

 Navigation

 	
 index

 	
 next |

 	Idiorm documentation

Welcome to Idiorm’s documentation!

Contents:

	Philosophy

	Installation
	Packagist

	Download

	Configuration
	Setup

	Configuration

	Querying
	A note on PSR-1 and camelCase

	Single records

	Multiple records

	Counting results

	Filtering results

	Grouping

	Having

	Result columns

	DISTINCT

	Joins

	Aggregate functions

	Raw queries

	Models
	Getting data from objects

	Updating records

	Creating new records

	Checking whether a property has been modified

	Deleting records

	Transactions

	Multiple Connections
	Supported Methods

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Philosophy

The Pareto Principle [http://en.wikipedia.org/wiki/Pareto_principle] states that roughly 80% of the effects come
from 20% of the causes. In software development terms, this could be
translated into something along the lines of 80% of the results come
from 20% of the complexity. In other words, you can get pretty far by
being pretty stupid.

Idiorm is deliberately simple. Where other ORMs consist of dozens of
classes with complex inheritance hierarchies, Idiorm has only one class,
ORM, which functions as both a fluent SELECT query API and a
simple CRUD model class. If my hunch is correct, this should be quite
enough for many real-world applications. Let’s face it: most of us
aren’t building Facebook. We’re working on small-to-medium-sized
projects, where the emphasis is on simplicity and rapid development
rather than infinite flexibility and features.

You might think of Idiorm as a micro-ORM. It could, perhaps, be
“the tie to go along with Slim [http://github.com/codeguy/slim/]’s tux” (to borrow a turn of phrase
from DocumentCloud [http://github.com/documentcloud/underscore]). Or it could be an effective bit of spring
cleaning for one of those horrendous SQL-littered legacy PHP apps you
have to support.

Idiorm might also provide a good base upon which to build
higher-level, more complex database abstractions. For example, Paris [http://github.com/j4mie/paris]
is an implementation of the Active Record pattern [http://martinfowler.com/eaaCatalog/activeRecord.html] built on top of
Idiorm.

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Installation

Packagist

This library is available through Packagist with the vendor and package
identifier of j4mie/idiorm

Please see the Packagist documentation [http://packagist.org/] for further information.

Download

You can clone the git repository, download idiorm.php or a release tag
and then drop the idiorm.php file in the vendors/3rd party/libs
directory of your project.

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Configuration

The first thing you need to know about Idiorm is that you don’t need to
define any model classes to use it. With almost every other ORM, the
first thing to do is set up your models and map them to database tables
(through configuration variables, XML files or similar). With Idiorm,
you can start using the ORM straight away.

Setup

First, require the Idiorm source file:

<?php
require_once 'idiorm.php';

Then, pass a Data Source Name connection string to the configure
method of the ORM class. This is used by PDO to connect to your
database. For more information, see the PDO documentation [http://php.net/manual/en/pdo.construct.php].

<?php
ORM::configure('sqlite:./example.db');

You may also need to pass a username and password to your database
driver, using the username and password configuration options.
For example, if you are using MySQL:

<?php
ORM::configure('mysql:host=localhost;dbname=my_database');
ORM::configure('username', 'database_user');
ORM::configure('password', 'top_secret');

Also see “Configuration” section below.

Configuration

Other than setting the DSN string for the database connection (see
above), the configure method can be used to set some other simple
options on the ORM class. Modifying settings involves passing a
key/value pair to the configure method, representing the setting you
wish to modify and the value you wish to set it to.

<?php
ORM::configure('setting_name', 'value_for_setting');

A shortcut is provided to allow passing multiple key/value pairs at
once.

<?php
ORM::configure(array(
 'setting_name_1' => 'value_for_setting_1',
 'setting_name_2' => 'value_for_setting_2',
 'etc' => 'etc'
));

Use the get_config method to read current settings.

<?php
$isLoggingEnabled = ORM::get_config('logging');
ORM::configure('logging', false);
// some crazy loop we don't want to log
ORM::configure('logging', $isLoggingEnabled);

Database authentication details

Settings: username and password

Some database adapters (such as MySQL) require a username and password
to be supplied separately to the DSN string. These settings allow you to
provide these values. A typical MySQL connection setup might look like
this:

<?php
ORM::configure('mysql:host=localhost;dbname=my_database');
ORM::configure('username', 'database_user');
ORM::configure('password', 'top_secret');

Or you can combine the connection setup into a single line using the
configuration array shortcut:

<?php
ORM::configure(array(
 'connection_string' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'database_user',
 'password' => 'top_secret'
));

Result sets

Setting: return_result_sets

Collections of results can be returned as an array (default) or as a result set.
See the find_result_set() documentation for more information.

<?php
ORM::configure('return_result_sets', true); // returns result sets

Note

It is recommended that you setup your projects to use result sets as they
are more flexible.

PDO Driver Options

Setting: driver_options

Some database adapters require (or allow) an array of driver-specific
configuration options. This setting allows you to pass these options
through to the PDO constructor. For more information, see the PDO
documentation [http://php.net/manual/en/pdo.construct.php]. For example, to force the MySQL driver to use UTF-8 for
the connection:

<?php
ORM::configure('driver_options', array(PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8'));

PDO Error Mode

Setting: error_mode

This can be used to set the PDO::ATTR_ERRMODE setting on the
database connection class used by Idiorm. It should be passed one of the
class constants defined by PDO. For example:

<?php
ORM::configure('error_mode', PDO::ERRMODE_WARNING);

The default setting is PDO::ERRMODE_EXCEPTION. For full details of
the error modes available, see the PDO set attribute documentation [http://php.net/manual/en/pdo.setattribute.php].

PDO object access

Should it ever be necessary, the PDO object used by Idiorm may be
accessed directly through ORM::get_db(), or set directly via
ORM::set_db(). This should be an unusual occurance.

After a statement has been executed by any means, such as ::save()
or ::raw_execute(), the PDOStatement instance used may be
accessed via ORM::get_last_statement(). This may be useful in order
to access PDOStatement::errorCode(), if PDO exceptions are turned
off, or to access the PDOStatement::rowCount() method, which returns
differing results based on the underlying database. For more
information, see the PDOStatement documentation [http://php.net/manual/en/class.pdostatement.php].

Identifier quote character

Setting: identifier_quote_character

Set the character used to quote identifiers (eg table name, column
name). If this is not set, it will be autodetected based on the database
driver being used by PDO.

ID Column

By default, the ORM assumes that all your tables have a primary key
column called id. There are two ways to override this: for all
tables in the database, or on a per-table basis.

Setting: id_column

This setting is used to configure the name of the primary key column for
all tables. If your ID column is called primary_key, use:

<?php
ORM::configure('id_column', 'primary_key');

You can specify a compound primary key using an array:

<?php
ORM::configure('id_column', array('pk_1', 'pk_2'));

Note: If you use a auto-increment column in the compound primary key then it
should be the first one defined into the array.

Setting: id_column_overrides

This setting is used to specify the primary key column name for each
table separately. It takes an associative array mapping table names to
column names. If, for example, your ID column names include the name of
the table, you can use the following configuration:

<?php
ORM::configure('id_column_overrides', array(
 'person' => 'person_id',
 'role' => 'role_id',
));

As with id_column setting, you can specify a compound primary key
using an array.

Limit clause style

Setting: limit_clause_style

You can specify the limit clause style in the configuration. This is to facilitate
a MS SQL style limit clause that uses the TOP syntax.

Acceptable values are ORM::LIMIT_STYLE_TOP_N and ORM::LIMIT_STYLE_LIMIT.

Note

If the PDO driver you are using is one of sqlsrv, dblib or mssql then Idiorm
will automatically select the ORM::LIMIT_STYLE_TOP_N for you unless you
override the setting.

Query logging

Setting: logging

Idiorm can log all queries it executes. To enable query logging, set the
logging option to true (it is false by default).

When query logging is enabled, you can use two static methods to access
the log. ORM::get_last_query() returns the most recent query
executed. ORM::get_query_log() returns an array of all queries
executed.

Note

The code that does the query log is an approximation of that provided by PDO/the
database (see the Idiorm source code for detail). The actual query isn’t even available
to idiorm to log as the database/PDO handles the binding outside of idiorm’s reach and
doesn’t pass it back.

This means that you might come across some inconsistencies between what is logged and
what is actually run. In these case you’ll need to look at the query log provided by
your database vendor (eg. MySQL).

Query logger

Setting: logger

Note

You must enable logging for this setting to have any effect.

It is possible to supply a callable to this configuration setting, which will
be executed for every query that idiorm executes. In PHP a callable is anything
that can be executed as if it were a function. Most commonly this will take the
form of a anonymous function.

This setting is useful if you wish to log queries with an external library as it
allows you too whatever you would like from inside the callback function.

<?php
ORM::configure('logger', function($log_string, $query_time) {
 echo $log_string . ' in ' . $query_time;
});

Query caching

Setting: caching

Idiorm can cache the queries it executes during a request. To enable
query caching, set the caching option to true (it is false
by default).

<?php
ORM::configure('caching', true);

Setting: caching_auto_clear

Idiorm’s cache is never cleared by default. If you wish to automatically clear it on save, set caching_auto_clear to true

<?php
ORM::configure('caching_auto_clear', true);

When query caching is enabled, Idiorm will cache the results of every
SELECT query it executes. If Idiorm encounters a query that has
already been run, it will fetch the results directly from its cache and
not perform a database query.

Warnings and gotchas

	Note that this is an in-memory cache that only persists data for the
duration of a single request. This is not a replacement for a
persistent cache such as Memcached [http://www.memcached.org/].

	Idiorm’s cache is very simple, and does not attempt to invalidate
itself when data changes. This means that if you run a query to
retrieve some data, modify and save it, and then run the same query
again, the results will be stale (ie, they will not reflect your
modifications). This could potentially cause subtle bugs in your
application. If you have caching enabled and you are experiencing odd
behaviour, disable it and try again. If you do need to perform such
operations but still wish to use the cache, you can call the
ORM::clear_cache() to clear all existing cached queries.

	Enabling the cache will increase the memory usage of your
application, as all database rows that are fetched during each
request are held in memory. If you are working with large quantities
of data, you may wish to disable the cache.

Custom caching

If you wish to use custom caching functions, you can set them from the configure options.

<?php
$my_cache = array();
ORM::configure('cache_query_result', function ($cache_key, $value, $table_name, $connection_name) use (&$my_cache) {
 $my_cache[$cache_key] = $value;
});
ORM::configure('check_query_cache', function ($cache_key, $table_name, $connection_name) use (&$my_cache) {
 if(isset($my_cache[$cache_key])){
 return $my_cache[$cache_key];
 } else {
 return false;
 }
});
ORM::configure('clear_cache', function ($table_name, $connection_name) use (&$my_cache) {
 $my_cache = array();
});

ORM::configure('create_cache_key', function ($query, $parameters, $table_name, $connection_name) {
 $parameter_string = join(',', $parameters);
 $key = $query . ':' . $parameter_string;
 $my_key = 'my-prefix'.crc32($key);
 return $my_key;
});

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Querying

Idiorm provides a *fluent
interface* [http://en.wikipedia.org/wiki/Fluent_interface] to enable
simple queries to be built without writing a single character of SQL. If
you’ve used jQuery [http://jquery.com] at all, you’ll be familiar
with the concept of a fluent interface. It just means that you can
chain method calls together, one after another. This can make your
code more readable, as the method calls strung together in order can
start to look a bit like a sentence.

All Idiorm queries start with a call to the for_table static method
on the ORM class. This tells the ORM which table to use when making the
query.

Note that this method **does not* escape its query parameter and so
the table name should not be passed directly from user input.*

Method calls which add filters and constraints to your query are then
strung together. Finally, the chain is finished by calling either
find_one() or find_many(), which executes the query and returns
the result.

Let’s start with a simple example. Say we have a table called person
which contains the columns id (the primary key of the record -
Idiorm assumes the primary key column is called id but this is
configurable, see below), name, age and gender.

A note on PSR-1 and camelCase

All the methods detailed in the documentation can also be called in a PSR-1 way:
underscores (_) become camelCase. Here follows an example of one query chain
being converted to a PSR-1 compliant style.

<?php
// documented and default style
$person = ORM::for_table('person')->where('name', 'Fred Bloggs')->find_one();

// PSR-1 compliant style
$person = ORM::forTable('person')->where('name', 'Fred Bloggs')->findOne();

As you can see any method can be changed from the documented underscore (_) format
to that of a camelCase method name.

Note

In the background the PSR-1 compliant style uses the __call() and
__callStatic() magic methods to map the camelCase method name you supply
to the original underscore method name. It then uses call_user_func_array()
to apply the arguments to the method. If this minimal overhead is too great
then you can simply revert to using the underscore methods to avoid it. In
general this will not be a bottle neck in any application however and should
be considered a micro-optimisation.

As __callStatic() was added in PHP 5.3.0 you will need at least that version
of PHP to use this feature in any meaningful way.

Single records

Any method chain that ends in find_one() will return either a
single instance of the ORM class representing the database row you
requested, or false if no matching record was found.

To find a single record where the name column has the value “Fred
Bloggs”:

<?php
$person = ORM::for_table('person')->where('name', 'Fred Bloggs')->find_one();

This roughly translates into the following SQL:
SELECT * FROM person WHERE name = "Fred Bloggs"

To find a single record by ID, you can pass the ID directly to the
find_one method:

<?php
$person = ORM::for_table('person')->find_one(5);

If you are using a compound primary key, you can find the records
using an array as the parameter:

<?php
$person = ORM::for_table('user_role')->find_one(array(
 'user_id' => 34,
 'role_id' => 10
));

Multiple records

Note

It is recommended that you use results sets over arrays - see As a result set
below.

Any method chain that ends in find_many() will return an array of
ORM class instances, one for each row matched by your query. If no rows
were found, an empty array will be returned.

To find all records in the table:

<?php
$people = ORM::for_table('person')->find_many();

To find all records where the gender is female:

<?php
$females = ORM::for_table('person')->where('gender', 'female')->find_many();

As a result set

Note

There is a configuration setting return_result_sets that will cause
find_many() to return result sets by default. It is recommended that you
turn this setting on:

ORM::configure('return_result_sets', true);

You can also find many records as a result set instead of an array of Idiorm
instances. This gives you the advantage that you can run batch operations on a
set of results.

So for example instead of running this:

<?php
$people = ORM::for_table('person')->find_many();
foreach ($people as $person) {
 $person->age = 50;
 $person->save();
}

You can simply do this instead:

<?php
ORM::for_table('person')->find_result_set()
->set('age', 50)
->save();

To do this substitute any call to find_many() with
find_result_set().

A result set will also behave like an array so you can count() it and foreach
over it just like an array.

<?php
foreach(ORM::for_table('person')->find_result_set() as $record) {
 echo $record->name;
}

<?php
echo count(ORM::for_table('person')->find_result_set());

Note

For deleting many records it is recommended that you use delete_many() as it
is more efficient than calling delete() on a result set.

As an associative array

You can also find many records as an associative array instead of Idiorm
instances. To do this substitute any call to find_many() with
find_array().

<?php
$females = ORM::for_table('person')->where('gender', 'female')->find_array();

This is useful if you need to serialise the the query output into a
format like JSON and you do not need the ability to update the returned
records.

Counting results

To return a count of the number of rows that would be returned by a
query, call the count() method.

<?php
$number_of_people = ORM::for_table('person')->count();

Filtering results

Idiorm provides a family of methods to extract only records which
satisfy some condition or conditions. These methods may be called
multiple times to build up your query, and Idiorm’s fluent interface
allows method calls to be chained to create readable and
simple-to-understand queries.

Caveats

Only a subset of the available conditions supported by SQL are available
when using Idiorm. Additionally, all the WHERE clauses will be
ANDed together when the query is run. Support for ORing
WHERE clauses is not currently present.

These limits are deliberate: these are by far the most commonly used
criteria, and by avoiding support for very complex queries, the Idiorm
codebase can remain small and simple.

Some support for more complex conditions and queries is provided by the
where_raw and raw_query methods (see below). If you find
yourself regularly requiring more functionality than Idiorm can provide,
it may be time to consider using a more full-featured ORM.

Equality: where, where_equal, where_not_equal

By default, calling where with two parameters (the column name and
the value) will combine them using an equals operator (=). For
example, calling where('name', 'Fred') will result in the clause
WHERE name = "Fred".

If your coding style favours clarity over brevity, you may prefer to use
the where_equal method: this is identical to where.

The where_not_equal method adds a WHERE column != "value" clause
to your query.

You can specify multiple columns and their values in the same call. In this
case you should pass an associative array as the first parameter. The array
notation uses keys as column names.

<?php
$people = ORM::for_table('person')
 ->where(array(
 'name' => 'Fred',
 'age' => 20
))
 ->find_many();

// Creates SQL:
SELECT * FROM `person` WHERE `name` = "Fred" AND `age` = "20";

Shortcut: where_id_is

This is a simple helper method to query the table by primary key.
Respects the ID column specified in the config. If you are using a compound
primary key, you must pass an array where the key is the column name. Columns
that don’t belong to the key will be ignored.

Shortcut: where_id_in

This helper method is similar to ``where_id_is`, but it expects an array of
primary keys to be selected. It is compound primary keys aware.

Less than / greater than: where_lt, where_gt, where_lte, where_gte

There are four methods available for inequalities:

	Less than:
$people = ORM::for_table('person')->where_lt('age', 10)->find_many();

	Greater than:
$people = ORM::for_table('person')->where_gt('age', 5)->find_many();

	Less than or equal:
$people = ORM::for_table('person')->where_lte('age', 10)->find_many();

	Greater than or equal:
$people = ORM::for_table('person')->where_gte('age', 5)->find_many();

String comparision: where_like and where_not_like

To add a WHERE ... LIKE clause, use:

<?php
$people = ORM::for_table('person')->where_like('name', '%fred%')->find_many();

Similarly, to add a WHERE ... NOT LIKE clause, use:

<?php
$people = ORM::for_table('person')->where_not_like('name', '%bob%')->find_many();

Multiple OR’ed conditions

You can add simple OR’ed conditions to the same WHERE clause using where_any_is. You
should specify multiple conditions using an array of items. Each item will be an
associative array that contains a multiple conditions.

<?php
$people = ORM::for_table('person')
 ->where_any_is(array(
 array('name' => 'Joe', 'age' => 10),
 array('name' => 'Fred', 'age' => 20)))
 ->find_many();

// Creates SQL:
SELECT * FROM `widget` WHERE ((`name` = 'Joe' AND `age` = '10') OR (`name` = 'Fred' AND `age` = '20'));

By default, it uses the equal operator for every column, but it can be overriden for any
column using a second parameter:

<?php
$people = ORM::for_table('person')
 ->where_any_is(array(
 array('name' => 'Joe', 'age' => 10),
 array('name' => 'Fred', 'age' => 20)), array('age' => '>'))
 ->find_many();

// Creates SQL:
SELECT * FROM `widget` WHERE ((`name` = 'Joe' AND `age` = '10') OR (`name` = 'Fred' AND `age` > '20'));

If you want to set the default operator for all the columns, just pass it as the second parameter:

<?php
$people = ORM::for_table('person')
 ->where_any_is(array(
 array('score' => '5', 'age' => 10),
 array('score' => '15', 'age' => 20)), '>')
 ->find_many();

// Creates SQL:
SELECT * FROM `widget` WHERE ((`score` > '5' AND `age` > '10') OR (`score` > '15' AND `age` > '20'));

Set membership: where_in and where_not_in

To add a WHERE ... IN () or WHERE ... NOT IN () clause, use the
where_in and where_not_in methods respectively.

Both methods accept two arguments. The first is the column name to
compare against. The second is an array of possible values. As all the
where_ methods, you can specify multiple columns using an associative
array as the only parameter.

<?php
$people = ORM::for_table('person')->where_in('name', array('Fred', 'Joe', 'John'))->find_many();

Working with NULL values: where_null and where_not_null

To add a WHERE column IS NULL or WHERE column IS NOT NULL
clause, use the where_null and where_not_null methods
respectively. Both methods accept a single parameter: the column name to
test.

Raw WHERE clauses

If you require a more complex query, you can use the where_raw
method to specify the SQL fragment for the WHERE clause exactly. This
method takes two arguments: the string to add to the query, and an
(optional) array of parameters which will be bound to the string. If
parameters are supplied, the string should contain question mark
characters (?) to represent the values to be bound, and the
parameter array should contain the values to be substituted into the
string in the correct order.

This method may be used in a method chain alongside other where_*
methods as well as methods such as offset, limit and
order_by_*. The contents of the string you supply will be connected
with preceding and following WHERE clauses with AND.

<?php
$people = ORM::for_table('person')
 ->where('name', 'Fred')
 ->where_raw('(`age` = ? OR `age` = ?)', array(20, 25))
 ->order_by_asc('name')
 ->find_many();

// Creates SQL:
SELECT * FROM `person` WHERE `name` = "Fred" AND (`age` = 20 OR `age` = 25) ORDER BY `name` ASC;

Note

You must wrap your expression in parentheses when using any of ALL,
ANY, BETWEEN, IN, LIKE, OR and SOME. Otherwise
the precedence of AND will bind stronger and in the above example
you would effectively get WHERE (`name` = "Fred" AND `age` = 20) OR `age` = 25

Note that this method only supports “question mark placeholder” syntax,
and NOT “named placeholder” syntax. This is because PDO does not allow
queries that contain a mixture of placeholder types. Also, you should
ensure that the number of question mark placeholders in the string
exactly matches the number of elements in the array.

If you require yet more flexibility, you can manually specify the entire
query. See Raw queries below.

Limits and offsets

Note that these methods **do not* escape their query parameters and so
these should not be passed directly from user input.*

The limit and offset methods map pretty closely to their SQL
equivalents.

<?php
$people = ORM::for_table('person')->where('gender', 'female')->limit(5)->offset(10)->find_many();

Ordering

Note that these methods **do not* escape their query parameters and so
these should not be passed directly from user input.*

Two methods are provided to add ORDER BY clauses to your query.
These are order_by_desc and order_by_asc, each of which takes a
column name to sort by. The column names will be quoted.

<?php
$people = ORM::for_table('person')->order_by_asc('gender')->order_by_desc('name')->find_many();

If you want to order by something other than a column name, then use the
order_by_expr method to add an unquoted SQL expression as an
ORDER BY clause.

<?php
$people = ORM::for_table('person')->order_by_expr('SOUNDEX(`name`)')->find_many();

Grouping

Note that this method **does not* escape it query parameter and so
this should not by passed directly from user input.*

To add a GROUP BY clause to your query, call the group_by
method, passing in the column name. You can call this method multiple
times to add further columns.

<?php
$people = ORM::for_table('person')->where('gender', 'female')->group_by('name')->find_many();

It is also possible to GROUP BY a database expression:

<?php
$people = ORM::for_table('person')->where('gender', 'female')->group_by_expr("FROM_UNIXTIME(`time`, '%Y-%m')")->find_many();

Having

When using aggregate functions in combination with a GROUP BY you can use
HAVING to filter based on those values.

HAVING works in exactly the same way as all of the where* functions in Idiorm.
Substitute where_ for having_ to make use of these functions.

For example:

<?php
$people = ORM::for_table('person')->group_by('name')->having_not_like('name', '%bob%')->find_many();

Result columns

By default, all columns in the SELECT statement are returned from
your query. That is, calling:

<?php
$people = ORM::for_table('person')->find_many();

Will result in the query:

<?php
SELECT * FROM `person`;

The select method gives you control over which columns are returned.
Call select multiple times to specify columns to return or use
`select_many <#shortcuts-for-specifying-many-columns>`_ to specify
many columns at once.

<?php
$people = ORM::for_table('person')->select('name')->select('age')->find_many();

Will result in the query:

<?php
SELECT `name`, `age` FROM `person`;

Optionally, you may also supply a second argument to select to
specify an alias for the column:

<?php
$people = ORM::for_table('person')->select('name', 'person_name')->find_many();

Will result in the query:

<?php
SELECT `name` AS `person_name` FROM `person`;

Column names passed to select are quoted automatically, even if they
contain table.column-style identifiers:

<?php
$people = ORM::for_table('person')->select('person.name', 'person_name')->find_many();

Will result in the query:

<?php
SELECT `person`.`name` AS `person_name` FROM `person`;

If you wish to override this behaviour (for example, to supply a
database expression) you should instead use the select_expr method.
Again, this takes the alias as an optional second argument. You can
specify multiple expressions by calling select_expr multiple times
or use `select_many_expr <#shortcuts-for-specifying-many-columns>`_
to specify many expressions at once.

<?php
// NOTE: For illustrative purposes only. To perform a count query, use the count() method.
$people_count = ORM::for_table('person')->select_expr('COUNT(*)', 'count')->find_many();

Will result in the query:

<?php
SELECT COUNT(*) AS `count` FROM `person`;

Shortcuts for specifying many columns

select_many and select_many_expr are very similar, but they
allow you to specify more than one column at once. For example:

<?php
$people = ORM::for_table('person')->select_many('name', 'age')->find_many();

Will result in the query:

<?php
SELECT `name`, `age` FROM `person`;

To specify aliases you need to pass in an array (aliases are set as the
key in an associative array):

<?php
$people = ORM::for_table('person')->select_many(array('first_name' => 'name'), 'age', 'height')->find_many();

Will result in the query:

<?php
SELECT `name` AS `first_name`, `age`, `height` FROM `person`;

You can pass the the following styles into select_many and
select_many_expr by mixing and matching arrays and parameters:

<?php
select_many(array('alias' => 'column', 'column2', 'alias2' => 'column3'), 'column4', 'column5')
select_many('column', 'column2', 'column3')
select_many(array('column', 'column2', 'column3'), 'column4', 'column5')

All the select methods can also be chained with each other so you could
do the following to get a neat select query including an expression:

<?php
$people = ORM::for_table('person')->select_many('name', 'age', 'height')->select_expr('NOW()', 'timestamp')->find_many();

Will result in the query:

<?php
SELECT `name`, `age`, `height`, NOW() AS `timestamp` FROM `person`;

DISTINCT

To add a DISTINCT keyword before the list of result columns in your
query, add a call to distinct() to your query chain.

<?php
$distinct_names = ORM::for_table('person')->distinct()->select('name')->find_many();

This will result in the query:

<?php
SELECT DISTINCT `name` FROM `person`;

Joins

Idiorm has a family of methods for adding different types of JOINs
to the queries it constructs:

Methods: join, inner_join, left_outer_join,
right_outer_join, full_outer_join.

Each of these methods takes the same set of arguments. The following
description will use the basic join method as an example, but the
same applies to each method.

The first two arguments are mandatory. The first is the name of the
table to join, and the second supplies the conditions for the join. The
recommended way to specify the conditions is as an array containing
three components: the first column, the operator, and the second column.
The table and column names will be automatically quoted. For example:

<?php
$results = ORM::for_table('person')->join('person_profile', array('person.id', '=', 'person_profile.person_id'))->find_many();

It is also possible to specify the condition as a string, which will be
inserted as-is into the query. However, in this case the column names
will not be escaped, and so this method should be used with caution.

<?php
// Not recommended because the join condition will not be escaped.
$results = ORM::for_table('person')->join('person_profile', 'person.id = person_profile.person_id')->find_many();

The join methods also take an optional third parameter, which is an
alias for the table in the query. This is useful if you wish to join
the table to itself to create a hierarchical structure. In this case,
it is best combined with the table_alias method, which will add an
alias to the main table associated with the ORM, and the select
method to control which columns get returned.

<?php
$results = ORM::for_table('person')
 ->table_alias('p1')
 ->select('p1.*')
 ->select('p2.name', 'parent_name')
 ->join('person', array('p1.parent', '=', 'p2.id'), 'p2')
 ->find_many();

Raw JOIN clauses

If you need to construct a more complex query, you can use the raw_join
method to specify the SQL fragment for the JOIN clause exactly. This
method takes four required arguments: the string to add to the query,
the conditions is as an array containing three components:
the first column, the operator, and the second column, the table alias and
(optional) the parameters array. If parameters are supplied,
the string should contain question mark characters (?) to represent
the values to be bound, and the parameter array should contain the values
to be substituted into the string in the correct order.

This method may be used in a method chain alongside other *_join
methods as well as methods such as offset, limit and
order_by_*. The contents of the string you supply will be connected
with preceding and following JOIN clauses.

<?php
$people = ORM::for_table('person')
 ->raw_join(
 'JOIN (SELECT * FROM role WHERE role.name = ?)',
 array('person.role_id', '=', 'role.id'),
 'role',
 array('role' => 'janitor'))
 ->order_by_asc('person.name')
 ->find_many();

// Creates SQL:
SELECT * FROM `person` JOIN (SELECT * FROM role WHERE role.name = 'janitor') `role` ON `person`.`role_id` = `role`.`id` ORDER BY `person`.`name` ASC

Note that this method only supports “question mark placeholder” syntax,
and NOT “named placeholder” syntax. This is because PDO does not allow
queries that contain a mixture of placeholder types. Also, you should
ensure that the number of question mark placeholders in the string
exactly matches the number of elements in the array.

If you require yet more flexibility, you can manually specify the entire
query. See Raw queries below.

Aggregate functions

There is support for MIN, AVG, MAX and SUM in addition
to COUNT (documented earlier).

To return a minimum value of column, call the min() method.

<?php
$min = ORM::for_table('person')->min('height');

The other functions (AVG, MAX and SUM) work in exactly the
same manner. Supply a column name to perform the aggregate function on
and it will return an integer.

Raw queries

If you need to perform more complex queries, you can completely specify
the query to execute by using the raw_query method. This method
takes a string and optionally an array of parameters. The string can
contain placeholders, either in question mark or named placeholder
syntax, which will be used to bind the parameters to the query.

<?php
$people = ORM::for_table('person')->raw_query('SELECT p.* FROM person p JOIN role r ON p.role_id = r.id WHERE r.name = :role', array('role' => 'janitor'))->find_many();

The ORM class instance(s) returned will contain data for all the columns
returned by the query. Note that you still must call for_table to
bind the instances to a particular table, even though there is nothing
to stop you from specifying a completely different table in the query.
This is because if you wish to later called save, the ORM will need
to know which table to update.

Note that using raw_query is advanced and possibly dangerous, and
Idiorm does not make any attempt to protect you from making errors when
using this method. If you find yourself calling raw_query often, you
may have misunderstood the purpose of using an ORM, or your application
may be too complex for Idiorm. Consider using a more full-featured
database abstraction system.

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Models

Getting data from objects

Once you’ve got a set of records (objects) back from a query, you can
access properties on those objects (the values stored in the columns in
its corresponding table) in two ways: by using the get method, or
simply by accessing the property on the object directly:

<?php
$person = ORM::for_table('person')->find_one(5);

// The following two forms are equivalent
$name = $person->get('name');
$name = $person->name;

You can also get the all the data wrapped by an ORM instance using the
as_array method. This will return an associative array mapping
column names (keys) to their values.

The as_array method takes column names as optional arguments. If one
or more of these arguments is supplied, only matching column names will
be returned.

<?php
$person = ORM::for_table('person')->create();

$person->first_name = 'Fred';
$person->surname = 'Bloggs';
$person->age = 50;

// Returns array('first_name' => 'Fred', 'surname' => 'Bloggs', 'age' => 50)
$data = $person->as_array();

// Returns array('first_name' => 'Fred', 'age' => 50)
$data = $person->as_array('first_name', 'age');

Updating records

To update the database, change one or more of the properties of the
object, then call the save method to commit the changes to the
database. Again, you can change the values of the object’s properties
either by using the set method or by setting the value of the
property directly. By using the set method it is also possible to
update multiple properties at once, by passing in an associative array:

<?php
$person = ORM::for_table('person')->find_one(5);

// The following two forms are equivalent
$person->set('name', 'Bob Smith');
$person->age = 20;

// This is equivalent to the above two assignments
$person->set(array(
 'name' => 'Bob Smith',
 'age' => 20
));

// Syncronise the object with the database
$person->save();

Properties containing expressions

It is possible to set properties on the model that contain database
expressions using the set_expr method.

<?php
$person = ORM::for_table('person')->find_one(5);
$person->set('name', 'Bob Smith');
$person->age = 20;
$person->set_expr('updated', 'NOW()');
$person->save();

The updated column’s value will be inserted into query in its raw
form therefore allowing the database to execute any functions referenced
- such as NOW() in this case.

Creating new records

To add a new record, you need to first create an “empty” object
instance. You then set values on the object as normal, and save it.

<?php
$person = ORM::for_table('person')->create();

$person->name = 'Joe Bloggs';
$person->age = 40;

$person->save();

After the object has been saved, you can call its id() method to
find the autogenerated primary key value that the database assigned to
it.

Properties containing expressions

It is possible to set properties on the model that contain database
expressions using the set_expr method.

<?php
$person = ORM::for_table('person')->create();
$person->set('name', 'Bob Smith');
$person->age = 20;
$person->set_expr('added', 'NOW()');
$person->save();

The added column’s value will be inserted into query in its raw form
therefore allowing the database to execute any functions referenced -
such as NOW() in this case.

Checking whether a property has been modified

To check whether a property has been changed since the object was
created (or last saved), call the is_dirty method:

<?php
$name_has_changed = $person->is_dirty('name'); // Returns true or false

Deleting records

To delete an object from the database, simply call its delete
method.

<?php
$person = ORM::for_table('person')->find_one(5);
$person->delete();

To delete more than one object from the database, build a query:

<?php
$person = ORM::for_table('person')
 ->where_equal('zipcode', 55555)
 ->delete_many();

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Idiorm documentation

Transactions

Idiorm doesn’t supply any extra methods to deal with transactions, but
it’s very easy to use PDO’s built-in methods:

<?php
// Start a transaction
ORM::get_db()->beginTransaction();

// Commit a transaction
ORM::get_db()->commit();

// Roll back a transaction
ORM::get_db()->rollBack();

For more details, see the PDO documentation on Transactions [http://www.php.net/manual/en/pdo.transactions.php].

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Idiorm documentation

Multiple Connections

Idiorm now works with multiple conections. Most of the static functions
work with an optional connection name as an extra parameter. For the
ORM::configure method, this means that when passing connection
strings for a new connection, the second parameter, which is typically
omitted, should be null. In all cases, if a connection name is not
provided, it defaults to ORM::DEFAULT_CONNECTION.

When chaining, once for_table() has been used in the chain, remaining
calls in the chain use the correct connection.

<?php
// Default connection
ORM::configure('sqlite:./example.db');

// A named connection, where 'remote' is an arbitrary key name
ORM::configure('mysql:host=localhost;dbname=my_database', null, 'remote');
ORM::configure('username', 'database_user', 'remote');
ORM::configure('password', 'top_secret', 'remote');

// Using default connection
$person = ORM::for_table('person')->find_one(5);

// Using default connection, explicitly
$person = ORM::for_table('person', ORM::DEFAULT_CONNECTION)->find_one(5);

// Using named connection
$person = ORM::for_table('different_person', 'remote')->find_one(5);

Supported Methods

In each of these cases, the $connection_name parameter is optional, and is
an arbitrary key identifying the named connection.

	ORM::configure($key, $value, $connection_name)

	ORM::for_table($table_name, $connection_name)

	ORM::set_db($pdo, $connection_name)

	ORM::get_db($connection_name)

	ORM::raw_execute($query, $parameters, $connection_name)

	ORM::get_last_query($connection_name)

	ORM::get_query_log($connection_name)

Of these methods, only ORM::get_last_query($connection_name) does not
fallback to the default connection when no connection name is passed.
Instead, passing no connection name (or null) returns the most recent
query on any connection.

<?php
// Using default connection, explicitly
$person = ORM::for_table('person')->find_one(5);

// Using named connection
$person = ORM::for_table('different_person', 'remote')->find_one(5);

// Last query on *any* connection
ORM::get_last_query(); // returns query on 'different_person' using 'remote'

// returns query on 'person' using default by passing in the connection name
ORM::get_last_query(ORM::DEFAULT_CONNECTION);

Notes

	There is no support for joins across connections

	Multiple connections do not share configuration settings. This means if
one connection has logging set to true and the other does not, only
queries from the logged connection will be available via
ORM::get_last_query() and ORM::get_query_log().

	A new method has been added, ORM::get_connection_names(), which returns
an array of connection names.

	Caching should work with multiple connections (remember to turn caching
on for each connection), but the unit tests are not robust. Please report
any errors.

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Idiorm documentation

Index

 Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Idiorm documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jamie Matthews and Simon Holywell.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/down.png

_static/up.png

