
Idyll Documentation
Release 0.1.0

Marcus Ottosson

December 27, 2016

Contents

1 Getting Started 3
1.1 Pre-conditions . 3
1.2 Software Configuration . 3
1.3 Private and Public . 4
1.4 Asset Management . 4

2 Indices and tables 7

i

ii

Idyll Documentation, Release 0.1.0

Welcome to Idyll v0.1.0.

Idyll is the description of the ideal setup and situation for integration with Pipi.

Pipi is a decentralised pipeline and as such differ from what you may expect from a traditional method. It is the goal
of this guide to enlighten you of this difference as well as introduce you to some of the benefits and reasoning behind
why this route was chosen.

Contents 1

Idyll Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Getting Started

1.1 Pre-conditions

This guide will walk you through the ideal setup for use with Pipi.

The goal is to minimise/remove as many pre-conditions (PCs) as possible, but for the time being anything not con-
forming to the following will require bespoke integration.

• PC1: You should be running either Windows 7 or 8.1, 64-bit with at least 2GB of disk space available.

• PC2: Production should be centered around Maya and Nuke.

• PC3: For production tracking you should be using Asana.

• PC4: Your crew should consist of around 1-10 members with >= 1 technical artist.

• PC5: Production should be full CG and centered around Character-Animation.

Next: Software Configuration

1.2 Software Configuration

Pipi is context-sensitive and treats each running software as a context. This means that any action you take within
Software X will be relative to Software X. This way, you and Pipi share knowledge on your current situation so as to
save you being overly specific when performing common actions such as loading, saving and publishing your work.

For Pipi to be context sensitive there is the notion of a launcher. A launcher is a minimal application that runs other
applications. The only difference between running software via a launcher an running it by hand is the context being
set and injected into the application upon launch. By injecting a context, Software X can be made aware of your
circumstance and in so doing expose this circumstance to tools used within Software X.

Context in this context (no pun intended) means the modification of environment variables of your system. Prior
to running any application - also called process - a copy of your environment is made. The launcher modifies your
environment prior to running a new process so as to allow each process a copy of a custom environment as opposed to
the unmodified environment it would otherwise get from running it by hand.

Some examples of variables modified by a launcher are PATH and PYTHONPATH for context-dependent executables
and Python scripts respectively.

Pipi is file-based. This means that all of its configuration is located on disk as plain files and that it will be able to
determine your context from looking at where you are within a hierarchy of content.

3

http://asana.com

Idyll Documentation, Release 0.1.0

projects
spiderman
assets

Peter

For example, this path - /projects/spiderman/assets/Peter - points to the hero asset Peter within a project called spider-
man. To Pipi, this is a context and working within it means to perform every action - load, save, publish - relative to
Peter.

1.3 Private and Public

Files in a projects are known to Pipi as either Private or Public. Private files are those owned by users and are not
intended for use by other than the original author. Examples include scene-files, notes, reference images, tasks. On
the other hand there are Public files which are created by one or more users and intended for one or more other users.
Files are made public when a user publishes his work onto a central location.

/Peter/private/marcus/softwarex
/Peter/public/v001

This separation is due to quality-assurance and creative freedom.

1.3.1 Filtering

Upon publishing, files may be processed in order to conform to an overarching policy within a central location. For
example, the policy at your studio may be for geometry to be built in-line with real world scale. As such, whenever
an artists attempts to publish his model at 0.3 nanometer, or 300 million kilometers in diameter, a filter may trigger a
warning or error depending on how severe the fault is considered and require the artist to re-factor his work in order
to qualify for given policy.

This way, supervisors can maintain a level of quality across work produced by multiple artists.

1.3.2 Workspaces

Workspaces are context-dependent directories in which artists save their work. Each artist produces their own unique
folder within an additional folder per tool.

Peter
private
marcus

softwarex
myfiles.exe

As mentioned previously, Pipi is file-based and context-sensitive. Here, both users and software provide context in
addition to the particular asset being worked upon which allows tools to be constructed with awareness of all three.

1.4 Asset Management

One of the major design decisions made with Pipi is the encapsulation of content and meta-content within single
branches of directories.

4 Chapter 1. Getting Started

Idyll Documentation, Release 0.1.0

For example, the directory /assets/Peter contains all data relevant to this asset. This may be what you would expect,
however an alternative, perhaps more traditional method is to separate content produced by artists, content published
by artists and the metadata associated with a particular assets into three separate branches.

/work
Peter
myscene.mb

/published
Peter
v001.mb

Where metadata is stored within a database such as mySQL or mongoDB and only accessible via scripts. One of the
reasons for this separation is technical; directories are simply incapable of storing additional metadata and files are
limited in how they allow you to modify them. With the advent of Open Metadata however, this limitation is not longer
the case and we are again free to join metadata with its content.

As such, in Pipi, the hierarchy looks like this:

/Peter
.meta
Asset.class

private
marcus

maya
myscene.mb

public
v001

This way, you are free to rearrange your content, either permanently or dynamically at any point in time as well as
transmit or archive content and always rest assured that no content is ever out of sync.

1.4.1 Tagging

Traditionally, identifying content within a hierarchy is performed via associating an absolute path to keywords or
collection of keywords.

/projects/spiderman/assets/Peter

This path refers to an asset within the project Spiderman, identifying this asset may look like this:

assets = {'Peter': '/projects/spiderman/assets/Peter'}

However, hard-coding absolute paths may make it difficult to change your mind so further convention may be built:

assets = {'Peter': '$ROOT/$PROJECT/$ASSETS/Peter'}

Here, keywords have been inserted in-place of actual path-names that may be resolved at run-time. As you can see,
there is no longer any mention of the project’s name. This way, you are free to re-use tools built upon them in other
projects.

We’ve chosen a different approach. As part of the decentralised philosophy surrounding Pipi, the meaning of content
is stored together with the content itself to form content that is so-called self-describing:

/spiderman
assets
Peter
Mary
Goblin

shots

1.4. Asset Management 5

Idyll Documentation, Release 0.1.0

1000
2000
3000

In this example, spiderman consists of 3 assets and 3 shots. Tagging is utilised to place additional meaning into each
directory.

/spiderman <-- Project
assets
Peter <-- Asset
Mary <-- Asset
Goblin <-- Asset

shots
1000 <-- Shot
2000 <-- Shot
3000 <-- Shot

Tagging is performed via a library called cQuery[1]_

1.4.2 Namespaces

For context sensitivity, Pipi treats the current working directory as namespace. This means that while your are located
within a certain directory, the actions you take within this directory will be relative this directory.

This also has an effect on the layout of your directories.

/projects/spiderman/models/Peter
/projects/spiderman/rigs/Peter
/projects/spiderman/shaders/Peter

In the above example, models are collected within a common directory and each asset separates their corresponding
model by name. In this scenario, metadata stored at the models directory of Peter will not be visible with metadata
stored with rigs and as such will either need to be duplicated or remembered.

Considering that Peter is more likely to pertain metadata than models, a more efficient layout may look like the
following:

/projects/spiderman/Peter/models
/projects/spiderman/Peter/rigs
/projects/spiderman/Peter/shaders

In this example, we may associate metadata with Peter and it would remain consistent whether you are exploring his
models, rigs or shaders.

6 Chapter 1. Getting Started

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

	Getting Started
	Pre-conditions
	Software Configuration
	Private and Public
	Asset Management

	Indices and tables

