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CHAPTER 1

The Idris Tutorial

This is the Idris Tutorial. It will teach you about programming in the Idris Language.

Note: The documentation for Idris has been published under the Creative Commons CC0 License.
As such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CC0 can be found online at:
http://creativecommons.org/publicdomain/zero/1.0/

1.1 Introduction

In conventional programming languages, there is a clear distinction between types and values. For
example, in Haskell, the following are types, representing integers, characters, lists of characters, and
lists of any value respectively:

• Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

• 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to
“depend” on values — in other words, types are a first class language construct and can be manipulated
like any other value. The standard example is the type of lists of a given length 1, Vect n a, where a is
the element type and n is the length of the list and can be an arbitrary term.

When types can contain values, and where those values describe properties, for example the length of a
list, the type of a function can begin to describe its own properties. Take for example the concatenation
of two lists. This operation has the property that the resulting list’s length is the sum of the lengths of
the two input lists. We can therefore give the following type to the app function, which concatenates
vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces Idris, a general purpose functional programming language with dependent types.
The goal of the Idris project is to build a dependently typed language suitable for verifiable general pur-
pose programming. To this end, Idris is a compiled language which aims to generate efficient executable
code. It also has a lightweight foreign function interface which allows easy interaction with external C

1 Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”
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libraries.

1.1.1 Intended Audience

This tutorial is intended as a brief introduction to the language, and is aimed at readers already familiar
with a functional language such as Haskell or OCaml. In particular, a certain amount of familiarity with
Haskell syntax is assumed, although most concepts will at least be explained briefly. The reader is also
assumed to have some interest in using dependent types for writing and verifying systems software.

1.1.2 Example Code

This tutorial includes some example code, which has been tested with against Idris. These files are
available with the Idris distribution, so that you can try them out easily. They can be found under
samples. It is, however, strongly recommended that you type them in yourself, rather than simply
loading and reading them.

1.2 Getting Started

1.2.1 Prerequisites

Before installing Idris, you will need to make sure you have all of the necessary libraries and tools. You
will need:

• A fairly recent Haskell platform. Version 2013.2.0.0 should be sufficiently recent, though it is
better to be completely up to date.

• The GNU Multiple Precision Arithmetic Library (GMP) is available from MacPorts/Homebrew
and all major Linux distributions.

1.2.2 Downloading and Installing

The easiest way to install Idris, if you have all of the prerequisites, is to type:

cabal update; cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you
would like the most up to date development version you can find it, as well as build instructions, on
GitHub at: https://github.com/idris-lang/Idris-dev.

If you haven’t previously installed anything using Cabal, then Idris may not be on your path. Should
the Idris executable not be found please ensure that you have added ~/.cabal/bin to your $PATH
environment variable. Mac OS X users may find they need to add ~/Library/Haskell/bin instead, and
Windows users will typically find that Cabal installs programs in %HOME%\AppData\Roaming\cabal\bin.

To check that installation has succeeded, and to write your first Idris program, create a file called
hello.idr containing the following text:

module Main

main : IO ()
main = putStrLn "Hello world"
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If you are familiar with Haskell, it should be fairly clear what the program is doing and how it works,
but if not, we will explain the details later. You can compile the program to an executable by entering
idris hello.idr -o hello at the shell prompt. This will create an executable called hello, which
you can run:

$ idris hello.idr -o hello
$ ./hello
Hello world

Please note that the dollar sign $ indicates the shell prompt! Some useful options to the Idris command
are:

• -o prog to compile to an executable called prog.

• --check type check the file and its dependencies without starting the interactive environment.

• --package pkg add package as dependency, e.g. --package contrib to make use of the contrib
package.

• --help display usage summary and command line options.

1.2.3 The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You should see something
like the following:

$ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.99

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Idris>

This gives a ghci style interface which allows evaluation of, as well as type checking of, expressions;
theorem proving, compilation; editing; and various other operations. The command :? gives a list of
supported commands. Below, we see an example run in which hello.idr is loaded, the type of main is
checked and then the program is compiled to the executable hello. Type checking a file, if successful,
creates a bytecode version of the file (in this case hello.ibc) to speed up loading in future. The bytecode
is regenerated if the source file changes.

$ idris hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.99

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr
*hello> :t main
Main.main : IO ()
*hello> :c hello
*hello> :q
Bye bye
$ ./hello
Hello world
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1.3 Types and Functions

1.3.1 Primitive Types

Idris defines several primitive types: Int, Integer and Double for numeric operations, Char and String
for text manipulation, and Ptr which represents foreign pointers. There are also several data types
declared in the library, including Bool, with values True and False. We can declare some constants with
these types. Enter the following into a file Prims.idr and load it into the Idris interactive environment
by typing idris Prims.idr:

module Prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = 'Z'

quux : Bool
quux = False

An Idris file consists of an optional module declaration (here module Prims) followed by an optional list
of imports and a collection of declarations and definitions. In this example no imports have been specified.
However Idris programs can consist of several modules and the definitions in each module each have their
own namespace. This is discussed further in Section Modules and Namespaces (page 28)). When writing
Idris programs both the order in which definitions are given and indentation are significant. Functions
and data types must be defined before use, incidentally each definition must have a type declaration, for
example see x : Int, foo : String, from the above listing. New declarations must begin at the same
level of indentation as the preceding declaration. Alternatively, a semicolon ; can be used to terminate
declarations.

A library module prelude is automatically imported by every Idris program, including facilities for IO,
arithmetic, data structures and various common functions. The prelude defines several arithmetic and
comparison operators, which we can use at the prompt. Evaluating things at the prompt gives an answer,
and the type of the answer. For example:

*prims> 6*6+6
42 : Integer
*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types. They are
overloaded using interfaces, as we will discuss in Section Interfaces (page 21) and can be extended to
work on user defined types. Boolean expressions can be tested with the if...then...else construct,
for example:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String

1.3.2 Data Types

Data types are declared in a similar way and with similar syntax to Haskell. Natural numbers and lists,
for example, can be declared as follows:
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data Nat = Z | S Nat -- Natural numbers
-- (zero and successor)

data List a = Nil | (::) a (List a) -- Polymorphic lists

The above declarations are taken from the standard library. Unary natural numbers can be either zero
(Z), or the successor of another natural number (S k). Lists can either be empty (Nil) or a value added
to the front of another list (x :: xs). In the declaration for List, we used an infix operator ::. New
operators such as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constructors may all be given infix operators as names. They may
be used in prefix form if enclosed in brackets, e.g. (::). Infix operators can use any of the symbols:

:+-*\/=.?|&><!@$%^~#

Some operators built from these symbols can’t be user defined. These are :, =>, ->, <-, =, ?=, |, **,
==>, \, %, ~, ?, and !.

1.3.3 Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main
difference is that Idris requires type declarations for all functions, using a single colon : (rather than
Haskell’s double colon ::). Some natural number arithmetic functions can be defined as follows, again
taken from the standard library:

-- Unary addition
plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

-- Unary multiplication
mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat, and are implemented
using the above functions. Unlike Haskell, there is no restriction on whether types and function names
must begin with a capital letter or not. Function names (plus and mult above), data constructors (Z, S,
Nil and ::) and type constructors (Nat and List) are all part of the same namespace. By convention,
however, data types and constructor names typically begin with a capital letter. We can test these
functions at the Idris prompt:

Idris> plus (S (S Z)) (S (S Z))
4 : Nat
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
12 : Nat

Note: When displaying an element of Nat such as (S (S (S (S Z)))), Idris displays it as 4. The
result of plus (S (S Z)) (S (S Z)) is actually (S (S (S (S Z)))) which is the natural number 4.
This can be checked at the Idris prompt:

Idris> (S (S (S (S Z))))
4 : Nat

Like arithmetic operations, integer literals are also overloaded using interfaces, meaning that we can also
test the functions as follows:
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Idris> plus 2 2
4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

You may wonder, by the way, why we have unary natural numbers when our computers have perfectly
good integer arithmetic built in. The reason is primarily that unary numbers have a very convenient
structure which is easy to reason about, and easy to relate to other data structures as we will see later.
Nevertheless, we do not want this convenience to be at the expense of efficiency. Fortunately, Idris knows
about the relationship between Nat (and similarly structured types) and numbers. This means it can
optimise the representation, and functions such as plus and mult.

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which
reverses a list, we can use an auxiliary function which accumulates the new, reversed list, and which does
not need to be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer
function.

Note: Scope

Any names which are visible in the outer scope are also visible in the where clause (unless they have
been redefined, such as xs here). A name which appears only in the type will be in scope in the where
clause if it is a parameter to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such as the following where MyLT
is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like any top level function.
However, the type declaration for a function f can be omitted if:

• f appears in the right hand side of the top level definition

• The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where
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odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w

1.3.4 Dependent Types

First Class Types

In Idris, types are a first class language construct, meaning that they can be computed and manipulated
(and passed to functions) just like any other language construct. For example, we could write a function
which computes a type:

isSingleton : Bool -> Type
isSingleton True = Nat
isSingleton False = List Nat

This function calculates the appropriate type from a Bool which flags whether the type should be a
singleton or not. We can use this function to calculate a type anywhere that a type can be used. For
example, it can be used to calculate a return type:

mkSingle : (x : Bool) -> isSingleton x
mkSingle True = 0
mkSingle False = []

Or it can be used to have varying input types. The following function calculates either the sum of a list
of Nat, or returns the given Nat, depending on whether the singleton flag is true:

sum : (single : Bool) -> isSingleton single -> Nat
sum True x = x
sum False [] = 0
sum False (x :: xs) = x + sum False xs

Vectors

A standard example of a dependent data type is the type of “lists with length”, conventionally called
vectors in the dependent type literature. They are available as part of the Idris library, by importing
Data.Vect, or we can declare them as follows:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this
is accepted by Idris, provided that the names are declared in different namespaces (in practice, normally
in different modules). Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple
type declarations above. We explicitly state the type of the type constructor Vect — it takes a Nat and
a type as an argument, where Type stands for the type of types. We say that Vect is indexed over Nat
and parameterised by Type. Each constructor targets a different part of the family of types. Nil can
only be used to construct vectors with zero length, and :: to construct vectors with non-zero length. In
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the type of ::, we state explicitly that an element of type a and a tail of type Vect k a (i.e., a vector
of length k) combine to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way as on simple types such as
List and Nat above, by pattern matching. The type of a function over Vect will describe what happens
to the lengths of the vectors involved. For example, ++, defined as follows, appends two Vect:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we
get the definition wrong in such a way that this does not hold, Idris will not accept the definition. For
example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs -- BROKEN

When run through the Idris type checker, this results in the following:

$ idris vbroken.idr --check
vbroken.idr:9:23:When elaborating right hand side of Vect.++:
When elaborating an application of constructor Vect.:::

Type mismatch between
Vect (k + k) a (Type of xs ++ xs)

and
Vect (plus k m) a (Expected type)

Specifically:
Type mismatch between

plus k k
and

plus k m

This error message suggests that there is a length mismatch between two vectors — we needed a vector
of length k + m, but provided a vector of length k + k.

The Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are available as part
of the Idris library, by importing Data.Fin, or can be declared as follows:

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

From the signature, we can see that this is a type constructor that takes a Nat, and produces a type. So
this is not a set in the sense of a collection that is a container of objects, rather it is the canonical set
of unnamed elements, as in “the set of 5 elements,” for example. Effectively, it is a type that captures
integers that fall into the range of zero to (n - 1) where n is the argument used to instantiate the Fin
type. For example, Fin 5 can be thought of as the type of integers between 0 and 4.

Let us look at the constructors in greater detail.

FZ is the zeroth element of a finite set with S k elements; FS n is the n+1th element of a finite set with
S k elements. Fin is indexed by a Nat, which represents the number of elements in the set. Since we
can’t construct an element of an empty set, neither constructor targets Fin Z.

As mentioned above, a useful application of the Fin family is to represent bounded natural numbers.
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Since the first n natural numbers form a finite set of n elements, we can treat Fin n as the set of integers
greater than or equal to zero and less than n.

For example, the following function which looks up an element in a Vect, by a bounded index given as
a Fin n, is defined in the prelude:

index : Fin n -> Vect n a -> a
index FZ (x :: xs) = x
index (FS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is bounded by the length of
the vector (n in each case), so there is no need for a run-time bounds check. The type checker guarantees
that the location is no larger than the length of the vector, and of course no less than zero.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element of
Fin Z, and the location is a Fin n, then n can not be Z. As a result, attempting to look up an element
in an empty vector would give a compile time type error, since it would force n to be Z.

Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a.
But there are also two names, n and a, which are not declared explicitly. These are implicit arguments
to index. We could also write the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index;
their values can be inferred from the types of the Fin n and Vect n a arguments. Any name beginning
with a lower case letter which appears as a parameter or index in a type declaration, which is not applied
to any arguments, will always be automatically bound as an implicit argument. Implicit arguments can
still be given explicitly in applications, using {a=value} and {n=value}, for example:

index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of
index as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by
making the purpose of an argument more clear.

Furthermore, {} can be used to pattern match on the left hand side, i.e. {var = pat} gets an implicit
variable and attempts to pattern match on “pat”; For example :

isEmpty : Vect n a -> Bool
isEmpty {n = Z} _ = True
isEmpty {n = S k} _ = False

“using” notation

Sometimes it is useful to provide types of implicit arguments, particularly where there is a dependency
ordering, or where the implicit arguments themselves have dependencies. For example, we may wish to
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state the types of the implicit arguments in the following definition, which defines a predicate on vectors
(this is also defined in Data.Vect, under the name Elem):

data IsElem : a -> Vect n a -> Type where
Here : {x:a} -> {xs:Vect n a} -> IsElem x (x :: xs)
There : {x,y:a} -> {xs:Vect n a} -> IsElem x xs -> IsElem x (y :: xs)

An instance of IsElem x xs states that x is an element of xs. We can construct such a predicate if the
required element is Here, at the head of the vector, or There, in the tail of the vector. For example:

testVec : Vect 4 Int
testVec = 3 :: 4 :: 5 :: 6 :: Nil

inVect : IsElem 5 Main.testVec
inVect = There (There Here)

Important: Implicit Arguments and Scope

Within the type signature the typechecker will treat all variables that start with an lowercase letter and
are not applied to something else as an implicit variable. To get the above code example to compile you
will need to provide a qualified name for testVec. In the example above, we have assumed that the code
lives within the Main module.

If the same implicit arguments are being used a lot, it can make a definition difficult to read. To avoid
this problem, a using block gives the types and ordering of any implicit arguments which can appear
within the block:

using (x:a, y:a, xs:Vect n a)
data IsElem : a -> Vect n a -> Type where

Here : IsElem x (x :: xs)
There : IsElem x xs -> IsElem x (y :: xs)

Note: Declaration Order and mutual blocks

In general, functions and data types must be defined before use, since dependent types allow functions to
appear as part of types, and type checking can rely on how particular functions are defined (though this
is only true of total functions; see Section Totality Checking (page 41))). However, this restriction can
be relaxed by using a mutual block, which allows data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, first all of the type declarations are added, then the function bodies. As a result,
none of the function types can depend on the reduction behaviour of any of the functions in the block.

1.3.5 I/O

Computer programs are of little use if they do not interact with the user or the system in some way. The
difficulty in a pure language such as Idris — that is, a language where expressions do not have side-effects
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— is that I/O is inherently side-effecting. Therefore in Idris, such interactions are encapsulated in the
type IO:

data IO a -- IO operation returning a value of type a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O operations to be
executed are, rather than how to execute them. The resulting operations are executed externally, by the
run-time system. We’ve already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element of the unit type () via an
I/O action. There is a variant putStr which outputs a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files,
including:

data File -- abstract
data Mode = Read | Write | ReadWrite

openFile : (f : String) -> (m : Mode) -> IO (Either FileError File)
closeFile : File -> IO ()

fGetLine : (h : File) -> IO (Either FileError String)
fPutStr : (h : File) -> (str : String) -> IO (Either FileError ())
fEOF : File -> IO Bool

Note that several of these return Either, since they may fail.

1.3.6 “do” notation

I/O programs will typically need to sequence actions, feeding the output of one computation into the
input of the next. IO is an abstract type, however, so we can’t access the result of a computation directly.
Instead, we sequence operations with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO a, and puts the result, of type
a into the variable x. In this case, getLine returns an IO String, so name has type String. Indentation
is significant — each statement in the do block must begin in the same column. The pure operation
allows us to inject a value directly into an IO operation:

pure : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.
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1.3.7 Laziness

Normally, arguments to functions are evaluated before the function itself (that is, Idris uses eager eval-
uation). However, this is not always the best approach. Consider the following function:

ifThenElse : Bool -> a -> a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

This function uses one of the t or e arguments, but not both (in fact, this is used to implement the
if...then...else construct as we will see later. We would prefer if only the argument which was used
was evaluated. To achieve this, Idris provides a Lazy data type, which allows evaluation to be suspended:

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

A value of type Lazy a is unevaluated until it is forced by Force. The Idris type checker knows about
the Lazy type, and inserts conversions where necessary between Lazy a and a, and vice versa. We can
therefore write ifThenElse as follows, without any explicit use of Force or Delay:

ifThenElse : Bool -> Lazy a -> Lazy a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

1.3.8 Codata Types

Codata types are like regular data types, except that they allow for us to define infinite data structures.
More precisely, for a type T, each of its constructor arguments of type T are transformed into a coinductive
parameter Inf T. This makes each of the T arguments lazy, and allows infinite data structures of type T
to be built. One example of a codata type is Stream, which is defined as follows.

codata Stream : Type -> Type where
(::) : (e : a) -> Stream a -> Stream a

This gets translated into the following by the compiler.

data Stream : Type -> Type where
(::) : (e : a) -> Inf (Stream a) -> Stream a

The following is an example of how the codata type Stream can be used to form an infinite data structure.
In this case we are creating an infinite stream of ones.

ones :: Stream Nat
ones = 1 :: ones

It is important to note that codata does not allow the creation of infinite mutually recursive data
structures. For example the following will create an infinite loop and cause a stack overflow.

mutual
codata Blue a = B a (Red a)
codata Red a = R a (Blue a)

mutual
blue : Blue Nat
blue = B 1 red

red : Red Nat
red = R 1 blue
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mutual
findB : (a -> Bool) -> Blue a -> a
findB f (B x r) = if f x then x else findR f r

findR : (a -> Bool) -> Red a -> a
findR f (R x b) = if f x then x else findB f b

main : IO ()
main = do printLn $ findB (== 1) blue

To fix this we must add explicit Inf declarations to the constructor parameter types, since codata will
not add it to constructor parameters of a different type from the one being defined. For example, the
following outputs “1”.

mutual
data Blue : Type -> Type where
B : a -> Inf (Red a) -> Blue a

data Red : Type -> Type where
R : a -> Inf (Blue a) -> Red a

mutual
blue : Blue Nat
blue = B 1 red

red : Red Nat
red = R 1 blue

mutual
findB : (a -> Bool) -> Blue a -> a
findB f (B x r) = if f x then x else findR f r

findR : (a -> Bool) -> Red a -> a
findR f (R x b) = if f x then x else findB f b

main : IO ()
main = do printLn $ findB (== 1) blue

1.3.9 Useful Data Types

Idris includes a number of useful data types and library functions (see the libs/ directory in the distri-
bution). This chapter describes a few of these. The functions described here are imported automatically
by every Idris program, as part of Prelude.idr.

List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in fact, names in general)
can be overloaded, provided that they are declared in different namespaces (see Section Modules and
Namespaces (page 28)), and will typically be resolved according to their type. As syntactic sugar, any
type with the constructor names Nil and :: can be written in list form. For example:
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• [] means Nil

• [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map is overloaded both for
List and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, given the following vector of integers, and a function to double an integer:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

the function map can be used as follows to double every element in the vector:

*usefultypes> show (map double intVec)
"[2, 4, 6, 8, 10]" : String

For more details of the functions available on List and Vect, look in the library files:

• libs/prelude/Prelude/List.idr

• libs/base/Data/List.idr

• libs/base/Data/Vect.idr

• libs/base/Data/VectType.idr

Functions include filtering, appending, reversing, and so on. Also remember that Idris is still in devel-
opment, so if you don’t see the function you need, please feel free to add it and submit a patch!

Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous
function:

*usefultypes> show (map (\x => x * 2) intVec)
"[2, 4, 6, 8, 10]" : String

The notation \x => val constructs an anonymous function which takes one argument, x and returns
the expression val. Anonymous functions may take several arguments, separated by commas, e.g. \x,
y, z => val. Arguments may also be given explicit types, e.g. \x : Int => x * 2, and can pattern
match, e.g. \(x, y) => x + y. We could also use an operator section:

*usefultypes> show (map (* 2) intVec)
"[2, 4, 6, 8, 10]" : String

(*2) is shorthand for a function which multiplies a number by 2. It expands to \x => x * 2. Similarly,
(2*) would expand to \x => 2 * x.
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Maybe

Maybe describes an optional value. Either there is a value of the given type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example, looking something up in
a List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value,
if there is one, or by providing a default value:

maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b

Note that the types of the first two arguments are wrapped in Lazy. Since only one of the two arguments
will actually be used, we mark them as Lazy in case they are large expressions where it would be wasteful
to compute and then discard them.

Tuples

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a b or MkPair
a b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

*usefultypes> fst jim
"Jim" : String
*usefultypes> snd jim
(25, "Cambridge") : (Int, String)
*usefultypes> jim == ("Jim", (25, "Cambridge"))
True : Bool

Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element.
Traditionally, these are referred to as “sigma types”:

data DPair : (a : Type) -> (P : a -> Type) -> Type where
MkDPair : {P : a -> Type} -> (x : a) -> P x -> DPair a P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a pair of A and P, where the name
a can occur inside P. ( a ** p ) constructs a value of this type. For example, we can pair a number
with a Vect of a particular length.

16
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vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

If you like, you can write it out the long way, the two are precisely equivalent.

vec : DPair Nat (\n => Vect n Int)
vec = MkDPair 2 [3, 4]

The type checker could of course infer the value of the first element from the length of the vector. We
can write an underscore _ in place of values which we expect the type checker to fill in, so the above
definition could also be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

One use for dependent pairs is to return values of dependent types where the index is not necessarily
known in advance. For example, if we filter elements out of a Vect according to some predicate, we will
not know in advance what the length of the resulting vector will be:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to extract the length and the
vector from the result. To do this, we use with notation, which allows pattern matching on intermediate
values:

filter p (x :: xs) with (filter p xs)
| ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )

We will see more on with notation later.

Records

Records are data types which collect several values (the record’s fields) together. Idris provides syntax
for defining records and automatically generating field access and update functions. Unlike the syntax
used for data structures, records in Idris follow a different syntax to that seen with Haskell. For example,
we can represent a person’s name and age in a record:

record Person where
constructor MkPerson
firstName, middleName, lastName : String
age : Int

fred : Person
fred = MkPerson "Fred" "Joe" "Bloggs" 30

The constructor name is provided using the constructor keyword, and the fields are then given which
are in an indented block following the where keyword (here, firstName, middleName, lastName, and
age). You can declare multiple fields on a single line, provided that they have the same type. The field
names can be used to access the field values:
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*record> firstName fred
"Fred" : String
*record> age fred
30 : Int
*record> :t firstName
firstName : Person -> String

We can also use the field names to update a record (or, more precisely, produce a copy of the record
with the given fields updated):

*record> record { firstName = "Jim" } fred
MkPerson "Jim" "Joe" "Bloggs" 30 : Person
*record> record { firstName = "Jim", age $= (+ 1) } fred
MkPerson "Jim" "Joe" "Bloggs" 31 : Person

The syntax record { field = val, ... } generates a function which updates the given fields in a
record. = assigns a new value to a field, and $= applies a function to update its value.

Each record is defined in its own namespace, which means that field names can be reused in multiple
records.

Records, and fields within records, can have dependent types. Updates are allowed to change the type
of a field, provided that the result is well-typed.

record Class where
constructor ClassInfo
students : Vect n Person
className : String

It is safe to update the students field to a vector of a different length because it will not affect the type
of the record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo [MkPerson "Fred" "Joe" "Bloggs" 30] "CS" : Class

Nested record update

Idris also provides a convenient syntax for accessing and updating nested records. For example, if a field
is accessible with the expression c (b (a x)), it can be updated using the following syntax:

record { a->b->c = val } x

This returns a new record, with the field accessed by the path a->b->c set to val. The syntax is first
class, i.e. record { a->b->c = val } itself has a function type. Symmetrically, the field can also be
accessed with the following syntax:

record { a->b->c } x

Dependent Records

Records can also be dependent on values. Records parameters, which are not subject to field updates.
The parameters appear as arguments to the resulting type, and are written following the record type
name. For example, a pair type could be defined as follows:
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record Prod a b where
constructor Times
fst : a
snd : b

Using the class record from the original introduction to records. The size of the class can be restricted
using a Vect and the size promoted to the type level by parameterising the record with the size. For
example:

record SizedClass (size : Nat) where
constructor SizedClassInfo
students : Vect size Person
className : String

Note that it is no longer possible to use the addStudent function from earlier, since that would change
the size of the class. A function to add a student must now specify in the type that the size of the
class has been increased by one. As the size is specified using natural numbers, the new value can be
incremented using the S constructor.

addStudent : Person -> SizedClass n -> SizedClass (S n)
addStudent p c = SizedClassInfo (p :: students c) (className c)

1.3.10 More Expressions

let bindings

Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs' = reverse xs in

xs ++ xs'

We can do simple pattern matching in let bindings too. For example, we can extract fields from a record
as follows, as well as by pattern matching at the top level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++ " years old"

List comprehensions

Idris provides comprehension notation as a convenient shorthand for building lists. The general form is:

[ expression | qualifiers ]

This generates the list of values produced by evaluating the expression, according to the conditions
given by the comma separated qualifiers. For example, we can build a list of Pythagorean triples as
follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [ (x, y, z) | z <- [1..n], y <- [1..z], x <- [1..y],

x*x + y*y == z*z ]

The [a..b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and c with the increment specified by the difference between
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a and b. This works for type Nat, Int and Integer, using the enumFromTo and enumFromThenTo function
from the prelude.

case expressions

Another way of inspecting intermediate values of simple types is to use a case expression. The following
function, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the point where the given
function returns true. We then deconstruct the pair it returns, and remove the first character of the
second string.

A case expression can match several cases, for example, to inspect an intermediate value of type Maybe
a. Recall list_lookup which looks up an index in a list, returning Nothing if the index is out of bounds.
We can use this to write lookup_default, which looks up an index and returns a default value if the
index is out of bounds:

lookup_default : Nat -> List a -> a -> a
lookup_default i xs def = case list_lookup i xs of

Nothing => def
Just x => x

If the index is in bounds, we get the value at that index, otherwise we get a default value:

*usefultypes> lookup_default 2 [3,4,5,6] (-1)
5 : Integer
*usefultypes> lookup_default 4 [3,4,5,6] (-1)
-1 : Integer

Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid
the need to write auxiliary functions, and is also used internally to implement pattern matching let and
lambda bindings. It will only work if:

• Each branch matches a value of the same type, and returns a value of the same type.

• The type of the result is “known”. i.e. the type of the expression can be determined without type
checking the case-expression itself.

1.3.11 Totality

A total function is a function that terminates for all possible inputs, or one that is guaranteed to produce
some output before making a recursive call. For example, Idris’ head function is total for all lists:

Idris> :t Prelude.List.head
head : (l : List a) -> {auto ok : NonEmpty l} -> a

The {auto ok : NonEmpty l} tells us that Idris won’t compile if we try to call head on an empty list.
The implementation is as follows:

||| Get the first element of a non-empty list
||| @ ok proof that the list is non-empty
head : (l : List a) -> {auto ok : NonEmpty l} -> a
head [] {ok=IsNonEmpty} impossible
head (x::xs) {ok=p} = x
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(Note that this implementation is in contrast to Haskell’s head, which is not total and will fail at runtime
rather than compile time.) The following Idris code will compile:

module Main

main : IO ()
main = do

let x : Integer = head [1,2,3]
print x

And will print 1. However, the same code with head [] won’t compile:

test.idr:5:26:When checking right hand side of main with expected type
IO ()

When checking argument ok to function Prelude.List.head:
Can't find a value of type

NonEmpty []

We can’t bind and print x because head [] doesn’t type check.

However, we might imagine a function, unsafeHead, that is identical to Idris’ head function except that
it is not total: it will error out at runtime if called on an empty list. (This is similar to the behavior of
Haskell’s head function.) unsafeHead might look like this:

-- Unsafe head example!
unsafeHead : List a -> a
unsafeHead (x::xs) = x

And although it typechecks and compiles, it will not reduce (that is, evaluation of the function will cause
it to change):

unsafe> the Integer $ unsafeHead [1, 2, 3]
1 : Integer
unsafe> the Integer $ unsafeHead []
unsafeHead [] : Integer

Functions that are not total are known as partial functions. As mentioned in the note about mutual
blocks, non-total definitions aren’t reduced when type checking because they are not well-defined for all
possible inputs.

1.4 Interfaces

We often want to define functions which work across several different data types. For example, we would
like arithmetic operators to work on Int, Integer and Double at the very least. We would like == to
work on the majority of data types. We would like to be able to display different types in a uniform way.

To achieve this, we use interfaces, which are similar to type classes in Haskell or traits in Rust. To define
an interface, we provide a collection of overloadable functions. A simple example is the Show interface,
which is defined in the prelude and provides an interface for converting values to String:

interface Show a where
show : a -> String

This generates a function of the following type (which we call a method of the Show interface):

show : Show a => a -> String

We can read this as: “under the constraint that a has an implementation of Show, take an input a and
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return a String.” An implementation of an interface is defined by giving definitions of the methods of
the interface. For example, the Show implementation for Nat could be defined as:

Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Only one implementation of an interface can be given for a type — implementations may not overlap.
Implementation declarations can themselves have constraints. To help with resolution, the arguments of
an implementation must be constructors (either data or type constructors), variables or constants (i.e.
you cannot give an implementation for a function). For example, to define a Show implementation for
vectors, we need to know that there is a Show implementation for the element type, because we are going
to use it to convert each element to a String:

Show a => Show (Vect n a) where
show xs = "[" ++ show' xs ++ "]" where

show' : Vect n a -> String
show' Nil = ""
show' (x :: Nil) = show x
show' (x :: xs) = show x ++ ", " ++ show' xs

1.4.1 Default Definitions

The library defines an Eq interface which provides methods for comparing values for equality or inequality,
with implementations for all of the built-in types:

interface Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

To declare an implementation for a type, we have to give definitions of all of the methods. For example,
for an implementation of Eq for Nat:

Eq Nat where
Z == Z = True
(S x) == (S y) = x == y
Z == (S y) = False
(S x) == Z = False

x /= y = not (x == y)

It is hard to imagine many cases where the /= method will be anything other than the negation of the
result of applying the == method. It is therefore convenient to give a default definition for each method
in the interface declaration, in terms of the other method:

interface Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

A minimal complete implementation of Eq requires either == or /= to be defined, but does not require
both. If a method definition is missing, and there is a default definition for it, then the default is used
instead.
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1.4.2 Extending Interfaces

Interfaces can also be extended. A logical next step from an equality relation Eq is to define an ordering
relation Ord. We can define an Ord interface which inherits methods from Eq as well as defining some of
its own:

data Ordering = LT | EQ | GT

interface Eq a => Ord a where
compare : a -> a -> Ordering

(<) : a -> a -> Bool
(>) : a -> a -> Bool
(<=) : a -> a -> Bool
(>=) : a -> a -> Bool
max : a -> a -> a
min : a -> a -> a

The Ord interface allows us to compare two values and determine their ordering. Only the compare
method is required; every other method has a default definition. Using this we can write functions such
as sort, a function which sorts a list into increasing order, provided that the element type of the list
is in the Ord interface. We give the constraints on the type variables left of the fat arrow =>, and the
function type to the right of the fat arrow:

sort : Ord a => List a -> List a

Functions, interfaces and implementations can have multiple constraints. Multiple constraints are written
in brackets in a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)

1.4.3 Functors and Applicatives

So far, we have seen single parameter interfaces, where the parameter is of type Type. In general, there
can be any number of parameters (even zero), and the parameters can have any type. If the type of the
parameter is not Type, we need to give an explicit type declaration. For example, the Functor interface
is defined in the prelude:

interface Functor (f : Type -> Type) where
map : (m : a -> b) -> f a -> f b

A functor allows a function to be applied across a structure, for example to apply a function to every
element in a List:

Functor List where
map f [] = []
map f (x::xs) = f x :: map f xs

Idris> map (*2) [1..10]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

Having defined Functor, we can define Applicative which abstracts the notion of function application:

infixl 2 <*>

interface Functor f => Applicative (f : Type -> Type) where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b
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1.4.4 Monads and do-notation

The Monad interface allows us to encapsulate binding and computation, and is the basis of do-notation
introduced in Section “do” notation (page 12). It extends Applicative as defined above, and is defined
as follows:

interface Applicative m => Monad (m : Type -> Type) where
(>>=) : m a -> (a -> m b) -> m b

Inside a do block, the following syntactic transformations are applied:

• x <- v; e becomes v >>= (\x => e)

• v; e becomes v >>= (\_ => e)

• let x = v; e becomes let x = v in e

IO has an implementation of Monad, defined using primitive functions. We can also define an implemen-
tation for Maybe, as follows:

Monad Maybe where
Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Int, using the monad to
encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x' <- x -- Extract value from x

y' <- y -- Extract value from y
pure (x' + y') -- Add them

This function will extract the values from x and y, if they are both available, or return Nothing if one
or both are not (“fail fast”). Managing the Nothing cases is achieved by the >>= operator, hidden by
the do notation.

*ifaces> m_add (Just 20) (Just 22)
Just 42 : Maybe Int
*ifaces> m_add (Just 20) Nothing
Nothing : Maybe Int

Pattern Matching Bind

Sometimes we want to pattern match immediately on the result of a function in do notation. For example,
let’s say we have a function readNumber which reads a number from the console, returning a value of
the form Just x if the number is valid, or Nothing otherwise:

readNumber : IO (Maybe Nat)
readNumber = do

input <- getLine
if all isDigit (unpack input)

then pure (Just (cast input))
else pure Nothing

If we then use it to write a function to read two numbers, returning Nothing if neither are valid, then
we would like to pattern match on the result of readNumber:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do x <- readNumber
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case x of
Nothing => pure Nothing
Just x_ok => do y <- readNumber

case y of
Nothing => pure Nothing
Just y_ok => pure (Just (x_ok, y_ok))

If there’s a lot of error handling, this could get deeply nested very quickly! So instead, we can combine
the bind and the pattern match in one line. For example, we could try pattern matching on values of
the form Just x_ok:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do Just x_ok <- readNumber
Just y_ok <- readNumber
pure (Just (x_ok, y_ok))

There is still a problem, however, because we’ve now omitted the case for Nothing so readNumbers is
no longer total! We can add the Nothing case back as follows:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do Just x_ok <- readNumber | Nothing => pure Nothing
Just y_ok <- readNumber | Nothing => pure Nothing
pure (Just (x_ok, y_ok))

The effect of this version of readNumbers is identical to the first (in fact, it is syntactic sugar for it and
directly translated back into that form). The first part of each statement (Just x_ok <- and Just y_ok
<-) gives the preferred binding - if this matches, execution will continue with the rest of the do block.
The second part gives the alternative bindings, of which there may be more than one.

!-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases such as
m_add above where the value bound is used once, immediately. In these cases, we can use a shorthand
version, as follows:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = pure (!x + !y)

The notation !expr means that the expression expr should be evaluated and then implicitly bound.
Conceptually, we can think of ! as being a prefix function with the following type:

(!) : m a -> a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will
lift expr as high as possible within its current scope, bind it to a fresh name x, and replace !expr with
x. Expressions are lifted depth first, left to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which expressions are monadic.

For example, the expression:

let y = 42 in f !(g !(print y) !x)

is lifted to:

let y = 42 in do y' <- print y
x' <- x
g' <- g y' x'
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f g'

Monad comprehensions

The list comprehension notation we saw in Section More Expressions (page 19) is more general, and
applies to anything which has an implementation of both Monad and Alternative:

interface Applicative f => Alternative (f : Type -> Type) where
empty : f a
(<|>) : f a -> f a -> f a

In general, a comprehension takes the form [ exp | qual1, qual2, ..., qualn ] where quali can
be one of:

• A generator x <- e

• A guard, which is an expression of type Bool

• A let binding let x = e

To translate a comprehension [exp | qual1, qual2, ..., qualn], first any qualifier qual which is a
guard is translated to guard qual, using the following function:

guard : Alternative f => Bool -> f ()

Then the comprehension is converted to do notation:

do { qual1; qual2; ...; qualn; pure exp; }

Using monad comprehensions, an alternative definition for m_add would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = [ x' + y' | x' <- x, y' <- y ]

1.4.5 Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to
application. The notation and larger example in this section is inspired by Conor McBride and Ross
Paterson’s paper “Applicative Programming with Effects” 1.

First, let us revisit m_add above. All it is really doing is applying an operator to two values extracted
from Maybe Int. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m_add which uses this alternative notion of function application,
with explicit calls to m_app:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m_app everywhere there is an application, we can use idiom brackets to do
the job for us. To do this, we can give Maybe an implementation of Applicative as follows, where <*>

1 Conor McBride and Ross Paterson. 2008. Applicative programming with effects. J. Funct. Program. 18, 1 (January
2008), 1-13. DOI=10.1017/S0956796807006326 http://dx.doi.org/10.1017/S0956796807006326
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is defined in the same way as m_app above (this is defined in the Idris library):

Applicative Maybe where
pure = Just

(Just f) <*> (Just a) = Just (f a)
_ <*> _ = Nothing

Using <*> we can use this implementation as follows, where a function application [| f a1 ...an |]
is translated into pure f <*> a1 <*> ... <*> an:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = [| x + y |]

An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride and Paterson describe such an
evaluator 1, for a language similar to the following:

data Expr = Var String -- variables
| Val Int -- values
| Add Expr Expr -- addition

Evaluation will take place relative to a context mapping variables (represented as Strings) to Int values,
and can possibly fail. We define a data type Eval to wrap an evaluator:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

Wrapping the evaluator in a data type means we will be able to provide implementations of interfaces
for it later. We begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs) = if (x == v)

then (Just val)
else (fetchVal xs)

When defining an evaluator for the language, we will be applying functions in the context of an Eval, so
it is natural to give Eval an implementation of Applicative. Before Eval can have an implementation
of Applicative it is necessary for Eval to have an implementation of Functor:

Functor Eval where
map f (MkEval g) = MkEval (\e => map f (g e))

Applicative Eval where
pure x = MkEval (\e => Just x)

(<*>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]
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runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

1.4.6 Named Implementations

It can be desirable to have multiple implementations of an interface for the same type, for example
to provide alternative methods for sorting or printing values. To achieve this, implementations can be
named as follows:

[myord] Ord Nat where
compare Z (S n) = GT
compare (S n) Z = LT
compare Z Z = EQ
compare (S x) (S y) = compare @{myord} x y

This declares an implementation as normal, but with an explicit name, myord. The syntax compare
@{myord} gives an explicit implementation to compare, otherwise it would use the default implementation
for Nat. We can use this, for example, to sort a list of Nat in reverse. Given the following list:

testList : List Nat
testList = [3,4,1]

We can sort it using the default Ord implementation, then the named implementation myord as follows,
at the Idris prompt:

*named_impl> show (sort testList)
"[sO, sssO, ssssO]" : String
*named_impl> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String

1.4.7 Determining Parameters

When an interface has more than one parameter, it can help resolution if the parameters used to find an
implementation are restricted. For example:

interface Monad m => MonadState s (m : Type -> Type) | m where
get : m s
put : s -> m ()

In this interface, only m needs to be known to find an implementation of this interface, and s can then
be determined from the implementation. This is declared with the | m after the interface declaration.
We call m a determining parameter of the MonadState interface, because it is the parameter used to find
an implementation.

1.5 Modules and Namespaces

An Idris program consists of a collection of modules. Each module includes an optional module decla-
ration giving the name of the module, a list of import statements giving the other modules which are
to be imported, and a collection of declarations and definitions of types, interfaces and functions. For
example, the listing below gives a module which defines a binary tree type BTree (in a file Btree.idr):

module Btree
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data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Then, this gives a main program (in a file bmain.idr) which uses the Btree module to sort a list:

module Main

import Btree

main : IO ()
main = do let t = toTree [1,8,2,7,9,3]

print (Btree.toList t)

The same names can be defined in multiple modules. This is possible because in practice names are
qualified with the name of the module. The names defined in the Btree module are, in full:

• Btree.BTree

• Btree.Leaf

• Btree.Node

• Btree.insert

• Btree.toList

• Btree.toTree

If names are otherwise unambiguous, there is no need to give the fully qualified name. Names can be
disambiguated either by giving an explicit qualification, or according to their type.

There is no formal link between the module name and its filename, although it is generally advisable to
use the same name for each. An import statement refers to a filename, using dots to separate directories.
For example, import foo.bar would import the file foo/bar.idr, which would conventionally have the
module declaration module foo.bar. The only requirement for module names is that the main module,
with the main function, must be called Main—although its filename need not be Main.idr.

1.5.1 Export Modifiers

Idris allows for fine-grained control over the visibility of a module’s contents. By default, all names
defined in a module are kept private. This aides in specification of a minimal interface and for internal
details to be left hidden. Idris allows for functions, types, and interfaces to be marked as: private,
export, or public export. Their general meaning is as follows:

• private meaning that it’s not exported at all. This is the default.

• export meaning that its top level type is exported.
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• public export meaning that the entire definition is exported.

A further restriction in modifying the visibility is that definitions must not refer to anything within a
lower level of visibility. For example, public export definitions cannot use private names, and export
types cannot use private names. This is to prevent private names leaking into a module’s interface.

Meaning for Functions

• export the type is exported

• public export the type and definition are exported, and the definition can be used after it is
imported. In other words, the definition itself is considered part of the module’s interface. The
long name public export is intended to make you think twice about doing this.

Note: Type synonyms in Idris are created by writing a function. When setting the visibility for a
module, it might be a good idea to public export all type synonyms if they are to be used outside the
module. Otherwise, Idris won’t know what the synonym is a synonym for.

Meaning for Data Types

For data types, the meanings are:

• export the type constructor is exported

• public export the type constructor and data constructors are exported

Meaning for Interfaces

For interfaces, the meanings are:

• export the interface name is exported

• public export the interface name, method names and default definitions are exported

BTree Revisited

For our BTree module, it makes sense for the tree data type and the functions to be exported as export,
as we see below:

module BTree

export data BTree a = Leaf
| Node (BTree a) a (BTree a)

export
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

export
toList : BTree a -> List a
toList Leaf = []
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toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

export
toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

%access Directive

Finally, the default export mode can be changed with the %access directive, for example:

module Btree

%access export

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

In this case, any function with no access modifier will be exported as export, rather than left private.

Propagating Inner Module API’s

Additionally, a module can re-export a module it has imported, by using the public modifier on an
import. For example:

module A

import B
import public C

public a : AType a = ...

The module A will export the name a, as well as any public or abstract names in module C, but will not
re-export anything from module B.

1.5.2 Explicit Namespaces

Defining a module also defines a namespace implicitly. However, namespaces can also be given explicitly.
This is most useful if you wish to overload names within the same module:

module Foo

namespace x
test : Int -> Int
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test x = x * 2

namespace y
test : String -> String
test x = x ++ x

This (admittedly contrived) module defines two functions with fully qualified names foo.x.test and
foo.y.test, which can be disambiguated by their types:

*foo> test 3
6 : Int
*foo> test "foo"
"foofoo" : String

1.5.3 Parameterised blocks

Groups of functions can be parameterised over a number of arguments using a parameters declaration,
for example:

parameters (x : Nat, y : Nat)
addAll : Nat -> Nat
addAll z = x + y + z

The effect of a parameters block is to add the declared parameters to every function, type and data
constructor within the block. Specifically, adding the parameters to the front of the argument list.
Outside the block, the parameters must be given explicitly. The addAll function, when called from the
REPL, will thus have the following type signature.

*params> :t addAll
addAll : Nat -> Nat -> Nat -> Nat

and the following definition.

addAll : (x : Nat) -> (y : Nat) -> (z : Nat) -> Nat
addAll x y z = x + y + z

Parameters blocks can be nested, and can also include data declarations, in which case the parameters
are added explicitly to all type and data constructors. They may also be dependent types with implicit
arguments:

parameters (y : Nat, xs : Vect x a)
data Vects : Type -> Type where

MkVects : Vect y a -> Vects a

append : Vects a -> Vect (x + y) a
append (MkVects ys) = xs ++ ys

To use Vects or append outside the block, we must also give the xs and y arguments. Here, we can use
placeholders for the values which can be inferred by the type checker:

*params> show (append _ _ (MkVects _ [1,2,3] [4,5,6]))
"[1, 2, 3, 4, 5, 6]" : String

1.6 Packages

Idris includes a simple build system for building packages and executables from a named package de-
scription file. These files can be used with the Idris compiler to manage the development process .
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1.6.1 Package Descriptions

A package description includes the following:

• A header, consisting of the keyword package followed by the package name. Package names can
be any valid Idris identifier. The iPKG format also takes a quoted version that accepts any valid
filename.

• Fields describing package contents, <field> = <value>

At least one field must be the modules field, where the value is a comma separated list of mod-
ules. For example, given an idris package maths that has modules Maths.idr, Maths.NumOps.idr,
Maths.BinOps.idr, and Maths.HexOps.idr, the corresponding package file would be:

package maths

modules = Maths
, Maths.NumOps
, Maths.BinOps
, Maths.HexOps

Other examples of package files can be found in the libs directory of the main Idris repository, and
in third-party libraries. More details including a complete listing of available fields can be found in
Packages (page 113).

1.6.2 Using Package files

Given an Idris package file maths.ipkg it can be used with the Idris compiler as follows:

• idris --build maths.ipkg will build all modules in the package

• idris --install maths.ipkg will install the package, making it accessible by other Idris libraries
and programs.

• idris --clean maths.ipkg will delete all intermediate code and executable files generated when
building.

• idris --mkdoc maths.ipkg will build HTML documentation for your package in the folder
maths_doc in your project’s root directory.

• idris --checkpkg maths.ipkg will type check all modules in the package only. This differs from
build that type checks and generates code.

• idris --testpkg maths.ipkg will compile and run any embedded tests you have specified in the
tests parameter. More information about testing is given in the next section.

Once the maths package has been installed, the command line option --package maths makes it acces-
sible (abbreviated to -p maths). For example:

idris -p maths Main.idr

1.7 Testing Idris Packages

The integrated build system includes a simple testing framework. This framework collects functions
listed in the ipkg file under tests. All test functions must return IO ().

When you enter idris --testpkg yourmodule.ipkg, the build system creates a temporary file in a
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fresh environment on your machine by listing the tests functions under a single main function. It
compiles this temporary file to an executable and then executes it.

The tests themselves are responsible for reporting their success or failure. Test functions commonly use
putStrLn to report test results. The test framework does not impose any standards for reporting and
consequently does not aggregate test results.

For example, lets take the following list of functions that are defined in a module called NumOps for a
sample package maths.

module Maths.NumOps

double : Num a => a -> a
double a = a + a

triple : Num a => a -> a
triple a = a + double a

A simple test module, with a qualified name of Test.NumOps can be declared as

module Test.NumOps

import Maths.NumOps

assertEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertEq g e = if g == e

then putStrLn "Test Passed"
else putStrLn "Test Failed"

assertNotEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertNotEq g e = if not (g == e)

then putStrLn "Test Passed"
else putStrLn "Test Failed"

testDouble : IO ()
testDouble = assertEq (double 2) 4

testTriple : IO ()
testTriple = assertNotEq (triple 2) 5

The functions assertEq and assertNotEq are used to run expected passing, and failing, equality tests.
The actual tests are testDouble and testTriple, and are declared in the maths.ipkg file as follows:

package maths

modules = Maths.NumOps
, Test.NumOps

tests = Test.NumOps.testDouble
, Test.NumOps.testTriple

The testing framework can then be invoked using idris --testpkg maths.ipkg:

> idris --testpkg maths.ipkg
Type checking ./Maths/NumOps.idr
Type checking ./Test/NumOps.idr
Type checking /var/folders/63/np5g0d5j54x1s0z12rf41wxm0000gp/T/idristests144128232716531729.idr
Test Passed
Test Passed

Note how both tests have reported success by printing Test Passed as we arranged for with the assertEq
and assertNoEq functions.
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1.8 Example: The Well-Typed Interpreter

In this section, we’ll use the features we’ve seen so far to write a larger example, an interpreter for a
simple functional programming language, with variables, function application, binary operators and an
if...then...else construct. We will use the dependent type system to ensure that any programs which
can be represented are well-typed.

1.8.1 Representing Languages

First, let us define the types in the language. We have integers, booleans, and functions, represented by
Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete Idris type — remember that
types are first class, so can be calculated just like any other value:

interpTy : Ty -> Type
interpTy TyInt = Integer
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

We’re going to define a representation of our language in such a way that only well-typed programs
can be represented. We’ll index the representations of expressions by their type, and the types of local
variables (the context). The context can be represented using the Vect data type, and as it will be used
regularly it will be represented as an implicit argument. To do so we define everything in a using block
(keep in mind that everything after this point needs to be indented so as to be inside the using block):

using (G:Vect n Ty)

Expressions are indexed by the types of the local variables, and the type of the expression itself:
data Expr : Vect n Ty -> Ty -> Type

The full representation of expressions is:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G) t

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i G t -> Expr G t
Val : (x : Integer) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) ->

Expr G a -> Expr G b -> Expr G c
If : Expr G TyBool ->

Lazy (Expr G a) ->
Lazy (Expr G a) -> Expr G a

The code above makes use of the Vect and Fin types from the Idris standard library. We import them
because they are not provided in the prelude:
import Data.Vect
import Data.Fin

Since expressions are indexed by their type, we can read the typing rules of the language from the
definitions of the constructors. Let us look at each constructor in turn.
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We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented
by a proof of their membership in the context, HasType i G T, which is a proof that variable i in context
G has type T. This is defined as follows:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G) t

We can treat Stop as a proof that the most recently defined variable is well-typed, and Pop n as a proof
that, if the nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we
use Stop to refer to the most recently defined variable, Pop Stop to refer to the next, and so on, via the
Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x,\y. x y, the variable x would have a de Bruijn index of 1, represented as Pop
Stop, and y 0, represented as Stop. We find these by counting the number of lambdas between the
definition and the use.

A value carries a concrete representation of an integer:

Val : (x : Integer) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there is a new local variable of
type a, which is expressed by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

We allow arbitrary binary operators, where the type of the operator informs what the types of the
arguments must be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Finally, If expressions make a choice given a boolean. Each branch must have the same type, and we
will evaluate the branches lazily so that only the branch which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) ->
Lazy (Expr G a) ->
Expr G a

1.8.2 Writing the Interpreter

When we evaluate an Expr, we’ll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list, albeit
with a strongly specified connection to the vector of local variable types, we use the usual :: and Nil
constructors so that we can use the usual list syntax. Given a proof that a variable is defined in the
context, we can then produce a value from the environment:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
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lookup Stop (x :: xs) = x
lookup (Pop k) (x :: xs) = lookup k xs

Given this, an interpreter is a function which translates an Expr into a concrete Idris value with respect
to a specific environment:

interp : Env G -> Expr G t -> interpTy t

The complete interpreter is defined as follows, for reference. For each constructor, we translate it into
the corresponding Idris value:

interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam sc) = \x => interp (x :: env) sc
interp env (App f s) = interp env f (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

Let us look at each case in turn. To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the
lambda with a new value in the environment. So, a function in the object language is translated to an
Idris function:

interp env (Lam sc) = \x => interp (x :: env) sc

For an application, we interpret the function and its argument and apply it directly. We know that
interpreting f must produce a function, because of its type:

interp env (App f s) = interp env f (interp env s)

Operators and conditionals are, again, direct translations into the equivalent Idris constructs. For oper-
ators, we apply the function to its operands directly, and for If, we apply the Idris if...then...else
construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

1.8.3 Testing

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as
follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

More interestingly, a factorial function fact (e.g. \x. if (x == 0) then 1 else (fact (x-1) *
x)), can be written as:
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fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1)
(Op (*) (App fact (Op (-) (Var Stop) (Val 1)))

(Var Stop)))

1.8.4 Running

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
printLn (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here,
it converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the
Idris interactive environment is:

$ idris interp.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.99

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr
*interp> :exec
Enter a number: 6
720
*interp>

Aside: cast

The prelude defines an interface Cast which allows conversion between types:

interface Cast from to where
cast : from -> to

It is a multi-parameter interface, defining the source type and object type of the cast. It must be possible
for the type checker to infer both parameters at the point where the cast is applied. There are casts
defined between all of the primitive types, as far as they make sense.

1.9 Views and the “with” rule

1.9.1 Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others.
For example, if we were to write down the implicit length arguments to (++), we’d see that the form of
the length argument was determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys
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If n was a successor in the [] case, or zero in the :: case, the definition would not be well typed.

1.9.2 The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. Idris provides a construct
for this, the with rule, inspired by views in Epigram 1, which takes account of the fact that matching
on a value in a dependently typed language can affect what we know about the forms of other values.
In its simplest form, the with rule adds another argument to the function being defined, e.g. we have
already seen a vector filter function, defined as follows:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
filter p [] = ( _ ** [] )
filter p (x :: xs) with (filter p xs)

| ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )

Here, the with clause allows us to deconstruct the result of filter p xs. Effectively, it adds this value
as an extra argument, which we place after the vertical bar.

If the intermediate computation itself has a dependent type, then the result can affect the forms of other
arguments — we can learn the form of one value by testing another. For example, a Nat is either even
or odd. If it’s even it will be the sum of two equal Nat. Otherwise, it is the sum of two equal Nat plus
one:

data Parity : Nat -> Type where
Even : Parity (n + n)
Odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and
constructs the predicate accordingly.

parity : (n:Nat) -> Parity n

We’ll come back to the definition of parity shortly. We can use it to write a function which converts a
natural number to a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | Even = False :: natToBin j
natToBin (S (j + j)) | Odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k.
So, as well as the patterns for the result of the intermediate computation (Even and odd) right of the |,
we also write how the results affect the other patterns left of the |. Note that there is a function in the
patterns (+) and repeated occurrences of j—this is allowed because another argument has determined
the form of these patterns.

We will return to this function in Section Provisional Definitions (page 43) to complete the definition of
parity.

1.9.3 With and proofs

To use a dependent pattern match for theorem proving, it is sometimes necessary to explicitly construct
the proof resulting from the pattern match. To do this, you can postfix the with clause with proof p
and the proof generated by the pattern match will be in scope and named p. For example:

1 Conor McBride and James McKinna. 2004. The view from the left. J. Funct. Program. 14, 1 (January 2004), 69-111.
DOI=10.1017/S0956796803004829 http://dx.doi.org/10.1017/S0956796803004829ñ
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data Foo = FInt Int | FBool Bool

optional : Foo -> Maybe Int
optional (FInt x) = Just x
optional (FBool b) = Nothing

isFInt : (foo:Foo) -> Maybe (x : Int ** (optional foo = Just x))
isFInt foo with (optional foo) proof p

isFInt foo | Nothing = Nothing -- here, p : Nothing = optional foo
isFInt foo | (Just x) = Just (x ** Refl) -- here, p : Just x = optional foo

1.10 Theorem Proving

1.10.1 Equality

Idris allows propositional equalities to be declared, allowing theorems about programs to be stated and
proved. Equality is built in, but conceptually has the following definition:

data (=) : a -> b -> Type where
Refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of
equality is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl

1.10.2 The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible to construct an element
of the empty type, at least without using a partially defined or general recursive function (see Section
Totality Checking (page 41) for more details). We can therefore use the empty type to prove that
something is impossible, for example zero is never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> Void
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = Void

There is no need to worry too much about how this function works — essentially, it applies the library
function replace, which uses an equality proof to transform a predicate. Here we use it to transform a
value of a type which can exist, the empty tuple, to a value of a type which can’t, by using a proof of
something which can’t exist.

Once we have an element of the empty type, we can prove anything. void is defined in the library, to
assist with proofs by contradiction.

void : Void -> a
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1.10.3 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the
following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write
the type of a program. In fact there is no real distinction between proofs and programs. A proof, as
far as we are concerned here, is merely a program with a precise enough type to guarantee a particular
property of interest.

We won’t go into details here, but the Curry-Howard correspondence 1 explains this relationship. The
proof itself is trivial, because plus Z n normalises to n by the definition of plus:

plusReduces n = Refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its
first argument. The proof also works by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)

cong is a function defined in the library which states that equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for trivial theorems like these, the proofs are a little tricky to construct in one go. When things get
even slightly more complicated, it becomes too much to think about to construct proofs in this ‘batch
mode’.

Idris provides interactive editing capabilities, which can help with building proofs. For more details on
building proofs interactively in an editor, see Theorem Proving (page 98).

1.10.4 Totality Checking

If we really want to trust our proofs, it is important that they are defined by total functions — that is,
a function which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove anything:

-- making use of 'hd' being partially defined
empty1 : Void
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

-- not terminating
empty2 : Void
empty2 = empty2

1 Timothy G. Griffin. 1989. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL ‘90). ACM, New York, NY, USA, 47-58.
DOI=10.1145/96709.96714 http://doi.acm.org/10.1145/96709.96714
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Internally, Idris checks every definition for totality, and we can check at the prompt with the :total
command. We see that neither of the above definitions is total:
*theorems> :total empty1
possibly not total due to: empty1#hd

not total as there are missing cases
*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be certain due to the
undecidability of the halting problem. The check is, therefore, conservative. It is also possible (and
indeed advisable, in the case of proofs) to mark functions as total so that it will be a compile time error
for the totality check to fail:
total empty2 : Void
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path empty2

Reassuringly, our proof in Section The Empty Type (page 40) that the zero and successor constructors
are disjoint is total:
*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function f must:

• Cover all possible inputs

• Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive calls reaches f
again, it must be possible to show that one of its arguments has decreased.

• Not use any data types which are not strictly positive

• Not call any non-total functions

Directives and Compiler Flags for Totality

By default, Idris allows all well-typed definitions, whether total or not. However, it is desirable for
functions to be total as far as possible, as this provides a guarantee that they provide a result for all
possible inputs, in finite time. It is possible to make total functions a requirement, either:

• By using the --total compiler flag.

• By adding a %default total directive to a source file. All definitions after this will be required
to be total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Correspondingly, after a
%default partial declaration, the requirement is relaxed.

Finally, the compiler flag --warnpartial causes to print a warning for any undeclared partial function.

Totality checking issues

Please note that the totality checker is not perfect! Firstly, it is necessarily conservative due to the
undecidability of the halting problem, so many programs which are total will not be detected as such.
Secondly, the current implementation has had limited effort put into it so far, so there may still be cases
where it believes a function is total which is not. Do not rely on it for your proofs yet!
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Hints for totality

In cases where you believe a program is total, but Idris does not agree, it is possible to give hints to the
checker to give more detail for a termination argument. The checker works by ensuring that all chains of
recursive calls eventually lead to one of the arguments decreasing towards a base case, but sometimes this
is hard to spot. For example, the following definition cannot be checked as total because the checker
cannot decide that filter (<= x) xs will always be smaller than (x :: xs):

qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)

= qsort (filter (< x) xs) ++
(x :: qsort (filter (>= x) xs))

The function assert_smaller, defined in the Prelude, is intended to address this problem:

assert_smaller : a -> a -> a
assert_smaller x y = y

It simply evaluates to its second argument, but also asserts to the totality checker that y is structurally
smaller than x. This can be used to explain the reasoning for totality if the checker cannot work it out
itself. The above example can now be written as:

total
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)

= qsort (assert_smaller (x :: xs) (filter (< x) xs)) ++
(x :: qsort (assert_smaller (x :: xs) (filter (>= x) xs)))

The expression assert_smaller (x :: xs) (filter (<= x) xs) asserts that the result of the filter
will always be smaller than the pattern (x :: xs).

In more extreme cases, the function assert_total marks a subexpression as always being total:

assert_total : a -> a
assert_total x = x

In general, this function should be avoided, but it can be very useful when reasoning about primitives or
externally defined functions (for example from a C library) where totality can be shown by an external
argument.

1.11 Provisional Definitions

Sometimes when programming with dependent types, the type required by the type checker and the type
of the program we have written will be different (in that they do not have the same normal form), but
nevertheless provably equal. For example, recall the parity function:

data Parity : Nat -> Type where
Even : Parity (n + n)
Odd : Parity (S (n + n))

We’d like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
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parity (S (S (j + j))) | Even = Even {n=S j}
parity (S (S (S (j + j)))) | Odd = Odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the
parity of k. Explicitly marking the value of n is even and odd is necessary to help type inference.
Unfortunately, the type checker rejects this:
viewsbroken.idr:12:10:When elaborating right hand side of ViewsBroken.parity:
Type mismatch between

Parity (plus (S j) (S j))
and

Parity (S (S (plus j j)))

Specifically:
Type mismatch between

plus (S j) (S j)
and

S (S (plus j j))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to the same value. This is
because plus is defined by recursion on its first argument, and in the second value, there is a successor
symbol on the second argument, so this will not help with reduction. These values are obviously equal
— how can we rewrite the program to fix this problem?

1.11.1 Provisional definitions

Provisional definitions help with this problem by allowing us to defer the proof details until a later point.
There are two main reasons why they are useful.

• When prototyping, it is useful to be able to test programs before finishing all the details of proofs.

• When reading a program, it is often much clearer to defer the proof details so that they do not
distract the reader from the underlying algorithm.

Provisional definitions are written in the same way as ordinary definitions, except that they introduce
the right hand side with a ?= rather than =. We define parity as follows:

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | Even ?= Even {n=S j}
parity (S (S (S (j + j)))) | Odd ?= Odd {n=S j}

When written in this form, instead of reporting a type error, Idris will insert a hole standing for a theorem
which will correct the type error. Idris tells us we have two proof obligations, with names generated from
the module and function names:
*views> :m
Global holes:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type:
*views> :p views.parity_lemma_1

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (plus j j)))

-views.parity_lemma_1>
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The two arguments are j, the variable in scope from the pattern match, and value, which is the value
we gave in the right hand side of the provisional definition. Our goal is to rewrite the type so that we
can use this value. We can achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

We need to use compute again to unfold the definition of plus:

-views.parity_lemma_1> compute

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (S (plus j (S j)))) -> Parity (S (S (plus j j)))

After applying intros we have:

-views.parity_lemma_1> intros

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))

Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

sym : l = r -> r = l
sym Refl = Refl

We can complete this proof using the trivial tactic, which finds value in the premises. The proof of
the second lemma proceeds in exactly the same way.

We can now test the natToBin function from Section The with rule — matching intermediate values
(page 39) at the prompt. The number 42 is 101010 in binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

1.11.2 Suspension of Disbelief

Idris requires that proofs be complete before compiling programs (although evaluation at the prompt is
possible without proof details). Sometimes, especially when prototyping, it is easier not to have to do
this. It might even be beneficial to test programs before attempting to prove things about them — if
testing finds an error, you know you had better not waste your time proving something!

Therefore, Idris provides a built-in coercion function, which allows you to use a value of the incorrect
types:
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believe_me : a -> b

Obviously, this should be used with extreme caution. It is useful when prototyping, and can also be
appropriate when asserting properties of external code (perhaps in an external C library). The “proof”
of views.parity_lemma_1 using this is:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

The exact tactic allows us to provide an exact value for the proof. In this case, we assert that the value
we gave was correct.

1.11.3 Example: Binary numbers

Previously, we implemented conversion to binary numbers using the Parity view. Here, we show how to
use the same view to implement a verified conversion to binary. We begin by indexing binary numbers
over their Nat equivalent. This is a common pattern, linking a representation (in this case Binary) with
a meaning (in this case Nat):

data Binary : Nat -> Type where
BEnd : Binary Z
BO : Binary n -> Binary (n + n)
BI : Binary n -> Binary (S (n + n))

BO and BI take a binary number as an argument and effectively shift it one bit left, adding either a zero
or one as the new least significant bit. The index, n + n or S (n + n) states the result that this left
shift then add will have to the meaning of the number. This will result in a representation with the least
significant bit at the front.

Now a function which converts a Nat to binary will state, in the type, that the resulting binary number
is a faithful representation of the original Nat:

natToBin : (n:Nat) -> Binary n

The Parity view makes the definition fairly simple — halving the number is effectively a right shift after
all — although we need to use a provisional definition in the Odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = BEnd
natToBin (S k) with (parity k)

natToBin (S (j + j)) | Even = BI (natToBin j)
natToBin (S (S (j + j))) | Odd ?= BO (natToBin (S j))

The problem with the Odd case is the same as in the definition of parity, and the proof proceeds in the
same way:

natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;

}

To finish, we’ll implement a main program which reads an integer from the user and outputs it in binary.
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main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show implementation for Binary n:

Show (Binary n) where
show (BO x) = show x ++ "0"
show (BI x) = show x ++ "1"
show BEnd = ""

1.12 Interactive Editing

By now, we have seen several examples of how Idris’ dependent type system can give extra confidence
in a function’s correctness by giving a more precise description of its intended behaviour in its type.
We have also seen an example of how the type system can help with EDSL development by allowing
a programmer to describe the type system of an object language. However, precise types give us more
than verification of programs — we can also exploit types to help write programs which are correct by
construction.

The Idris REPL provides several commands for inspecting and modifying parts of programs, based on
their types, such as case splitting on a pattern variable, inspecting the type of a hole, and even a basic
proof search mechanism. In this section, we explain how these features can be exploited by a text editor,
and specifically how to do so in Vim. An interactive mode for Emacs is also available.

1.12.1 Editing at the REPL

The REPL provides a number of commands, which we will describe shortly, which generate new program
fragments based on the currently loaded module. These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and outputs a new program
fragment. Each command has an alternative form, which updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts and responds to REPL
commands, using idris --client. For example, if we have a REPL running elsewhere, we can execute
commands such as:

$ idris --client ':t plus'
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client '2+2'
4 : Integer

A text editor can take advantage of this, along with the editing commands, in order to provide interactive
editing support.

1.12.2 Editing Commands
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:addclause

The :addclause n f command (abbreviated :ac n f) creates a template definition for the function
named f declared on line n. For example, if the code beginning on line 94 contains:

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer, and then made unique
by the machine by adding a digit if necessary. Hints can be given as follows:

%name Vect xs, ys, zs, ws

This declares that any names generated for types in the Vect family should be chosen in the order xs,
ys, zs, ws.

:casesplit

The :casesplit n x command, abbreviated :cs n x, splits the pattern variable x on line n into the
various pattern forms it may take, removing any cases which are impossible due to unification errors.
For example, if the code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f xs ys = ?vzipWith_rhs

then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2

That is, the pattern variable xs has been split into the two possible cases [] and x :: xs. Again, the
names are chosen according to the same heuristic. If we update the file (using :cs!) then case split on
ys on the same line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3

That is, the pattern variable ys has been split into one case [], Idris having noticed that the other
possible case y :: ys would lead to a unification error.

:addmissing

The :addmissing n f command, abbreviated :am n f, adds the clauses which are required to make the
function f on line n cover all inputs. For example, if the code beginning on line 94 is

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1

then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2
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That is, it notices that there are no cases for non-empty vectors, generates the required clauses, and
eliminates the clauses which would lead to unification errors.

:proofsearch

The :proofsearch n f command, abbreviated :ps n f, attempts to find a value for the hole f on line
n by proof search, trying values of local variables, recursive calls and constructors of the required family.
Optionally, it can take a list of hints, which are functions it can try applying to solve the hole. For
example, if the code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

then :ps 96 vzipWith_rhs_1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty vector is the only pos-
sibility. Similarly, and perhaps surprisingly, there is only one possibility if we try to solve :ps 97
vzipWith_rhs_2:

f x y :: (vzipWith f xs ys)

This works because vzipWith has a precise enough type: The resulting vector has to be non-empty (a
::); the first element must have type c and the only way to get this is to apply f to x and y; finally, the
tail of the vector can only be built recursively.

:makewith

The :makewith n f command, abbreviated :mw n f, adds a with to a pattern clause. For example,
recall parity. If line 10 is:

parity (S k) = ?parity_rhs

then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder _ with parity k and case split on with_pat using :cs 11 with_pat
we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather than +). In any case, we see
that using interactive editing significantly simplifies the implementation of dependent pattern matching
by showing a programmer exactly what the valid patterns are.

1.12.3 Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interactive editing support using
the commands described above. Interactive editing is achieved using the following editor commands,
each of which update the buffer directly:
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• \d adds a template definition for the name declared on the current line (using
:addclause).

• \c case splits the variable at the cursor (using :casesplit).

• \m adds the missing cases for the name at the cursor (using :addmissing).

• \w adds a with clause (using :makewith).

• \o invokes a proof search to solve the hole under the cursor (using :proofsearch).

• \p invokes a proof search with additional hints to solve the hole under the cursor (using
:proofsearch).

There are also commands to invoke the type checker and evaluator:

• \t displays the type of the (globally visible) name under the cursor. In the case of a
hole, this displays the context and the expected type.

• \e prompts for an expression to evaluate.

• \r reloads and type checks the buffer.

Corresponding commands are also available in the Emacs mode. Support for other editors can be added
in a relatively straightforward manner by using idris –client.

1.13 Syntax Extensions

Idris supports the implementation of Embedded Domain Specific Languages (EDSLs) in several ways 1.
One way, as we have already seen, is through extending do notation. Another important way is to allow
extension of the core syntax. In this section we describe two ways of extending the syntax: syntax rules
and dsl notation.

1.13.1 syntax rules

We have seen if...then...else expressions, but these are not built in. Instead, we can define a function
in the prelude as follows (we have already seen this function in Section Laziness (page 13)):

ifThenElse : (x:Bool) -> Lazy a -> Lazy a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

and then extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = ifThenElse test t e;

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes
its expansion. The syntax rule itself consists of:

• Keywords — here, if, then and else, which must be valid identifiers

• Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for arbi-
trary expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions at

1 Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems programming with embedded domain specific
languages. In Proceedings of the 14th international conference on Practical Aspects of Declarative Languages (PADL‘12),
Claudio Russo and Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg, 242-257. DOI=10.1007/978-3-642-27694-
1_18 http://dx.doi.org/10.1007/978-3-642-27694-1_18
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the top level (though they can be used in parentheses).

• Names — included in braces, which stand for names which may be bound on the right hand side.

• Symbols — included in quotations marks, e.g. :=. This can also be used to include reserved
words in syntax rules, such as let or in.

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword,
and there must be no repeated variables standing for non-terminals. Any expression can be used, but if
there are two non-terminals in a row in a rule, only simple expressions may be used (that is, variables,
constants, or bracketed expressions). Rules can use previously defined rules, but may not be recursive.
The following syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val;
syntax [test] "?" [t] ":" [e] = if test then t else e;
syntax select [x] from [t] "where" [w] = SelectWhere x t w;
syntax select [x] from [t] = Select x t;

Syntax macros can be further restricted to apply only in patterns (i.e., only on the left hand side of a
pattern match clause) or only in terms (i.e. everywhere but the left hand side of a pattern match clause)
by being marked as pattern or term syntax rules. For example, we might define an interval as follows,
with a static check that the lower bound is below the upper bound using so:

data Interval : Type where
MkInterval : (lower : Double) -> (upper : Double) ->

so (lower < upper) -> Interval

We can define a syntax which, in patterns, always matches oh for the proof argument, and in terms
requires a proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y oh
term syntax "[" [x] "..." [y] "]" = MkInterval x y ?bounds_lemma

In terms, the syntax [x...y] will generate a proof obligation bounds_lemma (possibly renamed).

Finally, syntax rules may be used to introduce alternative binding forms. For example, a for loop binds
a variable on each iteration:

syntax for {x} in [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable, substituted on the
right hand side. We have also put in in quotation marks since it is already a reserved word.

1.13.2 dsl notation

The well-typed interpreter in Section Example: The Well-Typed Interpreter (page 35) is a simple example
of a common programming pattern with dependent types. Namely: describe an object language and its
type system with dependent types to guarantee that only well-typed programs can be represented,
then program using that representation. Using this approach we can, for example, write programs for
serialising binary data 2 or running concurrent processes safely 3.

2 Edwin C. Brady. 2011. IDRIS —: systems programming meets full dependent types. In Proceedings of the 5th
ACM workshop on Programming languages meets program verification (PLPV ‘11). ACM, New York, NY, USA, 43-54.
DOI=10.1145/1929529.1929536 http://doi.acm.org/10.1145/1929529.1929536

3 Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction Concurrency: Using Dependent Types
to Verify Implementations of Effectful Resource Usage Protocols. Fundam. Inf. 102, 2 (April 2010), 145-176.
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Unfortunately, the form of object language programs makes it rather hard to program this way in practice.
Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1) (Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
(Var Stop)))

Since this is a particularly useful pattern, Idris provides syntax overloading 1 to make it easier to program
in such object languages:

mkLam : TTName -> Expr (t::g) t' -> Expr g (TyFun t t')
mkLam _ body = Lam body

dsl expr
variable = Var
index_first = Stop
index_next = Pop
lambda = mkLam

A dsl block describes how each syntactic construct is represented in an object language. Here, in the
expr language, any variable is translated to the Var constructor, using Pop and Stop to construct the
de Bruijn index (i.e., to count how many bindings since the variable itself was bound); and any lambda
is translated to a Lam constructor. The mkLam function simply ignores its first argument, which is the
name that the user chose for the variable. It is also possible to overload let and dependent function
syntax (pi) in this way. We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further,
using idiom brackets, by declaring:

(<*>) : (f : Lazy (Expr G (TyFun a t))) -> Expr G a -> Expr G t
(<*>) f a = App f a

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an implementation of Applicative, since idiom bracket
notation translates directly to the names <*> and pure, and ad-hoc type-directed overloading is allowed.
We can now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and use of interfaces, and a new syntax rule, we can even go as far
as:

syntax "IF" [x] "THEN" [t] "ELSE" [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) |] * x)

http://dl.acm.org/citation.cfm?id=1883636
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1.14 Miscellany

In this section we discuss a variety of additional features:

• auto, implicit, and default arguments;

• literate programming;

• interfacing with external libraries through the foreign function

• interface;

• type providers;

• code generation; and

• the universe hierarchy.

1.14.1 Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be
inferred by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the
context for an appropriate value, or constructing a proof. For example, the following definition of head
which requires a proof that the list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known or because a proof
already exists in the context, the proof can be constructed automatically. Auto implicit arguments allow
this to happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that Idris will attempt to fill in the implicit
argument by searching for a value of the appropriate type. It will try the following, in order:

• Local variables, i.e. names bound in pattern matches or let bindings, with exactly the right type.

• The constructors of the required type. If they have arguments, it will search recursively up to a
maximum depth of 100.

• Local variables with function types, searching recursively for the arguments.

• Any function with the appropriate return type which is marked with the %hint annotation.

In the case that a proof is not found, it can be provided explicitly as normal:

head xs {p = ?headProof}
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More generally, we can fill in implicit arguments with a default value by annotating them with default.
The definition above is equivalent to:

head : (xs : List a) ->
{default proof { trivial; } p : isCons xs = True} -> a

head (x :: xs) = x

1.14.2 Implicit conversions

Idris supports the creation of implicit conversions, which allow automatic conversion of values from one
type to another when required to make a term type correct. This is intended to increase convenience
and reduce verbosity. A contrived but simple example is the following:
implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion function intString can
convert x to a String, so the definition of test is type correct. An implicit conversion is implemented
just like any other function, but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit conversions cannot be chained.
Implicit conversions of simple types, as above, are however discouraged! More commonly, an implicit
conversion would be used to reduce verbosity in an embedded domain specific language, or to hide details
of a proof. Such examples are beyond the scope of this tutorial.

1.14.3 Literate programming

Like Haskell, Idris supports literate programming. If a file has an extension of .lidr then it is assumed
to be a literate file. In literate programs, everything is assumed to be a comment unless the line begins
with a greater than sign >, for example:
> module literate

This is a comment. The main program is below

> main : IO ()
> main = putStrLn "Hello literate world!\n"

An additional restriction is that there must be a blank line between a program line (beginning with >)
and a comment line (beginning with any other character).

1.14.4 Foreign function calls

For practical programming, it is often necessary to be able to use external libraries, particularly for
interfacing with the operating system, file system, networking, et cetera. Idris provides a lightweight
foreign function interface for achieving this, as part of the prelude. For this, we assume a certain amount
of knowledge of C and the gcc compiler. First, we define a datatype which describes the external types
we can handle:

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

Each of these corresponds directly to a C type. Respectively: int, double, char, char*, void* and
void. There is also a translation to a concrete Idris type, described by the following function:

54



CHAPTER 1. THE IDRIS TUTORIAL v0.99

interpFTy : FTy -> Type
interpFTy FInt = Int
interpFTy FFloat = Double
interpFTy FChar = Char
interpFTy FString = String
interpFTy FPtr = Ptr
interpFTy FUnit = ()

A foreign function is described by a list of input types and a return type, which can then be converted
to an Idris type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type

A foreign function is assumed to be impure, so ForeignTy builds an IO type, for example:

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> IO () : Type

We build a call to a foreign function by giving the name of the function, a list of argument types and the
return type. The built in construct mkForeign converts this description to a function callable by Idris:

data Foreign : Type -> Type where
FFun : String -> (xs:List FTy) -> (t:FTy) ->

Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

Note that the compiler expects mkForeign to be fully applied to build a complete foreign function call.
For example, the putStr function is implemented as follows, as a call to an external function putStr
defined in the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

Include and linker directives

Foreign function calls are translated directly to calls to C functions, with appropriate conversion between
the Idris representation of a value and the C representation. Often this will require extra libraries to be
linked in, or extra header and object files. This is made possible through the following directives:

• %lib target x — include the libx library. If the target is C this is equivalent to pass-
ing the -lx option to gcc. If the target is Java the library will be interpreted as a
groupId:artifactId:packaging:version dependency coordinate for maven.

• %include target x — use the header file or import x for the given back end target.

• %link target x.o — link with the object file x.o when using the given back end target.

• %dynamic x.so — dynamically link the interpreter with the shared object x.so.

Testing foreign function calls

Normally, the Idris interpreter (used for typechecking and at the REPL) will not perform IO actions.
Additionally, as it neither generates C code nor compiles to machine code, the %lib, %include and %link
directives have no effect. IO actions and FFI calls can be tested using the special REPL command :x
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EXPR, and C libraries can be dynamically loaded in the interpreter by using the :dynamic command or
the %dynamic directive. For example:

Idris> :dynamic libm.so
Idris> :x unsafePerformIO ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Double

1.14.5 Type Providers

Idris type providers, inspired by F#’s type providers, are a means of making our types be “about”
something in the world outside of Idris. For example, given a type that represents a database schema
and a query that is checked against it, a type provider could read the schema of a real database during
type checking.

Idris type providers use the ordinary execution semantics of Idris to run an IO action and extract the
result. This result is then saved as a constant in the compiled code. It can be a type, in which case it is
used like any other type, or it can be a value, in which case it can be used as any other value, including
as an index in types.

Type providers are still an experimental extension. To enable the extension, use the %language directive:

%language TypeProviders

A provider p for some type t is simply an expression of type IO (Provider t). The %provide directive
causes the type checker to execute the action and bind the result to a name. This is perhaps best
illustrated with a simple example. The type provider fromFile reads a text file. If the file consists of
the string Int, then the type Int will be provided. Otherwise, it will provide the type Nat.

strToType : String -> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do Right str <- readFile fname

| Left err => pure (Provide Void)
pure (Provide (strToType (trim str)))

We then use the %provide directive:

%provide (T1 : Type) with fromFile "theType"

foo : T1
foo = 2

If the file named theType consists of the word Int, then foo will be an Int. Otherwise, it will be a Nat.
When Idris encounters the directive, it first checks that the provider expression fromFile theType has
type IO (Provider Type). Next, it executes the provider. If the result is Provide t, then T1 is defined
as t. Otherwise, the result is an error.

Our datatype Provider t has the following definition:

data Provider a = Error String
| Provide a

We have already seen the Provide constructor. The Error constructor allows type providers to return
useful error messages. The example in this section was purposefully simple. More complex type provider
implementations, including a statically-checked SQLite binding, are available in an external collection 1.

1 https://github.com/david-christiansen/idris-type-providers
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1.14.6 C Target

The default target of Idris is C. Compiling via :

$ idris hello.idr -o hello

is equivalent to :

$ idris --codegen C hello.idr -o hello

When the command above is used, a temporary C source is generated, which is then compiled into an
executable named hello.

In order to view the generated C code, compile via :

$ idris hello.idr -S -o hello.c

To turn optimisations on, use the %flag C pragma within the code, as is shown below :

module Main
%flag C "-O3"

factorial : Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))

main : IO ()
main = do

putStrLn $ show $ factorial 3

1.14.7 JavaScript Target

Idris is capable of producing JavaScript code that can be run in a browser as well as in the NodeJS
environment or alike. One can use the FFI to communicate with the JavaScript ecosystem.

Code Generation

Code generation is split into two separate targets. To generate code that is tailored for running in the
browser issue the following command:

$ idris --codegen javascript hello.idr -o hello.js

The resulting file can be embedded into your HTML just like any other JavaScript code.

Generating code for NodeJS is slightly different. Idris outputs a JavaScript file that can be directly
executed via node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world

Take into consideration that the JavaScript code generator is using console.log to write text to stdout,
this means that it will automatically add a newline to the end of each string. This behaviour does not
show up in the NodeJS code generator.
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Using the FFI

To write a useful application we need to communicate with the outside world. Maybe we want to
manipulate the DOM or send an Ajax request. For this task we can use the FFI. Since most JavaScript
APIs demand callbacks we need to extend the FFI so we can pass functions as arguments.

The JavaScript FFI works a little bit differently than the regular FFI. It uses positional arguments to
directly insert our arguments into a piece of JavaScript code.

One could use the primitive addition of JavaScript like so:

module Main

primPlus : Int -> Int -> IO Int
primPlus a b = mkForeign (FFun "%0 + %1" [FInt, FInt] FInt) a b

main : IO ()
main = do

a <- primPlus 1 1
b <- primPlus 1 2
print (a, b)

Notice that the %n notation qualifies the position of the n-th argument given to our foreign function
starting from 0. When you need a percent sign rather than a position simply use %% instead.

Passing functions to a foreign function is very similar. Let’s assume that we want to call the following
function from the JavaScript world:

function twice(f, x) {
return f(f(x));

}

We obviously need to pass a function f here (we can infer it from the way we use f in twice, it would
be more obvious if JavaScript had types).

The JavaScript FFI is able to understand functions as arguments when you give it something of type
FFunction. The following example code calls twice in JavaScript and returns the result to our Idris
program:

module Main

twice : (Int -> Int) -> Int -> IO Int
twice f x = mkForeign (

FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) f x

main : IO ()
main = do

a <- twice (+1) 1
print a

The program outputs 3, just like we expected.

Including external JavaScript files

Whenever one is working with JavaScript one might want to include external libraries or just some
functions that she or he wants to call via FFI which are stored in external files. The JavaScript and
NodeJS code generators understand the %include directive. Keep in mind that JavaScript and NodeJS
are handled as different code generators, therefore you will have to state which one you want to target.
This means that you can include different files for JavaScript and NodeJS in the same Idris source file.
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So whenever you want to add an external JavaScript file you can do this like so:

For NodeJS :

%include Node "path/to/external.js"

And for use in the browser:

%include JavaScript "path/to/external.js"

The given files will be added to the top of the generated code.

Including NodeJS modules

The NodeJS code generator can also include modules with the %lib directive.

%lib Node "fs"

This directive compiles into the following JavaScript

var fs = require("fs");

Shrinking down generated JavaScript

Idris can produce very big chunks of JavaScript code. However, the generated code can be minified
using the closure-compiler from Google. Any other minifier is also suitable but closure-compiler
offers advanced compilation that does some aggressive inlining and code elimination. Idris can take full
advantage of this compilation mode and it’s highly recommended to use it when shipping a JavaScript
application written in Idris.

1.14.8 Cumulativity

Since values can appear in types and vice versa, it is natural that types themselves have types. For
example:

*universe> :t Nat
Nat : Type
*universe> :t Vect
Vect : Nat -> Type -> Type

But what about the type of Type? If we ask Idris it reports

*universe> :t Type
Type : Type 1

If Type were its own type, it would lead to an inconsistency due to Girard’s paradox , so internally there
is a hierarchy of types (or universes):

Type : Type 1 : Type 2 : Type 3 : ...

Universes are cumulative, that is, if x : Type n we can also have that x : Type m, as long as n <
m. The typechecker generates such universe constraints and reports an error if any inconsistencies are
found. Ordinarily, a programmer does not need to worry about this, but it does prevent (contrived)
programs such as the following:
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myid : (a : Type) -> a -> a
myid _ x = x

idid : (a : Type) -> a -> a
idid = myid _ myid

The application of myid to itself leads to a cycle in the universe hierarchy — myid’s first argument is a
Type, which cannot be at a lower level than required if it is applied to itself.

1.15 Further Reading

Further information about Idris programming, and programming with dependent types in general, can
be obtained from various sources:

• The Idris web site (http://www.idris-lang.org/) and by asking questions on the mailing list.

• The IRC channel #idris, on chat.freenode.net.

• The wiki (https://github.com/idris-lang/Idris-dev/wiki/) has further user provided in-
formation, in particular:

– https://github.com/idris-lang/Idris-dev/wiki/Manual

– https://github.com/idris-lang/Idris-dev/wiki/Language-Features

• Examining the prelude and exploring the samples in the distribution. The Idris source
can be found online at: https://github.com/idris-lang/Idris-dev.

• Existing projects on the Idris Hackers web space: http://idris-hackers.github.io.

• Various papers (e.g. 1, 2, and 3). Although these mostly describe older versions of Idris.

1Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems programming with embedded domain specific
languages. In Proceedings of the 14th international conference on Practical Aspects of Declarative Languages (PADL‘12),
Claudio Russo and Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg, 242-257. DOI=10.1007/978-3-642-27694-
1_18 http://dx.doi.org/10.1007/978-3-642-27694-1_18

2Edwin C. Brady. 2011. IDRIS —: systems programming meets full dependent types. In Proceedings of the 5th
ACM workshop on Programming languages meets program verification (PLPV ‘11). ACM, New York, NY, USA, 43-54.
DOI=10.1145/1929529.1929536 http://doi.acm.org/10.1145/1929529.1929536

3Edwin C. Brady and Kevin Hammond. 2010. Scrapping your inefficient engine: using partial evaluation to
improve domain-specific language implementation. In Proceedings of the 15th ACM SIGPLAN international confer-
ence on Functional programming (ICFP ‘10). ACM, New York, NY, USA, 297-308. DOI=10.1145/1863543.1863587
http://doi.acm.org/10.1145/1863543.1863587
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CHAPTER 2

Frequently Asked Questions

2.1 What are the differences between Agda and Idris?

Like Idris, Agda is a functional language with dependent types, supporting dependent pattern matching.
Both can be used for writing programs and proofs. However, Idris has been designed from the start
to emphasise general purpose programming rather than theorem proving. As such, it supports interop-
erability with systems libraries and C programs, and language constructs for domain specific language
implementation. It also includes higher level programming constructs such as interfaces (similar to type
classes) and do notation.

Idris supports multiple back ends (C and JavaScript by default, with the ability to add more via plugins)
and has a reference run time system, written in C, with a garbage collector and built-in message passing
concurrency.

2.2 Is Idris production ready?

Idris is primarily a research tool for exploring the possibilities of software development with dependent
types, meaning that the primary goal is not (yet) to make a system which could be used in production.
As such, there are a few rough corners, and lots of missing libraries. Nobody is working on Idris full
time, and we don’t have the resources at the moment to polish the system on our own. Therefore, we
don’t recommend building your business around it!

Having said that, contributions which help towards making Idris suitable for use in production would be
very welcome - this includes (but is not limited to) extra library support, polishing the run-time system
(and ensuring it is robust), providing and maintaining a JVM back end, etc.

2.3 Why does Idris use eager evaluation rather than lazy?

Idris uses eager evaluation for more predictable performance, in particular because one of the longer
term goals is to be able to write efficient and verified low level code such as device drivers and network
infrastructure. Furthermore, the Idris type system allows us to state precisely the type of each value,
and therefore the run-time form of each value. In a lazy language, consider a value of type Int:
thing : Int

What is the representation of thing at run-time? Is it a bit pattern representing an integer, or is it a
pointer to some code which will compute an integer? In Idris, we have decided that we would like to
make this distinction precise, in the type:
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thing_val : Int
thing_comp : Lazy Int

Here, it is clear from the type that thing_val is guaranteed to be a concrete Int, whereas thing_comp
is a computation which will produce an Int.

2.4 How can I make lazy control structures?

You can make control structures using the special Lazy type. For example, if...then...else...
in Idris expands to an application of a function named ifThenElse. The default implementation for
Booleans is defined as follows in the library:

ifThenElse : Bool -> (t : Lazy a) -> (e : Lazy a) -> a
ifThenElse True t e = t
ifThenElse False t e = e

The type Lazy a for t and e indicates that those arguments will only be evaluated if they are used, that
is, they are evaluated lazily.

2.5 Evaluation at the REPL doesn’t behave as I expect. What’s
going on?

Being a fully dependently typed language, Idris has two phases where it evaluates things, compile-time
and run-time. At compile-time it will only evaluate things which it knows to be total (i.e. terminating
and covering all possible inputs) in order to keep type checking decidable. The compile-time evaluator
is part of the Idris kernel, and is implemented in Haskell using a HOAS (higher order abstract syntax)
style representation of values. Since everything is known to have a normal form here, the evaluation
strategy doesn’t actually matter because either way it will get the same answer, and in practice it will
do whatever the Haskell run-time system chooses to do.

The REPL, for convenience, uses the compile-time notion of evaluation. As well as being easier to
implement (because we have the evaluator available) this can be very useful to show how terms evaluate
in the type checker. So you can see the difference between:

Idris> \n, m => (S n) + m
\n => \m => S (plus n m) : Nat -> Nat -> Nat

Idris> \n, m => n + (S m)
\n => \m => plus n (S m) : Nat -> Nat -> Nat

2.6 Why can’t I use a function with no arguments in a type?

If you use a name in a type which begins with a lower case letter, and which is not applied to any
arguments, then Idris will treat it as an implicitly bound argument. For example:

append : Vect n ty -> Vect m ty -> Vect (n + m) ty

Here, n, m, and ty are implicitly bound. This rule applies even if there are functions defined elsewhere
with any of these names. For example, you may also have:
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ty : Type
ty = String

Even in this case, ty is still considered implicitly bound in the definition of append, rather than making
the type of append equivalent to...

append : Vect n String -> Vect m String -> Vect (n + m) String

...which is probably not what was intended! The reason for this rule is so that it is clear just from looking
at the type of append, and no other context, what the implicitly bound names are.

If you want to use an unapplied name in a type, you have two options. You can either explicitly qualify
it, for example, if ty is defined in the namespace Main you can do the following:

append : Vect n Main.ty -> Vect m Main.ty -> Vect (n + m) Main.ty

Alternatively, you can use a name which does not begin with a lower case letter, which will never be
implicitly bound:

Ty : Type
Ty = String

append : Vect n Ty -> Vect m Ty -> Vect (n + m) Ty

As a convention, if a name is intended to be used as a type synonym, it is best for it to begin with a
capital letter to avoid this restriction.

2.7 I have an obviously terminating program, but Idris says it possi-
bly isn’t total. Why is that?

Idris can’t decide in general whether a program is terminating due to the undecidability of the Halting
Problem. It is possible, however, to identify some programs which are definitely terminating. Idris does
this using “size change termination” which looks for recursive paths from a function back to itself. On
such a path, there must be at least one argument which converges to a base case.

• Mutually recursive functions are supported

• However, all functions on the path must be fully applied. In particular, higher order applications
are not supported

• Idris identifies arguments which converge to a base case by looking for recursive calls to syntactically
smaller arguments of inputs. e.g. k is syntactically smaller than S (S k) because k is a subterm
of S (S k), but (k, k) is not syntactically smaller than (S k, S k).

If you have a function which you believe to be terminating, but Idris does not, you can either restructure
the program, or use the assert_total function.

2.8 When will Idris be self-hosting?

It’s not a priority, though not a bad idea in the long run. It would be a worthwhile effort in the short
term to implement libraries to support self-hosting, such as a good parsing library.
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2.9 Does Idris have universe polymorphism? What is the type of
Type?

Rather than universe polymorphism, Idris has a cumulative hierarchy of universes; Type : Type 1,
Type 1 : Type 2, etc. Cumulativity means that if x : Type n and n <= m, then x : Type m.
Universe levels are always inferred by Idris, and cannot be specified explicitly. The REPL command
:type Type 1 will result in an error, as will attempting to specify the universe level of any type.

2.10 Why does Idris use Double instead of Float64?

Historically the C language and many other languages have used the names Float and Double to repre-
sent floating point numbers of size 32 and 64 respectively. Newer languages such as Rust and Julia have
begun to follow the naming scheme described in IEEE Standard for Floating-Point Arithmetic (IEEE
754). This describes single and double precision numbers as Float32 and Float64; the size is described
in the type name.

Due to developer familiarity with the older naming convention, and choice by the developers of Idris,
Idris uses the C style convention. That is, the name Double is used to describe double precision numbers,
and Idris does not support 32 bit floats at present.

2.11 What is -ffreestanding?

The freestanding flag is used to build Idris binaries which have their libs and compiler in a relative path.
This is useful for building binaries where the install directory is unknown at build time. When passing
this flag, the IDRIS_LIB_DIR environment variable needs to be set to the path where the Idris libs
reside relative to the idris executable. The IDRIS_TOOLCHAIN_DIR environment variable is optional,
if that is set, Idris will use that path to find the C compiler.

Example:

IDRIS_LIB_DIR="./libs" IDRIS_TOOLCHAIN_DIR="./mingw/bin" CABALFLAGS="-fffi -ffreestanding -frelease" make

2.12 What does the name ‘Idris’ mean?

British people of a certain age may be familiar with this singing dragon. If that doesn’t help, maybe you
can invent a suitable acronym :-) .

2.13 Will there be support for Unicode characters for operators?

There are several reasons why we should not support Unicode operators:

• It’s hard to type (this is important if you’re using someone else’s code, for example). Various
editors have their own input methods, but you have to know what they are.

• Not every piece of software easily supports it. Rendering issues have been noted on some mobile
email clients, terminal-based IRC clients, web browsers, etc. There are ways to resolve these
rendering issues but they provide a barrier to entry to using Idris.

64

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://www.youtube.com/watch?v=G5ZMNyscPcg


CHAPTER 2. FREQUENTLY ASKED QUESTIONS v0.99

• Even if we leave it out of the standard library (which we will in any case!) as soon as people start
using it in their library code, others have to deal with it.

• Too many characters look too similar. We had enough trouble with confusion between 0 and O
without worrying about all the different kinds of colons and brackets.

• There seems to be a tendency to go over the top with use of Unicode. For example, using sharp
and flat for delay and force (or is it the other way around?) in Agda seems gratuitous. We don’t
want to encourage this sort of thing, when words are often better.

With care, Unicode operators can make things look pretty but so can lhs2TeX. Perhaps in a few years
time things will be different and software will cope better and it will make sense to revisit this. For now,
however, Idris will not be offering arbitrary Unicode symbols in operators.

This seems like an instance of Wadler’s Law in action.

This answer is based on Edwin Brady’s response in the following pull request.

2.14 Where can I find more answers?

There is an Unofficial FAQ on the wiki on GitHub which answers more technical questions and may be
updated more often.
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CHAPTER 3

The Effects Tutorial

A tutorial on the Effects package in Idris.

Note: The documentation for Idris has been published under the Creative Commons CC0 License.
As such to the extent possible under law, The Idris Community has waived all copyright and related or
neighbouring rights to Documentation for Idris.

More information concerning the CC0 can be found online at:
http://creativecommons.org/publicdomain/zero/1.0/

3.1 Introduction

Pure functional languages with dependent types such as Idris support reasoning about programs directly
in the type system, promising that we can know a program will run correctly (i.e. according to the
specification in its type) simply because it compiles. Realistically, though, things are not so simple:
programs have to interact with the outside world, with user input, input from a network, mutable state,
and so on. In this tutorial I will introduce the library, which is included with the distribution and supports
programming and reasoning with side-effecting programs, supporting mutable state, interaction with the
outside world, exceptions, and verified resource management.

This tutorial assumes familiarity with pure programming in Idris, as described in Sections 1–6 of the
main tutorial 1. The examples presented are tested with Idris and can be found in the examples directory
of the Idris repository.

Consider, for example, the following introductory function which illustrates the kind of properties which
can be expressed in the type system:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] [] = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys

This function adds corresponding elements in a pair of vectors. The type guarantees that the vectors
will contain only elements of type Int, and that the input lengths and the output length all correspond.
A natural question to ask here, which is typically neglected by introductory tutorials, is “How do I turn
this into a program?” That is, given some lists entered by a user, how do we get into a position to be
able to apply the vadd function? Before doing so, we will have to:

• Read user input, either from the keyboard, a file, or some other input device.
1 You do not, however, need to know what a monad is!
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• Check that the user inputs are valid, i.e. contain only Int and are the same length, and report an
error if not.

• Write output

The complete program will include side-effects for I/O and error handling, before we can get to the pure
core functionality. In this tutorial, we will see how Idris supports side-effects. Furthermore, we will see
how we can use the dependent type system to reason about stateful and side-effecting programs. We
will return to this specific example later.

3.1.1 Hello world

To give an idea of how programs with effects look in , here is the ubiquitous “Hello world” program,
written using the Effects library:

module Main

import Effects
import Effect.StdIO

hello : Eff () [STDIO]
hello = putStrLn “Hello world!”

main : IO ()
main = run hello

As usual, the entry point is main. All main has to do is invoke the hello function which supports the
STDIO effect for console I/O, and returns the unit value. All programs using the Effects library must
import Effects. The details of the Eff type will be presented in the remainder of this tutorial.

To compile and run this program, Idris needs to be told to include the Effects package, using the -p
effects flag (this flag is required for all examples in this tutorial):

idris hello.idr -o hello -p effects
./hello Hello world!

3.1.2 Outline

The tutorial is structured as follows: first, in Section State (page 67), we will discuss state management,
describing why it is important and introducing the effects library to show how it can be used to manage
state. This section also gives an overview of the syntax of effectful programs. Section Simple Effects
(page 74) then introduces a number of other effects a program may have: I/O; Exceptions; Random
Numbers; and Non-determinism, giving examples for each, and an extended example combining several
effects in one complete program. Section Dependent Effects (page 82) introduces dependent effects,
showing how states and resources can be managed in types. Section Creating New Effects (page 86)
shows how new effects can be implemented. Section Example: A “Mystery Word” Guessing Game
(page 90) gives an extended example showing how to implement a “mystery word” guessing game, using
effects to describe the rules of the game and ensure they are implemented accurately. References to
further reading are given in Section Further Reading (page 95).

3.2 State

Many programs, even pure programs, can benefit from locally mutable state. For example, consider a
program which tags binary tree nodes with a counter, by an inorder traversal (i.e. counting depth first,
left to right). This would perform something like the following:
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We can describe binary trees with the following data type BTree and testTree to represent the example
input above:

data BTree a = Leaf
| Node (BTree a) a (BTree a)

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)

"Fred"
(Node (Node Leaf "Alice" Leaf)

"Sheila"
(Node Leaf "Bob" Leaf))

Then our function to implement tagging, beginning to tag with a specific value i, has the following type:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)

3.2.1 First attempt

Naïvely, we can implement treeTag by implementing a helper function which propagates a counter,
returning the result of the count for each subtree:

treeTagAux : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTagAux i Leaf = (i, Leaf)
treeTagAux i (Node l x r)

= let (i', l') = treeTagAux i l in
let x' = (i', x) in
let (i'', r') = treeTagAux (i' + 1) r in

(i'', Node l' x' r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = snd (treeTagAux i x)

This gives the expected result when run at the REPL prompt:

*TreeTag> treeTag 1 testTree
Node (Node Leaf (1, "Jim") Leaf)

(2, "Fred")
(Node (Node Leaf (3, "Alice") Leaf)

(4, "Sheila")
(Node Leaf (5, "Bob") Leaf)) : BTree (Int, String)
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This works as required, but there are several problems when we try to scale this to larger programs. It
is error prone, because we need to ensure that state is propagated correctly to the recursive calls (i.e.
passing the appropriate i or i’). It is hard to read, because the functional details are obscured by
the state propagation. Perhaps most importantly, there is a common programming pattern here which
should be abstracted but instead has been implemented by hand. There is local mutable state (the
counter) which we have had to make explicit.

3.2.2 Introducing Effects

Idris provides a library, Effects 3, which captures this pattern and many others involving effectful
computation 1. An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> Eff t effs

That is, the return type gives the effects that f supports (effs, of type List EFFECT) and the type the
computation returns t. So, our treeTagAux helper could be written with the following type:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]

That is, treeTagAux has access to an integer state, because the list of available effects includes STATE
Int. STATE is declared as follows in the module Effect.State (that is, we must import Effect.State
to be able to use it):

STATE : Type -> EFFECT

It is an effect parameterised by a type (by convention, we write effects in all capitals). The treeTagAux
function is an effectful program which builds a new tree tagged with Ints, and is implemented as follows:

treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r)

= do l' <- treeTagAux l
i <- get
put (i + 1)
r' <- treeTagAux r
pure (Node l' (i, x) r')

There are several remarks to be made about this implementation. Essentially, it hides the state, which
can be accessed using get and updated using put, but it introduces several new features. Specifically, it
uses do-notation, binding variables with <-, and a pure function. There is much to be said about these
features, but for our purposes, it suffices to know the following:

• do blocks allow effectful operations to be sequenced.

• x <- e binds the result of an effectful operation e to a variable x. For example, in the
above code, treeTagAux l is an effectful operation returning BTree (Int, a), so l’ has
type BTree (Int, a).

• pure e turns a pure value e into the result of an effectful operation.

The get and put functions read and write a state t, assuming that the STATE t effect is available. They
have the following types, polymorphic in the state t they manage:

get : Eff t [STATE t]
put : t -> Eff () [STATE t]

3 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9
(September 2013), 133-144. DOI=10.1145/2544174.2500581 http://dl.acm.org/citation.cfm?doid=2544174.2500581

1 The earlier paper 3 describes the essential implementation details, although the library presented there is an earlier
version which is less powerful than that presented in this tutorial.

69

http://dl.acm.org/citation.cfm?doid=2544174.2500581


CHAPTER 3. THE EFFECTS TUTORIAL v0.99

A program in Eff can call any other function in Eff provided that the calling function supports at least
the effects required by the called function. In this case, it is valid for treeTagAux to call both get and
put because all three functions support the STATE Int effect.

Programs in Eff are run in some underlying computation context, using the run or runPure function.
Using runPure, which runs an effectful program in the identity context, we can write the treeTag
function as follows, using put to initialise the state:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i

treeTagAux x)

We could also run the program in an impure context such as IO, without changing the definition of
treeTagAux, by using run instead of runPure:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
...

treeTag : (i : Int) -> BTree a -> IO (BTree (Int, a))
treeTag i x = run (do put i

treeTagAux x)

Note that the definition of treeTagAux is exactly as before. For reference, this complete program
(including a main to run it) is shown in Listing [introprog].

module Main

import Effects
import Effect.State

data BTree a = Leaf
| Node (BTree a) a (BTree a)

Show a => Show (BTree a) where
show Leaf = "[]"
show (Node l x r) = "[" ++ show l ++ " "

++ show x ++ " "
++ show r ++ "]"

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)

"Fred"
(Node (Node Leaf "Alice" Leaf)

"Sheila"
(Node Leaf "Bob" Leaf))

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r) = do l' <- treeTagAux l

i <- get
put (i + 1)
r' <- treeTagAux r
pure (Node l' (i, x) r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i; treeTagAux x)

main : IO ()
main = print (treeTag 1 testTree)
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3.2.3 Effects and Resources

Each effect is associated with a resource, which is initialised before an effectful program can be run. For
example, in the case of STATE Int the corresponding resource is the integer state itself. The types of
runPure and run show this (slightly simplified here for illustrative purposes):

runPure : {env : Env id xs} -> Eff a xs -> a
run : Applicative m => {env : Env m xs} -> Eff a xs -> m a

The env argument is implicit, and initialised automatically where possible using default values given by
implementations of the following interface:

interface Default a where
default : a

Implementations of Default are defined for all primitive types, and many library types such as List,
Vect, Maybe, pairs, etc. However, where no default value exists for a resource type (for example, you
may want a STATE type for which there is no Default implementation) the resource environment can be
given explicitly using one of the following functions:

runPureInit : Env id xs -> Eff a xs -> a
runInit : Applicative m => Env m xs -> Eff a xs -> m a

To be well-typed, the environment must contain resources corresponding exactly to the effects in xs. For
example, we could also have implemented treeTag by initialising the state as follows:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPureInit [i] (treeTagAux x)

3.2.4 Labelled Effects

What if we have more than one state, especially more than one state of the same type? How would
get and put know which state they should be referring to? For example, how could we extend the tree
tagging example such that it additionally counts the number of leaves in the tree? One possibility would
be to change the state so that it captured both of these values, e.g.:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE (Int, Int)]

Doing this, however, ties the two states together throughout (as well as not indicating which integer is
which). It would be nice to be able to call effectful programs which guaranteed only to access one of the
states, for example. In a larger application, this becomes particularly important.

The library therefore allows effects in general to be labelled so that they can be referred to explicitly by
a particular name. This allows multiple effects of the same type to be included. We can count leaves
and update the tag separately, by labelling them as follows:

treeTagAux : BTree a -> Eff (BTree (Int, a))
['Tag ::: STATE Int,
'Leaves ::: STATE Int]

The ::: operator allows an arbitrary label to be given to an effect. This label can be any type—it is
simply used to identify an effect uniquely. Here, we have used a symbol type. In general ’name introduces
a new symbol, the only purpose of which is to disambiguate values 2.

When an effect is labelled, its operations are also labelled using the :- operator. In this way, we can say
explicitly which state we mean when using get and put. The tree tagging program which also counts
leaves can be written as follows:

2 In practice, ’name simply introduces a new empty type
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treeTagAux Leaf = do
'Leaves :- update (+1)
pure Leaf

treeTagAux (Node l x r) = do
l' <- treeTagAux l
i <- 'Tag :- get
'Tag :- put (i + 1)
r' <- treeTagAux r
pure (Node l' (i, x) r')

The update function here is a combination of get and put, applying a function to the current state.

update : (x -> x) -> Eff () [STATE x]

Finally, our top level treeTag function now returns a pair of the number of leaves, and the new tree.
Resources for labelled effects are initialised using the := operator (reminiscent of assignment in an
imperative language):

treeTag : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTag i x = runPureInit ['Tag := i, 'Leaves := 0]

(do x' <- treeTagAux x
leaves <- 'Leaves :- get
pure (leaves, x'))

To summarise, we have:

• ::: to convert an effect to a labelled effect.

• :- to convert an effectful operation to a labelled effectful operation.

• := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the situation where available
effects are not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-) : (l : lbl) -> Eff a [x] -> Eff a [l ::: x]
(:=) : (l : lbl) -> res -> LRes l res

Here, LRes is simply the resource type associated with a labelled effect. Note that labels are polymorphic
in the label type lbl. Hence, a label can be anything—a string, an integer, a type, etc.

3.2.5 !-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases where
the value bound is used once, immediately. The following program returns the length of the String
stored in the state, for example:

stateLength : Eff Nat [STATE String]
stateLength = do x <- get

pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more direct style in these cases.
provides !-notation to help with this. The above program can be written instead as:

stateLength : Eff Nat [STATE String]
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and then implicitly bound.
Conceptually, we can think of ! as being a prefix function with the following type:
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(!) : Eff a xs -> a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will
lift expr as high as possible within its current scope, bind it to a fresh name x, and replace !expr with
x. Expressions are lifted depth first, left to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which expressions are effectful.

For example, the expression:

let y = 42 in f !(g !(print y) !x)

is lifted to:

let y = 42 in do y' <- print y
x' <- x
g' <- g y' x'
f g'

3.2.6 The Type Eff

Underneath, Eff is an overloaded function which translates to an underlying type EffM:

EffM : (m : Type -> Type) -> (t : Type)
-> (List EFFECT)
-> (t -> List EFFECT) -> Type

This is more general than the types we have been writing so far. It is parameterised over an underlying
computation context m, a result type t as we have already seen, as well as a List EFFECT and a function
type t -> List EFFECT.

These additional parameters are the list of input effects, and a list of output effects, computed from
the result of an effectful operation. That is: running an effectful program can change the set of effects
available! This is a particularly powerful idea, and we will see its consequences in more detail later.
Some examples of operations which can change the set of available effects are:

• Updating a state containing a dependent type (for example adding an element to a vector).

• Opening a file for reading is an effect, but whether the file really is open afterwards depends on
whether the file was successfully opened.

• Closing a file means that reading from the file should no longer be possible.

While powerful, this can make uses of the EffM type hard to read. Therefore the library provides an
overloaded function Eff There are the following three versions:

SimpleEff.Eff : (t : Type) -> (input_effs : List EFFECT) -> Type
TransEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs : List EFFECT) -> Type
DepEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs_fn : x -> List EFFECT) -> Type

So far, we have used only the first version, SimpleEff.Eff, which is defined as follows:

Eff : (x : Type) -> (es : List EFFECT) -> Type
Eff x es = {m : Type -> Type} -> EffM m x es (\v => es)

i.e. the set of effects remains the same on output. This suffices for the STATE example we have seen
so far, and for many useful side-effecting programs. We could also have written treeTagAux with the
expanded type:
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treeTagAux : BTree a ->
EffM m (BTree (Int, a)) [STATE Int] (\x => [STATE Int])

Later, we will see programs which update effects:

Eff a xs xs'

which is expanded to

EffM m a xs (\_ => xs')

i.e. the set of effects is updated to xs’ (think of a transition in a state machine). There is, for example,
a version of put which updates the type of the state:

putM : y -> Eff () [STATE x] [STATE y]

Also, we have:

Eff t xs (\res => xs')

which is expanded to

EffM m t xs (\res => xs')

i.e. the set of effects is updated according to the result of the operation res, of type t.

Parameterising EffM over an underlying computation context allows us to write effectful programs which
are specific to one context, and in some cases to write programs which extend the list of effects available
using the new function, though this is beyond the scope of this tutorial.

3.3 Simple Effects

So far we have seen how to write programs with locally mutable state using the STATE effect. To recap,
we have the definitions below in a module Effect.State

module Effect.State

STATE : Type -> EFFECT

get : Eff x [STATE x]
put : x -> Eff () [STATE x]
putM : y -> Eff () [STATE x] [STATE y]
update : (x -> x) -> Eff () [STATE x]

Handler State m where { ... }

The last line, Handler State m where { ... }, means that the STATE effect is usable in any com-
putation context m. That is, a program which uses this effect and returns something of type a can be
evaluated to something of type m a using run, for any m. The lower case State is a data type describing
the operations which make up the STATE effect itself—we will go into more detail about this in Section
Creating New Effects (page 86).

In this section, we will introduce some other supported effects, allowing console I/O, exceptions, random
number generation and non-deterministic programming. For each effect we introduce, we will begin with
a summary of the effect, its supported operations, and the contexts in which it may be used, like that
above for STATE, and go on to present some simple examples. At the end, we will see some examples of
programs which combine multiple effects.

All of the effects in the library, including those described in this section, are summarised in Appendix
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Effects Summary (page 95).

3.3.1 Console I/O

Console I/O is supported with the STDIO effect, which allows reading and writing characters and strings to
and from standard input and standard output. Notice that there is a constraint here on the computation
context m, because it only makes sense to support console I/O operations in a context where we can
perform (or at the very least simulate) console I/O:

module Effect.StdIO

STDIO : EFFECT

putChar : Char -> Eff () [STDIO]
putStr : String -> Eff () [STDIO]
putStrLn : String -> Eff () [STDIO]

getStr : Eff String [STDIO]
getChar : Eff Char [STDIO]

Handler StdIO IO where { ... }
Handler StdIO (IOExcept a) where { ... }

Examples

A program which reads the user’s name, then says hello, can be written as follows:

hello : Eff () [STDIO]
hello = do putStr "Name? "

x <- getStr
putStrLn ("Hello " ++ trim x ++ "!")

We use trim here to remove the trailing newline from the input. The resource associated with STDIO is
simply the empty tuple, which has a default value (), so we can run this as follows:

main : IO ()
main = run hello

In hello we could also use !-notation instead of x <- getStr, since we only use the string that is read
once:

hello : Eff () [STDIO]
hello = do putStr "Name? "

putStrLn ("Hello " ++ trim !getStr ++ "!")

More interestingly, we can combine multiple effects in one program. For example, we can loop, counting
the number of people we’ve said hello to:

hello : Eff () [STATE Int, STDIO]
hello = do putStr "Name? "

putStrLn ("Hello " ++ trim !getStr ++ "!")
update (+1)
putStrLn ("I've said hello to: " ++ show !get ++ " people")
hello

The list of effects given in hello means that the function can call get and put on an integer state, and
any functions which read and write from the console. To run this, main does not need to be changed.
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Aside: Resource Types

To find out the resource type of an effect, if necessary (for example if we want to initialise a resource
explicitly with runInit rather than using a default value with run) we can run the resourceType
function at the REPL:

*ConsoleIO> resourceType STDIO
() : Type
*ConsoleIO> resourceType (STATE Int)
Int : Type

3.3.2 Exceptions

The EXCEPTION effect is declared in module Effect.Exception. This allows programs to exit immedi-
ately with an error, or errors to be handled more generally:

module Effect.Exception

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }
Handler (Exception a) List where { ... }
Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }

Example

Suppose we have a String which is expected to represent an integer in the range 0 to n. We can write
a function parseNumber which returns an Int if parsing the string returns a number in the appropriate
range, or throws an exception otherwise. Exceptions are parameterised by an error type:

data Error = NotANumber | OutOfRange

parseNumber : Int -> String -> Eff Int [EXCEPTION Error]
parseNumber num str

= if all isDigit (unpack str)
then let x = cast str in

if (x >=0 && x <= num)
then pure x
else raise OutOfRange

else raise NotANumber

Programs which support the EXCEPTION effect can be run in any context which has some way of throwing
errors, for example, we can run parseNumber in the Either Error context. It returns a value of the
form Right x if successful:

*Exception> the (Either Error Int) $ run (parseNumber 42 "20")
Right 20 : Either Error Int

Or Left e on failure, carrying the appropriate exception:

*Exception> the (Either Error Int) $ run (parseNumber 42 "50")
Left OutOfRange : Either Error Int
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*Exception> the (Either Error Int) $ run (parseNumber 42 "twenty")
Left NotANumber : Either Error Int

In fact, we can do a little bit better with parseNumber, and have it return a proof that the integer is in
the required range along with the integer itself. One way to do this is define a type of bounded integers,
Bounded:

Bounded : Int -> Type
Bounded x = (n : Int ** So (n >= 0 && n <= x))

Recall that So is parameterised by a Bool, and only So True is inhabited. We can use choose to
construct such a value from the result of a dynamic check:

data So : Bool -> Type = Oh : So True

choose : (b : Bool) -> Either (So b) (So (not b))

We then write parseNumber using choose rather than an if/then/else construct, passing the proof it
returns on success as the boundedness proof:

parseNumber : (x : Int) -> String -> Eff (Bounded x) [EXCEPTION Error]
parseNumber x str

= if all isDigit (unpack str)
then let num = cast str in

case choose (num >=0 && num <= x) of
Left p => pure (num ** p)
Right p => raise OutOfRange

else raise NotANumber

3.3.3 Random Numbers

Random number generation is also implemented by the library, in module Effect.Random:

module Effect.Random

RND : EFFECT

srand : Integer -> Eff () [RND]
rndInt : Integer -> Integer -> Eff Integer [RND]
rndFin : (k : Nat) -> Eff (Fin (S k)) [RND]

Handler Random m where { ... }

Random number generation is considered side-effecting because its implementation generally relies on
some external source of randomness. The default implementation here relies on an integer seed, which
can be set with srand. A specific seed will lead to a predictable, repeatable sequence of random numbers.
There are two functions which produce a random number:

• rndInt, which returns a random integer between the given lower and upper bounds.

• rndFin, which returns a random element of a finite set (essentially a number with an up-
per bound given in its type).

Example

We can use the RND effect to implement a simple guessing game. The guess function, given a target
number, will repeatedly ask the user for a guess, and state whether the guess is too high, too low, or
correct:
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guess : Int -> Eff () [STDIO]

For reference, the code for guess is given below:

guess : Int -> Eff () [STDIO]
guess target

= do putStr "Guess: "
case run {m=Maybe} (parseNumber 100 (trim !getStr)) of

Nothing => do putStrLn "Invalid input"
guess target

Just (v ** _) =>
case compare v target of

LT => do putStrLn "Too low"
guess target

EQ => putStrLn "You win!"
GT => do putStrLn "Too high"

guess target

Note that we use parseNumber as defined previously to read user input, but we don’t need to list the
EXCEPTION effect because we use a nested run to invoke parseNumber, independently of the calling
effectful program.

To invoke this, we pick a random number within the range 0–100, having set up the random number
generator with a seed, then run guess:

game : Eff () [RND, STDIO]
game = do srand 123456789

guess (fromInteger !(rndInt 0 100))

main : IO ()
main = run game

If no seed is given, it is set to the default value. For a less predictable game, some better source of
randomness would be required, for example taking an initial seed from the system time. To see how to
do this, see the SYSTEM effect described in Effects Summary (page 95).

3.3.4 Non-determinism

The listing below gives the definition of the non-determinism effect, which allows a program to choose a
value non-deterministically from a list of possibilities in such a way that the entire computation succeeds:

import Effects
import Effect.Select

SELECT : EFFECT

select : List a -> Eff a [SELECT]

Handler Selection Maybe where { ... }
Handler Selection List where { ... }

Example

The SELECT effect can be used to solve constraint problems, such as finding Pythagorean triples. The
idea is to use select to give a set of candidate values, then throw an exception for any combination of
values which does not satisfy the constraint:
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triple : Int -> Eff (Int, Int, Int) [SELECT, EXCEPTION String]
triple max = do z <- select [1..max]

y <- select [1..z]
x <- select [1..y]
if (x * x + y * y == z * z)

then pure (x, y, z)
else raise "No triple"

This program chooses a value for z between 1 and max, then values for y and x. In operation, after a
select, the program executes the rest of the do-block for every possible assignment, effectively searching
depth-first. If the list is empty (or an exception is thrown) execution fails.

There are handlers defined for Maybe and List contexts, i.e. contexts which can capture failure. De-
pending on the context m, triple will either return the first triple it finds (if in Maybe context) or all
triples in the range (if in List context). We can try this as follows:

main : IO ()
main = do print $ the (Maybe _) $ run (triple 100)

print $ the (List _) $ run (triple 100)

3.3.5 vadd revisited

We now return to the vadd program from the introduction. Recall the definition:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] [] = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys

Using , we can set up a program so that it reads input from a user, checks that the input is valid (i.e
both vectors contain integers, and are the same length) and if so, pass it on to vadd. First, we write a
wrapper for vadd which checks the lengths and throw an exception if they are not equal. We can do this
for input vectors of length n and m by matching on the implicit arguments n and m and using decEq to
produce a proof of their equality, if they are equal:

vadd_check : Vect n Int -> Vect m Int ->
Eff (Vect m Int) [EXCEPTION String]

vadd_check {n} {m} xs ys with (decEq n m)
vadd_check {n} {m=n} xs ys | (Yes Refl) = pure (vadd xs ys)
vadd_check {n} {m} xs ys | (No contra) = raise "Length mismatch"

To read a vector from the console, we implement a function of the following type:

read_vec : Eff (p ** Vect p Int) [STDIO]

This returns a dependent pair of a length, and a vector of that length, because we cannot know in
advance how many integers the user is going to input. We can use -1 to indicate the end of input:

read_vec : Eff (p ** Vect p Int) [STDIO]
read_vec = do putStr "Number (-1 when done): "

case run (parseNumber (trim !getStr)) of
Nothing => do putStrLn "Input error"

read_vec
Just v => if (v /= -1)

then do (_ ** xs) <- read_vec
pure (_ ** v :: xs)

else pure (_ ** [])
where

parseNumber : String -> Eff Int [EXCEPTION String]
parseNumber str
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= if all (\x => isDigit x || x == '-') (unpack str)
then pure (cast str)
else raise "Not a number"

This uses a variation on parseNumber which does not require a number to be within range.

Finally, we write a program which reads two vectors and prints the result of pairwise addition of them,
throwing an exception if the inputs are of differing lengths:

do_vadd : Eff () [STDIO, EXCEPTION String]
do_vadd = do putStrLn "Vector 1"

(_ ** xs) <- read_vec
putStrLn "Vector 2"
(_ ** ys) <- read_vec
putStrLn (show !(vadd_check xs ys))

By having explicit lengths in the type, we can be sure that vadd is only being used where the lengths of
inputs are guaranteed to be equal. This does not stop us reading vectors from user input, but it does
require that the lengths are checked and any discrepancy is dealt with gracefully.

3.3.6 Example: An Expression Calculator

To show how these effects can fit together, let us consider an evaluator for a simple expression language,
with addition and integer values.

data Expr = Val Integer
| Add Expr Expr

An evaluator for this language always returns an Integer, and there are no situations in which it can
fail!

eval : Expr -> Integer
eval (Val x) = x
eval (Add l r) = eval l + eval r

If we add variables, however, things get more interesting. The evaluator will need to be able to access
the values stored in variables, and variables may be undefined.

data Expr = Val Integer
| Var String
| Add Expr Expr

To start, we will change the type of eval so that it is effectful, and supports an exception effect for
throwing errors, and a state containing a mapping from variable names (as String) to their values:

Env : Type
Env = List (String, Integer)

eval : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval (Val x) = pure x
eval (Add l r) = pure $ !(eval l) + !(eval r)

Note that we are using !-notation to avoid having to bind subexpressions in a do block. Next, we add a
case for evaluating Var:

eval (Var x) = case lookup x !get of
Nothing => raise $ "No such variable " ++ x
Just val => pure val

This retrieves the state (with get, supported by the STATE Env effect) and raises an exception if the
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variable is not in the environment (with raise, supported by the EXCEPTION String effect).

To run the evaluator on a particular expression in a particular environment of names and their values,
we can write a function which sets the state then invokes eval:

runEval : List (String, Integer) -> Expr -> Maybe Integer
runEval args expr = run (eval' expr)

where eval' : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval' e = do put args

eval e

We have picked Maybe as a computation context here; it needs to be a context which is available for
every effect supported by eval. In particular, because we have exceptions, it needs to be a context which
supports exceptions. Alternatively, Either String or IO would be fine, for example.

What if we want to extend the evaluator further, with random number generation? To achieve this, we
add a new constructor to Expr, which gives a random number up to a maximum value:

data Expr = Val Integer
| Var String
| Add Expr Expr
| Random Integer

Then, we need to deal with the new case, making sure that we extend the list of events to include RND.
It doesn’t matter where RND appears in the list, as long as it is present:

eval : Expr -> Eff Integer [EXCEPTION String, RND, STATE Env]

eval (Random upper) = rndInt 0 upper

For test purposes, we might also want to print the random number which has been generated:

eval (Random upper) = do val <- rndInt 0 upper
putStrLn (show val)
pure val

If we try this without extending the effects list, we would see an error something like the following:

Expr.idr:28:6:When elaborating right hand side of eval:
Can't solve goal

SubList [STDIO]
[(EXCEPTION String), RND, (STATE (List (String, Integer)))]

In other words, the STDIO effect is not available. We can correct this simply by updating the type of
eval to include STDIO.

eval : Expr -> Eff Integer [STDIO, EXCEPTION String, RND, STATE Env]

Note: Using STDIO will restrict the number of contexts in which eval can be run to those which
support STDIO, such as IO. Once effect lists get longer, it can be a good idea instead to encapsulate sets
of effects in a type synonym. This is achieved as follows, simply by defining a function which computes
a type, since types are first class in Idris:

EvalEff : Type -> Type
EvalEff t = Eff t [STDIO, EXCEPTION String, RND, STATE Env]

eval : Expr -> EvalEff Integer
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3.4 Dependent Effects

In the programs we have seen so far, the available effects have remained constant. Sometimes, however,
an operation can change the available effects. The simplest example occurs when we have a state with
a dependent type—adding an element to a vector also changes its type, for example, since its length is
explicit in the type. In this section, we will see how the library supports this. Firstly, we will see how
states with dependent types can be implemented. Secondly, we will see how the effects can depend on
the result of an effectful operation. Finally, we will see how this can be used to implement a type-safe
and resource-safe protocol for file management.

3.4.1 Dependent States

Suppose we have a function which reads input from the console, converts it to an integer, and adds it to
a list which is stored in a STATE. It might look something like the following:

readInt : Eff () [STATE (List Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, maintaining the length in the
type?

readInt : Eff () [STATE (Vect n Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt, it has length S n on
exit. The library allows us to express this as follows:

readInt : Eff ()[STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
putM (cast x :: !get)

The type Eff a xs xs’ means that the operation begins with effects xs available, and ends with effects
xs’ available. We have used putM to update the state, where the M suffix indicates that the type is being
updated as well as the value. It has the following type:

putM : y -> Eff () [STATE x] [STATE y]

3.4.2 Result-dependent Effects

Often, whether a state is updated could depend on the success or otherwise of an operation. In our
readInt example, we might wish to update the vector only if the input is a valid integer (i.e. all digits).
As a first attempt, we could try the following, returning a Bool which indicates success:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => pure False
True => do putM (cast x :: !get)

pure True

Unfortunately, this will not type check because the vector does not get extended in both branches of the
case!
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MutState.idr:18:19:When elaborating right hand side of Main.case
block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read from the user was valid.
We can express this in the type:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
(\ok => if ok then [STATE (Vect (S n) Int), STDIO]

else [STATE (Vect n Int), STDIO])
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => pureM False
True => do putM (cast x :: !get)

pureM True

Using pureM rather than pure allows the output effects to be calculated from the value given. Its type
is:

pureM : (val : a) -> EffM m a (xs val) xs

When using readInt, we will have to check its return value in order to know what the new set of effects
is. For example, to read a set number of values into a vector, we could write the following:

readN : (n : Nat) ->
Eff () [STATE (Vect m Int), STDIO]

[STATE (Vect (n + m) Int), STDIO]
readN Z = pure ()
readN {m} (S k) = case !readInt of

True => rewrite plusSuccRightSucc k m in readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each branch whether reading the
integer succeeded, and therefore how many values still need to be read into the vector. What this means
in practice is that the type system has verified that a necessary dynamic check (i.e. whether reading a
value succeeded) has indeed been done.

Note: Only case will work here. We cannot use if/then/else because the then and else branches
must have the same type. The case construct, however, abstracts over the value being inspected in the
type of each branch.

3.4.3 File Management

A practical use for dependent effects is in specifying resource usage protocols and verifying that they are
executed correctly. For example, file management follows a resource usage protocol with the following
(informally specified) requirements:

• It is necessary to open a file for reading before reading it

• Opening may fail, so the programmer should check whether opening was successful

• A file which is open for reading must not be written to, and vice versa

• When finished, an open file handle should be closed

• When a file is closed, its handle should no longer be used

83



CHAPTER 3. THE EFFECTS TUTORIAL v0.99

These requirements can be expressed formally in , by creating a FILE_IO effect parameterised over a file
handle state, which is either empty, open for reading, or open for writing. The FILE_IO effect’s definition
is given below. Note that this effect is mainly for illustrative purposes—typically we would also like to
support random access files and better reporting of error conditions.

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

Handler FileIO IO where { ... }

In particular, consider the type of open:

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

This returns a Bool which indicates whether opening the file was successful. The resulting state depends
on whether the operation was successful; if so, we have a file handle open for the stated purpose, and if
not, we have no file handle. By case analysis on the result, we continue the protocol accordingly.

readFile : Eff (List String) [FILE_IO (OpenFile Read)]
readFile = readAcc [] where

readAcc : List String -> Eff (List String) [FILE_IO (OpenFile Read)]
readAcc acc = if (not !eof)

then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile, above, which reads from an open file until reaching the end, we can write
a program which opens a file, reads it, then displays the contents and closes it, as follows, correctly
following the protocol:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE_IO () in its effect list, indicates that any use of the file resource will
follow the protocol correctly (i.e. it both begins and ends with an empty resource). If we fail to follow
the protocol correctly (perhaps by forgetting to close the file, failing to check that open succeeded, or
opening the file for writing) then we will get a compile-time error. For example, changing open name
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Read to open name Write yields a compile-time error of the following form:

FileTest.idr:16:18:When elaborating right hand side of Main.case
block in testFile:
Can't solve goal

SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but the effect list contains
a FILE_IO effect carrying a file open for writing.

3.4.4 Pattern-matching bind

It might seem that having to test each potentially failing operation with a case clause could lead to ugly
code, with lots of nested case blocks. Many languages support exceptions to improve this, but unfor-
tunately exceptions may not allow completely clean resource management—for example, guaranteeing
that any open which did succeed has a corresponding close.

Idris supports pattern-matching bindings, such as the following:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = do True <- open name Read

putStrLn (show !readFile)
close

This also has a problem: we are no longer dealing with the case where opening a file failed! The solution
is to extend the pattern-matching binding syntax to give brief clauses for failing matches. Here, for
example, we could write:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = do True <- open name Read | False => putStrLn "Error"

putStrLn (show !readFile)
close

This is exactly equivalent to the definition with the explicit case. In general, in a do-block, the syntax:

do pat <- val | <alternatives>
p

is desugared to

do x <- val
case x of

pat => p
<alternatives>

There can be several alternatives, separated by a vertical bar |. For example, there is a SYSTEM effect
which supports reading command line arguments, among other things (see Appendix Effects Summary
(page 95)). To read command line arguments, we can use getArgs:

getArgs : Eff (List String) [SYSTEM]

A main program can read command line arguments as follows, where in the list which is returned, the
first element prog is the executable name and the second is an expected argument:

emain : Eff () [SYSTEM, STDIO]
emain = do [prog, arg] <- getArgs

putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}
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Unfortunately, this will not fail gracefully if no argument is given, or if too many arguments are given.
We can use pattern matching bind alternatives to give a better (more informative) error:

emain : Eff () [SYSTEM, STDIO]
emain = do [prog, arg] <- getArgs | [] => putStrLn "Can't happen!"

| [prog] => putStrLn "No arguments!"
| _ => putStrLn "Too many arguments!"

putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}

If getArgs does not return something of the form [prog, arg] the alternative which does match is
executed instead, and that value returned.

3.5 Creating New Effects

We have now seen several side-effecting operations provided by the Effects library, and examples of
their use in Section Simple Effects (page 74). We have also seen how operations may modify the available
effects by changing state in Section Dependent Effects (page 82). We have not, however, yet seen how
these operations are implemented. In this section, we describe how a selection of the available effects are
implemented, and show how new effectful operations may be provided.

3.5.1 State

Effects are described by algebraic data types, where the constructors describe the operations provided
when the effect is available. Stateful operations are described as follows:

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

Effect itself is a type synonym, giving the required type for an effect signature:

Effect : Type
Effect = (result : Type) ->

(input_resource : Type) ->
(output_resource : result -> Type) -> Type

Each effect is associated with a resource. The second argument to an effect signature is the resource
type on input to an operation, and the third is a function which computes the resource type on output.
Here, it means:

• Get takes no arguments. It has a resource of type a, which is not updated, and running the Get
operation returns something of type a.

• Put takes a b as an argument. It has a resource of type a on input, which is updated to a resource
of type b. Running the Put operation returns the element of the unit type.

The effects library provides an overloaded function sig which can make effect signatures more concise,
particularly when the result has no effect on the resource type. For State, we can write:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

There are four versions of sig, depending on whether we are interested in the resource type, and whether
we are updating the resource. Idris will infer the appropriate version from usage.
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NoResourceEffect.sig : Effect -> Type -> Type
NoUpdateEffect.sig : Effect -> (ret : Type) ->

(resource : Type) -> Type
UpdateEffect.sig : Effect -> (ret : Type) ->

(resource_in : Type) ->
(resource_out : Type) -> Type

DepUpdateEffect.sig : Effect -> (ret : Type) ->
(resource_in : Type) ->
(resource_out : ret -> Type) -> Type

In order to convert State (of type Effect) into something usable in an effects list, of type EFFECT, we
write the following:

STATE : Type -> EFFECT
STATE t = MkEff t State

MkEff constructs an EFFECT by taking the resource type (here, the t which parameterises STATE) and
the effect signature (here, State). For reference, EFFECT is declared as follows:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

Recall that to run an effectful program in Eff, we use one of the run family of functions to run the
program in a particular computation context m. For each effect, therefore, we must explain how it is
executed in a particular computation context for run to work in that context. This is achieved with the
following interface:

interface Handler (e : Effect) (m : Type -> Type) where
handle : resource -> (eff : e t resource resource') ->

((x : t) -> resource' x -> m a) -> m a

We have already seen some implementation declarations in the effect summaries in Section Simple Effects
(page 74). An implementation of Handler e m means that the effect declared with signature e can be
run in computation context m. The handle function takes:

• The resource on input (so, the current value of the state for State)

• The effectful operation (either Get or Put x for State)

• A continuation, which we conventionally call k, and should be passed the result value of the
operation, and an updated resource.

There are two reasons for taking a continuation here: firstly, this is neater because there are multiple
return values (a new resource and the result of the operation); secondly, and more importantly, the
continuation can be called zero or more times.

A Handler for State simply passes on the value of the state, in the case of Get, or passes on a new
state, in the case of Put. It is defined the same way for all computation contexts:

Handler State m where
handle st Get k = k st st
handle st (Put n) k = k () n

This gives enough information for Get and Put to be used directly in Eff programs. It is tidy, however,
to define top level functions in Eff, as follows:

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)
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putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

An implementation detail (aside): The call function converts an Effect to a function in Eff, given
a proof that the effect is available. This proof can be constructed automatically by , since it is essentially
an index into a statically known list of effects:

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

This is the reason for the Can’t solve goal error when an effect is not available: the implicit proof
prf has not been solved automatically because the required effect is not in the list of effects xs.

Such details are not important for using the library, or even writing new effects, however.

Summary

The following listing summarises what is required to define the STATE effect:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

STATE : Type -> EFFECT
STATE t = MkEff t State

Handler State m where
handle st Get k = k st st
handle st (Put n) k = k () n

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

3.5.2 Console I/O

Then listing below gives the definition of the STDIO effect, including handlers for IO and IOExcept. We
omit the definition of the top level Eff functions, as this merely invoke the effects PutStr, GetStr, PutCh
and GetCh directly.

Note that in this case, the resource is the unit type in every case, since the handlers merely apply the
IO equivalents of the effects directly.

data StdIO : Effect where
PutStr : String -> sig StdIO ()
GetStr : sig StdIO String
PutCh : Char -> sig StdIO ()
GetCh : sig StdIO Char

Handler StdIO IO where
handle () (PutStr s) k = do putStr s; k () ()
handle () GetStr k = do x <- getLine; k x ()
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handle () (PutCh c) k = do putChar c; k () ()
handle () GetCh k = do x <- getChar; k x ()

Handler StdIO (IOExcept a) where
handle () (PutStr s) k = do ioe_lift $ putStr s; k () ()
handle () GetStr k = do x <- ioe_lift $ getLine; k x ()
handle () (PutCh c) k = do ioe_lift $ putChar c; k () ()
handle () GetCh k = do x <- ioe_lift $ getChar; k x ()

STDIO : EFFECT
STDIO = MkEff () StdIO

3.5.3 Exceptions

The listing below gives the definition of the Exception effect, including two of its handlers for Maybe and
List. The only operation provided is Raise. The key point to note in the definitions of these handlers
is that the continuation k is not used. Running Raise therefore means that computation stops with an
error.

data Exception : Type -> Effect where
Raise : a -> sig (Exception a) b

Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

Handler (Exception a) List where
handle _ (Raise e) k = []

EXCEPTION : Type -> EFFECT
EXCEPTION t = MkEff () (Exception t)

3.5.4 Non-determinism

The following listing gives the definition of the Select effect for writing non-deterministic programs,
including a handler for List context which returns all possible successful values, and a handler for Maybe
context which returns the first successful value.

data Selection : Effect where
Select : List a -> sig Selection a

Handler Selection Maybe where
handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing
tryAll (x :: xs) = case k x () of

Nothing => tryAll xs
Just v => Just v

Handler Selection List where
handle r (Select xs) k = concatMap (\x => k x r) xs

SELECT : EFFECT
SELECT = MkEff () Selection

Here, the continuation is called multiple times in each handler, for each value in the list of possible
values. In the List handler, we accumulate all successful results, and in the Maybe handler we try the
first value in the list, and try later values only if that fails.
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3.5.5 File Management

Result-dependent effects are no different from non-dependent effects in the way they are implemented.
The listing below illustrates this for the FILE_IO effect. The syntax for state transitions { x ==> {res}
x’ }, where the result state x’ is computed from the result of the operation res, follows that for the
equivalent Eff programs.

data FileIO : Effect where
Open : (fname: String)

-> (m : Mode)
-> sig FileIO Bool () (\res => case res of

True => OpenFile m
False => ())

Close : sig FileIO () (OpenFile m)

ReadLine : sig FileIO String (OpenFile Read)
WriteLine : String -> sig FileIO () (OpenFile Write)
EOF : sig FileIO Bool (OpenFile Read)

Handler FileIO IO where
handle () (Open fname m) k = do h <- openFile fname m

if !(validFile h)
then k True (FH h)
else k False ()

handle (FH h) Close k = do closeFile h
k () ()

handle (FH h) ReadLine k = do str <- fread h
k str (FH h)

handle (FH h) (WriteLine str) k = do fwrite h str
k () (FH h)

handle (FH h) EOF k = do e <- feof h
k e (FH h)

FILE_IO : Type -> EFFECT
FILE_IO t = MkEff t FileIO

Note that in the handler for Open, the types passed to the continuation k are different depending on
whether the result is True (opening succeeded) or False (opening failed). This uses validFile, defined
in the Prelude, to test whether a file handler refers to an open file or not.

3.6 Example: A “Mystery Word” Guessing Game

In this section, we will use the techniques and specific effects discussed in the tutorial so far to implement
a larger example, a simple text-based word-guessing game. In the game, the computer chooses a word,
which the player must guess letter by letter. After a limited number of wrong guesses, the player loses 1.

We will implement the game by following these steps:

1. Define the game state, in enough detail to express the rules

2. Define the rules of the game (i.e. what actions the player may take, and how these actions affect
the game state)

3. Implement the rules of the game (i.e. implement state updates for each action)

4. Implement a user interface which allows a player to direct actions
1 Readers may recognise this game by the name “Hangman”.
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Step 2 may be achieved by defining an effect which depends on the state defined in step 1. Then step 3
involves implementing a Handler for this effect. Finally, step 4 involves implementing a program in Eff
using the newly defined effect (and any others required to implement the interface).

3.6.1 Step 1: Game State

First, we categorise the game states as running games (where there are a number of guesses available,
and a number of letters still to guess), or non-running games (i.e. games which have not been started,
or games which have been won or lost).

data GState = Running Nat Nat | NotRunning

Notice that at this stage, we say nothing about what it means to make a guess, what the word to be
guessed is, how to guess letters, or any other implementation detail. We are only interested in what is
necessary to describe the game rules.

We will, however, parameterise a concrete game state Mystery over this data:

data Mystery : GState -> Type

3.6.2 Step 2: Game Rules

We describe the game rules as a dependent effect, where each action has a precondition (i.e. what the
game state must be before carrying out the action) and a postcondition (i.e. how the action affects the
game state). Informally, these actions with the pre- and postconditions are:

Guess Guess a letter in the word.

• Precondition: The game must be running, and there must be both guesses still available, and
letters still to be guessed.

• Postcondition: If the guessed letter is in the word and not yet guessed, reduce the number of
letters, otherwise reduce the number of guesses.

Won Declare victory

• Precondition: The game must be running, and there must be no letters still to be guessed.

• Postcondition: The game is no longer running.

Lost Accept defeat

• Precondition: The game must be running, and there must be no guesses left.

• Postcondition: The game is no longer running.

NewWord Set a new word to be guessed

• Precondition: The game must not be running.

• Postcondition: The game is running, with 6 guesses available (the choice of 6 is somewhat
arbitrary here) and the number of unique letters in the word still to be guessed.

Get Get a string representation of the game state. This is for display purposes; there are no pre- or
postconditions.

We can make these rules precise by declaring them more formally in an effect signature:
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data MysteryRules : Effect where
Guess : (x : Char) ->

sig MysteryRules Bool
(Mystery (Running (S g) (S w)))
(\inword => if inword

then Mystery (Running (S g) w)
else Mystery (Running g (S w)))

Won : sig MysteryRules () (Mystery (Running g 0))
(Mystery NotRunning)

Lost : sig MysteryRules () (Mystery (Running 0 g))
(Mystery NotRunning)

NewWord : (w : String) ->
sig MysteryRules () (Mystery NotRunning) (Mystery (Running 6 (length (letters w))))

Get : sig MysteryRules String (Mystery h)

This description says nothing about how the rules are implemented. In particular, it does not specify
how to tell whether a guessed letter was in a word, just that the result of Guess depends on it.

Nevertheless, we can still create an EFFECT from this, and use it in an Eff program. Implementing a
Handler for MysteryRules will then allow us to play the game.

MYSTERY : GState -> EFFECT
MYSTERY h = MkEff (Mystery h) MysteryRules

3.6.3 Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of game state:

data Mystery : GState -> Type where
Init : Mystery NotRunning
GameWon : (word : String) -> Mystery NotRunning
GameLost : (word : String) -> Mystery NotRunning
MkG : (word : String) ->

(guesses : Nat) ->
(got : List Char) ->
(missing : Vect m Char) ->
Mystery (Running guesses m)

If a game is NotRunning, that is either because it has not yet started (Init) or because it is won or lost
(GameWon and GameLost, each of which carry the word so that showing the game state will reveal the
word to the player). Finally, MkG captures a running game’s state, including the target word, the letters
successfully guessed, and the missing letters. Using a Vect for the missing letters is convenient since its
length is used in the type.

To initialise the state, we implement the following functions: letters, which returns a list of unique
letters in a String (ignoring spaces) and initState which sets up an initial state considered valid as a
postcondition for NewWord.

letters : String -> List Char
initState : (x : String) -> Mystery (Running 6 (length (letters x)))

When checking if a guess is in the vector of missing letters, it is convenient to return a proof that the
guess is in the vector, using isElem below, rather than merely a Bool:

data IsElem : a -> Vect n a -> Type where
First : IsElem x (x :: xs)
Later : IsElem x xs -> IsElem x (y :: xs)

isElem : DecEq a => (x : a) -> (xs : Vect n a) -> Maybe (IsElem x xs)
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The reason for returning a proof is that we can use it to remove an element from the correct position in
a vector:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a

We leave the definitions of letters, init, isElem and shrink as exercises. Having implemented these,
the Handler implementation for MysteryRules is surprisingly straightforward:

Handler MysteryRules m where
handle (MkG w g got []) Won k = k () (GameWon w)
handle (MkG w Z got m) Lost k = k () (GameLost w)

handle st Get k = k (show st) st
handle st (NewWord w) k = k () (initState w)

handle (MkG w (S g) got m) (Guess x) k =
case isElem x m of

Nothing => k False (MkG w _ got m)
(Just p) => k True (MkG w _ (x :: got) (shrink m p))

Each case simply involves directly updating the game state in a way which is consistent with the declared
rules. In particular, in Guess, if the handler claims that the guessed letter is in the word (by passing
True to k), there is no way to update the state in such a way that the number of missing letters or
number of guesses does not follow the rules.

3.6.4 Step 4: Implement Interface

Having described the rules, and implemented state transitions which follow those rules as an effect
handler, we can now write an interface for the game which uses the MYSTERY effect:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]

The type indicates that the game must start in a running state, with some guesses available, and
eventually reach a not-running state (i.e. won or lost). The only way to achieve this is by correctly
following the stated rules.

Note that the type of game makes no assumption that there are letters to be guessed in the given word
(i.e. it is w rather than S w). This is because we will be choosing a word at random from a vector of
String, and at no point have we made it explicit that those String are non-empty.

Finally, we need to initialise the game by picking a word at random from a list of candidates, setting it
as the target using NewWord, then running game:

runGame : Eff () [MYSTERY NotRunning, RND, SYSTEM, STDIO]
runGame = do srand !time

let w = index !(rndFin _) words
call $ NewWord w
game
putStrLn !(call Get)

We use the system time (time from the SYSTEM effect; see Appendix Effects Summary (page 95)) to
initialise the random number generator, then pick a random Fin to index into a list of words. For
example, we could initialise a word list as follows:

words : ?wtype
words = with Vect ["idris","agda","haskell","miranda",

"java","javascript","fortran","basic",
"coffeescript","rust"]
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wtype = proof search

Note: Rather than have to explicitly declare a type with the vector’s length, it is convenient to give a
hole ?wtype and let Idris’s proof search mechanism find the type. This is a limited form of type inference,
but very useful in practice.

A possible complete implementation of game is presented below:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]

game {w=Z} = Won
game {w=S _}

= do putStrLn !Get
putStr "Enter guess: "
let guess = trim !getStr
case choose (not (guess == "")) of

(Left p) => processGuess (strHead' guess p)
(Right p) => do putStrLn "Invalid input!"

game
where

processGuess : Char -> Eff () [MYSTERY (Running (S g) (S w)), STDIO]
[MYSTERY NotRunning, STDIO]

processGuess {g} {w} c
= case !(Main.Guess c) of

True => do putStrLn "Good guess!"
case w of

Z => Won
(S k) => game

False => do putStrLn "No, sorry"
case g of

Z => Lost
(S k) => game

3.6.5 Discussion

Writing the rules separately as an effect, then an implementation which uses that effect, ensures that
the implementation must follow the rules. This has practical applications in more serious contexts;
MysteryRules for example can be though of as describing a protocol that a game player most follow, or
alternative a precisely-typed API.

In practice, we wouldn’t really expect to write rules first then implement the game once the rules were
complete. Indeed, I didn’t do so when constructing this example! Rather, I wrote down a set of likely rules
making any assumptions explicit in the state transitions for MysteryRules. Then, when implementing
game at first, any incorrect assumption was caught as a type error. The following errors were caught
during development:

• Not realising that allowing NewWord to be an arbitrary string would mean that game would have
to deal with a zero-length word as a starting state.

• Forgetting to check whether a game was won before recursively calling processGuess, thus acci-
dentally continuing a finished game.

• Accidentally checking the number of missing letters, rather than the number of remaining guesses,
when checking if a game was lost.

These are, of course, simple errors, but were caught by the type checker before any testing of the game.
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3.7 Further Reading

This tutorial has given an introduction to writing and reasoning about side-effecting programs in Idris,
using the Effects library. More details about the implementation of the library, such as how run works,
how handlers are invoked, etc, are given in a separate paper 1.

Some libraries and programs which use Effects can be found in the following places:

• https://github.com/edwinb/SDL-idris — some bindings for the SDL media library, supporting
graphics in particular.

• https://github.com/edwinb/idris-demos — various demonstration programs, including several ex-
amples from this tutorial, and a “Space Invaders” game.

• https://github.com/SimonJF/IdrisNet2 — networking and socket libraries.

• https://github.com/edwinb/Protocols — a high level communication protocol description lan-
guage.

The inspiration for the Effects library was Bauer and Pretnar’s Eff language 2, which describes a
language based on algebraic effects and handlers. Other recent languages and libraries have also been
built on this ideas, for example 3 and 4. The theoretical foundations are also well-studied see 5, 6, 7, 8.

3.8 Effects Summary

This appendix gives interfaces for the core effects provided by the library.

3.8.1 EXCEPTION

module Effect.Exception

import Effects
import System
import Control.IOExcept

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }

1 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9
(September 2013), 133-144. DOI=10.1145/2544174.2500581 https://dl.acm.org/citation.cfm?doid=2544174.2500581

2 Andrej Bauer, Matija Pretnar, Programming with algebraic effects and handlers, Journal of Logical and Algebraic
Methods in Programming, Volume 84, Issue 1, January 2015, Pages 108-123, ISSN 2352-2208, http://math.andrej.com/wp-
content/uploads/2012/03/eff.pdf

3 Ben Lippmeier. 2009. Witnessing Purity, Constancy and Mutability. In Proceedings of the 7th Asian Symposium
on Programming Languages and Systems (APLAS ‘09), Zhenjiang Hu (Ed.). Springer-Verlag, Berlin, Heidelberg, 95-110.
DOI=10.1007/978-3-642-10672-9_9 http://link.springer.com/chapter/10.1007%2F978-3-642-10672-9_9

4 Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. SIGPLAN Not. 48, 9 (September 2013),
145-158. DOI=10.1145/2544174.2500590 https://dl.acm.org/citation.cfm?doid=2544174.2500590

5 Martin Hyland, Gordon Plotkin, John Power, Combining effects: Sum and tensor, Theo-
retical Computer Science, Volume 357, Issues 1–3, 25 July 2006, Pages 70-99, ISSN 0304-3975,
(https://www.sciencedirect.com/science/article/pii/S0304397506002659)

6 Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computa-
tion, V. 2). Kluwer Academic Publishers, Norwell, MA, USA.

7 Plotkin, Gordon, and Matija Pretnar. “Handlers of algebraic effects.” Programming Languages and Systems. Springer
Berlin Heidelberg, 2009. 80-94.

8 Pretnar, Matija. “Logic and handling of algebraic effects.” (2010).
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Handler (Exception a) List where { ... }
Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }

3.8.2 FILE_IO

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

Handler FileIO IO where { ... }

3.8.3 RND

module Effect.Random

import Effects
import Data.Vect
import Data.Fin

RND : EFFECT

srand : Integer -> Eff m () [RND]
rndInt : Integer -> Integer -> Eff m Integer [RND]
rndFin : (k : Nat) -> Eff m (Fin (S k)) [RND]

Handler Random m where { ... }

3.8.4 SELECT

module Effect.Select

import Effects

SELECT : EFFECT

select : List a -> Eff m a [SELECT]
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Handler Selection Maybe where { ... }
Handler Selection List where { ... }

3.8.5 STATE

module Effect.State

import Effects

STATE : Type -> EFFECT

get : Eff m x [STATE x]
put : x -> Eff m () [STATE x]
putM : y -> Eff m () [STATE x] [STATE y]
update : (x -> x) -> Eff m () [STATE x]

Handler State m where { ... }

3.8.6 STDIO

module Effect.StdIO

import Effects
import Control.IOExcept

STDIO : EFFECT

putChar : Handler StdIO m => Char -> Eff m () [STDIO]
putStr : Handler StdIO m => String -> Eff m () [STDIO]
putStrLn : Handler StdIO m => String -> Eff m () [STDIO]

getStr : Handler StdIO m => Eff m String [STDIO]
getChar : Handler StdIO m => Eff m Char [STDIO]

Handler StdIO IO where { ... }
Handler StdIO (IOExcept a) where { ... }

3.8.7 SYSTEM

module Effect.System

import Effects
import System
import Control.IOExcept

SYSTEM : EFFECT

getArgs : Handler System e => Eff e (List String) [SYSTEM]
time : Handler System e => Eff e Int [SYSTEM]
getEnv : Handler System e => String -> Eff e (Maybe String) [SYSTEM]

Handler System IO where { ... }
Handler System (IOExcept a) where { ... }
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CHAPTER 4

Theorem Proving

A tutorial on theorem proving in Idris.

Note: The documentation for Idris has been published under the Creative Commons CC0 License.
As such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CC0 can be found online at:
http://creativecommons.org/publicdomain/zero/1.0/

4.1 Running example: Addition of Natural Numbers

Throughout this tutorial, we will be working with the following function, defined in the Idris prelude,
which defines addition on natural numbers:

plus : Nat -> Nat -> Nat
plus Z m = m
plus (S k) m = S (plus k m)

It is defined by the above equations, meaning that we have for free the properties that adding m to zero
always results in m, and that adding m to any non-zero number S k always results in S (plus k m). We
can see this by evaluation at the Idris REPL (i.e. the prompt, the read-eval-print loop):

Idris> \m => plus Z m
\m => m : Nat -> Nat

Idris> \k,m => plus (S k) m
\k => \m => S (plus k m) : Nat -> Nat -> Nat

Note that unlike many other language REPLs, the Idris REPL performs evaluation on open terms,
meaning that it can reduce terms which appear inside lambda bindings, like those above. Therefore, we
can introduce unknowns k and m as lambda bindings and see how plus reduces.

The plus function has a number of other useful properties, for example:

• It is commutative, that is for all Nat inputs n and m, we know that plus n m = plus m n.

• It is associative, that is for all Nat inputs n, m and p, we know that plus n (plus m p) = plus
(plus m n) p.

We can use these properties in an Idris program, but in order to do so we must prove them.
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4.1.1 Equality Proofs

Idris has a built-in propositional equality type, conceptually defined as follows:

data (=) : a -> b -> Type where
Refl : x = x

Note that this must be built-in, rather than defined in the library, because = is a reserved operator —
you cannot define this directly in your own code.

It is propositional equality, where the type states that any two values in different types a and b may be
proposed to be equal. There is only one way to prove equality, however, which is by reflexivity (Refl).

We have a type for propositional equality here, and correspondingly a program inhabiting an instance of
this type can be seen as a proof of the corresponding proposition 1. So, trivially, we can prove that 4
equals 4:

four_eq : 4 = 4
four_eq = Refl

However, trying to prove that 4 = 5 results in failure:

four_eq_five : 4 = 5
four_eq_five = Refl

The type 4 = 5 is a perfectly valid type, but is uninhabited, so when trying to type check this definition,
Idris gives the following error:

When elaborating right hand side of four_eq_five:
Type mismatch between

x = x (Type of Refl)
and

4 = 5 (Expected type)

Type checking equality proofs

An important step in type checking Idris programs is unification, which attempts to resolve implicit
arguments such as the implicit argument x in Refl. As far as our understanding of type checking proofs
is concerned, it suffices to know that unifying two terms involves reducing both to normal form then
trying to find an assignment to implicit arguments which will make those normal forms equal.

When type checking Refl, Idris requires that the type is of the form x = x, as we see from the type
of Refl. In the case of four_eq_five, Idris will try to unify the expected type 4 = 5 with the type of
Refl, x = x, notice that a solution requires that x be both 4 and 5, and therefore fail.

Since type checking involves reduction to normal form, we can write the following equalities directly:

twoplustwo_eq_four : 2 + 2 = 4
twoplustwo_eq_four = Refl

plus_reduces_Z : (m : Nat) -> plus Z m = m
plus_reduces_Z m = Refl

plus_reduces_Sk : (k, m : Nat) -> plus (S k) m = S (plus k m)
plus_reduces_Sk k m = Refl

1 This is known as the Curry-Howard correspondence.
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4.1.2 Heterogeneous Equality

Equality in Idris is heterogeneous, meaning that we can even propose equalities between values in different
types:

idris_not_php : 2 = "2"

Obviously, in Idris the type 2 = "2" is uninhabited, and one might wonder why it is useful to be able
to propose equalities between values in different types. However, with dependent types, such equalities
can arise naturally. For example, if two vectors are equal, their lengths must be equal:

vect_eq_length : (xs : Vect n a) -> (ys : Vect m a) ->
(xs = ys) -> n = m

In the above declaration, xs and ys have different types because their lengths are different, but we
would still like to draw a conclusion about the lengths if they happen to be equal. We can define
vect_eq_length as follows:

vect_eq_length xs xs Refl = Refl

By matching on Refl for the third argument, we know that the only valid value for ys is xs, because
they must be equal, and therefore their types must be equal, so the lengths must be equal.

Alternatively, we can put an underscore for the second xs, since there is only one value which will type
check:

vect_eq_length xs _ Refl = Refl

4.1.3 Properties of plus

Using the (=) type, we can now state the properties of plus given above as Idris type declarations:

plus_commutes : (n, m : Nat) -> plus n m = plus m n
plus_assoc : (n, m, p : Nat) -> plus n (plus m p) = plus (plus n m) p

Both of these properties (and many others) are proved for natural number addition in the Idris stan-
dard library, using (+) from the Num interface rather than using plus directly. They have the names
plusCommutative and plusAssociative respectively.

In the remainder of this tutorial, we will explore several different ways of proving plus_commutes (or,
to put it another way, writing the function.) We will also discuss how to use such equality proofs, and
see where the need for them arises in practice.

4.2 Inductive Proofs

Before embarking on proving plus_commutes in Idris itself, let us consider the overall structure of a
proof of some property of natural numbers. Recall that they are defined recursively, as follows:

data Nat : Type where
Z : Nat
S : Nat -> Nat

A total function over natural numbers must both terminate, and cover all possible inputs. Idris checks
functions for totality by checking that all inputs are covered, and that all recursive calls are on structurally
smaller values (so recursion will always reach a base case). Recalling plus:
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plus : Nat -> Nat -> Nat
plus Z m = m
plus (S k) m = S (plus k m)

This is total because it covers all possible inputs (the first argument can only be Z or S k for some k,
and the second argument m covers all possible Nat) and in the recursive call, k is structurally smaller
than S k so the first argument will always reach the base case Z in any sequence of recursive calls.

In some sense, this resembles a mathematical proof by induction (and this is no coincidence!). For some
property P of a natural number x, we can show that P holds for all x if:

• P holds for zero (the base case).

• Assuming that P holds for k, we can show P also holds for S k (the inductive step).

In plus, the property we are trying to show is somewhat trivial (for all natural numbers x, there is
a Nat which need not have any relation to x). However, it still takes the form of a base case and an
inductive step. In the base case, we show that there is a Nat arising from plus n m when n = Z, and
in the inductive step we show that there is a Nat arising when n = S k and we know we can get a Nat
inductively from plus k m. We could even write a function capturing all such inductive definitions:

nat_induction : (P : Nat -> Type) -> -- Property to show
(P Z) -> -- Base case
((k : Nat) -> P k -> P (S k)) -> -- Inductive step
(x : Nat) -> -- Show for all x
P x

nat_induction P p_Z p_S Z = p_Z
nat_induction P p_Z p_S (S k) = p_S k (nat_induction P p_Z p_S k)

Using nat_induction, we can implement an equivalent inductive version of plus:

plus_ind : Nat -> Nat -> Nat
plus_ind n m

= nat_induction (\x => Nat)
m -- Base case, plus_ind Z m
(\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m

-- where k_rec = plus_ind k m
n

To prove that plus n m = plus m n for all natural numbers n and m, we can also use induction. Either
we can fix m and perform induction on n, or vice versa. We can sketch an outline of a proof; performing
induction on n, we have:

• Property P is \x => plus x m = plus m x.

• Show that P holds in the base case and inductive step:

– Base case: P Z, i.e.
plus Z m = plus m Z, which reduces to
m = plus m Z due to the definition of plus.

– Inductive step: Inductively, we know that P k holds for a specific, fixed k, i.e.
plus k m = plus m k (the induction hypothesis). Given this, show P (S k), i.e.
plus (S k) m = plus m (S k), which reduces to
S (plus k m) = plus m (S k). From the induction hypothesis, we can rewrite this to
S (plus m k) = plus m (S k).

To complete the proof we therefore need to show that m = plus m Z for all natural numbers m, and that
S (plus m k) = plus m (S k) for all natural numbers m and k. Each of these can also be proved by
induction, this time on m.
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We are now ready to embark on a proof of commutativity of plus formally in Idris.

4.3 Pattern Matching Proofs

In this section, we will provide a proof of plus_commutes directly, by writing a pattern matching def-
inition. We will use interactive editing features extensively, since it is significantly easier to produce a
proof when the machine can give the types of intermediate values and construct components of the proof
itself. The commands we will use are summarised below. Where we refer to commands directly, we will
use the Vim version, but these commands have a direct mapping to Emacs commands.

Command Vim
binding

Emacs
binding

Explanation

Check type \t C-c C-t Show type of identifier or hole under the cursor.
Proof search \o C-c C-a Attempt to solve hole under the cursor by applying simple

proof search.
Make new
definition

\d C-c C-s Add a template definition for the type defined under the
cursor.

Make lemma \l C-c C-e Add a top level function with a type which solves the hole
under the cursor.

Split cases \c C-c C-c Create new constructor patterns for each possible case of
the variable under the cursor.

4.3.1 Creating a Definition

To begin, create a file pluscomm.idr containing the following type declaration:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n

To create a template definition for the proof, press \d (or the equivalent in your editor of choice) on the
line with the type declaration. You should see:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes n m = ?plus_commutes_rhs

To prove this by induction on n, as we sketched in Section sect-inductive, we begin with a case split on
n (press \c with the cursor over the n in the definition.) You should see:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = ?plus_commutes_rhs_1
plus_commutes (S k) m = ?plus_commutes_rhs_2

If we inspect the types of the newly created holes, plus_commutes_rhs_1 and plus_commutes_rhs_2,
we see that the type of each reflects that n has been refined to Z and S k in each respective case. Pressing
\t over plus_commutes_rhs_1 shows:

m : Nat
--------------------------------------
plus_commutes_rhs_1 : m = plus m 0

Note that Z renders as 0 because the pretty printer renders natural numbers as integer literals for
readability. Similarly, for plus_commutes_rhs_2:

k : Nat
m : Nat

--------------------------------------
plus_commutes_rhs_2 : S (plus k m) = plus m (S k)
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It is a good idea to give these slightly more meaningful names:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = ?plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

4.3.2 Base Case

We can create a separate lemma for the base case interactively, by pressing \l with the cursor over
plus_commutes_Z. This yields:
plus_commutes_Z : m = plus m 0

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

That is, the hole has been filled with a call to a top level function plus_commutes_Z. The argument m
has been made implicit because it can be inferred from context when it is applied.

Unfortunately, we cannot prove this lemma directly, since plus is defined by matching on its first
argument, and here plus m 0 has a specific value for its second argument (in fact, the left hand side of
the equality has been reduced from plus 0 m.) Again, we can prove this by induction, this time on m.

First, create a template definition with \d:
plus_commutes_Z : m = plus m 0
plus_commutes_Z = ?plus_commutes_Z_rhs

Since we are going to write this by induction on m, which is implicit, we will need to bring m into scope
manually:
plus_commutes_Z : m = plus m 0
plus_commutes_Z {m} = ?plus_commutes_Z_rhs

Now, case split on m with \c:
plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = ?plus_commutes_Z_rhs_1
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2

Checking the type of plus_commutes_Z_rhs_1 shows the following, which is easily proved by reflection:
--------------------------------------
plus_commutes_Z_rhs_1 : 0 = 0

For such trivial proofs, we can let write the proof automatically by pressing \o with the cursor over
plus_commutes_Z_rhs_1. This yields:
plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2

For plus_commutes_Z_rhs_2, we are not so lucky:
k : Nat

--------------------------------------
plus_commutes_Z_rhs_2 : S k = S (plus k 0)

Inductively, we should know that k = plus k 0, and we can get access to this inductive hypothesis by
making a recursive call on k, as follows:
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plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in

?plus_commutes_Z_rhs_2

For plus_commutes_Z_rhs_2, we now see:

k : Nat
rec : k = plus k (fromInteger 0)

--------------------------------------
plus_commutes_Z_rhs_2 : S k = S (plus k 0)

Again, the fromInteger 0 is merely due to Nat having an implementation of the Num interface. So we
know that k = plus k 0, but how do we use this to update the goal to S k = S k?

To achieve this, Idris provides a replace function as part of the prelude:

*pluscomm> :t replace
replace : (x = y) -> P x -> P y

Given a proof that x = y, and a property P which holds for x, we can get a proof of the same property
for y, because we know x and y must be the same. In practice, this function can be a little tricky to use
because in general the implicit argument P can be hard to infer by unification, so Idris provides a high
level syntax which calculates the property and applies replace:

rewrite prf in expr

If we have prf : x = y, and the required type for expr is some property of x, the rewrite ... in
syntax will search for x in the required type of expr and replace it with y. Concretely, in our example,
we can say:

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
rewrite rec in ?plus_commutes_Z_rhs_2

Checking the type of plus_commutes_Z_rhs_2 now gives:

k : Nat
rec : k = plus k (fromInteger 0)
_rewrite_rule : plus k 0 = k

--------------------------------------
plus_commutes_Z_rhs_2 : S (plus k 0) = S (plus k 0)

Using the rewrite rule rec (which we can see in the context here as _rewrite_rule 1, the goal type has
been updated with k replaced by plus k 0.

Alternatively, we could have applied the rewrite in the other direction using the sym function:

*pluscomm> :t sym
sym : (l = r) -> r = l

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
rewrite sym rec in ?plus_commutes_Z_rhs_2

In this case, inspecting the type of the hole gives:

k : Nat
rec : k = plus k (fromInteger 0)
_rewrite_rule : k = plus k 0

1 Note that the left and right hand sides of the equality have been swapped, because replace takes a proof of x=y and
the property for x, not y.
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--------------------------------------
plus_commutes_Z_rhs_2 : S k = S k

Either way, we can use proof search (\o) to complete the proof, giving:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in

rewrite rec in Refl

The base case is now complete.

4.3.3 Inductive Step

Our main theorem, plus_commutes should currently be in the following state:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

Looking again at the type of plus_commutes_S, we have:

k : Nat
m : Nat

--------------------------------------
plus_commutes_S : S (plus k m) = plus m (S k)

Conveniently, by induction we can immediately tell that plus k m = plus m k, so let us rewrite directly
by making a recursive call to plus_commutes. We add this directly, by hand, as follows:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = rewrite plus_commutes k m in ?plus_commutes_S

Checking the type of plus_commutes_S now gives:

k : Nat
m : Nat
_rewrite_rule : plus m k = plus k m

--------------------------------------
plus_commutes_S : S (plus m k) = plus m (S k)

The good news is that m and k now appear in the correct order. However, we still have to show that
the successor symbol S can be moved to the front in the right hand side of this equality. This remaining
lemma takes a similar form to the plus_commutes_Z; we begin by making a new top level lemma with
\l. This gives:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)

Unlike the previous case, k and m are not made implicit because we cannot in general infer arguments
to a function from its result. Again, we make a template definition with \d:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k m = ?plus_commutes_S_rhs

Again, this is defined by induction over m, since plus is defined by matching on its first argument. The
complete definition is:
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total
plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k Z = Refl
plus_commutes_S k (S j) = rewrite plus_commutes_S k j in Refl

All holes have now been solved.

The total annotation means that we require the final function to pass the totality checker; i.e. it will
terminate on all possible well-typed inputs. This is important for proofs, since it provides a guarantee
that the proof is valid in all cases, not just those for which it happens to be well-defined.

Now that plus_commutes has a total annotation, we have completed the proof of commutativity of
addition on natural numbers.

4.4 DEPRECATED: Interactive Theorem Proving

Warning: The interactive theorem-proving interface documented here has been deprecated in favor
of Elaborator Reflection (page 157).

Idris also supports interactive theorem proving via tactics. This is generally not recommended to be
used directly, but rather used as a mechanism for building proof automation which is beyond the scope
of this tutorial. In this section, we briefly discus tactics.

One way to write proofs interactively is to write the general structure of the proof, and use the interactive
mode to complete the details. Consider the following definition, proved in Theorem Proving (page 40):

plusReduces : (n:Nat) -> plus Z n = n

We’ll be constructing the proof by induction, so we write the cases for Z and S, with a recursive call in
the S case giving the inductive hypothesis, and insert holes for the rest of the definition:

plusReducesZ' : (n:Nat) -> n = plus n Z
plusReducesZ' Z = ?plusredZ_Z
plusReducesZ' (S k) = let ih = plusReducesZ' k in

?plusredZ_S

On running , two global names are created, plusredZ_Z and plusredZ_S, with no definition. We can
use the :m command at the prompt to find out which holes are still to be solved (or, more precisely,
which functions exist but have no definitions), then the :t command to see their types:

*theorems> :m
Global holes:

[plusredZ_S,plusredZ_Z]

*theorems> :t plusredZ_Z
plusredZ_Z : Z = plus Z Z

*theorems> :t plusredZ_S
plusredZ_S : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

The :p command enters interactive proof mode, which can be used to complete the missing definitions.

*theorems> :p plusredZ_Z

---------------------------------- (plusredZ_Z) --------
{hole0} : Z = plus Z Z
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This gives us a list of premises (above the line; there are none here) and the current goal (below the line;
named {hole0} here). At the prompt we can enter tactics to direct the construction of the proof. In
this case, we can normalise the goal with the compute tactic:

-plusredZ_Z> compute

---------------------------------- (plusredZ_Z) --------
{hole0} : Z = Z

Now we have to prove that Z equals Z, which is easy to prove by Refl. To apply a function, such as
Refl, we use refine which introduces subgoals for each of the function’s explicit arguments (Refl has
none):

-plusredZ_Z> refine Refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by Refl, and if that fails, tries
to refine by each name in the local context. When a proof is complete, we use the qed tactic to add the
proof to the global context, and remove the hole from the unsolved holes list. This also outputs a trace
of the proof:

-plusredZ_Z> qed
plusredZ_Z = proof

compute
refine Refl

*theorems> :m
Global holes:

[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to the source file (effectively in
an appendix). Let us now prove the other required lemma, plusredZ_S:

*theorems> :p plusredZ_S

---------------------------------- (plusredZ_S) --------
{hole0} : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

In this case, the goal is a function type, using k (the argument accessible by pattern matching) and ih
— the local variable containing the result of the recursive call. We can introduce these as premises using
the intro tactic twice (or intros, which introduces all arguments as premises). This gives:

k : Nat
ih : k = plus k Z

---------------------------------- (plusredZ_S) --------
{hole2} : S k = plus (S k) Z

Since plus is defined by recursion on its first argument, the term plus (S k) Z in the goal can be
simplified, so we use compute.

k : Nat
ih : k = plus k Z

---------------------------------- (plusredZ_S) --------
{hole2} : S k = S (plus k Z)

We know, from the type of ih, that k = plus k Z, so we would like to use this knowledge to replace
plus k Z in the goal with k. We can achieve this with the rewrite tactic:

-plusredZ_S> rewrite ih

k : Nat
ih : k = plus k Z
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---------------------------------- (plusredZ_S) --------
{hole3} : S k = S k

-plusredZ_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite the goal using that
proof. Here, it results in an equality which is trivially provable:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> qed
plusredZ_S = proof {

intros;
rewrite ih;
trivial;

}

Again, we can add this proof to the end of our source file using the :addproof command at the interactive
prompt.
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Language Reference

This is the reference guide for the Idris Language. It documents the language specification and internals.
This will tell you how Idris works, for using it you should read the Idris Tutorial.

Note: The documentation for Idris has been published under the Creative Commons CC0 License.
As such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CC0 can be found online at:
http://creativecommons.org/publicdomain/zero/1.0/

5.1 Code Generation Targets

Idris has been designed such that the compiler can generate code for different backends upon request.
By default Idris generates a C backend when generating an executable. Included within the standard
Idris installation are backends for Javascript and Node.js.

However, there are third-party code generators out there. Below we describe some of these backends and
how you can use them when compiling your Idris code. If you want to write your own codegen for your
language there is a stub project on GitHub that can help point you in the right direction.

5.1.1 Official Backends

C Language

Javascript

To generate code that is tailored for running in the browser issue the following command:

$ idris --codegen javascript hello.idr -o hello.js

Generating code for NodeJS is slightly different. Idris outputs a JavaScript file that can be directly
executed via node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world
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Idris can produce very big chunks of JavaScript code (hello world weighs in at 1500 lines). However, the
generated code can be minified using the closure-compiler from Google.

java -jar compiler.jar --compilation_level ADVANCED_OPTIMIZATIONS --js hello.js

Node.js

5.1.2 Third Party

Note: These are third-party code generations and may have bit-rotted or do not work with current
versions of Idris. Please speak to the project’s maintainors if there are any problems.

CIL (.NET, Mono, Unity)

idris --codegen cil Main.idr -o HelloWorld.exe \
&& mono HelloWorld.exe

The resulting assemblies can also be used with .NET or Unity.

Requires idris-cil.

Erlang

Available online

Java

Available online

idris hello.idr --codegen java -o hello.jar

Note: The resulting .jar is automatically prefixed by a header including an .sh script to allow executing
it directly.

JVM

Available online

LLVM

Available online

Malfunction

Available online
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Ocaml

Available online

PHP

Available online

Python

Available online

Ruby

Available online

WS

Available online

5.2 Documenting Idris Code

Idris documentation comes in two major forms: comments, which exist for a reader’s edification and
are ignored by the compiler, and inline API documentation, which the compiler parses and stores for
future reference. To consult the documentation for a declaration f, write :doc f at the REPL or use
the appropriate command in your editor (C-c C-d in Emacs, <LocalLeader>h in Vim).

5.2.1 Comments

Use comments to explain why code is written the way that it is. Idris’s comment syntax is the same as
that of Haskell: lines beginning with -- are comments, and regions bracketed by {- and -} are comments
even if they extend across multiple lines. These can be used to comment out lines of code or provide
simple documentation for the readers of Idris code.

5.2.2 Inline Documentation

Idris also supports a comprehensive and rich inline syntax for Idris code to be generated. This syntax
also allows for named parameters and variables within type signatures to be individually annotated using
a syntax similar to Javadoc parameter annotations.

Documentation always comes before the declaration being documented. Inline documentation applies to
either top-level declarations or to constructors. Documentation for specific arguments to constructors,
type constructors, or functions can be associated with these arguments using their names.

The inline documentation for a declaration is an unbroken string of lines, each of which begins with |||
(three pipe symbols). The first paragraph of the documentation is taken to be an overview, and in some
contexts, only this overview will be shown. After the documentation for the declaration as a whole, it
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is possible to associate documentation with specific named parameters, which can either be explicitly
name or the results of converting free variables to implicit parameters. Annotations are the same as with
Javadoc annotations, that is for the named parameter (n : T), the corresponding annotation is ||| @
n Some description that is placed before the declaration.

Documentation is written in Markdown, though not all contexts will display all possible formatting (for
example, images are not displayed when viewing documentation in the REPL, and only some terminals
render italics correctly). A comprehensive set of examples is given below.

||| Modules can also be documented.
module Docs

||| Add some numbers.
|||
||| Addition is really great. This paragraph is not part of the overview.
||| Still the same paragraph. Lists are also nifty:
||| * Really nifty!
||| * Yep!
||| * The name `add` is a **bold** choice
||| @ n is the recursive param
||| @ m is not
add : (n, m : Nat) -> Nat
add Z m = m
add (S n) m = S (add n m)

||| Append some vectors
||| @ a the contents of the vectors
||| @ xs the first vector (recursive param)
||| @ ys the second vector (not analysed)
appendV : (xs : Vect n a) -> (ys : Vect m a) -> Vect (add n m) a
appendV [] ys = ys
appendV (x::xs) ys = x :: appendV xs ys

||| Here's a simple datatype
data Ty =

||| Unit
UNIT |
||| Functions
ARR Ty Ty

||| Points to a place in a typing context
data Elem : Vect n Ty -> Ty -> Type where

Here : {ts : Vect n Ty} -> Elem (t::ts) t
There : {ts : Vect n Ty} -> Elem ts t -> Elem (t'::ts) t

||| A more interesting datatype
||| @ n the number of free variables
||| @ ctxt a typing context for the free variables
||| @ ty the type of the term
data Term : (ctxt : Vect n Ty) -> (ty : Ty) -> Type where

||| The constructor of the unit type
||| More comment
||| @ ctxt the typing context
UnitCon : {ctxt : Vect n Ty} -> Term ctxt UNIT

||| Function application
||| @ f the function to apply
||| @ x the argument
App : {ctxt : Vect n Ty} -> (f : Term ctxt (ARR t1 t2)) -> (x : Term ctxt t1) -> Term ctxt t2

||| Lambda
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||| @ body the function body
Lam : {ctxt : Vect n Ty} -> (body : Term (t1::ctxt) t2) -> Term ctxt (ARR t1 t2)

||| Variables
||| @ i de Bruijn index
Var : {ctxt : Vect n Ty} -> (i : Elem ctxt t) -> Term ctxt t

||| A computation that may someday finish
codata Partial : Type -> Type where

||| A finished computation
||| @ value the result
Now : (value : a) -> Partial a

||| A not-yet-finished computation
||| @ rest the remaining work
Later : (rest : Partial a) -> Partial a

||| We can document records, including their fields and constructors
record Yummy where

||| Make a yummy
constructor MkYummy
||| What to eat
food : String

5.3 Packages

Idris includes a simple system for building packages from a package description file. These files can be
used with the Idris compiler to manage the development process of your Idris programmes and packages.

5.3.1 Package Descriptions

A package description includes the following:

• A header, consisting of the keyword package followed by the package name. Package names can
be any valid Idris identifier. The iPKG format also takes a quoted version that accepts any valid
filename.

• Fields describing package contents, <field> = <value>

At least one field must be the modules field, where the value is a comma separated list of modules. For
example, a library test which has two modules foo.idr and bar.idr as source files would be written as
follows:

package foo

modules = foo, bar

Other examples of package files can be found in the libs directory of the main Idris repository, and in
third-party libraries.

Metadata

From Idris v0.12 the iPKG format supports additional metadata associated with the package. The
added fields are:
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• brief = "<text>", a string literal containing a brief description of the package.

• version = <text>, a version string to associate with the package.

• readme = <file>, location of the README file.

• license = <text>, a string description of the licensing information.

• author = <text>, the author information.

• maintainer = <text>, Maintainer information.

• homepage = <url>, the website associated with the package.

• sourceloc = <url>, the location of the DVCS where the source can be found.

• bugtracker = <url>, the location of the project’s bug tracker.

Common Fields

Other common fields which may be present in an ipkg file are:

• sourcedir = <dir>, which takes the directory (relative to the current directory) which contains
the source. Default is the current directory.

• executable = <output>, which takes the name of the executable file to generate. Executable
names can be any valid Idris identifier. the iPKG format also takes a quoted version that accepts
any valid filename.

• main = <module>, which takes the name of the main module, and must be present if the executable
field is present.

• opts = "<idris options>", which allows options to be passed to Idris.

• pkgs = <pkg name> (’,’ <pkg name>)+, a comma separated list of package names that the Idris
package requires.

Binding to C

In more advanced cases, particularly to support creating bindings to external C libraries, the following
options are available:

• makefile = <file>, which specifies a Makefile, to be built before the Idris modules, for example
to support linking with a C library.

• libs = <libs>, which takes a comma separated list of libraries which must be present for the
package to be usable.

• objs = <objs>, which takes a comma separated list of additional files to be installed (object files,
headers), perhaps generated by the Makefile.

Testing

For testing Idris packages there is a rudimentary testing harness, run in the IO context. The iPKG file is
used to specify the functions used for testing. The following option is available:

• tests = <test functions>, which takes the qualified names of all test functions to be run.
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Important: The modules containing the test functions must also be added to the list of modules.

5.3.2 Using Package files

Given an Idris package file text.ipkg it can be used with the Idris compiler as follows:

• idris --build test.ipkg will build all modules in the package

• idris --install test.ipkg will install the package, making it accessible by other Idris libraries
and programs.

• idris --clean test.ipkg will delete all intermediate code and executable files generated when
building.

• idris --mkdoc test.ipkg will build HTML documentation for your package in the folder
test_doc in your project’s root directory.

• idris --checkpkg test.ipkg will type check all modules in the package only. This differs from
build that type checks and generates code.

• idris --testpkg test.ipkg will compile and run any embedded tests you have specified in the
tests parameter.

Once the test package has been installed, the command line option --package test makes it accessible
(abbreviated to -p test). For example:

idris -p test Main.idr

5.4 Uniqueness Types

Uniqueness Types are an experimental feature available from Idris 0.9.15. A value with a unique type is
guaranteed to have at most one reference to it at run-time, which means that it can safely be updated
in-place, reducing the need for memory allocation and garbage collection. The motivation is that we
would like to be able to write reactive systems, programs which run in limited memory environments,
device drivers, and any other system with hard real-time requirements, ideally while giving up as little
high level conveniences as possible.

They are inspired by linear types, Uniqueness Types in the Clean programming language, and ownership
types and borrowed pointers in the Rust programming language.

Some things we hope to be able to do eventually with uniqueness types include:

• Safe, pure, in-place update of arrays, lists, etc

• Provide guarantees of correct resource usage, state transitions, etc

• Provide guarantees that critical program fragments will never allocate

5.4.1 Using Uniqueness

If x : T and T : UniqueType, then there is at most one reference to x at any time during run-time
execution. For example, we can declare the type of unique lists as follows:

115

https://en.wikipedia.org/wiki/Uniqueness_type
http://wiki.clean.cs.ru.nl/Clean
https://www.rust-lang.org/


CHAPTER 5. LANGUAGE REFERENCE v0.99

data UList : Type -> UniqueType where
Nil : UList a
(::) : a -> UList a -> UList a

If we have a value xs : UList a, then there is at most one reference to xs at run-time. The type
checker preserves this guarantee by ensuring that there is at most one reference to any value of a unique
type in a pattern clause. For example, the following function definition would be valid:

umap : (a -> b) -> UList a -> UList b
umap f [] = []
umap f (x :: xs) = f x :: umap f xs

In the second clause, xs is a value of a unique type, and only appears once on the right hand side, so this
clause is valid. Not only that, since we know there can be no other reference to the UList a argument,
we can reuse its space for building the result! The compiler is aware of this, and compiles this definition
to an in-place update of the list.

The following function definition would not be valid (even assuming an implementation of ++), however,
since xs appears twice:

dupList : UList a -> UList a
dupList xs = xs ++ xs

This would result in a shared pointer to xs, so the typechecker reports:

unique.idr:12:5:Unique name xs is used more than once

If we explicitly copy, however, the typechecker is happy:

dup : UList a -> UList a
dup [] = []
dup (x :: xs) = x :: x :: dup xs

Note that it’s fine to use x twice, because a is a Type, rather than a UniqueType.

There are some other restrictions on where a UniqueType can appear, so that the uniqueness property
is preserved. In particular, the type of the function type, (x : a) -> b depends on the type of a or
b - if either is a UniqueType, then the function type is also a UniqueType. Then, in a data declaration,
if the type constructor builds a Type, then no constructor can have a UniqueType. For example, the
following definition is invalid, since it would embed a unique value in a possible non-unique value:

data BadList : UniqueType -> Type where
Nil : {a : UniqueType} -> BadList a
(::) : {a : UniqueType} -> a -> BadList a -> BadList a

Finally, types may be polymorphic in their uniqueness, to a limited extent. Since Type and UniqueType
are different types, we are limited in how much we can use polymorphic functions on unique types. For
example, if we have function composition defined as follows:

(.) : {a, b, c : Type} -> (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

And we have some functions over unique types:

foo : UList a -> UList b
bar : UList b -> UList c

Then we cannot compose foo and bar as bar . foo, because UList does not compute a Type! Instead,
we can define composition as follows:
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(.) : {a, b, c : Type*} -> (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

The Type* type stands for either unique or non-unique types. Since such a function may be passed a
UniqueType, any value of type Type* must also satisfy the requirement that it appears at most once on
the right hand side.

Borrowed Types

It quickly becomes obvious when working with uniqueness types that having only one reference at a time
can be painful. For example, what if we want to display a list before updating it?
showU : Show a => UList a -> String
showU xs = "[" ++ showU' xs ++ "]" where

showU' : UList a -> String
showU' [] = ""
showU' [x] = show x
showU' (x :: xs) = show x ++ ", " ++ showU' xs

This is a valid definition of showU, but unfortunately it consumes the list! So the following function
would be invalid:

printAndUpdate : UList Int -> IO ()
printAndUpdate xs = do putStrLn (showU xs)

let xs' = umap (*2) xs -- xs no longer available!
putStrLn (showU xs')

Still, one would hope to be able to display a unique list without problem, since it merely inspects the list;
there are no updates. We can achieve this, using the notion of borrowing. A Borrowed type is a Unique
type which can be inspected at the top level (by pattern matching, or by lending to another function)
but no further. This ensures that the internals (i.e. the arguments to top level patterns) will not be
passed to any function which will update them.

Borrowed converts a UniqueType to a BorrowedType. It is defined as follows (along with some additional
rules in the typechecker):
data Borrowed : UniqueType -> BorrowedType where

Read : {a : UniqueType} -> a -> Borrowed a

implicit
lend : {a : UniqueType} -> a -> Borrowed a
lend x = Read x

A value can be “lent” to another function using lend. Arguments to lend are not counted by the type
checker as a reference to a unique value, therefore a value can be lent as many times as desired. Using
this, we can write showU as follows:

showU : Show a => Borrowed (UList a) -> String
showU xs = "[" ++ showU' xs ++ "]" where

showU' : Borrowed (UList a) -> String
showU' [] = ""
showU' [x] = show x
showU' (Read (x :: xs)) = show x ++ ", " ++ showU' (lend xs)

Unlike a unique value, a borrowed value may be referred to as many times as desired. However, there is a
restriction on how a borrowed value can be used. After all, much like a library book or your neighbour’s
lawnmower, if a function borrows a value it is expected to return it in exactly the condition in which it
was received!

The restriction is that when a Borrowed type is matched, any pattern variables under the Read which
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have a unique type may not be referred to at all on the right hand side (unless they are themselves lent
to another function).

Uniqueness information is stored in the type, and in particular in function types. Once we’re in a unique
context, any new function which is constructed will be required to have unique type, which prevents the
following sort of bad program being implemented:

foo : UList Int -> IO ()
foo xs = do let f = \x : Int => showU xs

putStrLn $ free xs
putStrLn $ f 42
pure ()

Since lend is implicit, in practice for functions to lend and borrow values merely requires the argument
to be marked as Borrowed. We can therefore write showU as follows:

showU : Show a => Borrowed (UList a) -> String
showU xs = "[" ++ showU' xs ++ "]" where

showU' : Borrowed (UList a) -> String
showU' [] = ""
showU' [x] = show x
showU' (x :: xs) = show x ++ ", " ++ showU' xs

Problems/Disadvantages/Still to do...

This is a work in progress, there is lots to do. The most obvious problem is the loss of abstraction. On
the one hand, we have more precise control over memory usage with UniqueType and BorrowedType,
but they are not in general compatible with functions polymorphic over Type. In the short term, we can
start to write reactive and low memory systems with this, but longer term it would be nice to support
more abstraction.

We also haven’t checked any of the metatheory, so this could all be fatally flawed! The implementation
is based to a large extent on Uniqueness Typing Simplified, by de Vries et al, so there is reason to believe
things should be fine, but we still have to do the work.

Much as there are with linear types, there are some annoyances when trying to prove properties of
functions with unique types (for example, what counts as a use of a value). Since we require at most
one use of a value, rather than exactly one, this seems to be less of an issue in practice, but still needs
thought.

5.5 New Foreign Function Interface

Ever since Idris has had multiple backends compiling to different target languages on potentially different
platforms, we have had the problem that the foreign function interface (FFI) was written under the
assumption of compiling to C. As a result, it has been hard to write generic code for multiple targets,
or even to be sure that if code compiles that it will run on the expected target.

As of 0.9.17, Idris will have a new foreign function interface (FFI) which is aware of multiple targets.
Users who are working with the default code generator can happily continue writing programs as before
with no changes, but if you are writing bindings for an external library, writing a back end, or working
with a non-C back end, there are some things you will need to be aware of, which this page describes.
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5.5.1 The IO’ monad, and main

The IO monad exists as before, but is now specific to the C backend (or, more precisely, any backend
whose foreign function calls are compatible with C.) Additionally, there is now an IO’ monad, which is
parameterised over a FFI descriptor:

data IO' : (lang : FFI) -> Type -> Type

The Prelude defines two FFI descriptors which are imported automatically, for C and JavaScript/Node,
and defines IO to use the C FFI and JS_IO to use the JavaScript FFI:

FFI_C : FFI
FFI_JS : FFI

IO : Type -> Type
IO a = IO' FFI_C a

JS_IO : Type -> Type
JS_IO a = IO' FFI_JS a

As before, the entry point to an Idris program is main, but the type of main can now be any implemen-
tation of IO’, e.g. the following are both valid:

main : IO ()
main : JS_IO ()

The FFI descriptor includes details about which types can be marshalled between the foreign language
and Idris, and the “target” of a foreign function call (typically just a String representation of the function’s
name, but potentially something more complicated such as an external library file or even a URL).

5.5.2 FFI descriptors

An FFI descriptor is a record containing a predicate which holds when a type can be marshalled, and
the type of the target of a foreign call:

record FFI where
constructor MkFFI
ffi_types : Type -> Type
ffi_fn : Type

For C, this is:

||| Supported C integer types
public export
data C_IntTypes : Type -> Type where

C_IntChar : C_IntTypes Char
C_IntNative : C_IntTypes Int
C_IntBits8 : C_IntTypes Bits8
C_IntBits16 : C_IntTypes Bits16
C_IntBits32 : C_IntTypes Bits32
C_IntBits64 : C_IntTypes Bits64

||| Supported C function types
public export
data C_FnTypes : Type -> Type where

C_Fn : C_Types s -> C_FnTypes t -> C_FnTypes (s -> t)
C_FnIO : C_Types t -> C_FnTypes (IO' FFI_C t)
C_FnBase : C_Types t -> C_FnTypes t

||| Supported C foreign types
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public export
data C_Types : Type -> Type where

C_Str : C_Types String
C_Float : C_Types Double
C_Ptr : C_Types Ptr
C_MPtr : C_Types ManagedPtr
C_Unit : C_Types ()
C_Any : C_Types (Raw a)
C_FnT : C_FnTypes t -> C_Types (CFnPtr t)
C_IntT : C_IntTypes i -> C_Types i

||| A descriptor for the C FFI. See the constructors of `C_Types`
||| and `C_IntTypes` for the concrete types that are available.
%error_reverse
public export
FFI_C : FFI

FFI_C = MkFFI C_Types String String

5.5.3 Foreign calls

To call a foreign function, the foreign function is used. For example:

do_fopen : String -> String -> IO Ptr
do_fopen f m

= foreign FFI_C "fileOpen" (String -> String -> IO Ptr) f m

The foreign function takes an FFI description, a function name (the type is given by the ffi_fn field
of FFI_C here), and a function type, which gives the expected types of the remaining arguments. Here,
we’re calling an external function fileOpen which takes, in the C, a char* file name, a char* mode, and
returns a file pointer. It is the job of the C back end to convert Idris String to C char* and vice versa.

The argument types and return type given here must be present in the fn_types predicate of the FFI_C
description for the foreign call to be valid.

Note The arguments to foreign must be known at compile time, because the foreign calls are generated
statically. The %inline directive on a function can be used to give hints to help this, for example a
shorthand for calling external JavaScript functions:

%inline
jscall : (fname : String) -> (ty : Type) ->

{auto fty : FTy FFI_JS [] ty} -> ty
jscall fname ty = foreign FFI_JS fname ty

C callbacks

It is possible to pass an Idris function to a C function taking a function pointer by using CFnPtr in the
function type. The Idris function is passed to MkCFnPtr in the arguments. The example below shows
declaring the C standard library function qsort which takes a pointer to a comparison function.

myComparer : Ptr -> Ptr -> Int
myComparer = ...

qsort : Ptr -> Int -> Int -> IO ()
test2 data elems elsize = foreign FFI_C "qsort"

(Ptr -> Int -> Int -> CFnPtr (Ptr -> Ptr -> Int) -> IO ())
data elems elsize (MkCFnPtr myComparer)

There are a few limitations to callbacks in the C FFI. The foreign function can’t take the function to
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make a callback of as an argument. This will give a compilation error:

-- This does not work
example : (Int -> ()) -> IO ()
example f = foreign FFI_C "callbacker" (CFnPtr (Int -> ()) -> IO ()) f

The other big limitation is that it doesn’t support IO functions. Use unsafePerformIO to wrap them
(i.e. to make an IO function usable as a callback, change the return type from IOr to r, and change the
= do to = unsafePerformIO $ do).

There are two special function names: %wrapper returns the function pointer that wraps an Idris function.
This is useful if the function pointer isn’t taken by a C function directly but should be inserted into a
data structure. A foreign declaration using %wrapper must return IO Ptr.

-- this returns the C function pointer to a qsort comparer
example_wrapper : IO Ptr
example_wrapper = foreign FFI_C "%wrapper" (CFnPtr (Ptr -> Ptr -> Int) -> IO Ptr)

(MkCFnPtr myComparer)

%dynamic calls a C function pointer with some arguments. This is useful if a C function returns or
data structure contains a C function pointer, for example structs of function pointers are common in
object-oriented C such as in COM or the Linux kernel. The function type contains an extra Ptr at the
start for the function pointer. %dynamic can be seen as a pseudo-function that calls the function in the
first argument, passing the remaining arguments to it.

-- we have a pointer to a function with the signature int f(int), call it
example_dynamic : Ptr -> Int -> IO Int
example_dynamic fn x = foreign FFI_C "%dynamic" (Ptr -> Int -> IO Int) fn x

If the foreign name is prefixed by a &, it is treated as a pointer to the global variable with the following
name. The type must be just IO Ptr.

-- access the global variable errno
errno : IO Ptr
errno = foreign FFI_C "&errno" (IO Ptr)

For more complicated interactions with C (such as reading and setting fields of a C struct), there is a
module CFFI available in the contrib package.

FFI implementation

In order to write bindings to external libraries, the details of how foreign works are unnecessary —
you simply need to know that foreign takes an FFI descriptor, the function name, and its type. It is
instructive to look a little deeper, however:

The type of foreign is as follows:

foreign : (ffi : FFI)
-> (fname : ffi_fn f)
-> (ty : Type)
-> {auto fty : FTy ffi [] ty}
-> ty

The important argument here is the implicit fty, which contains a proof (FTy) that the given type is
valid according to the FFI description ffi:

data FTy : FFI -> List Type -> Type -> Type where
FRet : ffi_types f t -> FTy f xs (IO' f t)
FFun : ffi_types f s -> FTy f (s :: xs) t -> FTy f xs (s -> t)
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Notice that this uses the ffi_types field of the FFI descriptor — these arguments to FRet and FFun give
explicit proofs that the type is valid in this FFI. For example, the above do_fopen builds the following
implicit proof as the fty argument to foreign:

FFun C_Str (FFun C_Str (FRet C_Ptr))

5.5.4 Compiling foreign calls

(This section assumes some knowledge of the Idris internals.)

When writing a back end, we now need to know how to compile foreign. We’ll skip the details here of
how a foreign call reaches the intermediate representation (the IR), though you can look in IO.idr in
the prelude package to see a bit more detail — a foreign call is implemented by the primitive function
mkForeignPrim. The important part of the IR as defined in Lang.hs is the following constructor:

data LExp = ...
| LForeign FDesc -- Function descriptor

FDesc -- Return type descriptor
[(FDesc, LExp)]

So, a foreign call appears in the IR as the LForeign constructor, which takes a function descriptor (of
a type given by the ffi_fn field in the FFI descriptor), a return type descriptor (given by an application
of FTy), and a list of arguments with type descriptors (also given by an application of FTy).

An FDesc describes an application of a name to some arguments, and is really just a simplified subset
of an LExp:

data FDesc = FCon Name
| FStr String
| FUnknown
| FApp Name [FDesc]

There are corresponding structures in the lower level IRs, such as the defunctionalised, simplified and
bytecode forms.

Our do_fopen example above arrives in the LExp form as:

LForeign (FStr "fileOpen") (FCon (sUN "C_Ptr"))
[(FCon (sUN "C_Str"), f), (FCon (sUN "C_Str"), m)]

(Assuming that f and m stand for the LExp representations of the arguments.) This information should
be enough for any back end to marshal the arguments and return value appropriately.

Note: When processing FDesc, be aware that there may be implicit arguments, which have not been
erased. For example, C_IntT has an implicit argument i, so will appear in an FDesc as something of the
form FApp (sUN "C_IntT") [i, t] where i is the implicit argument (which can be ignored) and t is
the descriptor of the integer type. See CodegenC.hs, specifically the function toFType, to see how this
works in practice.

5.5.5 JavaScript FFI descriptor

The JavaScript FFI descriptor is a little more complex, because the JavaScript FFI supports marshalling
functions. It is defined as follows:
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mutual
data JsFn t = MkJsFn t

data JS_IntTypes : Type -> Type where
JS_IntChar : JS_IntTypes Char
JS_IntNative : JS_IntTypes Int

data JS_FnTypes : Type -> Type where
JS_Fn : JS_Types s -> JS_FnTypes t -> JS_FnTypes (s -> t)
JS_FnIO : JS_Types t -> JS_FnTypes (IO' l t)
JS_FnBase : JS_Types t -> JS_FnTypes t

data JS_Types : Type -> Type where
JS_Str : JS_Types String
JS_Float : JS_Types Double
JS_Ptr : JS_Types Ptr
JS_Unit : JS_Types ()
JS_FnT : JS_FnTypes a -> JS_Types (JsFn a)
JS_IntT : JS_IntTypes i -> JS_Types i

The reason for wrapping function types in a JsFn is to help the proof search when building FTy. We
hope to improve proof search eventually, but for the moment it works much more reliably if the indices
are disjoint! An example of using this appears in IdrisScript when setting timeouts:

setTimeout : (() -> JS_IO ()) -> (millis : Int) -> JS_IO Timeout
setTimeout f millis = do

timeout <- jscall "setTimeout(%0, %1)"
(JsFn (() -> JS_IO ()) -> Int -> JS_IO Ptr)
(MkJsFn f) millis

pure $ MkTimeout timeout

5.6 Syntax Guide

Examples are mostly adapted from the Idris tutorial.

5.6.1 Source File Structure

Source files consist of:

1. An optional Module Header (page 124).

2. Zero or more Imports (page 124).

3. Zero or more declarations, e.g. Variables (page 124), Data types (page 125), etc.

For example:

module MyModule -- module header

import Data.Vect -- an import

%default total -- a directive

foo : Nat -- a declaration
foo = 5
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Module Header

A file can start with a module header, introduced by the module keyword:

module Semantics

Module names can be hierarchical, with parts separated by .:

module Semantics.Transform

Each file can define only a single module, which includes everything defined in that file.

Like with declarations, a docstring (page 128) can be used to provide documentation for a module:

||| Implementation of predicate transformer semantics.
module Semantics.Transform

Imports

An import makes the names in another module available for use by the current module:

import Data.Vect

All the declarations in an imported module are available for use in the file. In a case where a name
is ambiguous — e.g. because it is imported from multiple modules, or appears in multiple visible
namespaces — the ambiguity can be resolved using Qualified Names (page 128). (Often, the compiler
can resolve the ambiguity for you, using the types involved.)

Imported modules can be given aliases to make qualified names more compact:

import Data.Vect as V

Note that names made visible by import are not, by default, re-exported to users of the module being
written. This can be done using import public:

import public Data.Vect

5.6.2 Variables

A variable is always defined by defining its type on one line, and its value on the next line, using the
syntax

<id> : <type>
<id> = <value>

Examples

x : Int
x = 100
hello : String
hello = "hello"

5.6.3 Types

In Idris, types are first class values. So a type declaration is the same as just declaration of a variable
whose type is Type. In Idris, variables that denote a type need not be capitalised. Example:
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MyIntType : Type
MyIntType = Int

a more interesting example:

MyListType : Type
MyListType = List Int

While capitalising types is not required, the rules for generating implicit arguments mean it is often a
good idea.

Data types

Idris provides two kinds of syntax for defining data types. The first, Haskell style syntax, defines a
regular algebraic data type. For example

data Either a b = Left a | Right b

or

data List a = Nil | (::) a (List a)

The second, more general kind of data type, is defined using Agda or GADT style syntax. This syntax
defines a data type that is parameterised by some values (in the Vect example, a value of type Nat and
a value of type Type).

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a

5.6.4 Operators

Arithmetic

x + y
x - y
x * y
x / y
(x * y) + (a / b)

Equality and Relational

x == y
x /= y
x >= y
x > y
x <= y
x < y

Conditional

x && y
x || y
not x
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5.6.5 Conditionals

If Then Else

if <test> then <true> else <false>

Case Expressions

case <test> of
<case 1> => <expr>
<case 2> => <expr>
...
otherwise => <expr>

5.6.6 Functions

Named

Named functions are defined in the same way as variables, with the type followed by the definition.

<id> : <argument type> -> <return type>
<id> arg = <expr>

Example

plusOne : Int -> Int
plusOne x = x + 1

Functions can also have multiple inputs, for example

makeHello : String -> String -> String
makeHello first last = "hello, my name is " ++ first ++ " " ++ last

Functions can also have named arguments. This is required if you want to annotate parameters in a
docstring. The following shows the same makeHello function as above, but with named parameters
which are also annotated in the docstring

||| Makes a string introducing a person
||| @first The person's first name
||| @last The person's last name
makeHello : (first : String) -> (last : String) -> String
makeHello first last = "hello, my name is " ++ first ++ " " ++ last

Like Haskell, Idris functions can be defined by pattern matching. For example

sum : List Int -> Int
sum [] = 0
sum (x :: xs) = x + (sum xs)

Similarly case analysis looks like

answerString : Bool -> String
answerString False = "Wrong answer"
answerString True = "Correct answer"
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Dependent Functions

Dependent functions are functions where the type of the return value depends on the input value. In
order to define a dependent function, named parameters must be used, since the parameter will appear
in the return type. For example, consider

zeros : (n : Nat) -> Vect n Int
zeros Z = []
zeros (S k) = 0 :: (zeros k)

In this example, the return type is Vect n Int which is an expression which depends on the input
parameter n.

Anonymous

Arguments in anonymous functions are separated by comma.

(\x => <expr>)
(\x, y => <expr>)

Modifiers

Visibility

public export
export
private

Totality

total
implicit
partial
covering

Options

%export
%hint
%no_implicit
%error_handler
%error_reverse
%assert_total
%reflection
%specialise [<name list>]

5.6.7 Misc
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Qualified Names

If multiple declarations with the same name are visible, using the name can result in an ambiguous
situation. The compiler will attempt to resolve the ambiguity using the types involved. If it’s unable
— for example, because the declarations with the same name also have the same type signatures — the
situation can be cleared up using a qualified name.

A qualified name has the symbol’s namespace prefixed, separated by a .:

Data.Vect.length

This would specifically reference a length declaration from Data.Vect.

Qualified names can be written using two different shorthands:

1. Names in modules that are imported (page 124) using an alias can be qualified by the alias.

2. The name can be qualified by the shortest unique suffix of the namespace in question. For example,
the length case above can likely be shortened to Vect.length.

Comments

-- Single Line
{- Multiline -}
||| Docstring (goes before definition)

Multi line String literals

foo = """
this is a
string literal"""

5.6.8 Directives

%lib <path>
%link <path>
%flag <path>
%include <path>
%hide <function>
%freeze <name>
%access <accessibility>
%default <totality>
%logging <level 0--11>
%dynamic <list of libs>
%name <list of names>
%error_handlers <list of names>
%language <extension>

5.7 Erasure By Usage Analysis

This work stems from this feature proposal (obsoleted by this page). Beware that the information in the
proposal is out of date — and sometimes even in direct contradiction with the eventual implementation.
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5.7.1 Motivation

Traditional dependently typed languages (Agda, Coq) are good at erasing proofs (either via irrelevance
or an extra universe).

half : (n : Nat) -> Even n -> Nat
half Z EZ = Z
half (S (S n)) (ES pf) = S (half n pf)

For example, in the above snippet, the second argument is a proof, which is used only to convince the
compiler that the function is total. This proof is never inspected at runtime and thus can be erased.
In this case, the mere existence of the proof is sufficient and we can use irrelevance-related methods to
achieve erasure.

However, sometimes we want to erase indices and this is where the traditional approaches stop being
useful, mainly for reasons described in the original proposal.

uninterleave : {n : Nat} -> Vect (n * 2) a -> (Vect n a, Vect n a)
uninterleave [] = ([] , [])
uninterleave (x :: y :: rest) with (unzipPairs rest)

| (xs, ys) = (x :: xs, y :: ys)

Notice that in this case, the second argument is the important one and we would like to get rid of the n
instead, although the shape of the program is generally the same as in the previous case.

There are methods described by Brady, McBride and McKinna in [BMM04] (page 181) to remove the
indices from data structures, exploiting the fact that functions operating on them either already have a
copy of the appropriate index or the index can be quickly reconstructed if needed. However, we often
want to erase the indices altogether, from the whole program, even in those cases where reconstruction
is not possible.

The following two sections describe two cases where doing so improves the runtime performance asymp-
totically.

Binary numbers

• O(n) instead of O(log n)

Consider the following Nat-indexed type family representing binary numbers:

data Bin : Nat -> Type where
N : Bin 0
O : {n : Nat} -> Bin n -> Bin (0 + 2*n)
I : {n : Nat} -> Bin n -> Bin (1 + 2*n)

These are supposed to be (at least asymptotically) fast and memory-efficient because their size is loga-
rithmic compared to the numbers they represent.

Unfortunately this is not the case. The problem is that these binary numbers still carry the unary
indices with them, performing arithmetic on the indices whenever arithmetic is done on the binary
numbers themselves. Hence the real representation of the number 15 looks like this:

I -> I -> I -> I -> N
S S S Z
S S Z
S S
S Z
S
S
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S
Z

The used memory is actually linear, not logarithmic and therefore we cannot get below O(n) with time
complexities.

One could argue that Idris in fact compiles Nat via GMP but that’s a moot point for two reasons:

• First, whenever we try to index our data structures with anything else than Nat, the compiler is
not going to come to the rescue.

• Second, even with Nat, the GMP integers are still there and they slow the runtime down.

This ought not to be the case since the Nat are never used at runtime and they are only there for
typechecking purposes. Hence we should get rid of them and get runtime code similar to what a idris
programmer would write.

U-views of lists

• O(n^2) instead of O(n)

Consider the type of U-views of lists:

data U : List a -> Type where
nil : U []
one : (z : a) -> U [z]
two : {xs : List a} -> (x : a) -> (u : U xs) -> (y : a) -> U (x :: xs ++ [y])

For better intuition, the shape of the U-view of [x0,x1,x2,z,y2,y1,y0] looks like this:

x0 y0 (two)
x1 y1 (two)
x2 y1 (two)

z (one)

When recursing over this structure, the values of xs range over [x0,x1,x2,z,y2,y1,y0],
[x1,x2,z,y2,y1], [x2,z,y2], [z]. No matter whether these lists are stored or built on demand,
they take up a quadratic amount of memory (because they cannot share nodes), and hence it takes a
quadratic amount of time just to build values of this index alone.

But the reasonable expectation is that operations with U-views take linear time — so we need to erase
the index xs if we want to achieve this goal.

5.7.2 Changes to Idris

Usage analysis is run at every compilation and its outputs are used for various purposes. This is actually
invisible to the user but it’s a relatively big and important change, which enables the new features.

Everything that is found to be unused is erased. No annotations are needed, just don’t use the thing
and it will vanish from the generated code. However, if you wish, you can use the dot annotations to get
a warning if the thing is accidentally used.

“Being used” in this context means that the value of the “thing” may influence run-time behaviour of
the program. (More precisely, it is not found to be irrelevant to the run-time behaviour by the usage
analysis algorithm.)

“Things” considered for removal by erasure include:
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• function arguments

• data constructor fields (including record fields and dictionary fields of interface implementations)

For example, Either often compiles to the same runtime representation as Bool. Constructor field
removal sometimes combines with the newtype optimisation to have quite a strong effect.

There is a new compiler option --warnreach, which will enable warnings coming from erasure. Since
we have full usage analysis, we can compile even those programs that violate erasure annotations – it’s
just that the binaries may run slower than expected. The warnings will be enabled by default in future
versions of Idris (and possibly turned to errors). However, in this transitional period, we chose to keep
them on-demand to avoid confusion until better documentation is written.

Case-tree elaboration tries to avoid using dotted “things” whenever possible. (NB. This is not yet perfect
and it’s being worked on: https://gist.github.com/ziman/10458331)

Postulates are no longer required to be collapsible. They are now required to be unused instead.

5.7.3 Changes to the language

You can use dots to mark fields that are not intended to be used at runtime.

data Bin : Nat -> Type where
N : Bin 0
O : .{n : Nat} -> Bin n -> Bin (0 + 2*n)
I : .{n : Nat} -> Bin n -> Bin (1 + 2*n)

If these fields are found to be used at runtime, the dots will trigger a warning (with --warnreach).

Note that free (unbound) implicits are dotted by default so, for example, the constructor O can be defined
as:

O : Bin n -> Bin (0 + 2*n)

and this is actually the preferred form.

If you have a free implicit which is meant to be used at runtime, you have to change it into an (undotted)
{bound : implicit}.

You can also put dots in types of functions to get more guarantees.

half : (n : Nat) -> .(pf : Even n) -> Nat

and free implicits are automatically dotted here, too.

5.7.4 What it means

Dot annotations serve two purposes:

• influence case-tree elaboration to avoid dotted variables

• trigger warnings when a dotted variable is used

However, there’s no direct connection between being dotted and being erased. The compiler erases
everything it can, dotted or not. The dots are there mainly to help the programmer (and the compiler)
refrain from using the values they want to erase.
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5.7.5 How to use it

Ideally, few or no extra annotations are needed – in practice, it turns out that having free implicits
automatically dotted is enough to get good erasure.

Therefore, just compile with --warnreach to see warnings if erasure cannot remove parts of the program.

However, those programs that have been written without runtime behaviour in mind, will need some
help to get in the form that compiles to a reasonable binary. Generally, it’s sufficient to follow erasure
warnings (which may be sometimes unhelpful at the moment).

5.7.6 Benchmarks

• source: https://github.com/ziman/idris-benchmarks

• results: http://ziman.functor.sk/erasure-bm/

It can be clearly seen that asymptotics are improved by erasure.

5.7.7 Shortcomings

You can’t get warnings in libraries because usage analysis starts from Main.main. This will be solved by
the planned %default_usage pragma.

Usage warnings are quite bad and unhelpful at the moment. We should include more information and
at least translate argument numbers to their names.

There is no decent documentation yet. This wiki page is the first one.

There is no generally accepted terminology. We switch between “dotted”, “unused”, “erased”, “ir-
relevant”, “inaccessible”, while each has a slightly different meaning. We need more consistent and
understandable naming.

If the same type is used in both erased and non-erased context, it will retain its fields to accommodate
the least common denominator – the non-erased context. This is particularly troublesome in the case of
the type of (dependent) pairs, where it actually means that no erasure would be performed. We should
probably locate disjoint uses of data types and split them into “sub-types”. There are three different
flavours of dependent types now: Sigma (nothing erased), Exists (first component erased), Subset
(second component erased).

Case-tree building does not avoid dotted values coming from pattern-matched constructors
(https://gist.github.com/ziman/10458331). This is to be fixed soon. (Fixed.)

Higher-order function arguments and opaque functional variables are considered to be using all their
arguments. To work around this, you can force erasure via the type system, using the Erased wrapper:
https://github.com/idris-lang/Idris-dev/blob/master/libs/base/Data/Erased.idr

Interface methods are considered to be using the union of all their implementations. In other words, an
argument of a method is unused only if it is unused in every implementation of the method that occurs
in the program.

5.7.8 Planned features

• Fixes to the above shortcomings in general.
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• Improvements to the case-tree elaborator so that it properly avoids dotted fields of
data constructors. Done.

• Compiler pragma %default_usage used/unused and per-function overrides used and
unused, which allow the programmer to mark the return value of a function as used, even
if the function is not used in main (which is the case when writing library code). These
annotations will help library writers discover usage violations in their code before it is
actually published and used in compiled programs.

5.7.9 Troubleshooting

My program is slower

The patch introducing erasure by usage analysis also disabled some optimisations that were in place
before; these are subsumed by the new erasure. However, in some erasure-unaware programs, where
erasure by usage analysis does not exercise its full potential (but the old optimisations would have
worked), certain slowdown may be observed (up to ~10% according to preliminary benchmarking), due
to retention and computation of information that should not be necessary at runtime.

A simple check whether this is the case is to compile with --warnreach. If you see warnings, there is
some unnecessary code getting compiled into the binary.

The solution is to change the code so that there are no warnings.

Usage warnings are unhelpful

This is a known issue and we are working on it. For now, see the section How to read and resolve erasure
warnings (page 134).

There should be no warnings in this function

A possible cause is non-totality of the function (more precisely, non-coverage). If a function is non-
covering, the program needs to inspect all arguments in order to detect coverage failures at runtime.
Since the function inspects all its arguments, nothing can be erased and this may transitively cause usage
violations. The solution is to make the function total or accept the fact that it will use its arguments
and remove some dots from the appropriate constructor fields and function arguments. (Please note that
this is not a shortcoming of erasure and there is nothing we can do about it.)

Another possible cause is the currently imperfect case-tree elaboration, which does not avoid dotted
constructor fields (see https://gist.github.com/ziman/10458331). You can either rephrase the function
or wait until this is fixed, hopefully soon. Fixed.

The compiler refuses to recognise this thing as erased

You can force anything to be erased by wrapping it in the Erased monad. While this program triggers
usage warnings,

f : (g : Nat -> Nat) -> .(x : Nat) -> Nat
f g x = g x -- WARNING: g uses x

the following program does not:
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f : (g : Erased Nat -> Nat) -> .(x : Nat) -> Nat
f g x = g (Erase x) -- OK

5.7.10 How to read and resolve erasure warnings

Example 1

Consider the following program:

vlen : Vect n a -> Nat
vlen {n = n} xs = n

sumLengths : List (Vect n a) -> Nat
sumLengths [] = 0
sumLengths (v :: vs) = vlen v + sumLengths vs

main : IO ()
main = print . sumLengths $ [[0,1],[2,3]]

When you compile it using --warnreach, there is one warning:

Main.sumLengths: inaccessible arguments reachable:
n (no more information available)

The warning does not contain much detail at this point so we can try compiling with --dumpcases
cases.txt and look up the compiled definition in cases.txt:

Main.sumLengths {e0} {e1} {e2} =
case {e2} of
| Prelude.List.::({e6}) => LPlus (ATInt ITBig)({e0}, Main.sumLengths({e0}, ____, {e6}))
| Prelude.List.Nil() => 0

The reason for the warning is that sumLengths calls vlen, which gets inlined. The second clause of
sumLengths then accesses the variable n, compiled as {e0}. Since n is a free implicit, it is automatically
considered dotted and this triggers the warning.

A solution would be either making the argument n a bound implicit parameter to indicate that we wish
to keep it at runtime,

sumLengths : {n : Nat} -> List (Vect n a) -> Nat

or fixing vlen to not use the index:

vlen : Vect n a -> Nat
vlen [] = Z
vlen (x :: xs) = S (vlen xs)

Which solution is appropriate depends on the usecase.

Example 2

Consider the following program manipulating value-indexed binary numbers.

data Bin : Nat -> Type where
N : Bin Z
O : Bin n -> Bin (0 + n + n)
I : Bin n -> Bin (1 + n + n)
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toN : (b : Bin n) -> Nat
toN N = Z
toN (O {n} bs) = 0 + n + n
toN (I {n} bs) = 1 + n + n

main : IO ()
main = print . toN $ I (I (O (O (I N))))

In the function toN, we attempted to “cheat” and instead of traversing the whole structure, we just
projected the value index n out of constructors I and O. However, this index is a free implicit, therefore
it is considered dotted.

Inspecting it then produces the following warnings when compiling with --warnreach:

Main.I: inaccessible arguments reachable:
n from Main.toN arg# 1

Main.O: inaccessible arguments reachable:
n from Main.toN arg# 1

We can see that the argument n of both I and O is used in the function toN, argument 1.

At this stage of development, warnings only contain argument numbers, not names; this will hopefully be
fixed. When numbering arguments, we go from 0, taking free implicits first, left-to-right; then the bound
arguments. The function toN has therefore in fact two arguments: n (argument 0) and b (argument 1).
And indeed, as the warning says, we project the dotted field from b.

Again, one solution is to fix the function toN to calculate its result honestly; the other one is to accept
that we carry a Nat with every constructor of Bin and make it a bound implicit:

O : {n : Nat} -> Bin n -> Bin (0 + n + n)
I : {n : Nat} -> bin n -> Bin (1 + n + n)

5.7.11 References

5.8 The IDE Protocol

The Idris REPL has two modes of interaction: a human-readable syntax designed for direct use in a
terminal, and a machine-readable syntax designed for using Idris as a backend for external tools.

5.8.1 Protocol Overview

The communication protocol is of asynchronous request-reply style: a single request from the client is
handled by Idris at a time. Idris waits for a request on its standard input stream, and outputs the answer
or answers to standard output. The result of a request can be either success, failure, or intermediate
output; and furthermore, before the result is delivered, there might be additional meta-messages.

A reply can consist of multiple messages: any number of messages to inform the user about the progress
of the request or other informational output, and finally a result, either ok or error.

The wire format is the length of the message in characters, encoded in 6 characters hexadecimal, followed
by the message encoded as S-expression (sexp). Additionally, each request includes a unique integer
(counting upwards), which is repeated in all messages corresponding to that request.

An example interaction from loading the file /home/hannes/empty.idr looks as follows on the wire::
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00002a((:load-file "/home/hannes/empty.idr") 1)
000039(:write-string "Type checking /home/hannes/empty.idr" 1)
000025(:set-prompt "/home/hannes/empty" 1)
000032(:return (:ok "Loaded /home/hannes/empty.idr") 1)

The first message is the request from idris-mode to load the specific file, which length is hex 2a, dec-
imal 42 (including the newline at the end). The request identifier is set to 1. The first message from
Idris is to write the string Type checking /home/hannes/empty.idr, another is to set the prompt to
*/home/hannes/empty. The answer, starting with :return is ok, and additional information is that the
file was loaded.

There are three atoms in the wire language: numbers, strings, and symbols. The only compound object
is a list, which is surrounded by parenthesis. The syntax is:

A ::= NUM | '"' STR '"' | ':' ALPHA+
S ::= A | '(' S* ')' | nil

where NUM is either 0 or a positive integer, ALPHA is an alphabetical character, and STR is the contents of
a string, with " escaped by a backslash. The atom nil is accepted instead of () for compatibility with
some regexp pretty-printing routines.

The state of the Idris process is mainly the active file, which needs to be kept synchronised between the
editor and Idris. This is achieved by the already seen :load-file command.

The available commands include:

(:load-file FILENAME) Load the named file.

(:interpret STRING) Interpret STRING at the Idris REPL, returning a highlighted result.

(:repl-completions STRING) Return the result of tab-completing STRING as a REPL com-
mand.

(:type-of STRING) Return the type of the name, written with Idris syntax in the STRING.
The reply may contain highlighting information.

(:case-split LINE NAME) Generate a case-split for the pattern variable NAME on program
line LINE. The pattern-match cases to be substituted are returned as a string with no
highlighting.

(:add-clause LINE NAME) Generate an initial pattern-match clause for the function de-
clared as NAME on program line LINE. The initial clause is returned as a string with no
highlighting.

(:add-proof-clause LINE NAME) Add a clause driven by the <== syntax.

(:add-missing LINE NAME) Add the missing cases discovered by totality checking the func-
tion declared as NAME on program line LINE. The missing clauses are returned as a string
with no highlighting.

(:make-with LINE NAME) Create a with-rule pattern match template for the clause of func-
tion NAME on line LINE. The new code is returned with no highlighting.

(:make-case LINE NAME) Create a case pattern match template for the clause of function
NAME on line LINE. The new code is returned with no highlighting.

(:make-lemma LINE NAME) Create a top level function with a type which solves the hole
named NAME on line LINE.

(:proof-search LINE NAME HINTS) Attempt to fill out the holes on LINE named NAME by
proof search. HINTS is a possibly-empty list of additional things to try while searching.
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(:docs-for NAME) Look up the documentation for NAME, and return it as a highlighted
string.

(:metavariables WIDTH) List the currently-active holes, with their types pretty-printed
with WIDTH columns.

(:who-calls NAME) Get a list of callers of NAME.

(:calls-who NAME) Get a list of callees of NAME.

(:browse-namespace NAMESPACE) Return the contents of NAMESPACE, like :browse at the
command-line REPL.

(:normalise-term TM) Return a highlighted string consisting of the results of normalising
the serialised term TM (which would previously have been sent as the tt-term property
of a string).

(:show-term-implicits TM) Return a highlighted string consisting of the results of mak-
ing all arguments in serialised term TM (which would previously have been sent as the
tt-term property of a string) explicit.

(:hide-term-implicits TM) Return a highlighted string consisting of the results of mak-
ing all arguments in serialised term TM (which would previously have been sent as the
tt-term property of a string) follow their usual implicitness setting.

(:elaborate-term TM) Return a highlighted string consisting of the the core language term
corresponding to serialised term TM (which would previously have been sent as the
tt-term property of a string).

(:print-definition NAME) Return the definition of NAME as a highlighted string.

(:repl-completions NAME) Search names, types and documentations which contain NAME.

(:version UID) Return the version information of the Idris compiler.

Possible replies include a normal final reply::

(:return (:ok SEXP [HIGHLIGHTING]))
(:return (:error String [HIGHLIGHTING]))

A normal intermediate reply::

(:output (:ok SEXP [HIGHLIGHTING]))
(:output (:error String [HIGHLIGHTING]))

Informational and/or abnormal replies::

(:write-string String)
(:set-prompt String)
(:warning (FilePath (LINE COL) (LINE COL) String [HIGHLIGHTING]))

Proof mode replies::

(:start-proof-mode)
(:write-proof-state [String] [HIGHLIGHTING])
(:end-proof-mode)
(:write-goal String)
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5.8.2 Output Highlighting

Idris mode supports highlighting the output from Idris. In reality, this highlighting is controlled by the
Idris compiler. Some of the return forms from Idris support an optional extra parameter: a list mapping
spans of text to metadata about that text. Clients can then use this list both to highlight the displayed
output and to enable richer interaction by having more metadata present. For example, the Emacs mode
allows right-clicking identifiers to get a menu with access to documentation and type signatures.

A particular semantic span is a three element list. The first element of the list is the index at which the
span begins, the second element is the number of characters included in the span, and the third is the
semantic data itself. The semantic data is a list of lists. The head of each list is a key that denotes what
kind of metadata is in the list, and the tail is the metadata itself.

The following keys are available:

name gives a reference to the fully-qualified Idris name

implicit provides a Boolean value that is True if the region is the name of an implicit argument

decor describes the category of a token, which can be type, function, data, keyword, or bound.

source-loc states that the region refers to a source code location. Its body is a collection of
key-value pairs, with the following possibilities:

filename provides the filename

start provides the line and column that the source location starts at as a two-element tail

end provides the line and column that the source location ends at as a two-element tail

text-formatting provides an attribute of formatted text. This is for use with natural-language
text, not code, and is presently emitted only from inline documentation. The potential values
are bold, italic, and underline.

link-href provides a URL that the corresponding text is a link to.

quasiquotation states that the region is quasiquoted.

antiquotation states that the region is antiquoted.

tt-term A serialised representation of the Idris core term corresponding to the region of text.

5.8.3 Source Code Highlighting

Idris supports instructing editors how to colour their code. When elaborating source code or REPL
input, Idris will locate regions of the source code corresponding to names, and emit information about
these names using the same metadata as output highlighting.

These messages will arrive as replies to the command that caused elaboration to occur, such as
:load-file or :interpret. They have the format::

(:output (:ok (:highlight-source POSNS)))

where POSNS is a list of positions to highlight. Each of these is a two-element list whose first element
is a position (encoded as for the source-loc property above) and whose second element is highlighting
metadata in the same format used for output.
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5.9 Semantic Highlighting & Pretty Printing

Since v0.9.18 Idris comes with support for semantic highlighting. When using the REPL or IDE support,
Idris will highlight your code accordingly to its meaning within the Idris structure. A precursor to
semantic highlighting support is the pretty printing of definitions to console, LaTeX, or HTML.

The default styling scheme used was inspired by Conor McBride’s own set of stylings, informally known
as Conor Colours.

5.9.1 Legend

The concepts and their default stylings are as follows:

Idris Term HTML LaTeX IDE/REPL
Bound Variable Purple Magenta
Keyword Bold Underlined
Function Green Green
Type Blue Blue
Data Red Red
Implicit Italic Purple Italic Magenta

5.9.2 Pretty Printing

Idris also supports the pretty printing of code to HTML and LaTeX using the commands:

• :pp <latex|html> <width> <function name>

• :pprint <latex|html> <width> <function name>

5.9.3 Customisation

If you are not happy with the colours used, the VIM and Emacs editor support allows for customisation
of the colours. When pretty printing Idris code as LaTeX and HTML, commands and a CSS style are
provided. The colours used by the REPL can be customised through the initialisation script.

5.9.4 Further Information

Please also see the Idris Extras project for links to editor support, and pre-made style files for LaTeX
and HTML.

5.10 DEPRECATED: Tactics and Theorem Proving

Warning: The interactive theorem-proving interface documented here has been deprecated in favor
of Elaborator Reflection (page 157).

Idris supports interactive theorem proving, and the analyse of context through holes. To list all unproven
holes, use the command :m. This will display their qualified names and the expected types. To interac-

139

https://github.com/idris-hackers/idris-extras


CHAPTER 5. LANGUAGE REFERENCE v0.99

tively prove a holes, use the command :p name where name is the hole. Once the proof is complete, the
command :a will append it to the current module.

Once in the interactive prover, the following commands are available:

5.10.1 Basic commands

• :q - Quits the prover (gives up on proving current lemma).

• :abandon - Same as :q

• :state - Displays the current state of the proof.

• :term - Displays the current proof term complete with its yet-to-be-filled holes (is only really useful
for debugging).

• :undo - Undoes the last tactic.

• :qed - Once the interactive theorem prover tells you “No more goals,” you get to type this in
celebration! (Completes the proof and exits the prover)

5.10.2 Commonly Used Tactics

Compute

• compute - Normalises all terms in the goal (note: does not normalise assumptions)

---------- Goal: ----------
(Vect (S (S Z + (S Z) + (S n))) Nat) -> Vect (S (S (S (S n)))) Nat

-lemma> compute
---------- Goal: ----------
(Vect (S (S (S (S n)))) Nat) -> Vect (S (S (S (S n)))) Nat

-lemma>

Exact

• exact - Provide a term of the goal type directly.

---------- Goal: ----------
Nat

-lemma> exact Z
lemma: No more goals.
-lemma>

Refine

• refine - Use a name to refine the goal. If the name needs arguments, introduce them as new goals.

Trivial

• trivial - Satisfies the goal using an assumption that matches its type.
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---------- Assumptions: ----------
value : Nat

---------- Goal: ----------
Nat

-lemma> trivial
lemma: No more goals.
-lemma>

Intro

• intro - If your goal is an arrow, turns the left term into an assumption.

---------- Goal: ----------
Nat -> Nat -> Nat

-lemma> intro
---------- Assumptions: ----------
n : Nat

---------- Goal: ----------
Nat -> Nat

-lemma>

You can also supply your own name for the assumption:

---------- Goal: ----------
Nat -> Nat -> Nat
-lemma> intro number
---------- Assumptions: ----------
number : Nat

---------- Goal: ----------
Nat -> Nat

Intros

• intros - Exactly like intro, but it operates on all left terms at once.

---------- Goal: ----------
Nat -> Nat -> Nat

-lemma> intros
---------- Assumptions: ----------
n : Nat
m : Nat

---------- Goal: ----------
Nat

-lemma>

let

• let - Introduces a new assumption; you may use current assumptions to define the new one.

---------- Assumptions: ----------
n : Nat

---------- Goal: ----------
BigInt

-lemma> let x = toIntegerNat n
---------- Assumptions: ----------
n : Nat
x = toIntegerNat n: BigInt

---------- Goal: ----------
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BigInt
-lemma>

rewrite

• rewrite - Takes an expression with an equality type (x = y), and replaces all instances of x in the
goal with y. Is often useful in combination with ‘sym’.

---------- Assumptions: ----------
n : Nat
a : Type
value : Vect Z a

---------- Goal: ----------
Vect (mult n Z) a

-lemma> rewrite sym (multZeroRightZero n)
---------- Assumptions: ----------
n : Nat
a : Type
value : Vect Z a

---------- Goal: ----------
Vect Z a

-lemma>

induction

• induction - (Note that this is still experimental and you may get strange results and
error messages. We are aware of these and will finish the implementation eventually!) Prove the
goal by induction. Each constructor of the datatype becomes a goal. Constructors with recursive
arguments become induction steps, while simple constructors become base cases. Note that this
only works for datatypes that have eliminators: a datatype definition must have the %elim modifier.

sourceLocation

• sourceLocation - Solve the current goal with information about the location in the source code
where the tactic was invoked. This is mostly for embedded DSLs and programmer tools like
assertions that need to know where they are called. See Language.Reflection.SourceLocation
for more information.

5.10.3 Less commonly-used tactics

• applyTactic - Apply a user-defined tactic. This should be a function of type List (TTName,
Binder TT) -> TT -> Tactic, where the first argument represents the proof context and the sec-
ond represents the goal. If your tactic will produce a proof term directly, use the Exact constructor
from Tactic.

• attack - ?

• equiv - Replaces the goal with a new one that is convertible with the old one

• fill - ?

• focus - ?

• mrefine - Refining by matching against a type
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• reflect - ?

• solve - Takes a guess with the correct type and fills a hole with it, closing a proof obligation. This
happens automatically in the interactive prover, so solve is really only relevant in tactic scripts
used for helping implicit argument resolution.

• try - ?

5.11 The Idris REPL

Idris comes with a REPL.

5.11.1 Evaluation

Being a fully dependently typed language, Idris has two phases where it evaluates things, compile-time
and run-time. At compile-time it will only evaluate things which it knows to be total (i.e. terminating
and covering all possible inputs) in order to keep type checking decidable. The compile-time evaluator
is part of the Idris kernel, and is implemented in Haskell using a HOAS (higher order abstract syntax)
style representation of values. Since everything is known to have a normal form here, the evaluation
strategy doesn’t actually matter because either way it will get the same answer, and in practice it will
do whatever the Haskell run-time system chooses to do.

The REPL, for convenience, uses the compile-time notion of evaluation. As well as being easier to
implement (because we have the evaluator available) this can be very useful to show how terms evaluate
in the type checker. So you can see the difference between:

Idris> \n, m => (S n) + m
\n => \m => S (plus n m) : Nat -> Nat -> Nat

Idris> \n, m => n + (S m)
\n => \m => plus n (S m) : Nat -> Nat -> Nat

5.11.2 Customisation

Idris supports initialisation scripts.

Initialisation scripts

When the Idris REPL starts up, it will attempt to open the file repl/init in Idris’s application data direc-
tory. The application data directory is the result of the Haskell function call getAppUserDataDirectory
"idris", which on most Unix-like systems will return $HOME/.idris and on various versions of Windows
will return paths such as C:/Documents And Settings/user/Application Data/appName.

The file repl/init is a newline-separate list of REPL commands. Not all commands are supported in
initialisation scripts — only the subset that will not interfere with the normal operation of the REPL.
In particular, setting colours, display options such as showing implicits, and log levels are supported.

Example initialisation script

:colour prompt white italic bold
:colour implicit magenta italic
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5.11.3 The REPL Commands

The current set of supported commands are:

Command Arguments Purpose
<expr> Evaluate an expression
:t :type <expr> Check the type of an expression
:core <expr> View the core language representation of a term
:miss :missing <name> Show missing clauses
:doc <name> Show internal documentation
:mkdoc <namespace> Generate IdrisDoc for namespace(s) and dependencies
:apropos [<package list>] <name> Search names, types, and documentation
:s :search [<package list>] <expr> Search for values by type
:wc :whocalls <name> List the callers of some name
:cw :callswho <name> List the callees of some name
:browse <namespace> List the contents of some namespace
:total <name> Check the totality of a name
:r :reload Reload current file
:l :load <filename> Load a new file
:cd <filename> Change working directory
:module <module> Import an extra module
:e :edit Edit current file using $EDITOR or $VISUAL
:m :metavars Show remaining proof obligations (holes)
:p :prove <hole> Prove a hole
:a :addproof <name> Add proof to source file
:rmproof <name> Remove proof from proof stack
:showproof <name> Show proof
:proofs Show available proofs
:x <expr> Execute IO actions resulting from an expression using the interpreter
:c :compile <filename> Compile to an executable [codegen] <filename>
:exec :execute [<expr>] Compile to an executable and run
:dynamic <filename> Dynamically load a C library (similar to %dynamic)
:dynamic List dynamically loaded C libraries
:? :h :help Display this help text
:set <option> Set an option (errorcontext, showimplicits, originalerrors, autosolve, nobanner, warnreach, evaltypes, desugarnats)
:unset <option> Unset an option
:color :colour <option> Turn REPL colours on or off; set a specific colour
:consolewidth auto|infinite|<number> Set the width of the console
:printerdepth <number-or-blank> Set the maximum pretty-printing depth, or infinite if nothing specified
:q :quit Exit the Idris system
:w :warranty Displays warranty information
:let (<top-level-declaration>)... Evaluate a declaration, such as a function definition, instance implementation, or fixity declaration
:unlet :undefine (<name>)... Remove the listed repl definitions, or all repl definitions if no names given
:printdef <name> Show the definition of a function
:pp :pprint <option> <number> <name> Pretty prints an Idris function in either LaTeX or HTML and for a specified width.

5.11.4 Using the REPL

Getting help

The command :help (or :h or :?) prints a short summary of the available commands.
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Quitting Idris

If you would like to leave Idris, simply use :q or :quit.

Evaluating expressions

To evaluate an expression, simply type it. If Idris is unable to infer the type, it can be helpful to use
the operator the to manually provide one, as Idris’s syntax does not allow for direct type annotations.
Examples of the include:

Idris> the Nat 4
4 : Nat
Idris> the Int 4
4 : Int
Idris> the (List Nat) [1,2]
[1,2] : List Nat
Idris> the (Vect _ Nat) [1,2]
[1,2] : Vect 2 Nat

This may not work in cases where the expression still involves ambiguous names. The name can be
disambiguated by using the with keyword:

Idris> sum [1,2,3]
When elaborating an application of function Prelude.Foldable.sum:

Can't disambiguate name: Prelude.List.::,
Prelude.Stream.::,
Prelude.Vect.::

Idris> with List sum [1,2,3]
6 : Integer

Adding let bindings

To add a let binding to the REPL, use :let. It’s likely you’ll also need to provide a type annotation.
:let also works for other declarations as well, such as data.

Idris> :let x : String; x = "hello"
Idris> x
"hello" : String
Idris> :let y = 10
Idris> y
10 : Integer
Idris> :let data Foo : Type where Bar : Foo
Idris> Bar
Bar : Foo

Getting type information

To ask Idris for the type of some expression, use the :t command. Additionally, if used with an overloaded
name, Idris will provide all overloadings and their types. To ask for the type of an infix operator, surround
it in parentheses.

Idris> :t "foo"
"foo" : String
Idris> :t plus
Prelude.Nat.plus : Nat -> Nat -> Nat
Idris> :t (++)
Builtins.++ : String -> String -> String
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Prelude.List.++ : (List a) -> (List a) -> List a
Prelude.Vect.++ : (Vect m a) -> (Vect n a) -> Vect (m + n) a
Idris> :t plus 4
plus (Builtins.fromInteger 4) : Nat -> Nat

You can also ask for basic information about interfaces with :doc:

Idris> :doc Monad
Interface Monad

Parameters:
m

Methods:
(>>=) : Monad m => m a -> (a -> m b) -> m b

infixl 5

Instances:
Monad id
Monad PrimIO
Monad IO
Monad Maybe

...

Other documentation is also available from :doc:

Idris> :doc (+)
Prelude.Interfaces.(+) : Num ty => ty -> ty -> ty

infixl 8

The function is Total

Idris> :doc Vect
Data type Prelude.Vect.Vect : Nat -> Type -> Type

Arguments:
Nat
Type

Constructors:

Prelude.Vect.Nil : (a : Type) -> Vect 0 a

Prelude.Vect.:: : (a : Type) -> (n : Nat) -> a -> (Vect n a) -> Vect (S n) a

infixr 7

Arguments:
a
Vect n a

Idris> :doc Monad
Interface Monad

Parameters:
m

Methods:
(>>=) : Monad m => m a -> (a -> m b) -> m b
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Also called bind.
infixl 5

The function is Total
join : Monad m => m (m a) -> m a

Also called flatten or mu

The function is Total
Implementations:

Monad (IO' ffi)
Monad Stream
Monad Provider
Monad Elab
Monad PrimIO
Monad Maybe
Monad (Either e)
Monad List

Finding things

The command :apropos searches names, types, and documentation for some string, and prints the
results. For example:

Idris> :apropos eq
eqPtr : Ptr -> Ptr -> IO Bool

eqSucc : (left : Nat) -> (right : Nat) -> (left = right) -> S left = S right
S preserves equality

lemma_both_neq : ((x = x') -> _|_) -> ((y = y') -> _|_) -> ((x, y) = (x', y')) -> _|_

lemma_fst_neq_snd_eq : ((x = x') -> _|_) -> (y = y') -> ((x, y) = (x', y)) -> _|_

lemma_snd_neq : (x = x) -> ((y = y') -> _|_) -> ((x, y) = (x, y')) -> _|_

lemma_x_eq_xs_neq : (x = y) -> ((xs = ys) -> _|_) -> (x :: xs = y :: ys) -> _|_

lemma_x_neq_xs_eq : ((x = y) -> _|_) -> (xs = ys) -> (x :: xs = y :: ys) -> _|_

lemma_x_neq_xs_neq : ((x = y) -> _|_) -> ((xs = ys) -> _|_) -> (x :: xs = y :: ys) -> _|_

prim__eqB16 : Bits16 -> Bits16 -> Int

prim__eqB16x8 : Bits16x8 -> Bits16x8 -> Bits16x8

prim__eqB32 : Bits32 -> Bits32 -> Int

prim__eqB32x4 : Bits32x4 -> Bits32x4 -> Bits32x4

prim__eqB64 : Bits64 -> Bits64 -> Int

prim__eqB64x2 : Bits64x2 -> Bits64x2 -> Bits64x2

prim__eqB8 : Bits8 -> Bits8 -> Int

147



CHAPTER 5. LANGUAGE REFERENCE v0.99

prim__eqB8x16 : Bits8x16 -> Bits8x16 -> Bits8x16

prim__eqBigInt : Integer -> Integer -> Int

prim__eqChar : Char -> Char -> Int

prim__eqFloat : Double -> Double -> Int

prim__eqInt : Int -> Int -> Int

prim__eqString : String -> String -> Int

prim__syntactic_eq : (a : Type) -> (b : Type) -> (x : a) -> (y : b) -> Maybe (x = y)

sequence : Traversable t => Applicative f => (t (f a)) -> f (t a)

sequence_ : Foldable t => Applicative f => (t (f a)) -> f ()

Eq : Type -> Type
The Eq interface defines inequality and equality.

GTE : Nat -> Nat -> Type
Greater than or equal to

LTE : Nat -> Nat -> Type
Proofs that n is less than or equal to m

gte : Nat -> Nat -> Bool
Boolean test than one Nat is greater than or equal to another

lte : Nat -> Nat -> Bool
Boolean test than one Nat is less than or equal to another

ord : Char -> Int
Convert the number to its ASCII equivalent.

replace : (x = y) -> (P x) -> P y
Perform substitution in a term according to some equality.

sym : (l = r) -> r = l
Symmetry of propositional equality

trans : (a = b) -> (b = c) -> a = c
Transitivity of propositional equality

:search does a type-based search, in the spirit of Hoogle. See Type-directed search (:search) for more
details. Here is an example:

Idris> :search a -> b -> a
= Prelude.Basics.const : a -> b -> a
Constant function. Ignores its second argument.

= assert_smaller : a -> b -> b
Assert to the totality checker than y is always structurally
smaller than x (which is typically a pattern argument)

> malloc : Int -> a -> a

> Prelude.pow : Num a => a -> Nat -> a
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> Prelude.Interfaces.(*) : Num a => a -> a -> a

> Prelude.Interfaces.(+) : Num a => a -> a -> a
... (More results)

:search can also look for dependent types:

Idris> :search plus (S n) n = plus n (S n)
< Prelude.Nat.plusSuccRightSucc : (left : Nat) ->

(right : Nat) ->
S (left + right) = left + S right

Loading and reloading Idris code

The command :l File.idr will load File.idr into the currently-running REPL, and :r will reload the
last file that was loaded.

Totality

All Idris definitions are checked for totality. The command :total <NAME> will display the result of that
check. If a definition is not total, this may be due to an incomplete pattern match. If that is the case,
:missing or :miss will display the missing cases.

Editing files

The command :e launches your default editor on the current module. After control returns to Idris, the
file is reloaded.

Invoking the compiler

The current module can be compiled to an executable using the command :c <FILENAME> or :compile
<FILENAME>. This command allows to specify codegen, so for example JavaScript can be generated using
:c javascript <FILENAME>. The :exec command will compile the program to a temporary file and
run the resulting executable.

IO actions

Unlike GHCI, the Idris REPL is not inside of an implicit IO monad. This means that a special command
must be used to execute IO actions. :x tm will execute the IO action tm in an Idris interpreter.

Dynamically loading C libraries

Sometimes, an Idris program will depend on external libraries written in C. In order to use these libraries
from the Idris interpreter, they must first be dynamically loaded. This is achieved through the %dynamic
<LIB> directive in Idris source files or through the :dynamic <LIB> command at the REPL. The current
set of dynamically loaded libraries can be viewed by executing :dynamic with no arguments. These
libraries are available through the Idris FFI in type providers (page ??) and :exec.
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5.11.5 Colours

Idris terms are available in amazing colour! By default, the Idris REPL uses colour to distinguish between
data constructors, types or type constructors, operators, bound variables, and implicit arguments. This
feature is available on all POSIX-like systems, and there are plans to allow it to work on Windows as
well.

If you do not like the default colours, they can be turned off using the command
:colour off

and, when boredom strikes, they can be re-enabled using the command
:colour on

To modify a colour, use the command
:colour <CATEGORY> <OPTIONS>

where <CATEGORY is one of keyword, boundvar, implicit, function, type, data, or prompt, and is a
space-separated list drawn from the colours and the font options. The available colours are default,
black, yellow, cyan, red, blue, white, green, and magenta. If more than one colour is specified, the
last one takes precedence. The available options are dull and vivid, bold and nobold, italic and
noitalic, underline and nounderline, forming pairs of opposites. The colour default refers to your
terminal’s default colour.

The colours used at startup can be changed using REPL initialisation scripts.

Colour can be disabled at startup by the --nocolour command-line option.

5.12 Compilation and Logging

This section provides information about the Idris compilation process, and provides details over how you
can follow the process through logging.

5.12.1 Compilation Process

Idris follows the following compilation process:

1. Parsing

2. Type Checking

(a) Elaboration

(b) Coverage

(c) Unification

(d) Totality Checking

(e) Erasure

3. Code Generation

(a) Defunctionalisation

(b) Inlining
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(c) Resolving variables

(d) Code Generation

5.12.2 Type Checking Only

With Idris you can ask it to terminate the compilation process after type checking has completed. This
is achieved through use of either:

• The command line options

– --check for files

– --checkpkg for packages

• The REPL command: :check

Use of this option will still result in the generation of the Idris binary .ibc files, and is suitable if you
do not wish to generate code from one of the supported backends.

5.12.3 Logging Output

The internal operation of Idris is captured using a category based logger. Currently, the logging infras-
tructure has support for the following categories:

• Parser

• Elaborator

• Code generation

• Erasure

• Coverage Checking

• IBC generation

These categories are specified using the command-line option: --logging-categories CATS, where
CATS is a quoted colon seperated string of the categories you want to see. By default if this option is
not specified all categories are allowed. Sub-categories have yet to be defined but will be in the future,
especially for the elaborator.

Further, the verbosity of logging can be controlled by specifying a logging level between: 1 to 10 using
the command-line option: --log <level>.

• Level 0: Show no logging output. Default level

• Level 1: High level details of the compilation process.

• Level 2: Provides details of the coverage checking, and further details the elaboration process
specifically: Interface, Clauses, Data, Term, and Types,

• Level 3: Provides details of compilation of the IRTS, erasure, parsing, case splitting, and further
details elaboration of: Implementations, Providers, and Values.

• Level 4: Provides further details on: Erasure, Coverage Checking, Case splitting, and elaboration
of clauses.
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• Level 5: Provides details on the prover, and further details elaboration (adding declarations) and
compilation of the IRTS.

• Level 6: Further details elaboration and coverage checking.

• Level 7:

• Level 8:

• Level 9:

• Level 10: Further details elaboration.

5.12.4 Environment Variables

Several paths set by default within the Idris compiler can be overridden through environment variables.
The provided variables are:

• IDRIS_CC Change the C compiler used by the C backend.

• IDRIS_CFLAGS Change the C flags passed to the C compiler.

• TARGET Change the target directory i.e. data dir where Idris installs files when installing using
Cabal/Stack.

• IDRIS_LIBRARY_PATH Change the location of where installed packages are found/installed.

• IDRIS_DOC_PATH Change the location of where generated idrisdoc for packages are installed.

Note: In versions of Idris prior to 0.12.3 the environment variables IDRIS_LIBRARY_PATH and
TARGET were both used to affect the installation of single packages and direct where Idris installed
its data. The meaning of these variables has changed, and command line options are preferred when
changing where individual packages are installed.

The CLI option –ibcsubdir can be used to direct where generated IBC files are placed. However, this
means Idris will install files in a non-standard location separate from the rest of the installed packages.
The CLI option –idrispath <dir> allows you to add a directory to the library search path; this option
can be used multiple times and can be shortened to -i <dir>. Similary, the –sourcepath <dir> option
can be used to add directories to the source search path. There is no shortened version for this option
as -s is a reserved flag.

Further, Idris also supports options to augment the paths used, and pass options to the code generator
backend. The option –cg-opt <ARG> can be used to pass options to the code generator. The format of
<ARG> is dependent on the selected backend.

5.13 Idris’ Internals

Note: this is still a fairly raw set of notes taken by David Christiansen at Edwin’s presentation at the 2013
Idris Developers Meeting. They’re in the process of turning into a useful guide - feel free to contribute.

This document assumes that you are already familiar with Idris. It is intended for those who want to
work on the internals.

People looking to develop new back ends may want to look at [[Idris back end IRs|Idris-back-end-IRs]]
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5.13.1 Core/TT.hs

Idris is compiled to a simple, explicit core language. This core language is called TT because it looks a
bit like a Π. It’s a minimal language, with a locally nameless representation. That is, local variables are
represented with de Bruijn indices and globally-defined constants are represented with names.

The TT datatype uses a trick that is common in the Idris code: it is polymorphic over the type of names
stored in it, and it derives Functor. This allows fmap to be used as a general-purpose traversal.

There is a general construction for binders, used for 𝜆, Π, and let-bindings. These are distinguished
using a BinderType.

During compilation, some terms (especially types) will be erased. This is represented using the Erased
constructor of TT. A handy trick when generating TT terms is to insert Erased where a term is uniquely
determined, as the typechecker will fill it out.

The constructor Proj is a result of the optimizer. It is used to extract a specific constructor argument,
in a more economical way than defining a new pattern-matching operation.

The datatype Raw represents terms that have not yet been typechecked. The typechecker converts a Raw
to a TT if it can.

5.13.2 Core/CaseTree.hs

Case trees are used to represent top-level pattern-matching definitions in the TT language.

Just as with the TT datatype, the deriving Functor trick is used with SC and CaseAlt to get GHC to
generate a function for mapping over contained terms.

Constructor cases (ConCase in CaseAlt) refer to numbered constructors. Every constructor is numbered
0,1,2,. . . . At this stage in the compiler, the tags are datatype-local. After defunctionalization, however,
they are made globally unique.

The n+1 patterns (SucCase) and hacky-seeming things are to make code fast – please ask before “cleaning
up” the representation.

5.13.3 Core/Evaluate.hs

This module contains the main evaluator for Idris. The evaluator is used both at the REPL and during
type checking, where normalised terms need to be compared for equality.

A key datatype in the evaluator is a context. Contexts are mappings from global names to their values,
but they are organized to make type-directed disambiguation quick. In particular, the main part of a
name that a user might type is used as the key, and its values are maps from namespaces to actual
values.

The datatype Def represents a definition in the global context. All global names map to this structure.

Type and Term are both synonyms for TT.

Datatypes are represented by a TyDecl with the appropriate NameType. A Function is a global constant
term with an annotated type, Operator represents primitives implemented in Haskell, and CaseOp rep-
resents ordinary pattern-matching definitions. CaseOp has four versions for different purposes, and all
are saved because that’s easiest.

CaseInfo: the tc_dictionary is because it’s a type class dictionary which makes totality checking
easier.
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The normalise* functions give different behaviors - but normalise is the most common.

normaliseC - “resolved” means with names converted to de Bruijn indices as appropriate.

normaliseAll - reduce everything, even if it’s non-total

normaliseTrace - special-purpose for debugging

simplify - reduce the things that are small - the list argument is the things to not reduce.

5.13.4 Core/Typecheck.hs

Standard stuff. Hopefully no changes are necessary.

5.13.5 Core/Elaborate.hs

Idris definitions are elaborated one by one and turned into the corresponding TT. This is done with a
tactic language as an EDSL in the Elab monad (or Elab’ when there’s a custom state).

Lots of plumbing for errors.

All elaboration is relative to a global context.

The string in the pair returned by elaborate is log information.

See JFP paper, but the names don’t necessarily map to each other. The paper is the “idealized version”
without logging, additional state, etc.

All the tactics take Raws, typechecking happens there.

claim (x : t) assumes a new x : t.

PLEASE TIDY THINGS UP!

proofSearch flag to try’ is whether the failure came from a human (so fail) or from a machine (so continue)

Idris-level syntax for providing alternatives explicitly: (| x, y, z |) try x, y, z in order, and take the first
that succeeds.

5.13.6 Core/ProofState.hs

5.13.7 Core/Unify.hs

Deals with unification. Unification can reply with: - this works - this can never work - this will work if
these other unification problems work out (eg unifying f x with 1)

match_unify: same thing as unification except it’s just matching name against name, term against term.
x + y matches to 0 + y with x = 0. Used for <== syntax as well as type class resolution.

5.13.8 Idris/AbsSyntaxTree.hs

PTerm is the datatype of Idris syntax. P is for Program. Each PTerm turns into a TT term by applying
a series of tactics.
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IState is the major interpreter state. The global context is the tt_ctxt field.

Ctxt maps possibly ambiguous names to their referents.

5.13.9 Idris/ElabDecls.hs

This is where the actual elaboration from PTerm to TT happens.

5.13.10 Idris/ElabTerm.hs

build is the function that creates a Raw. All the “junk” is to deal with things like metavars and so forth.
It has to remember what names are still to be defined, and it doesn’t yet know the type (filled in by
unificaiton later). Also case expressions have to turn into top-level functions.

resolveTC is type class resolution.

5.14 Core Language Features

• Full-spectrum dependent types

• Strict evaluation (plus Lazy : Type -> Type type constructor for explicit laziness)

• Lambda, Pi (forall), Let bindings

• Pattern matching definitions

• Export modifiers public, abstract, private

• Function options partial, total

• where clauses

• “magic with”

• Implicit arguments (in top level types)

• “Bound” implicit arguments {n : Nat} -> {a : Type} -> Vect n a

• “Unbound” implicit arguments — Vect n a is equivalent to the above in a type, n and a are
implicitly bound. This applies to names beginning with a lower case letter in an argument position.

• ‘Tactic’ implicit arguments, which are solved by running a tactic script or giving a default argument,
rather than by unification.

• Unit type (), empty type Void

• Tuples (desugaring to nested pairs)

• Dependent pair syntax (x : T ** P x) (there exists an x of type T such that P x)

• Inline case expressions

• Heterogeneous equality

• do notation

155



CHAPTER 5. LANGUAGE REFERENCE v0.99

• Idiom brackets

• Interfaces (like type classes), supporting default methods and dependencies between methods

• rewrite prf in expr

• Metavariables

• Inline proof/tactic scripts

• Implicit coercion

• codata

• Also Inf : Type -> Type type constructor for mixed data/codata. In fact codata is imple-
mented by putting recursive arguments under Inf.

• syntax rules for defining pattern and term syntactic sugar

• these are used in the standard library to define if ... then ... else expressions and an
Agda-style preorder reasoning syntax.

• Uniqueness typing using the UniqueType universe.

• Partial evaluation by %static argument annotations.

• Error message reflection

• Eliminators

• Label types ’name

• %logging n

• %unifyLog

5.15 Language Extensions

5.15.1 Type Providers

Idris type providers are a way to get the type system to reflect observations about the world outside of
Idris. Similarly to F# type providers, they cause effectful computations to run during type checking,
returning information that the type checker can use when checking the rest of the program. While
F# type providers are based on code generation, Idris type providers use only the ordinary execution
semantics of Idris to generate the information.

A type provider is simply a term of type IO (Provider t), where Provider is a data type with con-
structors for a successful result and an error. The type t can be either Type (the type of types) or a
concrete type. Then, a type provider p is invoked using the syntax %provide (x : t) with p. When
the type checker encounters this line, the IO action p is executed. Then, the resulting term is extracted
from the IO monad. If it is Provide y for some y : t, then x is bound to y for the remainder of
typechecking and in the compiled code. If execution fails, a generic error is reported and type checking
terminates. If the resulting term is Error e for some string e, then type checking fails and the error e
is reported to the user.

Example Idris type providers can be seen at this repository. More detailed descriptions are available in
David Christiansen’s WGP ‘13 paper and M.Sc. thesis.
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5.16 Elaborator Reflection

The Idris elaborator is responsible for converting high-level Idris code into the core language. It is
implemented as a kind of embedded tactic language in Haskell, where tactic scripts are written in an
elaboration monad that provides error handling and a proof state. For details, see Edwin Brady’s 2013
paper in the Journal of Functional Programming.

Elaborator reflection makes the elaboration type as well as a selection of its tactics available to Idris
code. This means that metaprograms written in Idris can have complete control over the elaboration
process, generating arbitrary code, and they have access to all of the facilities available in the elaborator,
such as higher-order unification, type checking, and emitting auxiliary definitions.

5.16.1 The Elaborator State

The elaborator state contains information about the ongoing elaboration process. In particular, it con-
tains a goal type, which is to be filled by an under-construction proof term. The proof term can contain
holes, each of which has a scope in which it is valid and a type. Some holes may additionally contain
guesses, which can be substituted in the scope of the hole. The holes are tracked in a hole queue, and
one of them is focused. In addition to the goal type, proof term, and holes, the elaborator state contains
a collection of unsolved unification problems that can affect elaboration.

The elaborator state is not directly available to Idris programs. Instead, it is modified through the use
of tactics, which are operations that affect the elaborator state. A tactic that returns a value of type a,
potentially modifying the elaborator state, has type Elab a. The default tactics are all in the namespace
Language.Reflection.Elab.Tactics.

5.16.2 Running Elaborator Scripts

On their own, tactics have no effect. The meta-operation %runElab script runs script in the current
elaboration context. For example, the following script constructs the identity function at type Nat:

idNat : Nat -> Nat
idNat = %runElab (do intro `{{x}}

fill (Var `{{x}})
solve)

On the right-hand side, the Idris elaborator has the goal Nat -> Nat. When it encounters the %runElab
directive, it fulfills this goal by running the provided script. The first tactic, intro, constructs a lambda
that binds the name x. The name argument is optional because a default name can be taken from the
function type. Now, the proof term is of the form \x : Nat => {hole}. The second tactic, fill, fills
this hole with a guess, giving the term \x : Nat => {hole≈x}. Finally, the solve tactic instantiates
the guess, giving the result \x : Nat => x.

Because elaborator scripts are ordinary Idris expressions, it is also possible to use them in multiple
contexts. Note that there is nothing Nat-specific about the above script. We can generate identity
functions at any concrete type using the same script:

mkId : Elab ()
mkId = do intro `{{x}}

fill (Var `{{x}})
solve

idNat : Nat -> Nat
idNat = %runElab mkId

idUnit : () -> ()
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idUnit = %runElab mkId

idString : String -> String
idString = %runElab mkId

5.16.3 Interactively Building Elab Scripts

You can build an Elab script interactively at the REPL. Use the command :metavars, or :m for short,
to list the available holes. Then, issue the :elab <hole> command at the REPL to enter the elaboration
shell.

At the shell, you can enter proof tactics to alter the proof state. You can view the
system-provided tactics prior to entering the shell by issuing the REPL command :browse
Language.Reflection.Elab.Tactics. When you have discharged all goals, you can complete the proof
using the :qed command and receive in return an elaboration script that fills the hole.

The interactive elaboration shell accepts a limited number of commands, including a subset of the
commands understood by the normal Idris REPL as well as some elaboration-specific commands.

General-purpose commands:

• :eval <EXPR>, or :e <EXPR> for short, evaluates the provided expression and prints the result.

• :type <EXPR>, or :t <EXPR> for short, prints the provided expression together with its type.

• :search <TYPE> searches for definitions having the provided type.

• :doc <NAME> searches for definitions with the provided name and prints their documentation.

Commands for viewing the proof state:

• :state displays the current state of the term being constructed. It lists both other goals and the
current goal.

• :term displays the current proof term as well as its yet-to-be-filled holes.

Commands for manipulating the proof state:

• :undo undoes the effects of the last tactic.

• :abandon gives up on proving the current lemma and quits the elaboration shell.

• :qed finishes the script and exits the elaboration shell. The shell will only accept this command
once it reports, “No more goals.” On exit, it will print out the finished elaboration script for you
to copy into your program.

5.16.4 Failure

Some tactics may fail. For example, intro will fail if the focused hole does not have a function type,
solve will fail if the current hole does not contain a guess, and fill will fail if the term to be filled in
has the wrong type. Scripts can also fail explicitly using the fail tactic.

To account for failure, there is an Alternative implementation for Elab. The <|> operator first tries
the script to its left. If that script fails, any changes that it made to the state are undone and the right
argument is executed. If the first argument succeeds, then the second argument is not executed.
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5.16.5 Querying the Elaboration State

Elab includes operations to query the elaboration state, allowing scripts to use information about their
environment to steer the elaboration process. The ordinary Idris bind syntax can be used to propagate
this information. For example, a tactic that solves the current goal when it is the unit type might look
like this:

triv : Elab ()
triv = do compute

g <- getGoal
case (snd g) of

`(() : Type) => do fill `(() : ())
solve

otherGoal => fail [ TermPart otherGoal
, TextPart "is not trivial"
]

The tactic compute normalises the type of its goal with respect to the current context. While not strictly
necessary, this allows triv to be used in contexts where the triviality of the goal is not immediately
apparent. Then, getGoal is used, and its result is bound to g. Because it returns a pair consisting of
the current goal’s name and type, we case-split on its second projection. If the goal type turns out to
have been the unit type, we fill using the unit constructor and solve the goal. Otherwise, we fail with an
error message informing the user that the current goal is not trivial.

Additionally, the elaboration state can be dumped into an error message with the debug tactic. A
variant, debugMessage, allows arbitrary messages to be included with the state, allowing for a kind of
“printf debugging” of elaboration scripts. The message format used by debugMessage is the same for
errors produced by the error reflection mechanism, allowing the re-use of the Idris pretty-printer when
rendering messages.

5.16.6 Changing the Global Context

Elab scripts can modify the global context during execution. Just as the Idris elaborator produces auxil-
iary definitions to implement features such as where-blocks and case expressions, user elaboration scripts
may need to define functions. Furthermore, this allows Elab reflection to be used to implement features
such as interface deriving. The operations declareType, defineFunction, and addImplementation
allow Elab scripts to modify the global context.

5.16.7 Using Idris’s Features

The Idris compiler has a number of ways to automate the construction of terms. On its own, the Elab
state and its interactions with the unifier allow implicits to be solved using unification. Additional
operations use further features of Idris. In particular, resolveTC solves the current goal using interface
resolution, search invokes the proof search mechanism, and sourceLocation finds the context in the
original file at which the elaboration script is invoked.

5.16.8 Recursive Elaboration

The elaboration mechanism can be invoked recursively using the runElab tactic. This tactic takes a goal
type and an elaboration script as arguments and runs the script in a fresh lexical environment to create
an inhabitant of the provided goal type. This is primarily useful for code generation, particularly for
generating pattern-matching clauses, where variable scope needs to be one that isn’t the present local
context.
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5.16.9 Learn More

While this documentation is still incomplete, elaboration reflection works in Idris today. As you wait
for the completion of the documentation, the list of built-in tactics can be obtained using the :browse
command in an Idris REPL or the corresponding feature in one of the graphical IDE clients to explore
the Language.Reflection.Elab.Tactics namespace. All of the built-in tactics contain documentation
strings.

5.17 Type Directed Search :search

Idris’ :search command searches for terms according to their approximate type signature (much like
Hoogle for Haskell). For example:

Idris> :search e -> List e -> List e
= Prelude.List.(::) : a -> List a -> List a
Cons cell

= Prelude.List.intersperse : a -> List a -> List a
Insert some separator between the elements of a list.

> Prelude.List.delete : Eq a => a -> List a -> List a

< assert_smaller : a -> b -> b
Assert to the totality checker than y is always structurally
smaller than x (which is typically a pattern argument)

< Prelude.Basics.const : a -> b -> a
Constant function. Ignores its second argument.

The best results are listed first. As we can see, (::) and intersperse are exact matches; the = symbol
to the left of those results tells us the types of (::) and intersperse are effectively the same as the
type that was searched.

The next result is delete, whose type is more specific than the type that was searched; that’s indicated
by the > symbol. If we had a function with the signature e -> List e -> List e, we could have given
it the type Eq a => a -> List a -> List a, but not necessarily the other way around.

The final two results, assert_smaller and const, have types more general than the type that was
searched, and so they have < symbols to their left. For example, e -> List e -> List e would be a
valid type for assert_smaller. The correspondence for const is more complicated than any of the four
previous results. :search shows this result because we could change the order of the arguments! That
is, the following definition would be legal:

f : e -> List e -> List e
f x xs = const xs x

5.17.1 About :search results

:search’s functionality is based on the notion of type isomorphism. Informally, two types are isomorphic if
we can identify terms of one type exactly with terms of the other. For example, we can consider the types
Nat -> a -> List a and a -> Nat -> List a to be isomorphic, because if we have f : Nat -> a
-> List a, then flip f : a -> Nat -> List a. Similarly, if g : a -> Nat -> List a, then flip
g : Nat -> a -> List a.

With :search, we create a partial order on types; that is, given two types A and B, we may choose to say
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that A <= B, A >= B, or both (in which case we say A == B), or neither. For :search, we say that A >=
B if all of the terms inhabiting A correspond to terms of B, but it need not necessarily be the case that
all the terms of B correspond to terms of A. Here’s an example:
a -> a >= Nat -> Nat

The left-hand type has just a single inhabitant, id, which corresponds to the term id {a = Nat}, which
has the right-hand type. However, there are various terms inhabiting the right-hand type (such as S)
which cannot correspond with terms of type a -> a.

We can consider the partial order for :search to be, in some sense, inductively generated by several
classes of “edits” which are described below.

Possible edits

Here is a simple approximate list of the edits that are possible in :search. They are not entirely formal,
and do not necessarily reflect the :search command’s actual behavior. For example, the argument
application rule may be used directly on arguments that are bound after other arguments, without using
several applications of the argument transposition rule.

• Argument transposition

A : Type B : Type a : A, b : B |- M : Type
----------------------------------------------------------------------------
(x : A) -> (y : B) -> [x,y/a,b]M == (y : B) -> (x : A) -> [x,y/a,b]M

Score: 1 point

Example:

a -> Vect n a -> Vect (S n) a == Vect n a -> a -> Vect (S n) a

Note that in order for it to make sense to change the order of arguments, neither of the arguments’ types
may depend on the value bound by the other argument!

• Symmetry of equality

A = B : Type t : Type |- M : Type
----------------------------------------
[A = B/t]M == [B = A/t]M

Score: 1 point

Example:

(x,y,z : Nat) -> x + (y + z) = (x + y) + z
==

(x,y,z : Nat) -> (x + y) + z = x + (y + z)

Note that this rule means that we can flip equalities anywhere they occur (i.e., not only in the return
type).

• Argument application

e : A |- M : Type y1 : T1, ..., yn : Tn |- x : A
-----------------------------------------------------------------
(z : A) -> [z/e]M >= (y1 : T1) -> ... -> (yn :Tn) -> [x/e]M

Score: <= : 3 points, >= : 9 points

Examples:
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a -> a >= Nat -> Nat
a -> a >= List e -> List e
Vect k (Fin k) >= Vect 5 (Fin 5)

Note that the n shown in the scheme above may be 0; that is, there are no Pi terms to be added on the
right side. For example, that’s the case for the first example shown above. This is probably the most
important, and most widely used, rule of all.

• Type class application
C : Type -> TypeClass
, y1 : T1, ..., yn : Tn |- A : Type, instance : C A
, t : Type |- M : Type
-----------------------------------------------------------------
C a => [a/t]M >= (y1 : T1) -> ... -> (yn : Tn) -> [A/t]M

Score: <= : 4 points, >= : 12 points

Examples
Ord a => a >= Int
Show (List e) => List e -> String >= Show a => List a -> String

This rule is used by looking at the instances for a particular type class. While the scheme is shown only
for single-parameter type classes, it naturally generalizes to multi-parameter type classes. This rule is
particularly useful in conjunction with argument application. Again, note that the n in the scheme above
may be 0.

• Type class introduction

t : Type |- M : Type C : Type -> TypeClass
-----------------------------------------------
(t : Type) -> M >= C t => M

Score: <= : 2 points, >= : 6 points

Example:
a -> a -> Bool >= Eq a => a -> a -> Bool

Scoring and listing search results

When a type S is searched, the type is compared against the types of all of the terms which are currently
in context. When :search compares two types S and T, it essentially tries to find a chain of inequalities

R1 R2 Rn Rn+1
S <= A1 <= ... <= An <= T

using the edit rules listed above. It also tries to find chains going the other way (i.e., showing S >= T)
as well. Each rule has an associated score which indicates how drastic of a change the rule corresponds
to. These scores are listed above. Note that for the rules which are not symmetric, the score depends on
the direction in which the rule is used. Finding types which are more general that the searched typed
(S <= T) is preferred to finding types which are less general.

The score for the entire chain is, at minimum, the sum of the scores of the individual rules (some non-
linear interactions may be added). The :search function tries to find the chain between S and T which
results in the lowest score, and this is the score associated to the search result for T.

Search results are listed in order of ascending score. The symbol which is shown along with the search
result reflects the type of the chain which resulted in the minimum score.
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5.17.2 Implementation of :search

Practically, naive and undirected application of the rules enumerated above is not possible; not only
is this obviously inefficient, but the two application rules (particularly argument application) are really
impossible to use without context given by other types. Therefore, we use a heuristic algorithm that is
meant to be practical, though it might not find ways to relate two types which may actually be related
by the rules listed above.

Suppose we wish to match two types, S and T. We think of the problem as a non-deterministic state
machine. There is a State datatype which keeps track of how well we’ve matched S and T so far. It
contains:

• Names of argument variables (Pi-bound variables) in either type which have yet to be matched

• A directed acyclic graph (DAG) of arguments (Pi-bindings) for S and T which have yet to be
matched

• A list of typeclass constraints for S and T which have yet to be matched

• A record of the rules which have been used so far to get to this point

A function nextSteps : State -> [State] finds the next states which may follow from a given state.
Some states, where everything has been matched, are considered final. The algorithm can be roughly
broken down into multiple stages; if we start from having two types, S and T, which we wish to match,
they are as follows:

1. For each of S and T, split the types up into their return types and directed acyclic graphs of the
arguments, where there is an edge from argument A to argument B if the term bound in A appears
in the type of B. The topological sorts of the DAG represent all the possible ways in which the
arguments may be permuted.

2. For type T, recursively find (saturated) uses of the = type constructor and produce a list of modified
versions of T containing all possible flips of the = constructor (this corresponds to the symmetry of
equality rule).

3. For each modified type for T, try to unify the return type of the modified T with S, considering
arguments from both S and T to be holes, so that the unifier may match pieces of the two types. For
each modified version of T where this succeeds, an initial State can be made. The arguments and
typeclasses are updated accordingly with the results of unification. The remainder of the algorithm
involves applying nextSteps to these states until either no states remain (corresponding to no path
from S to T) or a final state is found. nextSteps also has several stages:

4. Try to unify arguments of S with arguments of T, much like is done with the return types. We
work “backwards” through the arguments: we try matching all remaining arguments of S which
lack outgoing edges in the DAG of remaining arguments (that is, the bound value doesn’t appear in
the type of any other remaining arguments) with the all of the corresponding remaining arguments
of T. This is done recursively until no arguments remain for both S and T; otherwise, we give up
at this point. This step corresponds to application of the argument application rule, as well as the
argument transposition rule.

5. Now, we try to match the type classes. First, we take all possible subsets of type class constraints
for S and T. So if S and T have a total of n type class constraints, this produces 2^n states for
every state, and this quickly becomes infeasible as n grows large. This is probably the biggest
bottleneck of the algorithm at the moment. This step corresponds to applications of the type class
introduction rule.

6. Try to match type class constraints for S with those for T. We attempt to unify each type class
constraint for S with each constraint for T. This may result in applications of the type class appli-
cation rule. Once we are unable to match any more type class constraints between S and T, we
proceed to the final step.
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7. Try instantiating type classes with their instances (in either S or T). This corresponds to applications
of the type class application rule. After instantiating a type class, we hopefully open up more
opportunities to match typeclass constraints of S with those of T, so we return to the previous
step.

The code for :search is located in the Idris.TypeSearch module.

Aggregating results

The search for chains of rules/edits which relate two types can be viewed as a shortest path problem
where nodes correspond to types and edges correspond to rules relating two types. The weights or
distances on each edge correspond to the score of each rule. We then may imagine that we have a single
start node, our search type S, and several final nodes: all of the types for terms which are currently in
context. The problem, then, is to find the shortest paths (where they exist) to all of the final nodes.
In particular, we wish to find the “closest” types (those with the minimum score) first, as we’d like to
display them first.

This problem nicely maps to usage of Dijkstra’s algorithm. We search for all types simultaneously so we
can find the closest ones with the minimum amount of work. In practice, this results in using a priority
queue of priority queues. We first ask “which goal type should we work on next?”, and then ask “which
state should we expand upon next?” By using this strategy, the best results can be shown quickly, even
if it takes a bit of time to find worse results (or at least rule them out).

5.17.3 Miscellaneous Notes

Whether arguments are explicit or implicit does not affect search results.

5.18 Static Arguments and Partial Evaluation

As of version 0.9.15, Idris has support for partial evaluation of statically known arguments. This involves
creating specialised versions of functions with arguments annotated as [static].

(This is an implementation of the partial evaluator described in this ICFP 2010 paper. Please refer to
this for more precise definitions of what follows.)

Partial evaluation is switched on by default. It can be disabled with the --no-partial-eval flag.

5.18.1 Introductory Example

Consider the power function over natural numbers, defined as follows (we’ll call it my_pow since pow
already exists in the Prelude):

my_pow : Nat -> Nat -> Nat
my_pow x Z = 1
my_pow x (S k) = mult x (my_pow x k)

This is implemented by recursion on the second argument, and we can evaluate the definition further if
the second argument is known, even if the first isn’t. For example, we can build a function at the REPL
to cube a number as follows:

*pow> \x => my_pow x 3
\x => mult x (mult x (mult x 1)) : Nat -> Nat
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*pow> it 3
27 : Nat

Note that in the resulting function the recursion has been eliminated, since my_pow is implemented by
recursion on the known argument. We have no such luck if the first argument is known and the second
isn’t:

*pow> \x => my_pow 2 x
\x => my_pow 2 x : Nat -> Nat

Now, consider the following definition which calculates x^2 + 1:

powFn : Nat -> Nat
powFn x = plus (my_pow x (S (S Z))) (S Z)

Since the second argument to my_pow here is statically known, it seems a shame to have to make the
recursive calls every time. However, Idris will not in general inline recursive definitions, in particular
since they may diverge or duplicate work without some deeper analysis.

We can, however, give Idris some hints that here we really would like to create a specialised version of
my_pow.

Automatic specialisation of pow

The trick is to mark the statically known arguments with the [static] flag:

my_pow : Nat -> [static] Nat -> Nat
my_pow k Z = 1
my_pow k (S j) = mult k (my_pow k j)

When an argument is annotated in this way, Idris will try to create a specialised version whenever it
accounts a call with a concrete value (i.e. a constant, constructor form, or globally defined function) in
a [static] position. If my_pow is defined this way, and powFn defined as above, we can see the effect by
typing :printdef powFn at the REPL:

*pow> :printdef powFn
powFn : Nat -> Nat
powFn x = plus (PE_my_pow_3f3e5ad8 x) 1

What is this mysterious PE_my_pow_3f3e5ad8? It’s a specialised power function where the statically
known argument has been specialised away. The name is generated from a hash of the specialised
arguments, and we can see its definition with :printdef too:

*petest> :printdef PE_my_pow_3f3e5ad8
PE_my_pow_3f3e5ad8 : Nat -> Nat
PE_my_pow_3f3e5ad8 (0arg) = mult (0arg) (mult (0arg) (PE_fromInteger_7ba9767f 1))

The (0arg) is an internal argument name (programmers can’t give variable names beginning with a
digit after all). Notice also that there is a specialised version of fromInteger for Nats, since type class
dictionaries are themselves a particularly common case of statically known arguments!

5.18.2 Specialising Type Classes

Type class dictionaries are very often statically known, so Idris automatically marks any type class con-
straint as [static] and builds specialised versions of top level functions where the class is instantiated.
For example, given:
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calc : Int -> Int
calc x = (x * x) + x

If we print this definition, we’ll see a specialised version of + is used:

*petest> :printdef calc
calc : Int -> Int
calc x = PE_+_954510b4 (PE_*_954510b4 x x) x

More interestingly, consider vadd which adds corresponding elements in a vector of anything numeric:

vadd : Num a => Vect n a -> Vect n a -> Vect n a
vadd [] [] = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys

If we use this on something concrete as follows...

test : List Int -> List Int
test xs = let xs' = fromList xs in

toList $ vadd xs' xs'

...then in fact, we get a specialised version of vadd in the definition of test, and indeed the specialised
version of toList:

test : List Int -> List Int
test xs = let xs' = fromList xs

in PE_toList_888ae67 (PE_vadd_33f98d3d xs' xs')

Here’s the specialised version of vadd:

PE_vadd_33f98d3d : Vect n Int -> Vect n Int -> Vect n Int
PE_vadd_33f98d3d [] [] = []
PE_vadd_33f98d3d (x :: xs) (y :: ys) = ((PE_+_954510b4 x y) ::

(PE_vadd_33f98d3d xs ys))

Note that the recursive structure has been preserved, and the recursive call to vadd has been replaced
with a recursive call to the specialised version. We’ve also got the same specialised version of + that we
had above in calc.

5.18.3 Specialising Higher Order Functions

Another case where partial evaluation can be useful is in automatically making specialised versions of
higher order functions. Unlike type class dictionaries, this is not done automatically, but we might
consider writing map as follows:

my_map : [static] (a -> b) -> List a -> List b
my_map f [] = []
my_map f (x :: xs) = f x :: my_map f xs

Then using my_map will yield specialised versions, for example to double every value in a list of Ints we
could write:

doubleAll : List Int -> List Int
doubleAll xs = my_map (*2) xs

This would yield a specialised version of my_map, used in doubleAll as follows:

doubleAll : List Int -> List Int
doubleAll xs = PE_my_map_1f8225c4 xs
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PE_my_map_1f8225c4 : List Int -> List Int
PE_my_map_1f8225c4 [] = []
PE_my_map_1f8225c4 (x :: xs) = ((PE_*_954510b4 x 2) :: (PE_my_map_1f8225c4 xs))

5.18.4 Specialising Interpreters

A particularly useful situation where partial evaluation becomes effective is in defining an interpreter for
a well-typed expression language, defined as follows (see the Idris tutorial, section 4 for more details on
how this works):
data Expr : Vect n Ty -> Ty -> Type where

Var : HasType i gamma t -> Expr gamma t
Val : (x : Int) -> Expr gamma TyInt
Lam : Expr (a :: gamma) t -> Expr gamma (TyFun a t)
App : Lazy (Expr gamma (TyFun a t)) -> Expr gamma a -> Expr gamma t
Op : (interpTy a -> interpTy b -> interpTy c) -> Expr gamma a -> Expr gamma

Expr gamma c
If : Expr gamma TyBool -> Expr gamma a -> Expr gamma a -> Expr gamma a

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

We can write a couple of test functions in this language as follows, using the dsl notation to overload
lambdas; first a function which multiplies two inputs:

eMult : Expr gamma (TyFun TyInt (TyFun TyInt TyInt))
eMult = expr (\x, y => Op (*) x y)

Then, a function which calculates the factorial of its input:

eFac : Expr gamma (TyFun TyInt TyInt)
eFac = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(App (App eMult (App eFac (Op (-) x (Val 1)))) x))

The interpreter’s type is written as follows, marking the expression to be evaluated as [static]:

interp : (env : Env gamma) -> [static] (e : Expr gamma t) -> interpTy t

This means that if we write an Idris program to calculate a factorial by calling interp on eFac, the
resulting definition will be specialised, partially evaluating away the interpreter:
runFac : Int -> Int
runFac x = interp [] eFac x

We can see that the call to interp has been partially evaluated away as follows:
*interp> :printdef runFac
runFac : Int -> Int
runFac x = PE_interp_ed1429e [] x

If we look at PE_interp_ed1429e we’ll see that it follows exactly the structur of eFac, with the interpreter
evaluated away:
*interp> :printdef PE_interp_ed1429e
PE_interp_ed1429e : Env gamma -> Int -> Int
PE_interp_ed1429e (3arg) = \x =>
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boolElim (x == 0)
(Delay 1)
(Delay (PE_interp_b5c2d0ff (x :: (3arg))

(PE_interp_ed1429e (x :: (3arg)) (x - 1)) x))

For the sake of readability, I have simplified this slightly: what you will really see also includes specialised
versions of ==, - and fromInteger. Note that PE_interp_ed1429e, which represents eFac has become
a recursive function following the structure of eFac. There is also a call to PE_interp_b5c2d0ff which
is a specialised interpeter for eMult.

These definitions arise because the partial evaluator will only specialise a definition by a specific concrete
argument once, then it is cached for future use. So any future applications of interp on eFac will also
be translated to PE_interp_ed1429e.

The specialised version of eMult, without any simplification for readability, is:

PE_interp_b5c2d0ff : Env gamma -> Int -> Int -> Int
PE_interp_b5c2d0ff (3arg) = \x => \x1 => PE_*_954510b4 x x1

5.19 Miscellaneous

Things we have yet to classify, or are two small to justify their own page.

5.19.1 The Unifier Log

If you’re having a hard time debugging why the unifier won’t accept something (often while debugging
the compiler itself), try applying the special operator %unifyLog to the expression in question. This will
cause the type checker to spit out all sorts of informative messages.

5.19.2 Namespaces and type-directed disambiguation

Names can be defined in separate namespaces, and disambiguated by type. An expression with NAME
EXPR will privilege the namespace NAME in the expression EXPR. For example:

Idris> with List [[1,2],[3,4],[5,6]]
[[1, 2], [3, 4], [5, 6]] : List (List Integer)

Idris> with Vect [[1,2],[3,4],[5,6]]
[[1, 2], [3, 4], [5, 6]] : Vect 3 (Vect 2 Integer)

Idris> [[1,2],[3,4],[5,6]]
Can't disambiguate name: Prelude.List.::, Prelude.Stream.::, Prelude.Vect.::

5.19.3 Alternatives

The syntax (| option1, option2, option3, ... |) type checks each of the options in turn until
one of them works. This is used, for example, when translating integer literals.

Idris> the Nat (| "foo", Z, (-3) |)
0 : Nat

This can also be used to give simple automated proofs, for example: trying some constructors of proofs.
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syntax Trivial = (| oh, refl |)

5.19.4 Totality checking assertions

All definitions are checked for coverage (i.e. all well-typed applications are handled) and either for
termination (i.e. all well-typed applications will eventually produce an answer) or, if returning codata,
for productivity (in practice, all recursive calls are constructor guarded).

Obviously, termination checking is undecidable. In practice, the termination checker looks for size change
- every cycle of recursive calls must have a decreasing argument, such as a recursive argument of a strictly
positive data type.

There are two built-in functions which can be used to give the totality checker a hint:

• assert_total x asserts that the expression x is terminating and covering, even if the totality
checker cannot tell. This can be used for example if x uses a function which does not cover all
inputs, but the caller knows that the specific input is covered.

• assert_smaller p x asserts that the expression x is structurally smaller than the pattern p.

For example, the following function is not checked as total:

qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs) = qsort (filter (<= x) xs) ++ (x :: qsort (filter (>= x) xs)))

This is because the checker cannot tell that filter will always produce a value smaller than the pattern
x :: xs for the recursive call to qsort. We can assert that this will always be true as follows:

total
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs) = qsort (assert_smaller (x :: xs) (filter (<= x) xs)) ++

(x :: qsort (assert_smaller (x :: xs) (filter (>= x) xs))))

5.19.5 C heap

Idris has two heaps where objects can be allocated:
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FP heap C heap
Cheney-collected Mark-and-sweep-collected
Garbage collections touches only live objects. Garbage collection has to traverse all registered

items.
Ideal for FP-style rapid allocation of lots of
small short-lived pieces of memory, such as
data constructors.

Ideal for C-style allocation of a few big buffers.

Finalizers are impossible to support
reasonably.

Items have finalizers that are called on
deallocation.

Data is copied all the time (when collecting
garbage, modifying data, registering managed
pointers, etc.)

Copying does not happen.

Contains objects of various types. Contains C heap items: (void *) pointers with
finalizers. A finalizer is a routine that deallocates
the resources associated with the item.

Fixed set of object types. The data pointer may point to anything, as long as
the finalizer cleans up correctly.

Not suitable for C resources and arbitrary
pointers.

Suitable for C resources and arbitrary pointers.

Values form a compact memory block. Items are kept in a linked list.
Any Idris value, most notably ManagedPtr. Items represented by the Idris type CData.
Data of ManagedPtr allocated in C, buffer
then copied into the FP heap.

Data allocated in C, pointer copied into the C
heap.

Allocation and reallocation not possible from
C code (without having a reference to the
VM). Everything is copied instead.

Allocated and reallocate freely in C, registering the
allocated items in the FFI.

The FP heap is the primary heap. It may contain values of type CData, which are references to items
in the C heap. A C heap item contains a (void *) pointer and the corresponding finalizer. Once a C
heap item is no longer referenced from the FP heap, it is marked as unused and the next GC sweep will
call its finalizer and deallocate it.

There is no Idris interface for CData other than its type and FFI.

Usage from C code

• Although not enforced in code, CData is meant to be opaque and non-RTS code (such as libraries
or C bindings) should access only its (void *) field called data.

• Feel free to mutate both the pointer data (eg. after calling realloc) and the memory it points to.
However, keep in mind that this must not break Idris’s referential transparency.

• WARNING! If you call cdata_allocate or cdata_manage, the resulting CData object must be
returned from your FFI function so that it is inserted in the C heap by the RTS. Otherwise the
memory will be leaked.

some_allocating_fun : Int -> IO CData
some_allocating_fun i = foreign FFI_C "some_allocating_fun" (Int -> IO CData) i

other_fun : CData -> Int -> IO Int
other_fun cd i = foreign FFI_C "other_fun" (CData -> Int -> IO Int) cd i

#include "idris_rts.h"

static void finalizer(void * data)
{

MyStruct * ptr = (MyStruct *) data;
free_something(ptr->something);
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free(ptr);
}

CData some_allocating_fun(int arg)
{

void * data = (void *) malloc(...);
// ...
return cdata_manage(data, finalizer);

}

int other_fun(CData cd, int arg)
{

int result = foo(cd->data);
return result;

}

5.19.6 Preorder reasoning

This syntax is defined in the module Syntax.PreorderReasoning in the base package. It provides a
syntax for composing proofs of reflexive-transitive relations, using overloadable functions called step and
qed. This module also defines step and qed functions allowing the syntax to be used for demonstrating
equality. Here is an example:

import Syntax.PreorderReasoning
multThree : (a, b, c : Nat) -> a * b * c = c * a * b
multThree a b c =

(a * b * c) ={ sym (multAssociative a b c) }=
(a * (b * c)) ={ cong (multCommutative b c) }=
(a * (c * b)) ={ multAssociative a c b }=
(a * c * b) ={ cong {f = (* b)} (multCommutative a c) }=
(c * a * b) QED

Note that the parentheses are required – only a simple expression can be on the left of ={ }= or QED.
Also, when using preorder reasoning syntax to prove things about equality, remember that you can only
relate the entire expression, not subexpressions. This might occasionally require the use of cong.

Finally, although equality is the most obvious application of preorder reasoning, it can be used for
any reflexive-transitive relation. Something like step1 ={ just1 }= step2 ={ just2 }= end QED is
translated to (step step1 just1 (step step2 just2 (qed end))), selecting the appropriate defini-
tions of step and qed through the normal disambiguation process. The standard library, for example,
also contains an implementation of preorder reasoning on isomorphisms.

5.19.7 Pattern matching on Implicit Arguments

Pattern matching is only allowed on implicit arguments when they are referred by name, e.g.

foo : {n : Nat} -> Nat
foo {n = Z} = Z
foo {n = S k} = k

or

foo : {n : Nat} -> Nat
foo {n = n} = n

The latter could be shortened to the following:
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foo : {n : Nat} -> Nat
foo {n} = n

That is, {x} behaves like {x=x}.

5.19.8 Existence of an implementation

In order to show that an implementation of some interface is defined for some type, one could use the
%implementation keyword:

foo : Num Nat
foo = %implementation

5.19.9 ‘match’ application

ty <== name applies the function name in such a way that it has the type ty, by matching ty against
the function’s type. This can be used in proofs, for example:

plus_comm : (n : Nat) -> (m : Nat) -> (n + m = m + n)
-- Base case
(Z + m = m + Z) <== plus_comm =

rewrite ((m + Z = m) <== plusZeroRightNeutral) ==>
(Z + m = m) in refl

-- Step case
(S k + m = m + S k) <== plus_comm =

rewrite ((k + m = m + k) <== plus_comm) in
rewrite ((S (m + k) = m + S k) <== plusSuccRightSucc) in

refl

5.19.10 Reflection

Including %reflection functions and quoteGoal x by fn in t, which applies fn to the expected type
of the current expression, and puts the result in x which is in scope when elaborating t.

5.19.11 Bash Completion

Use of optparse-applicative allows Idris to support Bash completion. You can obtain the completion
script for Idris using the following command:

idris --bash-completion-script `which idris`

To enable completion for the lifetime of your current session, run the following command:

source <(idris --bash-completion-script `which idris`)

To enable completion permenatly you must either:

• Modify your bash init script with the above command.

• Add the completion script to the appropriate bash_completion.d/ folder on your machine.
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Tutorials on the Idris Language

Tutorials submitted by community members.

Note: The documentation for Idris has been published under the Creative Commons CC0 License.
As such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CC0 can be found online at:
http://creativecommons.org/publicdomain/zero/1.0/

6.1 Type Providers in Idris

Type providers in Idris are simple enough, but there are a few caveats to using them that it would be
worthwhile to go through the basic steps. We also go over foreign functions, because these will often be
used with type providers.

6.1.1 The use case

First, let’s talk about why we might want type providers. There are a number of reasons to use them
and there are other examples available around the net, but in this tutorial we’ll be using them to port
C’s struct stat to Idris.

Why do we need type providers? Well, Idris’s FFI needs to know the types of the things it passes to
and from C, but the fields of a struct stat are implementation-dependent types that cannot be relied
upon. We don’t just want to hard-code these types into our program... so we’ll use a type provider to
find them at compile time!

6.1.2 A simple example

First, let’s go over a basic usage of type providers, because foreign functions can be confusing but it’s
important to remember that providers themselves are simple.

A type provider is simply an IO action that returns a value of this type:

data Provider a = Provide a | Error String

Looks familiar? Provider is just Either a String, given a slightly more descriptive name.
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Remember though, type providers we use in our program must be IO actions. Let’s write a simple one
now:

module Provider
-- Asks nicely for the user to supply the size of C's size_t type on this
-- machine
getSizeT : IO (Provider Int)
getSizeT = do

putStrLn "I'm sorry, I don't know how big size_t is. Can you tell me, in bytes?"
resp <- getLine
case readInt resp of

Just sizeTSize => pure (Provide sizeTSize)
Nothing => pure (Error "I'm sorry, I don't understand.")

-- the readInt function is left as an exercise

We assume that whoever’s compiling the library knows the size of size_t, so we’ll just ask them! (Don’t
worry, we’ll get it ourselves later.) Then, if their response can be converted to an integer, we present
Provide sizeTSize as the result of our IO action; or if it can’t, we signal a failure. (This will then
become a compile-time error.)

Now we can use this IO action as a type provider:

module Main
-- to gain access to the IO action we're using as a provider
import Provider

-- TypeProviders is an extension, so we'll enable it
%language TypeProviders

-- And finally, use the provider!
-- Note that the parentheses are mandatory.
%provide (sizeTSize : Int) with getSizeT

-- From now on it's just a normal program where `sizeTSize` is available
-- as a top-level constant
main : IO ()
main = do

putStr "Look! I figured out how big size_t is! It's "
putStr (show sizeTSize)
putStr " bytes!"

Yay! We... asked the user something at compile time? That’s not very good, actually. Our library is
going to be difficult to compile! This is hardly a step up from having them edit in the size of size_t
themselves!

Don’t worry, there’s a better way.

6.1.3 Foreign Functions

It’s actually pretty easy to write a C function that figures out the size of size_t:

int sizeof_size_t() { return sizeof(size_t); }

(Why an int and not a size_t? The FFI needs to know how to receive the return value of this function
and translate it into an Idris value. If we knew how to do this for values of C type size_t, we wouldn’t
need to write this function at all! If we really wanted to be safe from overflow, we could use an array of
multiple integers, but the SIZE of size_t is never going to be a 65535 byte integer.)

So now we can get the size of size_t as long as we’re in C code. We’d like to be able to use this from
Idris. Can we do this? It turns out we can.
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foreign

With foreign, we can turn a C function into an IO action. It works like this:

getSizeT : IO Int
getSizeT = foreign FFI_C "sizeof_size_t" (IO Int)

Pretty simple. foreign takes a specification of what function it needs to call and that function’s return
type.

Running foreign functions

This is all well and good for writing code that will typecheck. To actually run the code, we’ll need to do
just a bit more work. Exactly what we need to do depends on whether we want to interpret or compile
our code.

In the interpreter

If we want to call our foreign functions from interpreted code (such as the REPL or a type provider), we
need to dynamically link a library containing the symbols we need. This is pretty easy to do with the
%dynamic directive:

%dynamic "./filename.so"

Note that the leading ”./” is important: currently, the string you provide is interpreted as by dlopen(),
which on Unix does not search in the current directory by default. If you use the ”./”, the library will
be searched for in the directory from which you run idris (not the location of the file you’re running!).
Of course, if you’re using functions from an installed library rather than something you wrote yourself,
the ”./” is not necessary.

In an executable

If we want to run our code from an executable, we can statically link instead. We’ll use the %include
and %link directives:

%include C "filename.h"
%link C "filename.o"

Note the extra argument to the directive! We specify that we’re linking a C header and library. Also,
unlike %dynamic, these directives search in the current directory by default. (That is, the directory from
which we run idris.)

6.1.4 Putting it all together

So, at the beginning of this article I said we’d use type providers to port struct stat to Idris. The
relevant part is just translating all the mysterious typedef’d C types into Idris types, and that’s what
we’ll do here.

First, let’s write a C file containing functions that we’ll bind to.

/* stattypes.c */
# include <sys/stat.h>

int sizeof_dev_t() { return sizeof(dev_t); }
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int sizeof_ino_t() { return sizeof(ino_t); }
/* lots more functions like this */

Next, an Idris file to define our providers:

-- Providers.idr
module Providers

%dynamic "./stattypes.so"

sizeOfDevT : IO Int
sizeOfDevT = foreign FFI_C "sizeof_dev_t" (IO Int)
{- lots of similar functions -}

-- Indicates how many bits are used to represent various system
-- stat types.
data BitWidth = B8 | B16 | B32 | B64

implementation Show BitWidth where
show B8 = "8 bits"
show B16 = "16 bits"
show B32 = "32 bits"
show B64 = "64 bits"

-- Now we have an integer, but we want a Provider BitWidth.
-- Since our sizeOf* functions are ordinary IO actions, we
-- can just map over them.
bytesToType : Int -> Provider BitWidth
bytesToType 1 = Provide B8 -- "8 bit value"
bytesToType 2 = Provide B16
bytesToType 4 = Provide B32
bytesToType 8 = Provide B64
bytesToType _ = Error "Unrecognised integral type."

getDevT : IO (Provider BitWidth)
getDevT = map bytesToType sizeOfDevT
{- lots of similar functions -}

Finally, we’ll write one more idris file where we use the type providers:

-- Main.idr
module Main
import Providers
%language TypeProviders
%provide (DevTBitWidth : BitWidth) with getDevT

-- We can now use DevTBitWidth in our program!
main : IO ()
main = putStrLn $ "size of dev_t: " ++ show DevTBitWidth

6.2 The Interactive Theorem Prover

This short guide contributed by a community member illustrates how to prove associativity of addition
on Nat using the interactive theorem prover.

First we define a module Foo.idr

module Foo
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plusAssoc : plus n (plus m o) = plus (plus n m) o
plusAssoc = ?rhs

We wish to perform induction on n. First we load the file into the Idris REPL as follows:

$ idris Foo.idr

We will be given the following prompt, in future releases the version string will differ:
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.18.1

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Type checking ./Foo.idr
Metavariables: Foo.rhs
*Foo>

6.2.1 Explore the Context

We start the interactive session by asking Idris to prove the hole rhs using the command :p rhs. Idris
by default will show us the initial context. This looks as follows:

*Foo> :p rhs
---------- Goal: ----------
{ hole 0 }:
(n : Nat) ->
(m : Nat) ->
(o : Nat) ->
plus n (plus m o) = plus (plus n m) o

6.2.2 Application of Intros

We first apply the intros tactic:

-Foo.rhs> intros
---------- Other goals: ----------
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
{ hole 3 }:
plus n (plus m o) = plus (plus n m) o

6.2.3 Induction on n

Then apply induction on to n:

-Foo.rhs> induction n
---------- Other goals: ----------

177



CHAPTER 6. TUTORIALS ON THE IDRIS LANGUAGE v0.99

elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_Z0:
plus Z (plus m o) = plus (plus Z m) o

6.2.4 Compute

-Foo.rhs> compute
---------- Other goals: ----------
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_Z0:
plus m o = plus m o

6.2.5 Trivial

-Foo.rhs> trivial
---------- Other goals: ----------
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_S0:
(n__0 : Nat) ->
(plus n__0 (plus m o) = plus (plus n__0 m) o) ->
plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

6.2.6 Intros

-Foo.rhs> intros
---------- Other goals: ----------
{ hole 4 }
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
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m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 5 }:
plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

6.2.7 Compute

-Foo.rhs> compute
---------- Other goals: ----------
{ hole 4 }
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 5 }:
S (plus n__0 (plus m o)) = S (plus (plus n__0 m) o)

6.2.8 Rewrite

-Foo.rhs> rewrite ihn__0
---------- Other goals: ----------
{ hole 5 }
{ hole 4 }
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 6 }:
S (plus n__0 (plus m o)) = S (plus n__0 (plus m o))

6.2.9 Trivial

-Foo.rhs> trivial
rhs: No more goals.
-Foo.rhs> qed
Proof completed!
Foo.rhs = proof

intros
induction n
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compute
trivial
intros
compute
rewrite ihn__0
trivial

Two goals were created: one for Z and one for S. Here we have proven associativity, and assembled a
tactic based proof script. This proof script can be added to Foo.idr.
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