigned int timeout = 5000;

We declare the Node that allows us to request a service. Next, we declare and fill the message used as an input
parameter for our echo request. Then, we declare the Protobuf message that will contain the response and the variable
that will tell us if the service request succeed or failed. In this example, we will use a synchronous request, meaning
that our code will block until the response is received or a timeout expires. The value of the timeout is expressed in
milliseconds.

// Request the "/echo" service.
bool executed = node.Request("/echo", req, timeout, rep, result);

if (executed)
{

if (result)
std::cout << "Response: [" << rep.data() << "]" << std::endl;

else
std::cout << "Service call failed" << std::endl;

}
else

std::cerr << "Service call timed out" << std::endl;

In this section of the code we use the method Request() for forwarding the service call to any service provider of
the service /echo. Ignition Transport will find a node, communicate the input data, capture the response and pass
it to your output parameter. The return value will tell you if the request expired or the response was received. The
result value will tell you if the service provider considered the operation valid.

Imagine for example that we are using a division service, where our input message contains the numerator and denom-
inator. If there are no nodes offering this service, our request will timeout (return value false). On the other hand,
if there’s at least one node providing the service, the request will return true signaling that the request was received.
However, if we set our denominator to 0 in the input message, result will be false reporting that something
went wrong in the request. If the input parameters are valid, we’ll receive a result value of true and we can use our
response message.

Asynchronous requester

Download the requester_async.cc file within the ign_transport_tutorial folder and open it with your favorite
editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Service response callback.

24 Chapter 5. Node communication via services

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/requester_async.cc

ign_transport Documentation, Release 2.1.0

void responseCb(const ignition::msgs::StringMsg &_rep, const bool _result)
{

if (_result)
std::cout << "Response: [" << _rep.data() << "]" << std::endl;

else
std::cerr << "Service call failed" << std::endl;

}

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

std::cout << "Press <CTRL-C> to exit" << std::endl;

// Request the "/echo" service.
node.Request("/echo", req, responseCb);

// Zzzzzz.
ignition::transport::waitForShutdown();

}

Walkthrough

//
/// \brief Service response callback.
void responseCb(const ignition::msgs::StringMsg &_rep, const bool _result)
{

if (_result)
std::cout << "Response: [" << _rep.data() << "]" << std::endl;

else
std::cerr << "Service call failed" << std::endl;

}

We need to register a function callback that will execute when we receive our service response. The signature of the
callback is always similar to the one shown in this example with the only exception of the Protobuf message type used
in the response. You should create a function callback with the appropriate Protobuf type depending on the response
type of the service requested. In our case, we know that the service /echo will answer with a Protobuf StringMsg‘
type.

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

// Request the "/echo" service.
node.Request("/echo", req, responseCb);

In this section of the code we declare a node and a Protobuf message that is filled with the input parameters for

5.3. Asynchronous requester 25

ign_transport Documentation, Release 2.1.0

our request. Next, we just use the asynchronous variant of the Request() method that forwards a service call to
any service provider of the service /echo. Ignition Transport will find a node, communicate the data, capture the
response and pass it to your callback, in addition of the service call result. Note that this variant of Request() is
asynchronous, so your code will not block while your service request is handled.

Oneway responser

Not all the service requests require a response. In these cases we can use a oneway service to process service requests
without sending back responses. Oneway services don’t accept any output parameters nor the requests have to wait
for the response.

Download the responser_oneway.cc file within the ign_transport_tutorial folder and open it with your fa-
vorite editor:

#include <iostream>
#include <string>
#include <ignition/transport.hh>
#include <ignition/msgs.hh>

//
void srvOneway(const ignition::msgs::StringMsg &_req)
{

std::cout << "Request received: [" << _req.data() << "]" << std::endl;
}

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;
std::string service = "/oneway";

// Advertise a oneway service.
if (!node.Advertise(service, srvOneway))
{
std::cerr << "Error advertising service [" << service << "]" << std::endl;
return -1;

}

// Zzzzzz.
ignition::transport::waitForShutdown();

}

Walkthrough

//
void srvOneway(const ignition::msgs::StringMsg &_req)
{

std::cout << "Request received: [" << _req.data() << "]" << std::endl;
}

As a oneway service provider, our node needs to advertise a service that doesn’t send a response back. The signature of
the callback contains only one parameter that is the input parameter, _req (request). We don’t need _rep (response)

26 Chapter 5. Node communication via services

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/responser_oneway.cc

ign_transport Documentation, Release 2.1.0

or _result as there is no response expected. In our example, the value of the input parameter is printed on the
screen.

// Create a transport node.
ignition::transport::Node node;
std::string service = "/oneway";

// Advertise a oneway service.
if (!node.Advertise(service, srvOneway))
{

std::cerr << "Error advertising service [" << service << "]" << std::endl;
return -1;

}

We declare a Node that will offer all the transport functionality. In our case, we are interested in offering a oneway
service, so the first step is to announce our service name. Once a service name is advertised, we can accept service
requests.

Oneway requester

This case is similar to the oneway service provider. This code can be used for requesting a service that does not need
a response back. We don’t need any output parameters in this case nor we have to wait for the response.

Download the requester_oneway.cc file within the ign_transport_tutorial folder and open it with your fa-
vorite editor:

#include <iostream>
#include <ignition/transport.hh>
#include <ignition/msgs.hh>

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

// Request the "/oneway" service.
bool executed = node.Request("/oneway", req);

if (!executed)
std::cerr << "Service call failed" << std::endl;

}

Walkthrough

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;

5.5. Oneway requester 27

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/requester_oneway.cc

ign_transport Documentation, Release 2.1.0

req.set_data("HELLO");

// Request the "/oneway" service.
bool executed = node.Request("/oneway", req);

if (!executed)
std::cerr << "Service call failed" << std::endl;

First of all we declare a node and a Protobuf message that is filled with the input parameters for our /oneway
service. Next, we just use the oneway variant of the Request() method that forwards a service call to any service
provider of the service /oneway. Ignition Transport will find a node and communicate the data without waiting for
the response. The return value of Request() indicates if the request was successfully queued. Note that this variant
of Request() is also asynchronous, so your code will not block while your service request is handled.

Service without input parameter

Sometimes we want to receive some result but don’t have any input parameter to send.

Download the responser_no_input.cc file within the ign_transport_tutorial folder and open it with your

favorite editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Provide a "quote" service.
/// Well OK, it's just single-quote service but do you really need more?
void srvQuote(ignition::msgs::StringMsg &_rep, bool &_result)
{

std::string awesomeQuote = "This is it! This is the answer. It says here..."
"that a bolt of lightning is going to strike the clock tower at precisely "
"10:04pm, next Saturday night! If...If we could somehow...harness this "
"lightning...channel it...into the flux capacitor...it just might work. "
"Next Saturday night, we're sending you back to the future!";

// Set the response's content.
_rep.set_data(awesomeQuote);

// The response succeed.
_result = true;

}

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;
std::string service = "/quote";

// Advertise a service call.
if (!node.Advertise(service, srvQuote))
{
std::cerr << "Error advertising service [" << service << "]" << std::endl;

28 Chapter 5. Node communication via services

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/responser_no_input.cc

ign_transport Documentation, Release 2.1.0

return -1;
}

// Zzzzzz.
ignition::transport::waitForShutdown();

}

Walkthrough

void srvQuote(ignition::msgs::StringMsg &_rep, bool &_result)

Service doesn’t receive anything. The signature of the callback contains two parameters _rep (response) and
_result. In our example, we return the quote.

// Create a transport node.
ignition::transport::Node node;
std::string service = "/quote";

// Advertise a service call.
if (!node.Advertise(service, srvQuote))
{

std::cerr << "Error advertising service [" << service << "]" << std::endl;
return -1;

}

// Zzzzzz.
ignition::transport::waitForShutdown();

We declare a Node that will offer all the transport functionality. In our case, we are interested in offering service
without input, so the first step is to announce the service name. Once a service name is advertised, we can accept
service requests.

Empty requester sync and async

This case is similar to the service without input parameter. We don’t send any request.

Download the requester_no_input.cc file within the ign_transport_tutorial folder and open it with your
favorite editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
int main(int argc, char **argv)
{

// Create a transport node.
ignition::transport::Node node;

ignition::msgs::StringMsg rep;
bool result;
unsigned int timeout = 5000;

// Request the "/quote" service.

5.7. Empty requester sync and async 29

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/requester_no_input.cc

ign_transport Documentation, Release 2.1.0

bool executed = node.Request("/quote", timeout, rep, result);

if (executed)
{
if (result)

std::cout << "Response: [" << rep.data() << "]" << std::endl;
else

std::cout << "Service call failed" << std::endl;
}
else
std::cerr << "Service call timed out" << std::endl;

}

Walkthrough

First of all we declare a node and a message that will contain the response from /quote service. Next, we use the
variant without input parameter of the Request() method. The return value of Request() indicates whether the
request timed out or reached the service provider and result shows if the service was successfully executed.

We also have the async version for service request without input. You should download requester_no_input.cc file
within the ign_transport_tutorial folder.

Building the code

Download the CMakeLists.txt file within the ign_transport_tutorial folder. Then, download CMakeLists.txt
and stringmsg.proto inside the msgs directory.

Once you have all your files, go ahead and create a build/ folder within the ign_transport_tutorial direc-
tory.

mkdir build
cd build

Run cmake and build the code.

cmake ..
make responser responser_oneway requester requester_async requester_oneway
make responser_no_input requester_no_input requester_async_no_input

Running the examples

Open three new terminals and from your build/ directory run the executables.

From terminal 1:

./responser

From terminal 2:

./requester

From terminal 3:

30 Chapter 5. Node communication via services

https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/requester_no_input.cc
https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/CMakeLists.txt
https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/msgs/CMakeLists.txt
https://bitbucket.org/ignitionrobotics/ign-transport/raw/ign-transport2/example/msgs/stringmsg.proto

ign_transport Documentation, Release 2.1.0

./requester_async

In your requester terminals, you should expect an output similar to this one, showing that your requesters have received
their responses:

caguero@turtlebot:~/ign_transport_tutorial/build$./requester
Response: [Hello World!]

caguero@turtlebot:~/ign_transport_tutorial/build$./requester_async
Response: [Hello World!]

For running the oneway examples, open two terminals and from your build/ directory run the executables.

From terminal 1:

./responser_oneway

From terminal 2:

./requester_oneway

In your responser terminal, you should expect an output similar to this one, showing that your service provider has
received a request:

caguero@turtlebot:~/ign_transport_tutorial/build$./responser_oneway
Request received: [HELLO]

For running the examples without input, open three terminals and from your build/ directory run the executables.

From terminal 1:

./responser_no_input

From terminal 2:

./requester_no_input

From terminal 3:

./requester_async_no_input

In your requesters’ terminals, you should expect an output similar to this one, showing that you have received a
response:

caguero@turtlebot:~/ign_transport_tutorial/build$./requester_no_input
Response: [This is it! This is the answer. It says here...that a bolt of
lightning is going to strike the clock tower at precisely 10:04pm, next
Saturday night! If...If we could somehow...harness this lightning...channel
it...into the flux capacitor...it just might work. Next Saturday night,
we're sending you back to the future!]

5.9. Running the examples 31

ign_transport Documentation, Release 2.1.0

32 Chapter 5. Node communication via services

CHAPTER 6

Configuration via environment variables

In a similar way you can programatically customize the behavior of your nodes or specify some options when you
advertise a topic, it is possible to use an environment variable to tweak the behavior of Ignition Transport. Next you
can see a description of the available environment variables:

Environ-
ment
variable

Value
allowed

Description

IGN_PARTITIONAny
partition
value

Specifies a partition name for all the nodes declared inside this process. Note that an
alternative partition name declared programatically and passed to the constructor of a
Node class will take priority over IGN_PARTITION.

IGN_IP Any local
IP address

This setting is needed in situations where you have multiple IP addresses for a
computer and need to force Ignition Transport to use a particular one. This setting is
only required if you advertise a topic or a service. If you are only subscribed to topics
or requesting services you don’t need to use this option because the discovery service
will try all the available network interfaces during the search of the topic/service.

IGN_VERBOSE1 Show debug information.

33

ign_transport Documentation, Release 2.1.0

34 Chapter 6. Configuration via environment variables

CHAPTER 7

How to contribute

Ignition Transport is an open source project based on the Apache License Version 2.0, and is maintained by hard-
working developers for everyone’s benefit. If you would like to contribute software patches, read on to find out how.
You’ll probably want to check out the Development Section for learning about the internal design of the library when
planning your contribution.

Development process

We follow a development process designed to reduce errors, encourage collaboration, and make high quality code.
The process may seem rigid and tedious, but every step is worth the effort (especially if you like applications that
work).

Steps to follow

1. Are you sure? Has your idea already been done, or maybe someone is already working on it?

Check the issue tracker.

2. Fork Ignition Transport. This will create your own personal copy of the project. All of your development should
take place in your fork.

3. Work out of a branch:

hg branch my_new_branch_name

Always work out of a new branch, never off of default. This is a good habit to get in, and will make your life easier. If
you’re solving an issue, make the branch name issue_ followed by the issue number. E.g.: issue_23.

4. Write your code.

This is the fun part.

5. Write tests.

35

http://ignition-transport.readthedocs.io/en/latest/api/api.html
https://bitbucket.org/ignitionrobotics/ign-transport
https://bitbucket.org/ignitionrobotics/ign-transport/fork

ign_transport Documentation, Release 2.1.0

A pull request will only be accepted if it has tests. See the Test coverage section below for more informa-
tion.

6. Compiler warnings.

Code must have zero compile warnings. This currently only applies to Linux.

7. Style.

A tool is provided to check for correct style. Your code must have no errors after running the following
command from the root of the source tree:

sh tools/code_check.sh

The tool does not catch all style errors. See the Style section below for more information.

8. Tests pass.

There must be no failing tests. You can check by running make test in your build directory.

9. Documentation.

Document all your code. Every class, function, member variable must have doxygen comments. All code
in source files must have documentation that describes the functionality. This will help reviewers, and
future developers.

10. Review your code.

Before submitting your code through a pull request, take some time to review everything line-by-line. The
review process will go much faster if you make sure everything is perfect before other people look at your
code. There is a bit of the human-condition involved here. Folks are less likely to spend time reviewing
your code if it’s bad.

11. Small pull requests.

A large pull request is hard to review, and will take a long time. It is worth your time to split a large pull
request into multiple smaller pull requests. For reference, here are a few examples:

• Small, very nice

• Medium, still okay

• Too large

12. Pull request.

Submit a pull request when you ready.

13. Review.

At least two other people have to approve your pull request before it can be merged. Please be responsive
to any questions and comments.

14. Done, phew.

Once you have met all the requirements, you’re code will be merged. Thanks for improving Ignition
Transport!

Internal Developers

This section is targeted mostly for people who have commit access to the main repositories.

In addition to the general development process, please follow these steps before submitting a pull request. Each step
is pass/fail, where the test or check must pass before continuing to the next step.

36 Chapter 7. How to contribute

https://bitbucket.org/osrf/gazebo/pull-request/1732
https://bitbucket.org/osrf/gazebo/pull-request/1700
https://bitbucket.org/osrf/gazebo/pull-request/30
https://bitbucket.org/ignitionrobotics/ign-transport/pull-request/new

ign_transport Documentation, Release 2.1.0

1. Run the style checker on your personal computer.

2. Run all tests on your personal computer.

3. Run your branch through a jenkins trusty build.

4. Run your branch through a jenkins homebrew build.

5. Run your branch through a jenkins windows7 build.

6. Submit the pull request, and include the following:

1. Link to a passing trusty build.

2. Link to a passing homebrew build.

3. Link to a passing windows7 build.

7. A set of jenkins jobs will run automatically once the pull request is created. Reviewers can reference these
automatic jobs and the jenkins jobs listed in your pull request.

Style

In general, we follow Google’s style guide. However, we add in some extras.

‘‘this‘‘ pointer All class attributes and member functions must be accessed using the this-> pointer. Here is an
example.

Underscore function parameters All function parameters must start with an underscore. Here is an example.

Do not cuddle braces All braces must be on their own line. Here is an example.

Multi-line code blocks If a block of code spans multiple lines and is part of a flow control statement, such as an if,
then it must be wrapped in braces. Here is an example

++ operator This occurs mostly in for loops. Prefix the ++ operator, which is slightly more efficient than postfix in
some cases.

PIMPL/Opaque pointer If you are writing a new class, it must use a private data pointer. Here is an example, and
you can read more here.

const functions Any class function that does not change a member variable should be marked as const. Here is an
example.

const parameters All parameters that are not modified by a function should be marked as const. This applies to
parameters that are passed by reference, pointer, and value. Here is an example.

Pointer and reference variables Place the * and & next to the variable name, not next to the type. For example: int
&variable is good, but int& variable is not. Here is an example.

Camel case In general, everything should use camel case. Exceptions include protobuf variable names.

Class function names Class functions must start with a capital letter, and capitalize every word.

void MyFunction(); : Good

void myFunction(); : Bad

void my_function(); : Bad

Variable names Variables must start with a lower case letter, and capitalize every word thereafter.

int myVariable; : Good

int myvariable; : Bad

int my_variable; : Bad

7.1. Development process 37

http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-trusty-amd64/
http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-homebrew-amd64/
http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-windows7-amd64/
http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-trusty-amd64/
http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-homebrew-amd64/
http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-windows7-amd64/
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-40
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-77
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-131
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-249
http://programmers.stackexchange.com/questions/59880/avoid-postfix-increment-operator
http://programmers.stackexchange.com/questions/59880/avoid-postfix-increment-operator
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/World.hh?at=default#cl-479
https://en.wikipedia.org/wiki/Opaque_pointer
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-175
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217
https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217

ign_transport Documentation, Release 2.1.0

Reduce Code Duplication

Check to make sure someone else is not currently working on the same feature, before embarking on a project to add
something to Ignition Transport. Check the issue tracker looking for issues with similar ideas.

Write Tests

All code should have a corresponding unit test. Ignition Transport uses GTest for unit testing.

Test coverage

The goal is to achieve 100% line and branch coverage. However, this is not always possible due to complexity issues,
analysis tools misreporting coverage, and time constraints. Try to write as complete of a test suite as possible, and use
the coverage analysis tools as guide. If you have trouble writing a test please ask for help in your pull request.

Ignition Transport has a build target called make coverage that will produce a code coverage report. You’ll need
lcov installed.

1. In your build folder, compile Ignition Transport with -DCMAKE_BUILD_TYPE=Coverage:

cmake -DCMAKE_BUILD_TYPE=Coverage ..\
make

2. Run a single test, or all the tests:

make test

3. Make the coverage report:

make coverage

4. View the coverage report:

firefox coverage/index.html

Debugging Ignition Transport

Meaningful backtraces

In order to provide meaningful backtraces when using a debugger, such as GDB, Ignition Transport should be compiled
with debugging support enabled. When using the ubuntu packages, specially the -dbg package, this support is limited
but could be enough in most of the situations. This are the three level of traces which can be obtained:

Maximum level of debugging support This only can be obtained compiling Ignition Transport from source and set-
ting the CMAKE_BUILD_TYPE to DEBUG. This will set up no optimizations and debugging symbols. It can be
required by developers in situations specially difficult to reproduce.

Medium level of debugging support This can be obtained installing the libignition-transport1-dbg
package or compiling Ignition Transport from source using the RELWITHDEBINFO CMAKE_BUILD_TYPE
mode (which is the default if no mode is provided). This will set up -O2 optimization level but provide debug-
ging symbols. This should be the default when firing up gdb to explore errors and submit traces.

38 Chapter 7. How to contribute

https://bitbucket.org/ignitionrobotics/ign-transport/issues
http://code.google.com/p/googletest
http://ltp.sourceforge.net/coverage/lcov.php

ign_transport Documentation, Release 2.1.0

Minimum level of debugging support This one is present in package versions (no -dbg package present) or com-
piling Ignition Transport from source using the RELEASE CMAKE_BUILD_TYPE option. This will set up
the maximum level of optimizations and does not provide any debugging symbol information. This traces are
particularly difficult to follow.

Code Check

Code pushed into the repository should pass a few simple tests. It is also helpful if patches submitted through bitbucket
pass these tests. Passing these tests is defined as generating no error or warning messages for each of the following
tests.

Static Code Check

Static code checking analyzes your code for bugs, such as potential memory leaks, and style. The Ignition Transport
static code checker uses cppcheck, and a modified cpplint. You’ll need to install cppcheck on your system. Ubuntu
users can install via:

sudo apt-get install cppcheck

To check your code, run the following script from the root of the Ignition Transport sources:

sh tools/code_check.sh

It takes a few minutes to run. Fix all errors and warnings until the output looks like:

Total errors found: 0

7.3. Code Check 39

ign_transport Documentation, Release 2.1.0

40 Chapter 7. How to contribute

CHAPTER 8

Internal architecture

The purpose of this section is to describe the internal design of Ignition Transport. You don’t need to read this section
if you just want to use the library in your code. This section will help you to understand our source code if you’re
interested in making code contributions.

Ignition Transport’s internal architecture can be illustrated with the following diagram:

+===+ +=====================+
Host #1		Host #2																
+-------------------------+ +-----------------+		+------------------+																
	Process #1		Process #2				Process #3											
	+-------+ +-------+		+-------+				+-------+											
		Node #1		Node #2				Node #3						Node #4				
	+-------+ +-------+		+-------+				+-------+											
	+---------+ +---------+		+-------------+				+--------------+											
		Shared #1		Shared #2				Shared #3						Shared #4				
	+---------+ +---------+		+-------------+				+--------------+											
		+--------------+			+------------+					+------------+								
			Discovery #1					Discovery #2							Discovery #3			
	+--------------+		+------------+				+------------+											
+-------------------------+ +-----------------+		+------------------+																
+===+ +=====================+

==
\ Local Area Network \
==

Next, are the most important components of the library:

1. Node.

This class is the main interface with the users. The Node class contains all the functions that allow users
to advertise, subscribe and publish topics, as well as advertise and request services. This is the only class
that a user should directly use.

41

ign_transport Documentation, Release 2.1.0

2. NodeShared (shown as Shared in the diagram for space purposes).

A single instance of a NodeShared class is shared between all the Node objects running inside the
same process. The NodeShared instance contains all the ZMQ sockets used for sending and receiving
data for topic and service communication. The goal of this class is to share resources between a group of
nodes.

3. Discovery.

A discovery layer is required in each process to learn about the location of topics and services. Our
topics and services don’t have any location information, they are just plain strings, so we need a way to
learn where are they located (similar to a DNS service). Discovery uses a custom protocol and UDP
multicast for communicating with other Discovery instances. These instances can be located on the
same or different machines over the same LAN. At this point is not possible to discover a Node outside
of the LAN, this is a future request that will eventually be added to the library.

Discovery service

Communication occurs between nodes via named data streams, called topics. Each node has a universally unique id
(UUID) and may run on any machine in a local network. A mechanism, called discovery, is needed to help nodes find
each other and the topics that they manage.

The Discovery class implements the protocol for distributed node discovery. The topics are plain strings (/echo,
/my_robot/camera) and this layer learns about the meta information associated to each topic. The topic location,
the unique identifier of the node providing a service or its process are some examples of the information that the
discovery component learns for each topic. The main responsibility of the discovery is to keep an updated list of active
topics ready to be queried by other entities.

In Ignition Transport we use two discovery objects, each one operating on a different UDP port. One object is dedicated
to topics and the other is dedicated to services.

API

The first thing to do before using a discovery object is to create it. The Discovery class constructor requires a
parameter for specifying the UDP port to be used by the discovery sockets and the UUID of the process in which the
discovery is running. This UUID will be used when announcing a local topic.

Once a Discovery object is created it won’t discover anything. You’ll need to call the Start() function for
enabling the discovery.

Besides discovering topics from the outside world, the discovery will announce the topics that are offered in the same
process that the discovery is running. The Advertise() function will register a local topic and announce it over
the network. The symmetric Unadvertise() will notify that a topic won’t be offered anymore.

Discover() is used to learn about a given topic as soon as possible. It’s important to remark about the “as soon
as possible” because discovery will eventually learn about all the topics but this might take some time (depending on
your configuration). If a client needs to know about a particular topic, Discover() will trigger a discovery request
that will reduce the time needed to discover the information about a topic.

As you can imagine, exchanging messages over the network can be slow and we cannot block the users waiting
for discovery information. We don’t even know how many nodes are on the network so it would be hard and re-
ally slow to block and return all the information to our users when available. The way we tackle the notification
inside Discovery is through callbacks. A discovery user needs to register two callbacks: one for receiving no-
tifications when new topics are available and another for notifying when a topic is no longer active. The functions
ConnectionsCb() and DisconnectionsCb() allow the discovery user to set these two notification callbacks.
For example, a user will invoke the Discover() call and, after some time, its ConnectionCb will be executed

42 Chapter 8. Internal architecture

ign_transport Documentation, Release 2.1.0

with the information about the requested topic. In the meantime, other callback invocations could be triggered because
Discovery will pro-actively learn about all the available topics and generate notifications.

You can check the complete API details here.

[Un]Announce a local topic

This feature registers a new topic in the internal data structure that keeps all the discovery information. Local and
remote topics are stored in the same way, the only difference is that the local topics will share the process UUID with
the discovery service. We store what we call a Publisher, which contains the topic name and all the associated
meta-data.

Each publisher advertises the topic with a specific scope as described here. If the topic’s scope is PROCESS, the
discovery won’t announce it over the network. Otherwise, it will send to the multicast group an ADVERTISE message
with the following format:

HEADER
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Version | Process UUID Length |
+-+
| |
\ Process UUID \
| |
+-+
| Message Type | Flags |
+-+

The value of the Message Type field in the header is [UN]ADVERTISE.

[UN]ADVERTISE
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| |
\ Header \
| |
+-+
| |
\ Serialized Publisher \
| |
+-+

All discovery nodes will receive this request and should update its discovery information and notify its user via the
notification callbacks if they didn’t have previous information about the topic received. An ADVERTISE message
should trigger the connection callback, while an UNADVERTISE message should fire the disconnection callback.

Trigger a topic discovery

A user can call Discover() for triggering the immediate discovery of a topic. Over the wire, this call will generate
a SUBSCRIBE message with the following format:

SUBSCRIBE
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

8.1. Discovery service 43

http://ignition-transport.readthedocs.io/en/latest/nodesAndTopics/nodesAndTopics.html#topic-scope

ign_transport Documentation, Release 2.1.0

+-+
| |
\ Header \
| |
+-+
| Topic length | Topic |
+-+
| |
\ Topic \
| |
+-+

The value of the Message Type field in the header is SUBSCRIBE.

All discovery instances listening on the same port where the SUBSCRIBE message was sent will receive the message.
Each discovery instance with a local topic registered should answer with an ADVERTISE message. The answer is a
multicast message too that should be received by all discovery instances.

Topic update

Each discovery instance should periodically send an ADVERTISE message per local topic announced over the multi-
cast channel to notify that all information already announced is still valid. The frequency of sending these topic update
messages can be changed with the function SetHeartbeatInterval(). By default, the topic update frequency
is set to one second.

Alternatively, we could replace the send of all ADVERTISE messages with one HEARTBEAT message that contains
the process UUID of the discovery instance. Upon reception, all other discovery instances should update all their
entries associated with the received process UUID. Although this approach is more efficient and saves some messages
sent over the network, it prevents a discovery instance to learn about topics available without explicitly asking for
them. We think this is a good feature to have. For example, an introspection tool that shows all the topics available
can take advantage of this feature without any prior knowledge.

It is the responsibility of each discovery instance to cancel any topic that hasn’t been updated for a while. The
function SilenceInterval() sets the maximum time that an entry should be stored in memory without hearing
an ADVERTISE message. Every ADVERTISE message received should refresh the topic timestamp associated with
it.

When a discovery instance terminates, it should notify through the discovery channel that all its topics need to invali-
dated. This is performed by sending a BYE message with the following format:

BYE
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| |
\ Header \
| |
+-+

The value of the Message Type field in the header is BYE.

When this message is received, a discovery instance should invalidate all entries associated with the process UUID
contained in the header. Note that this is the expected behavior when a discovery instance gently terminates. In the
case of an abrupt termination, the lack of topic updates will cause the same result, although it’ll take a bit more time.

44 Chapter 8. Internal architecture

ign_transport Documentation, Release 2.1.0

Threading model

A discovery instance will create an additional internal thread when the user calls Start(). This thread takes care
of the topic update tasks. This involves the reception of other discovery messages and the update of the discovery
information. Also, it’s among its responsibilities to answer with an ADVERTISE message when a SUBSCRIBE
message is received and there are local topics available.

The first time announcement of a local topic and the explicit discovery request of a topic happen on the user thread.
So, in a regular scenario where the user doesn’t share discovery among other threads, all the discovery operations will
run in two threads, the user thread and the internal discovery thread spawned after calling Start(). All the functions
in the discovery are thread safe.

Multiple network interfaces

The goal of the discovery service is to discover all topics available. It’s not uncommon these days that a machine has
multiple network interfaces for its wired and wireless connections, a virtual machine, or a localhost device, among
others. By selecting one network interface and listening only on this one, we would miss the discovery messages that
are sent by instances sitting on other subnets.

Our discovery service handles this problem in several steps. First, it learns about the network interfaces that are
available locally. The determineInterfaces() function (contained in NetUtils file) returns a list of all the
network interfaces found on the machine. When we know all the available network interfaces we create a container of
sockets, one per local IP address. These sockets are used for sending discovery data over the network, flooding all the
subnets and reaching other potential discovery instances.

We use one of the sockets contained in the vector for receiving data via the multicast channel. We have to join the
multicast group for each local network interface but we can reuse the same socket. This will guarantee that our socket
will receive the multicast traffic coming from any of our local network interfaces. This is the reason for having a single
bind() function in our call even if we can receive data from multiple interfaces. Our receiving socket is the one we
register in the zmq::poll() function for processing incoming discovery data.

When it’s time to send outbound data, we iterate through the list of sockets and send the message over each one,
flooding all the subnets with our discovery requests.

Note that the result of determineInterfaces() can be manually set by using the IGN_IP environment variable,
as described here. This will essentially ignore other network interfaces, isolating all discovery traffic through the
specified interface.

8.1. Discovery service 45

ign_transport Documentation, Release 2.1.0

46 Chapter 8. Internal architecture

CHAPTER 9

API

Please, visit this link for version 2.x.

47

https://s3.amazonaws.com/osrf-distributions/ign-transport/api/2.0.0/index.html

ign_transport Documentation, Release 2.1.0

48 Chapter 9. API

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

49

	What is Ignition Transport?
	Installation
	Ubuntu Linux
	Mac OS X
	Windows
	Install from sources (Ubuntu Linux)

	Understanding nodes and topics
	Nodes
	Topics
	Topic scope
	Partition and namespaces

	Node communication via messages
	Publisher
	Subscriber
	Building the code
	Running the examples

	Node communication via services
	Responser
	Synchronous requester
	Asynchronous requester
	Oneway responser
	Oneway requester
	Service without input parameter
	Empty requester sync and async
	Building the code
	Running the examples

	Configuration via environment variables
	How to contribute
	Development process
	Debugging Ignition Transport
	Code Check

	Internal architecture
	Discovery service

	API
	Indices and tables

