

Ichnaea

Ichnaea is a service to provide geolocation coordinates
from other sources of data (Bluetooth, cell or WiFi networks, GeoIP, etc.).
It is using both Cell-ID and Wi-Fi based positioning (WPS)
approaches.

Mozilla hosts an instance of this service, called the Mozilla Location
Service [https://wiki.mozilla.org/CloudServices/Location]
(MLS).

You can interact with the service in two ways:

	If you know where you are, submit information about the radio environment
to the service to increase its quality.

	or locate yourself, based on the radio environment around you.

About the name

In Greek mythology, Ichnaea (Iknaia) means “the tracker”.

Table of contents

	Using the Service

	Services API

	Data Export

	Installation

	Algorithms

	Internal Code API

	Glossary

	Changelog

Development

All source code is available on github under ichnaea [https://github.com/mozilla/ichnaea].

The developers of ichnaea can frequently be found on the Mozilla IRC
network [https://wiki.mozilla.org/IRC] in the #geo channel.

License

The ichnaea source code is offered under the Apache License 2.0.

Using the Service

You can either use the service directly via the HTTP service APIs
or you can use one of the existing applications or libraries.

HTTP API

You can use the Services API directly via a command line client
like curl or via any programming language allowing you to do HTTP calls.

Applications / Libraries

A number of applications and libraries with different capabilities exist
which allow you to interact with the service. Please have a look at the
Software listing [https://wiki.mozilla.org/CloudServices/Location/Software]
on the Mozilla Wiki to learn more.

Services API

The service APIs accept data submission for geolocation stumbling as
well as reporting a location based on IP addresses, cell or WiFi networks.

New client developments should use the Region,
Geolocate or Geosubmit Version 2 APIs.

API Access Keys

You can anonymously submit data to the service without an API key via
any of the submission APIs.

You must identify your client to the service using an API key when
using one of the Region, Geolocate
or Transfer (private) APIs.

If you want or need to specify an API key, you need to be provide
it as a query argument in the request URI in the form:

https://location.services.mozilla.com/<API>?key=<API_KEY>

Each API key can be rate limited per calendar day, but the default is
to allow an unlimited number of requests per day.

Errors

Each of the supported APIs can return specific error responses.
In addition there are some general error responses.

Invalid API Key

If an API key was required but none or no valid key was given, the service
responds with a keyInvalid message with a HTTP 400 error code:

{
 "error": {
 "errors": [{
 "domain": "usageLimits",
 "reason": "keyInvalid",
 "message": "Missing or invalid API key."
 }],
 "code": 400,
 "message": "Invalid API key"
 }
}

API Key Limit

API keys can optionally be rate limited. If the limit for a specific
API key is exceeded, the service responds with a dailyLimitExceeded
message with a HTTP 403 error code:

{
 "error": {
 "errors": [{
 "domain": "usageLimits",
 "reason": "dailyLimitExceeded",
 "message": "You have exceeded your daily limit."
 }],
 "code": 403,
 "message": "You have exceeded your daily limit."
 }
}

Parse Error

If the client sends a malformed request, typically sending malformed
or invalid JSON, the service will respond with a parseError message
with a HTTP 400 error code:

{
 "error": {
 "errors": [{
 "domain": "global",
 "reason": "parseError",
 "message": "Parse Error"
 }],
 "code": 400,
 "message": "Parse Error"
 }
}

Service Error

If there is a transient service side problem, the service might respond
with HTTP 5xx error codes with unspecified HTTP bodies.

This might happen if part of the service is down or unreachable. If you
encounter any 5xx responses, you should retry the request at a later
time. As a service side problem is unlikely to be resolved immediately,
you should wait a couple of minutes before retrying the request for the
first time and a couple of hours later if there’s still a problem.

APIs

Historically the service first offered the custom Search (Deprecated) and
Submit (Deprecated) APIs. Later it was decided to also implement the
Geolocate API to lessen the burden on clients that want to
support multiple location services. As an extension to this the
Geosubmit (Deprecated) API was added to offer a consistent way to contribute
back data to the service. Afterwards the Region API was added
and Geosubmit Version 2 superseded its version 1 counterpart. Finally
the Transfer (private) API was added.

	Geolocate

	Region

	Geosubmit Version 2

	Geosubmit (Deprecated)

	Search (Deprecated)

	Submit (Deprecated)

	Transfer (private)

Geolocate

	Purpose

	Determine the current location based on data provided about nearby
Bluetooth, cell or WiFi networks and based on the IP address used
to access the service.

Request

Geolocate requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v1/geolocate?key=<API_KEY>

This implements almost the same interface as the Google Maps Geolocation
API [https://developers.google.com/maps/documentation/geolocation/intro]
endpoint, hence referred to as GLS or Google Location Service API. Our
service implements all of the standard GLS API with a couple of additions.

Geolocate requests are submitted using a POST request with a JSON body.

A minimal example using only WiFi networks:

{
 "wifiAccessPoints": [{
 "macAddress": "01:23:45:67:89:ab",
 "signalStrength": -51
 }, {
 "macAddress": "01:23:45:67:89:cd"
 }]
}

A minimal example using a cell network:

{
 "cellTowers": [{
 "radioType": "wcdma",
 "mobileCountryCode": 208,
 "mobileNetworkCode": 1,
 "locationAreaCode": 2,
 "cellId": 1234567,
 "signalStrength": -60
 }]
}

A complete example including all possible fields:

{
 "carrier": "Telecom",
 "considerIp": true,
 "homeMobileCountryCode": 208,
 "homeMobileNetworkCode": 1,
 "bluetoothBeacons": [
 {
 "macAddress": "ff:23:45:67:89:ab",
 "age": 2000,
 "name": "beacon",
 "signalStrength": -110
 }
],
 "cellTowers": [{
 "radioType": "wcdma",
 "mobileCountryCode": 208,
 "mobileNetworkCode": 1,
 "locationAreaCode": 2,
 "cellId": 1234567,
 "age": 1,
 "psc": 3,
 "signalStrength": -60,
 "timingAdvance": 1
 }],
 "wifiAccessPoints": [{
 "macAddress": "01:23:45:67:89:ab",
 "age": 3,
 "channel": 11,
 "frequency": 2412,
 "signalStrength": -51,
 "signalToNoiseRatio": 13
 }, {
 "macAddress": "01:23:45:67:89:cd"
 }],
 "fallbacks": {
 "lacf": true,
 "ipf": true
 }
}

Field Definition

All of the fields are optional. Though in order to get a Bluetooth or WiFi
based position estimate at least two networks need to be provided and for
each the macAddress needs to be known. The minimum of two networks is a
mandatory privacy restriction for Bluetooth and WiFi based location services.

Cell based position estimates require each cell record to contain at least
the five radioType, mobileCountryCode, mobileNetworkCode,
locationAreaCode and cellId values.

Position estimates do get a lot more precise if in addition to these unique
identifiers at least signalStrength data can be provided for each entry.

Note that all the cell JSON keys use the same names for all radio types,
generally using the official GSM name to denote similar concepts, even
though the actual client side API’s might use different names for each
radio type and thus must be mapped to the JSON keys.

Global Fields

	carrier

	The clear text name of the cell carrier / operator.

	considerIp

	Should the clients IP address be used to locate it, defaults to true.

	homeMobileCountryCode

	The mobile country code stored on the SIM card.

	homeMobileNetworkCode

	The mobile network code stored on the SIM card.

	radioType

	Same as the radioType entry in each cell record. If all the cell
entries have the same radioType, it can be provided at the top level
instead.

Bluetooth Beacon Fields

	macAddress

	The address of the Bluetooth Low Energy (BLE) beacon.

	name

	The name of the BLE beacon.

	age

	The number of milliseconds since this BLE beacon was last seen.

	signalStrength

	The measured signal strength of the BLE beacon in dBm.

Cell Tower Fields

	radioType

	The type of radio network. One of gsm, wcdma or lte.
This is a custom extension to the GLS API, which only defines the
top-level radioType field.

	mobileCountryCode

	The mobile country code.

	mobileNetworkCode

	The mobile network code.

	locationAreaCode

	The location area code for GSM and WCDMA networks. The tracking area
code for LTE networks.

	cellId

	The cell id or cell identity.

	age

	The number of milliseconds since this networks was last detected.

	psc

	The primary scrambling code for WCDMA and physical cell id for LTE.
This is an addition to the GLS API.

	signalStrength

	The signal strength for this cell network, either the RSSI or RSCP.

	timingAdvance

	The timing advance value for this cell network.

WiFi Access Point Fields

Note

Hidden WiFi networks and those whose SSID (clear text name)
ends with the string _nomap must NOT be used for privacy
reasons. It is the responsibility of the client code to filter
these out.

	macAddress

	The BSSID of the WiFi network.

	age

	The number of milliseconds since this network was last detected.

	channel

	The WiFi channel, often 1 - 13 for networks in the 2.4GHz range.

	frequency

	The frequency in MHz of the channel over which the client is
communicating with the access point. This is an addition to the
GLS API and can be used instead of the channel field.

	signalStrength

	The received signal strength (RSSI) in dBm.

	signalToNoiseRatio

	The current signal to noise ratio measured in dB.

	ssid

	The SSID of the Wifi network. Wifi networks with a SSID ending in
_nomap must not be collected.

Fallback Fields

The fallback section is a custom addition to the GLS API.

By default both a GeoIP based position fallback and a fallback based
on cell location areas (lac’s) are enabled. Simply omit the fallbacks
section if you want to use the defaults. Change the values to false
if you want to disable either of the fallbacks.

	lacf

	If no exact cell match can be found, fall back from exact cell
position estimates to more coarse grained cell location area
estimates, rather than going directly to an even worse GeoIP
based estimate.

	ipf

	If no position can be estimated based on any of the provided data
points, fall back to an estimate based on a GeoIP database based on
the senders IP address at the time of the query.

Deviations From GLS API

As mentioned in the specific fields, our API has a couple of extensions.

	The entire Bluetooth section is a custom addition.

	Cell entries allow to specify the radioType per cell network
instead of globally. This allows for example doing queries with data
from multiple active SIM cards where one of them is on a GSM
connection while the other uses a WCDMA connection.

	Cell entries take an extra psc field.

	The WiFi macAddress field takes both upper- and lower-case characters.
It also tolerates :, - or no separator and internally strips them.

	WiFi entries take an extra frequency field.

	The fallbacks section allows some control over the more coarse
grained position sources. If no exact match can be found, these can
be used to return a 404 Not Found rather than a coarse grained
estimate with a large accuracy value.

	If either the GeoIP or location area fallbacks where used to determine
the response, an additional fallback key will be returned in the response.

	The considerIp field has the same purpose as the fallbacks/ipf field.
It was introduced into the GLS API later on and we continue to support
both, with the fallbacks section taking precedence.

Response

A successful response returns a position estimate and an accuracy field.
Combined these two describe the center and radius of a circle. The users
true position should be inside the circle with a 95th percentile
confidence value. The accuracy is measured in meters.

If the position is to be shown on a map and the returned accuracy is
large, it may be advisable to zoom out the map, so that all of the
circle can be seen, even if the circle itself is not shown graphically.
That way a user should still see his true position on the map and can
further zoom in.

If instead the returned position is shown highly zoomed in, the user
may just see an arbitrary location that they don’t recognize at all.
This typically happens when GeoIP based results are returned and the
returned position is the center of a city or the center of a region.

A successful response will be:

{
 "location": {
 "lat": -22.7539192,
 "lng": -43.4371081
 },
 "accuracy": 100.0
}

Should the response be based on a GeoIP estimate:

{
 "location": {
 "lat": 51.0,
 "lng": -0.1
 },
 "accuracy": 600000.0,
 "fallback": "ipf"
}

Alternatively the fallback field can also state lacf for an estimate
based on a cell location area.

If no position information could be determined, a HTTP status code 404 will
be returned:

{
 "error": {
 "errors": [{
 "domain": "geolocation",
 "reason": "notFound",
 "message": "Not found",
 }],
 "code": 404,
 "message": "Not found",
 }
}

Region

	Purpose

	Determine the current region based on data provided about nearby
Bluetooth, cell or WiFi networks and based on the IP address used
to access the service.

The responses use region codes and names from the
GENC dataset [http://www.gwg.nga.mil/ccwg.php], which is for the
most part compatible with the ISO 3166 standard. While the API
endpoint and JSON payload refers to country, no claim about the
political status of any region is made by this service.

Request

Requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v1/country?key=<API_KEY>

This implements the same interface as the Geolocate API.

The simplest request contains no extra information and simply relies
on the IP address to provide a response:

{}

Response

A successful response will be:

{
 "country_code": "US",
 "country_name": "United States"
}

Should the response be based on a GeoIP estimate:

{
 "country_code": "US",
 "country_name": "United States",
 "fallback": "ipf"
}

If no region could be determined, a HTTP status code 404 will be returned:

{
 "error": {
 "errors": [{
 "domain": "geolocation",
 "reason": "notFound",
 "message": "Not found",
 }],
 "code": 404,
 "message": "Not found",
 }
}

Geosubmit Version 2

	Purpose

	Submit data about nearby Bluetooth beacons, cell or WiFi networks.

Request

Geosubmit requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v2/geosubmit?key=<API_KEY>

There is an earlier Geosubmit (Deprecated) version one API, with a slightly
different and less extensive field list.

Geosubmit requests are submitted using a POST request with a JSON body:

{"items": [{
 "timestamp": 1405602028568,
 "position": {
 "latitude": -22.7539192,
 "longitude": -43.4371081,
 "accuracy": 10.0,
 "age": 1000,
 "altitude": 100.0,
 "altitudeAccuracy": 50.0,
 "heading": 45.0,
 "pressure": 1013.25,
 "speed": 3.6,
 "source": "gps"
 },
 "bluetoothBeacons": [
 {
 "macAddress": "ff:23:45:67:89:ab",
 "age": 2000,
 "name": "beacon",
 "signalStrength": -110
 }
],
 "cellTowers": [
 {
 "radioType": "lte",
 "mobileCountryCode": 208,
 "mobileNetworkCode": 1,
 "locationAreaCode": 2,
 "cellId": 12345,
 "age": 3000,
 "asu": 31,
 "primaryScramblingCode": 5,
 "serving": 1,
 "signalStrength": -51,
 "timingAdvance": 1
 }
],
 "wifiAccessPoints": [
 {
 "macAddress": "01:23:45:67:89:ab",
 "age": 5000,
 "channel": 6,
 "frequency": 2437,
 "radioType": "802.11n",
 "signalToNoiseRatio": 13,
 "signalStrength": -77
 },
 {
 "macAddress": "23:45:67:89:ab:cd"
 }
]
}]}

Field Definition

Requests always need to contain a batch of reports. Each
report must contain at least one entry in the bluetoothBeacons
or cellTowers array or two entries in the wifiAccessPoints array.

Almost all of the fields are optional. For Bluetooth and WiFi records only
the macAddress field is required.

Global Fields

	timestamp

	The time of observation of the data, measured in milliseconds since
the UNIX epoch. Can be omitted if the observation time is very recent.
The age values in each section are relative to this timestamp.

Position Fields

The position block contains information about where and when the data was
observed.

	latitude

	The latitude of the observation (WSG 84).

	longitude

	The longitude of the observation (WSG 84).

	accuracy

	The accuracy of the observed position in meters.

	altitude

	The altitude at which the data was observed in meters above sea-level.

	altitudeAccuracy

	The accuracy of the altitude estimate in meters.

	age

	The age of the position data (in milliseconds).

	heading

	The heading field denotes the direction of travel of the device and is
specified in degrees, where 0° ≤ heading < 360°, counting clockwise
relative to the true north.

	pressure

	The air pressure in hPa (millibar).

	speed

	The speed field denotes the magnitude of the horizontal component of
the device’s current velocity and is specified in meters per second.

	source

	The source of the position information. If the field is omitted, “gps”
is assumed. The term gps is used to cover all types of satellite
based positioning systems incl. Galileo and Glonass.
Other possible values are manual for a position entered manually into
the system and fused for a position obtained from a combination of
other sensors or outside service queries.

Bluetooth Beacon Fields

	macAddress

	The address of the Bluetooth Low Energy (BLE) beacon.

	name

	The name of the BLE beacon.

	age

	The number of milliseconds since this BLE beacon was last seen.

	signalStrength

	The measured signal strength of the BLE beacon in dBm.

Cell Tower Fields

	radioType

	The type of radio network. One of gsm, wcdma or lte.

	mobileCountryCode

	The mobile country code.

	mobileNetworkCode

	The mobile network code.

	locationAreaCode

	The location area code for GSM and WCDMA networks. The tracking area
code for LTE networks.

	cellId

	The cell id or cell identity.

	age

	The number of milliseconds since this cell was last seen.

	asu

	The arbitrary strength unit indicating the signal strength if a
direct signal strength reading is not available.

	primaryScramblingCode

	The primary scrambling code for WCDMA and physical cell id for LTE.

	serving

	A value of 1 indicates this as the serving cell, a value of 0
indicates a neighboring cell.

	signalStrength

	The signal strength for this cell network, either the RSSI or RSCP.

	timingAdvance

	The timing advance value for this cell tower when available.

Wifi Access Point Fields

	macAddress

	The BSSID of the Wifi network. Hidden Wifi networks must not be collected.

	radioType

	The Wifi radio type, one of 802.11a, 802.11b, 802.11g, 802.11n,
802.11ac.

	age

	The number of milliseconds since this Wifi network was detected.

	channel

	The channel is a number specified by the IEEE which represents a
small band of frequencies.

	frequency

	The frequency in MHz of the channel over which the client is
communicating with the access point.

	signalStrength

	The received signal strength (RSSI) in dBm.

	signalToNoiseRatio

	The current signal to noise ratio measured in dB.

	ssid

	The SSID of the Wifi network. Wifi networks with a SSID ending in
_nomap must not be collected.

Response

Successful requests return a HTTP 200 response with a body of an empty
JSON object.

Geosubmit (Deprecated)

Note

Please use the Geosubmit Version 2 API instead.

	Purpose

	Submit data about nearby Bluetooth, cell and WiFi networks.

Request

Geosubmit requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v1/geosubmit?key=<API_KEY>

Geosubmit requests are submitted using a POST request with a JSON body:

{"items": [
 {
 "latitude": -22.7539192,
 "longitude": -43.4371081,
 "accuracy": 10.0,
 "altitude": 100.0,
 "altitudeAccuracy": 50.0,
 "timestamp": 1405602028568,
 "heading": 45.0,
 "speed": 3.6,
 "bluetoothBeacons": [
 {
 "macAddress": "ff:74:27:89:5a:77",
 "age": 2000,
 "name": "beacon",
 "signalStrength": -110
 }
],
 "cellTowers": [
 {
 "radioType": "gsm",
 "cellId": 12345,
 "locationAreaCode": 2,
 "mobileCountryCode": 208,
 "mobileNetworkCode": 1,
 "age": 3,
 "asu": 31,
 "signalStrength": -51,
 "timingAdvance": 1
 }
],
 "wifiAccessPoints": [
 {
 "macAddress": "01:23:45:67:89:ab",
 "age": 3,
 "channel": 6,
 "frequency": 2437,
 "signalToNoiseRatio": 13,
 "signalStrength": -77
 },
 {
 "macAddress": "23:45:67:89:ab:cd"
 }
]
 }
]}

Field Definition

Requests always need to contain a batch of reports. Each
report must contain at least one entry in the cellTowers array or
two entries in the wifiAccessPoints array.

Most of the fields are optional. For Bluetooth and WiFi records only the
macAddress field is required. For cell records the radioType,
mobileCountryCode, mobileNetworkCode, locationAreaCode and
cellId fields are required.

The Bluetooth array is an extension and can contain four different fields
for each Bluetooth network:

	macAddress

	The address of the Bluetooth Low Energy (BLE) beacon.

	name

	The name of the BLE beacon.

	age

	The number of milliseconds since this Bluetooth beacon was last seen.

	signalStrength

	The measured signal strength of the BLE beacon in dBm.

The cell record has been extended over the geolocate schema to include
three more optional fields:

	age

	The number of milliseconds since this cell was primary.
If age is 0, the cell id represents a current observation.

	asu

	The arbitrary strength unit. An integer in the range of 0 to 95 (optional).

	psc

	The physical cell id as an integer in the range of 0 to 503 (optional).

The WiFi record has been extended with one extra optional field
frequency. Either frequency or channel may be submitted to the
geosubmit API as they are functionally equivalent.

	frequency

	The frequency in MHz of the channel over which the client is
communicating with the access point.

The top level schema is identical to the geolocate schema with the
following additional fields:

	latitude

	The latitude of the observation (WSG 84).

	longitude

	The longitude of the observation (WSG 84).

	timestamp

	The time of observation of the data, measured in milliseconds since
the UNIX epoch. Should be omitted if the observation time is very
recent.

	accuracy

	The accuracy of the observed position in meters.

	altitude

	The altitude at which the data was observed in meters above sea-level.

	altitudeAccuracy

	The accuracy of the altitude estimate in meters.

	heading

	The heading field denotes the direction of travel of the device and is
specified in degrees, where 0° ≤ heading < 360°, counting clockwise
relative to the true north. If the device cannot provide heading
information or the device is stationary, the field should be omitted.

	speed

	The speed field denotes the magnitude of the horizontal component of
the device’s current velocity and is specified in meters per second.
If the device cannot provide speed information, the field should be
omitted.

Response

Successful requests return a HTTP 200 response with a body of an empty
JSON object.

Search (Deprecated)

Note

Please use the Geolocate API instead.

	Purpose

	Determine the current location based on data provided about nearby
Bluetooth, cell or WiFi networks and based on the IP address used
to access the service.

Request

Search requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v1/search?key=<API_KEY>

A search record can contain a list of Bluetooth, cell and WiFi records.

A example of a well formed JSON search request :

{
 "radio": "gsm",
 "blue": [
 {
 "key": "ff:23:45:67:89:ab",
 "age": 1000,
 "signal": -110
 },
 {
 "key": "ff:23:45:67:89:cd",
 "signal": -105
 }
],
 "cell": [
 {
 "radio": "umts",
 "mcc": 123,
 "mnc": 123,
 "lac": 12345,
 "cid": 12345,
 "signal": -61,
 "age": 1500,
 "asu": 26
 }
],
 "wifi": [
 {
 "key": "01:23:45:67:89:ab",
 "age": 3000,
 "channel": 11,
 "frequency": 2412,
 "signal": -50
 },
 {
 "key": "01:23:45:67:ab:cd"
 },
 {
 "key": "01:23:45:67:cd:ef"
 }
]
}

Field Definition

Bluetooth Fields

For blue entries, the key field is required.

	key (required)

	The key is the mac address of the Bluetooth network. So for example
a valid key would look similar to ff:23:45:67:89:ab.

	age

	The number of milliseconds since this BLE beacon was last seen.

	signal

	The received signal strength (RSSI) in dBm, typically in the range of
-10 to -127.

	name

	The name of the Bluetooth network.

Cell Fields

	radio

	The type of radio network. One of gsm, umts or lte.

	mcc

	The mobile country code.

	mnc

	The mobile network code.

	lac

	The location area code for GSM and WCDMA networks. The tracking area
code for LTE networks.

	cid

	The cell id or cell identity.

	age

	The number of milliseconds since this networks was last detected.

	psc

	The primary scrambling code for WCDMA and physical cell id for LTE.

	signal

	The signal strength for this cell network, either the RSSI or RSCP.

	ta

	The timing advance value for this cell network.

WiFi Fields

For wifi entries, the key field is required. The client must check the
Wifi SSID for a _nomap suffix. Wifi networks with such a suffix must not be
submitted to the server.

Most devices will only report the WiFi frequency or the WiFi channel,
but not both. The service will accept both if they are provided,
but you can include only one or omit both fields.

	key (required)

	The client must check the WiFi SSID for a _nomap
suffix. WiFi networks with such a suffix must not be submitted to the
server. WiFi networks with a hidden SSID should not be submitted to the
server either.

The key is the BSSID of the WiFi network. So for example
a valid key would look similar to 01:23:45:67:89:ab.

	age

	The number of milliseconds since this network was last detected.

	frequency

	The frequency in MHz of the channel over which the client is
communicating with the access point.

	channel

	The channel is a number specified by the IEEE which represents a
small band of frequencies.

	signal

	The received signal strength (RSSI) in dBm, typically in the range of
-51 to -113.

	signalToNoiseRatio

	The current signal to noise ratio measured in dB.

	ssid

	The SSID of the Wifi network. Wifi networks with a SSID ending in
_nomap must not be collected.

An example of a valid WiFi record is below:

{
 "key": "01:23:45:67:89:ab",
 "age": 1500,
 "channel": 11,
 "frequency": 2412,
 "signal": -51,
 "signalToNoiseRatio": 37
}

Mapping records into a search request

The mapping can contain zero or more Bluetooth records, zero or more WiFi
records and zero or more cell records. If any list of records is empty,
it can be omitted entirely.

For Bluetooth and WiFi lookups at least two keys of nearby networks need
to be provided. This is an industry standard that is meant to prevent you
from looking up the position of a single network over time.

Response

A successful response will be:

{
 "status": "ok",
 "lat": -22.7539192,
 "lon": -43.4371081,
 "accuracy": 100.0
}

The latitude and longitude are numbers, with seven decimal places of
actual precision. The coordinate reference system is WGS 84. The accuracy
is an integer measured in meters and defines a circle around the location.

Should the response be based on a GeoIP estimate:

{
 "status": "ok",
 "lat": 51.0,
 "lon": -0.1,
 "accuracy": 600000.0,
 "fallback": "ipf"
}

Alternatively the fallback field can also state lacf for an estimate
based on a cell location area.

If no position can be determined, you instead get:

{
 "status": "not_found"
}

Submit (Deprecated)

Note

Please use the Geosubmit Version 2 API instead.

	Purpose

	Submit data about nearby cell and WiFi networks.

Request

Submit requests are submitted using a POST request to the following URL:

https://location.services.mozilla.com/v1/submit?key=<API_KEY>

with a JSON body:

{"items": [
 {
 "lat": -22.7539192,
 "lon": -43.4371081,
 "time": "2012-03-01T00:00:00.000Z",
 "accuracy": 10.0,
 "altitude": 100.0,
 "altitude_accuracy": 1.0,
 "heading": 45.0,
 "speed": 13.88,
 "radio": "gsm",
 "blue": [
 {
 "key": "ff:74:27:89:5a:77",
 "age": 2000,
 "name": "beacon",
 "signal": -110
 }
],
 "cell": [
 {
 "radio": "umts",
 "mcc": 123,
 "mnc": 123,
 "lac": 12345,
 "cid": 12345,
 "age": 3000,
 "signal": -60
 }
],
 "wifi": [
 {
 "key": "01:23:45:67:89:ab",
 "age": 2000,
 "channel": 11,
 "frequency": 2412,
 "signal": -51
 }
]
 }
]
}

Field Definition

The record fields have the same meaning and requirements as explained
in the Search (Deprecated).

The only required fields are lat and lon and at least one Bluetooth,
cell or WiFi entry. If neither lat nor lon are included, the record
will be discarded.

The altitude, accuracy and altitude_accuracy fields are all measured in
meters. Altitude measures the height above or below the mean sea level,
as defined by WGS84.

The heading field specifies the direction of travel in
0 <= heading <= 360 degrees, counting clockwise relative to the true north.

The speed field specifies the current horizontal velocity and is measured
in meters per second.

The heading and speed fields should be omitted from the report, if the
speed and heading cannot be determined or the device was stationary
while observing the environment.

The time has to be in UTC time, encoded in ISO 8601. If not provided,
the server time will be used.

Response

On successful submission, you will get a 204 status code back without
any data in the body.

Transfer (private)

Note

This is a private API for synchronizing multiple instances
of the service and not open to the public.

	Purpose

	Transfer aggregated area and station data from one instance of
ichnaea to another.

Request

Transfer requests are submitted using a POST request to the URL:

https://location.services.mozilla.com/v1/transfer?key=<API_KEY>

The requests must contain a JSON body:

{"items": [

]}

Field Definition

Requests always need to contain a batch of items.

Response

Successful requests return a HTTP 200 response with a body of an empty
JSON object.

Data Export

Ichnaea supports automatic, periodic CSV (comma separated values) export
of aggregate cell data (position estimates).

The data exchange format was created in collaboration with the
OpenCellID project.

Records should be written one record to a line, with CRLF (0x0D 0x0A)
as line separator.

A value should be written as an empty field – two adjacent commas, for
example – rather than being omitted.

The first five fields (radio to cell) jointly identify a unique logical cell
network. The remaining fields contain information about this network.

The data format does not specify the means and exact algorithms by which the
position estimate or range calculation was done. The algorithms might be
unique and changing for each source of the data, though both ichnaea and
OpenCellID currently use similar and comparable techniques.

The fields in the CSV file are as follows:

Cell Fields

radio

Network type. One of the strings GSM,
UMTS (for WCMDA networks) or LTE.

mcc

Mobile Country Code. An integer, for example 505, the code for Australia.

net

For GSM, UMTS and LTE networks, this is the mobile network code (MNC).
An integer, for example 4, the MNC used by Vodaphone in the Netherlands.

area

For GSM and UMTS networks, this is the location area code (LAC). For LTE
networks, this is the tracking area code (TAC).
An integer, for example 2035.

cell

For GSM and LTE networks, this is the cell id or cell identity (CID).
For UMTS networks this is the UTRAN cell id, which is the concatenation
of 2 bytes of radio network controller (RNC) code and 2 bytes of cell id.
An integer, for example 32345.

unit

For UMTS networks, this is the primary scrambling code (PSC). For LTE
networks, this is the physical cell id (PCI). For GSM networks,
this is empty. An integer, for example 312.

lon

Longitude in degrees between -180.0 and 180.0 using the WSG 84 reference
system. A floating point number, for example 52.3456789.

lat

Latitude in degrees between -90.0 and 90.0 using the WSG 84 reference
system. A floating point number, for example -10.034.

range

Estimate of radio range, in meters. This is an estimate on how large each
cell area is, as a radius around the estimated position and is based on
the observations or a knowledgeable source.
An integer, for example 2500.

samples

Total number of observations used to calculate the estimated
position, range and averageSignal. An integer, for example 1200.

changeable

Whether or not this cell is a position estimate based on
observations, and therefore subject to change in the future,
or is an exact location entered from a knowledgeable source. A boolean
value, encoded as either 1 (for “changeable”) or 0 (for “exact”).

created

Timestamp of the time when this record was first created. An integer,
counting seconds since the UTC Unix Epoch of 1970-01-01T00:00:00Z.
For example, 1406204196, which is the timestamp for 2014-07-24T12:16:36Z.

updated

Timestamp of the time when this record was most recently modified. An
integer, counting seconds since the UTC Unix Epoch of 1970-01-01T00:00:00Z.
For example, 1406204196, which is the timestamp for 2014-07-24T12:16:36Z.

averageSignal

Average signal strength from all observations for the cell network.
An integer value, in dBm. For example, -72.

This field is only used by the OpenCellID project and has
been used historically as a hint towards the quality of the
position estimate.

Installation

If you want to run your own version of the service, you need to install
and set up its various parts. There are two different ways to set up
the service, depending on whether you want to simply run it or if you
want to contribute back to the development of it.

	Configuration
	Configuration File

	Database Configuration

	Deployment
	Diagram

	MySQL / Amazon RDS

	Redis / Amazon ElastiCache

	Amazon S3

	Datadog / Statsd / Sentry

	Image Tiles

	Development
	Prerequisites

	Docker

	Requirements

	Code

	Documentation

	Python Dependencies

	CSS / JS / Images

	Cleanup

	Release Build

	Metrics
	API Request Metrics

	API User Metrics

	API Query Metrics

	API Result Metrics

	API Source Metrics

	API Fallback Source Metrics

	Data Pipeline Metrics

	Data Pipeline Export Metrics

	Internal Monitoring

	HTTP Counters

	HTTP Timers

	Task Timers

	Datamaps Timers

	Testing
	Unit Tests

	Testing Tasks

	Testing Multiple Python Versions

Configuration

As part of deploying the application, you need to create an application
configuration file, commonly called location.ini and insert a couple
of rows into various database tables.

Configuration File

As explained in the the deployment documentation the
processes find this configuration file via the ICHNAEA_CFG
environment variable. The variable should contain an absolute path,
for example /etc/location.ini.

The configuration file is an ini-style file and contains a number of
different sections.

Required Sections

Cache

The cache section contains a cache_url pointing to a Redis server.

The cache is used as a classic cache by the webapp code, as a backend
to store rate-limiting counters, as a custom and a celery queuing backend.

[cache]
cache_url = redis://localhost:6379/0

Database

The database section contains settings for accessing the MySQL database.

The web application only requires and uses the read-only connection,
while the asynchronous celery workers only use the read-write connection.

Both of them can be restricted to only DML (data-manipulation) permissions,
as neither needs DDL (data-definition) rights.

DDL changes are only done via the alembic database migration system,
which has a separate alembic.ini configuration file.

[database]
rw_url = mysql+pymysql://rw_user:password@localhost/location
ro_url = mysql+pymysql://ro_user:password@localhost/location

GeoIP

The geoip section contains settings related to the maxmind GeoIP database.

The db_path setting needs to point to a maxmind GeoIP city database
in version 2 format. Both GeoLite and commercial databases will work.

[geoip]
db_path = /path/to/GeoIP2-City.mmdb

Optional Sections

Assets

The assets section contains settings for a static file repository
(Amazon S3) and a public DNS to access those files via HTTPS
(Amazon CloudFront).

These are used to store and serve both the image tiles generated for
the data map and the public export files available via the downloads
section of the website.

[assets]
bucket = amazon_s3_bucket_name
url = https://some_distribution_id.cloudfront.net

Sentry

The sentry section contains settings related to a Sentry server.

The dsn setting needs to contain a valid DSN project entry.

[sentry]
dsn = https://public_key:secret_key@localhost/project_id

StatsD

The statsd section contains settings related to a StatsD service. The
project uses a lot of metrics as further detailed in
the metrics documentation.

The host and port settings determine how to connect to the service
via UDP.

Since a single StatsD service usually supports multiple different projects,
the metric_prefix setting can be used to prefix all metrics emitted
by this project with a unique name.

The tag_support setting can either be false or true and declares
whether or not the StatsD service supports metric tags.
Datadog [https://www.datadoghq.com/] is an example of a service that
supports tags. If tag_support is false, the tags will be emitted as
part of the standard metric name.

[statsd]
host = localhost
port = 8125
metric_prefix = location
tag_support = true

For initial testing it can be useful to simply capture the statsd metrics
without running an actual statsd daemon. To do so you can use the
nc -lku localhost 8125 command to run a UDP service and print out
all incoming data on the console.

Web

The web section contains settings related to the non-API website content.

The web functionality by default is limited to the public HTTP API.
If the enabled setting is set to true the website content pages
are also made available.

The map_id_base and map_id_labels settings specify Mapbox map
ids for a base map and a map containing only labels. The map_token
specifies a Mapbox access token.

[web]
enabled = true
map_id_base = example_base.map-123
map_id_labels = example_labels.map-234
map_token = pk.example_public_access_token

Database Configuration

API Keys

The project requires API keys to access the locate APIs. You need to add
API keys manually to the database by direct SQL inserts.

API keys can be any string of up to 40 characters, though random UUID4s
in hex representation are commonly used, for example
329694ac-a337-4856-af30-66162bc8187a.

But to start off, you can add a simple literal test API key:

INSERT INTO api_key
(`valid_key`, `allow_locate`) VALUES ("test", 1);

Export Configuration

The project supports exporting all data that its gets via the submit-style
APIs to different backends. This configuration lives in the export_config
database table.

Currently three different kinds of backends are supported:

	Amazon S3 buckets

	The projects own internal data processing pipeline

	A HTTPS POST endpoint accepting the geosubmit v2 format

The type of the target is determined by the schema column of each entry.

All export targets can be configured with a batch setting that
determines how many reports have to be available before data is
submitted to the backend.

All exports have an additional skip_keys setting as a set of
API keys. Data submitted using one of these API keys will not be
exported to the target.

There can be multiple instances of the bucket and HTTP POST export
targets, but only one instance of the internal export.

In the simplest case, you insert one row to send data to the internal
data pipeline via:

INSERT INTO export_config
(`name`, `batch`, `schema`) VALUES ("internal", 1, "internal");

For a production setup you want to set the batch column to something
like 100 or 1000 to get more efficiency. For initial testing its
easier to set it to 1 so you immediately process any incoming data.

Bucket Export

The Amazon S3 bucket export combines reports into a gzipped JSON file
and uploads them to the specified bucket url, for example:

s3://amazon_s3_bucket_name/directory/{source}{api_key}/{year}/{month}/{day}

The schema column must be set to s3.

The url can contain any level of additional static directories under
the bucket root. The {api_key}/{year}/{month}/{day} parts will
be dynamically replaced by the api_key used to upload the data,
the source of the report (e.g. gnss) and the date when the backup took place.
The files use a random UUID4 as the filename.

An example filename might be:

/directory/test/2015/07/15/554d8d3c-5b28-48bb-9aa8-196543235cf2.json.gz

Internal Export

The internal export forwards the incoming data into the internal
data pipeline.

The schema column must be set to internal.

HTTPS Export

The HTTPS export buffers incoming data into batches of batch
size and then submits them using the Geosubmit Version 2
API to the specified url endpoint, for example:

https://localhost/some/api/url?key=export

The schema column must be set to geosubmit.

If the project is taking in data from a partner in a data exchange,
the skip_keys setting can be used to prevent data being
round tripped and send back to the same partner that it came from.

Deployment

Diagram

A full deployment of the application in an AWS environment can include all
of the parts shown in the diagram, but various of these parts are optional:

[image: Deployment Diagram]
Specifically Amazon CloudFront and S3 are only used for backup and serving
image tiles and public data downloads for the public website.
Using Combain, Datadog, OpenCellID and Sentry is also optional.
Finally there doesn’t have to be a admin EC2 box, but it can be helpful
for debug access and running database migrations.

MySQL / Amazon RDS

The application is written and tested against MySQL 5.6.x or Amazon RDS of the
same version. The default configuration works for the most part. There are
just three changes you need to do. For example via the my.cnf:

[mysqld]
innodb_file_format=Barracuda
innodb_strict_mode=on
sql-mode="NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES"

The web app frontend role only needs access to a read-only read-replica
of the database. The async worker backend role needs access to a read-write
primary database. You can use load balancers like haproxy to distribute
load from the web app frontends over multiple read-replicas. The diagram
shows a final fallback connection, where the web app frontends fall back
to talking to the primary database if all read-replicas are down.
An example of such a haproxy configuration is included in the source code.

Redis / Amazon ElastiCache

The application uses Redis as a queue for the asynchronous task workers and
also uses it directly as a cache and to track API key rate limitations.

You can install a standard local Redis for development or production use.
The application is also compatible with Amazon ElastiCache (Redis).

Amazon S3

The application uses Amazon S3 for various tasks, including backup of
observations, export of the aggregated cell table and hosting of
the data map image tiles.

All of these are triggered by asynchronous jobs and you can disable them
if you are not hosted in an Amazon environment.

If you use Amazon S3 you might want to configure a lifecycle policy to
delete old export files after a couple of days and observation
data after one year.

Datadog / Statsd / Sentry

The application uses Statsd to aggregate stats and Sentry to log
exception messages.

To use Statsd, you need to configure it in the config file, specifying
a host and port, for example localhost port 8125.

To get the app to log exceptions to Sentry, you will need to obtain the
DSN for your Sentry instance. Edit location.ini and in the sentry section
put your real DSN into the dsn setting.

Installation of Statsd and Sentry are outside the scope of this documentation.

Image Tiles

The code includes functionality to render out image tiles for a data map
of places where observations have been made. This part of the code relies
on two external projects. One is the
datamaps image tile generator [https://github.com/ericfischer/datamaps]
the other is pngquant [http://pngquant.org/]. Make sure to install both
of them and make their binaries available on your system path. The datamaps
package includes the encode, enumerate and render tools and the
pngquant package includes a tool called pngquant. You can install these
tools on the server running the celery scheduler (celerybeat) and trigger
the location_map script via a cron job.

Development

Prerequisites

In order to install a development version of the service, you need to
have a Linux or Mac OS machine and
install docker [https://docs.docker.com/installation/] and
docker-compose.

On Linux you can use your OS level package manager to install them.

On Mac OS you need to install
Docker for Mac [https://docs.docker.com/docker-for-mac/].
Docker Toolbox or docker-machine based setups aren’t supported
by the documentation and Makefile.

Docker

We use docker to run additional development dependencies like
Redis and MySQL with the exact versions we want to test against.

We assume that you can run docker and docker-compose on
your command line. Test this via:

docker --version
docker-compose --version

Requirements

In order to run the code you need to have Python 2.6, 2.7 or 3.5 installed
on your system. The default Makefile also assumes a virtualenv
command is globally available. If this isn’t true for your system,
please create a virtualenv manually inside the ichnaea folder before
continuing (/path/to/virtualenv --python=python2.6 .).

In the next step you are going to install a good number of Python libraries,
which depend on various OS level C libraries. These C libraries are best
installed via the OS level package management system. We list the
CentOS/Redhat names, but they should be similar on other OS.

Runtime requirements:

openssl, python, libmaxminddb, libffi, atlas-sse3, geos, spatialindex-devel

Build requirements:

openssl-devel, gcc, gcc-c++, gcc-gfortran, make, python, python-pip,
python-virtualenv, git, libmaxminddb, libffi-devel, atlas-devel,
geos-devel, spatialindex-devel

Code

Now run the following command to get the code:

git clone https://github.com/mozilla/ichnaea
cd ichnaea

Then run make, which is going to take quite a while the first time:

make

Now you can run the web app for example on port 7001:

ICHNAEA_CFG=location.ini bin/gunicorn -b 127.0.0.1:7001 \
 -c python:ichnaea.webapp.settings ichnaea.webapp.app:wsgi_app

The celery processes are started via:

ICHNAEA_CFG=location.ini bin/celery -A ichnaea.async.app:celery_app beat

ICHNAEA_CFG=location.ini bin/celery -A ichnaea.async.app:celery_app worker \
 -Ofair --no-execv --without-mingle --without-gossip

Documentation

In order to create and test the documentation locally run:

make docs

The documentation will be available in docs/build/html/index.html.

Python Dependencies

The project uses requires.io [https://requires.io/github/mozilla/ichnaea/requirements/?branch=master]
to track whether or not the Python dependencies are outdated.

If they are, update the version pins in the various requirements/*.txt
files and rerun make, make docs or make test, depending on which
requirements have changed.

CSS / JS / Images

The project depends on a number of external web assets. Those dependencies
are tracked via npm and bower in files under docker/node.

In order to install them, run:

make css
make js

This will install build tools and bower assets inside a docker container.
It will also copy, compile and minify files in various folders under
ichnaea/content/static/.

To check if the external assets are outdated run:

docker run --rm -it mozilla-ichnaea/node:latest bower list

Cleanup

In case the local environment gets into a weird or broken state, it can
be cleaned up by running:

make clean

Of course one can also delete the entire git repository and start from
a fresh checkout.

Release Build

The default make / make build target installs a local development
version including database setup and testing tools. For a production
environment or release pipeline one can instead use:

make release

This will not do any database setup and only install production
dependencies. It will also create a virtualenv and install the ichnaea
code itself via bin/python setup.py install, so that a copy will be
installed into lib/pythonX.Y/site-packages/.

The step will also compile all py files to pyc files and remove any files
from the tree which aren’t compatible with the active Python version
(blocklist in the compile.py script). The removal step ensures that
any build tools (for example rpmbuild / mock) that typically call
compileall.compile_dir will work, without breaking on the incompatible
files.

Metrics

As discussed in the deployment document, Ichnaea emits
metrics through the Statsd client library with the intent of
aggregating and viewing them on a compatible dashboard.

This document describes the metrics collected.

The code emits most metrics using the statsd tags extension. A metric
name of task#name:function,version:old therefor means a statsd metric
called task will be emitted with two tags name:function and
version:old. If the statsd backend does not support tags, the
statsd client can be configured with a tag_support = false option.
In this case the above metric would be emitted as:
task.name_function.version_old.

API Request Metrics

These are metrics that track how many times each specific public API
is used and which clients identified by their API keys do so. They are
grouped by the type of the API, where type is one of locate, region
and submit, independent of the specific version of that API.

These metrics can help in deciding when to remove a deprecated API.

locate.request#path:v1.search,key:<apikey>,
locate.request#path:v1.geolocate,key:<apikey>,
region.request#path:v1.country,key:<apikey>,
submit.request#path:v1.submit,key:<apikey>,
submit.request#path:v1.geosubmit,key:<apikey>,
submit.request#path:v2.geosubmit,key:<apikey> : counters

These metrics count how many times a specific API was called by a
specific API key expressed via the API keys short name. The API key
is the actual API key, often a UUID.

Two special short names exist for tracking invalid (invalid)
and no (none) provided API keys.

API User Metrics

For all API requests including the submit-type APIs we gather metrics
about the number of unique users based on the users IP addresses.

These metrics are gathered under the metric prefix:

<api_type>.user#key<apikey> : gauge

They have an additional tag to determine the time interval for which
the unique users are aggregated for:

#interval:1d, interval:7d : tags

Unique users per day or last 7 days.

Technically these metrics are based on HyperLogLog cardinality numbers
maintained in a Redis service. They should be accurate to about 1% of
the actual number.

API Query Metrics

For each incoming API query we log metrics about the data contained in
the query with the metric name and tags:

<api_type>.query#key<apikey>,region:<region_code> : counter

api_type describes the type of API being used, independent of the
version number of the API. So v1/country gets logged as region
and both v1/search and v1/geolocate get logged as locate.

region_code is either a two-letter GENC region code like de or the
special value none if the region of origin of the incoming request
could not be determined.

We extend the metric with additional tags based on the data contained
in it:

#geoip:false : tag

This tag only gets added if there was no valid client IP address
for this query. Since almost all queries contain a client IP address
we usually skip this tag.

#blue:none, #blue:one, #blue:many,
#cell:none, #cell:one, #cell:many,
#wifi:none, #wifi:one, #wifi:many : tags

If the query contained any Bluetooth, cell or WiFi networks,
one blue, cell and wifi tag get added. The tags depend on the
number of valid stations for each of the three.

API Result Metrics

Similar to the API query metrics we also collect metrics about each
result of an API query. This follows the same per API type and per
region rules under the prefix / tag combination:

<api_type>.result#key:<apikey>,region:<region_code>

The result metrics measure if we satisfied the incoming API query in
the best possible fashion. Incoming queries can generally contain
an IP address, Bluetooth, cell, WiFi networks or any combination thereof.
If the query contained only cell networks, we do not expect to get a
high accuracy result, as there is too little data in the query to do so.

We express this by classifying each incoming query into one of four
categories:

	High Accuracy (#accuracy:high)

	A query containing at least two Bluetooth or WiFi networks.

	Medium Accuracy (#accuracy:medium)

	A query containing neither Bluetooth nor WiFi networks but at
least one cell network.

	Low Accuracy (#accuracy:low)

	A query containing no networks but only the IP address of the client.

	No Accuracy (#accuracy:none)

	A query containing no usable information, for example an IP-only
query that explicitly disables the IP fallback.

A query containing multiple data types gets put into the best possible
category, so for example any query containing cell data will at least
be of medium accuracy.

One we have determined the expected accuracy category for the query, we
compare it to the accuracy category of the result we determined. If we
can deliver an equal or better category we consider the status to be
a hit. If we don’t satisfy the expected category we consider the
result to be a miss.

For each result we then log exactly one of the following tag combinations:

#accuracy:high,status:hit, #accuracy:high,status:miss,
#accuracy:medium,status:hit, #accuracy:medium,status:miss,
#accuracy:low,status:hit, #accuracy:low,status:miss : tags

We don’t log metrics for the uncommon case of none or no expected
accuracy.

One special case exists for cell networks. If we cannot find an exact
cell match, we might fall back to a cell area based estimate. If the
range of the cell area is fairly small we consider this to be a
#accuracy:medium,status:hit. But if the size of the cell area is
extremely large, in the order of tens of kilometers to hundreds of
kilometers, we consider it to be a #accuracy:medium,status:miss.

In the past we only collected stats based on whether or not cell based
data was used to answer a cell based query and counted it as a
cell-based success, even if the provided accuracy was really bad.

In addition to the accuracy of the result, we also tag the result
metric with the data source that got used to provide the result,
but only for results that met the expected accuracy.

#source:<source_name> : tag

Data sources can be one of:

	internal

	Data from our own crowd-sourcing effort.

	fallback

	Data from the optional external fallback provider.

	geoip

	Data from a GeoIP database.

And finally we add a tag to state whether or not the query was allowed
to use the fallback source.

#fallback_allowed:<value> : tag

The value is either true or false.

API Source Metrics

In addition to the final API result, we also collect metrics about each
individual data source we use to answer queries under the
<api_type>.source#key:<apikey>,region:<region_code> metric.

Each request may use one or multiple of these sources to deliver a result.
We log the same metrics as mentioned above for the result.

All of this combined might lead to a tagged metric like:

locate.source#key:test,region:de,source:geoip,accuracy:low,status:hit

API Fallback Source Metrics

The external fallback source has a couple extra metrics to observe the
performance of outbound network calls and the effectiveness of its cache.

locate.fallback.cache#status:hit,
locate.fallback.cache#status:miss,
locate.fallback.cache#status:bypassed,
locate.fallback.cache#status:inconsistent,
locate.fallback.cache#status:failure : counter

Counts the number of hits and misses for the fallback cache. If
the query should not be cached, a bypassed status is used.
If the cached values couldn’t be read, a failure status is used.
If the cached values didn’t agree on a consistent position,
a inconsistent status is used.

locate.fallback.lookup#fallback_name:<fallback_name> : timer

Measures the time it takes to do each outbound network request.
The fallback name tag specifies which fallback service is used.

locate.fallback.lookup#fallback_name:<fallback_name>,status:<code> : counter

Counts the HTTP response codes for all outbound requests per named
fallback service. There is one counter per HTTP response code,
for example 200.

Data Pipeline Metrics

When a batch of reports is accepted at one of the submission API
endpoints, it is decomposed into a number of “items” – wifi or cell
observations – each of which then works its way through a process of
normalization, consistency-checking and eventually (possibly) integration
into aggregate station estimates held in the main database tables.
Along the way several counters measure the steps involved:

data.batch.upload,
data.batch.upload#key:<apikey> : counters

Counts the number of “batches” of reports accepted to the data
processing pipeline by an API endpoint. A batch generally
corresponds to the set of reports uploaded in a single HTTP POST
to one of the submit APIs. In other words this metric counts
“submissions that make it past coarse-grained checks” such as API-key
and JSON schema validity checking.

The metric is either emitted per tracked API key, or for everything
else without a key tag.

data.report.upload,
data.report.upload#key:<apikey> : counters

Counts the number of reports accepted into the data processing
pipeline. The metric is either emitted per tracked API key, or for
everything else without a key tag.

data.report.drop,
data.report.drop#key:<apikey> : counter

Count incoming reports that were discarded due to some internal
consistency, range or validity-condition error.

data.observation.upload#type:blue,
data.observation.upload#type:blue,key:<apikey>,
data.observation.upload#type:cell,
data.observation.upload#type:cell,key:<apikey>,
data.observation.upload#type:wifi,
data.observation.upload#type:wifi,key:<apikey> : counters

Count the number of Bluetooth, cell or WiFi observations entering
the data processing pipeline; before normalization and blocklist processing
have been applied. In other words this metric counts “total Bluetooth,
cell or WiFi observations inside each submitted batch”, as each
batch is composed of individual observations.

The metrics are either emitted per tracked API key, or for everything
else without a key tag.

data.observation.drop#type:blue,
data.observation.drop#type:blue,key:<apikey>,
data.observation.drop#type:cell,
data.observation.drop#type:cell,key:<apikey>,
data.observation.drop#type:wifi
data.observation.drop#type:wifi,key:<apikey> : counters

Count incoming Bluetooth, cell or WiFi observations that were
discarded before integration due to some internal consistency, range or
validity-condition error encountered while attempting to normalize the
observation.

data.observation.insert#type:blue,
data.observation.insert#type:cell,
data.observation.insert#type:wifi : counters

Count Bluetooth, cell or WiFi observations that are successfully
normalized, integrated and not discarded due to consistency errors.

data.station.blocklist#type:blue,
data.station.blocklist#type:cell,
data.station.blocklist#type:wifi : counters

Count any Bluetooth, cell or WiFi network that is blocklisted due to
the acceptance of multiple observations at sufficiently different
locations. In these cases, we decide that the station is “moving”
(such as a picocell or mobile hotspot on a public transit vehicle) and
blocklist it, to avoid estimating query positions using the
station.

data.station.confirm#type:blue,
data.station.confirm#type:cell,
data.station.confirm#type:wifi : counters

Count the number of Bluetooth, cell or WiFi station that were
successfully confirmed by any type of observations.

data.station.new#type:blue,
data.station.new#type:cell,
data.station.new#type:wifi : counters

Count the number of Bluetooth, cell or WiFi station that were
discovered for the first time.

Data Pipeline Export Metrics

Incoming reports can also be sent to a number of different export
targets. We keep metrics about how those individual export targets perform.

data.export.batch#key:<export_key> : counter

Count the number of batches sent to the export target.

data.export.upload#key:<export_key> : timer

Track how long the upload operation took per export target.

data.export.upload#key:<export_key>,status:<status> : counter

Track the upload status of the current job. One counter per status.
A status can either be a simple success and failure or a HTTP
response code like 200, 400, etc.

Internal Monitoring

api.limit#key:<apikey>,#path:<path> : gauge

One gauge is created per API key and API path which has rate limiting
enabled on it. This gauge measures how many requests have been done
for each such API key and path combination for the current day.

queue#queue:celery_blue,
queue#queue:celery_cell,
queue#queue:celery_default,
queue#queue:celery_export,
queue#queue:celery_incoming,
queue#queue:celery_monitor,
queue#queue:celery_reports,
queue#queue:celery_wifi : gauges

These gauges measure the number of tasks in each of the Redis queues.
They are sampled at an approximate per-minute interval.

queue#queue:update_blue_0,
queue#queue:update_blue_f,
queue#queue:update_cell_gsm,
queue#queue:update_cell_wcdma,
queue#queue:update_cell_lte,
queue#queue:update_cellarea,
queue#queue:update_datamap_ne,
queue#queue:update_datamap_nw,
queue#queue:update_datamap_se,
queue#queue:update_datamap_sw,
queue#queue:update_wifi_0,
queue#queue:update_wifi_f : gauges

These gauges measure the number of items in the Redis update queues.

HTTP Counters

Every legitimate, routed request to an API endpoint or to a content
view increments a request#path:<path>,method:<method>,status:<code>
counter.

The path of the counter is the based on the path of the HTTP
request, with slashes replaced with periods. The method tag contains
the lowercased HTTP method of the request. The status tag contains
the response code produced by the request.

For example, a GET of /stats/regions that results in an HTTP 200
status code, will increment the counter
request#path:stats.regions,method:get,status:200.

Response codes in the 400 range (eg. 404) are only generated for HTTP
paths referring to API endpoints. Logging them for unknown and invalid
paths would overwhelm the system with all the random paths the friendly
Internet bot army sends along.

HTTP Timers

In addition to the HTTP counters, every legitimate, routed request
emits a request#path:<path>,method:<method> timer.

These timers have the same structure as the HTTP counters, except they
do not have the response code tag.

Task Timers

Our data ingress and data maintenance actions are managed by a Celery
queue of tasks. These tasks are executed asynchronously, and each task
emits a timer indicating its execution time.

For example:

	task#task:data.export_reports

	task#task:data.update_statcounter

Datamaps Timers

We include a script to generate a data map from the gathered map
statistics. This script includes a number of timers and pseudo-timers
to monitor its operation.

datamaps#func:export,
datamaps#func:encode,
datamaps#func:merge,
datamaps#func:main,
datamaps#func:render,
datamaps#func:upload : timers

These timers track the individual functions of the generation process.

datamaps#count:csv_rows,
datamaps#count:quadtrees,
datamaps#count:tile_new,
datamaps#count:tile_changed,
datamaps#count:tile_deleted,
datamaps#count:tile_unchanged : timers

Pseudo-timers to track the number of CSV rows, Quadtree files and
image tiles.

Testing

Note

Since the tests use a real database and Redis connection,
you cannot parallelize any tests.

Unit Tests

If you have a local development environment setup, you can run all tests
including coverage tests via:

make test

Or run individual test modules via for example:

make test TESTS=ichnaea.tests.test_geoip

Testing Tasks

The project includes a good number of asynchronous tasks, executed by Celery
in the code. The easiest way to test them is by writing unit tests and calling
the task functions directly.

In order to do more integration testing, you can also manually queue a task
by using the celery call command. For example:

ICHNAEA_CFG=location.ini bin/celery -A ichnaea.async.app:celery_app call \
 ichnaea.data.tasks.update_cell --args='[1000,]'

You then need to run the celery worker process and it will pick up the task
from the queue and execute it:

ICHNAEA_CFG=location.ini bin/celery \
 -A ichnaea.async.app:celery_app worker -c 1

Testing Multiple Python Versions

The project supports multiple Python versions. In order to run the tests
against all of them locally, we are using tox:

bin/tox

You can explicitly state what Python versions to test:

bin/tox -e=py{26,27,34}

You can also run a subset of all tests, the same way as via make test:

bin/tox TESTS=ichnaea.tests.test_util

If the tox environment got into a weird state, just recreate it:

bin/tox --recreate

Of course these options can be combined, for example:

bin/tox -e=py{34} TESTS=ichnaea.tests.test_util

Since the project relies on a number of non-Python dependencies, each
tox environment is created from a full copy of the git repo. To ease
testing the ichnaea code package is then removed from inside each
tox environment and finally bin/install -e ichnaea /path/to/parent/repo
is called. This means the code inside the top-level ichnaea code package
is actually used from inside each tox environment.

If you set a pdb breakpoint in the normal main code, you’ll thus get
an easy way to have a pdb inside each tox environment.

One caveat is that this leads to the Cython based geocalc.so file to be
recompiled with the last Python version you used for tox. You may need
to run make again to recreate based on the Python version of the
non-tox environment.

Algorithms

The project uses a couple of different approaches and algorithms.

There’s two general approaches to calculate positions from signal sources,
without the cooperation of the signal sources or mobile networks.

	Determine the location of signal sources from observations,
then compare / trilaterate user locations.

	Generate signal fingerprints for a fine-grained grid of the world.
Find best match for a observed fingerprint.

The second approach has a much better accuracy, but relies on a lot more
available and constantly updated data. For most of the world this
approach is not practical, so we currently focus on approach one.

In theory one would assume that one could use signal strength data to
infer a distance measure from it. The further a device is away from the
signal source, the weaker the signal should get.

Unfortunately the signal strength is more dependent on the device type,
how a user holds a device and changing environmental factors like trucks in
the way. Even worse modern networks adjust their signal strength to the number
of devices inside their reception area. This makes this data highly
unreliable while looking up a user’s position via a single reading.

In aggregate over many data points this information can still be valuable
in determining the actual position of the signal source. While observing
multiple signals at once, their relative strengths can also be used, as
this keeps some of the changing factors constant, like the device type.

One other approach is using time of flight data as a distance metric.
While there are some reflection and multipath problems, it’s a much more
accurate distance predictor. Fine grained enough timing data is
unfortunately almost never available to the application or operating
system layer in client devices. Some LTE networks and really modern
WiFi networks with support for 802.11v are the rare exception to this.
But these are so rare, that we currently ignore timing data.

	Accuracy
	Bluetooth / WiFi

	GSM Cells

	WCDMA Cells

	LTE Cells

	GeoIP

Accuracy

Depending on the signal standard, we can promise different sorts of accuracy.

Underlying this is the assumption that we have enough data about the
area at all. With no or too little data we’ll have to fallback to less
accurate data sources. Bluetooth is the most accurate, followed by
WiFi and than cell based estimation using single cells, multiple cells
or cell location areas. If all else fails GeoIP serves as a general fallback.

Bluetooth / WiFi

Bluetooth and WiFi networks have a fairly limited range. Bluetooth
low-energy beacons typically just a couple meters and WiFi networks up
to 100 meters. With obstacles like walls and people in the way, these
get even lower.

But this data can be skewed when the device in question is moving.
It takes some time to do a network scan and devices tend to cache this
information heavily. So there can be a time delta of tens of seconds
between when a network was actually seen and when it is reported to
the application layer. With a fast moving device this can lead to
inaccuracies of a couple kilometers. WiFi networks tend to show up
in scan long after they are out of reach, if the the device was
actually connected to these networks.

This means position estimates based on WiFi networks are usually
accurate to 100 meters. If a lot of networks are available in the area
accuracy tends to increase to about 10 or 20 meters. Bluetooth networks
tend to be accurate to about 10 meters.

One challenge that’s particular severe in Bluetooth and WiFi networks
are all the constantly moving networks, for example those installed on
buses or trains or in the form of hotspot enabled mobile phones or
tablets. So movement detection and detecting inconsistencies between
observed data and the database world view are important considerations.

GSM Cells

In GSM networks one typically has only access to the unique cell id of
the serving cell. In GSM networks the phone does not know the full cell
ids of any neighboring cells, unless it associates with the new cell as
part of a hand-over, forgetting the cell id of the old cell.

So we are limited to a basic Cell-ID approach, meaning we assume
that the user is at the center of the current GSM cell area and use the
cell radius as the accuracy.

GSM cells are restricted to a maximum range of 35km, but there are rare
exceptions using the GSM extended range of 120km.

In more populated places the cell sizes are typically much smaller,
but generally accuracy will be in the tens of kilometer range.

WCDMA Cells

In WCDMA networks neighboring cell information can be available. But
limitations in chipset drivers, the radio interface layer and the
operating systems often hide this data from application code. Or
only partially expose the cell identifiers, for example only exposing
the carrier and primary scrambling code of the neighboring cells.

So in most cases we are limited to the same approach as for GSM cells.
The typical cell sizes of WCDMA cells are much smaller, which practically
leads to a better accuracy. But WCDMA cells in rural areas can have a
larger radius than GSM cells and we observed cells sizes of 60-70km.

In urban areas we should typically see accuracy in the 1 to 10 kilometer
range.

LTE Cells

LTE networks are similar to WCDMA networks and the same restriction on
neighboring cells applies. Instead of a primary scrambling code LTE uses
a physical cell id, which for our purposes has similar characteristics.

LTE cells are again often even smaller than WCDMA cells which leads to
better accuracies.

LTE networks also expose a time based distance metric in the form of
the timing advance. While we currently don’t use this information, in
the future it has the potential to significantly improve position
estimates based on multiple cells.

GeoIP

The accuracy of GeoIP depends a lot on the region the user is in.
In the US GeoIP can be fairly accurate and often places the
user in the right city or metropolitan area. In many other parts of
the world GeoIP is only accurate to the region level.

Typical GeoIP accuracies are either in the 25 km range for city based
estimates or multiple hundred kilometers for region based estimates.

IP version 6 has the chance to improve this situation, as the need for
private carrier networks and network address translation decreases.
But so far this hasn’t made any measurable impact and most traffic
is still restricted to IP version 4.

Internal Code API

This section describes the internal Python API’s used throughout the code base.
For documentation on the public HTTP API please look at Services API.

Overview

The code is structured around a couple of larger functional areas in
addition to top-level helper modules.

There are two sub-packages async and webapp related to runtime
configuration and settings of the two process classes. async deals
with Celery and webapp deals with gunicorn.

The api sub-package deals with the implementation of the public
HTTP API. The content sub-package includes the public website content.
The data sub-package includes the data pipeline code, in the form of
asynchronous Celery tasks. The models sub-package deals with database
models and schema validation. scripts has the implementation of
command line scripts.

Indices and Tables

	Index

	Module Index

	ichnaea.api
	ichnaea.api.config

	ichnaea.api.exceptions

	ichnaea.api.locate

	ichnaea.api.rate_limit

	ichnaea.api.schema

	ichnaea.api.submit

	ichnaea.api.transfer

	ichnaea.api.views

	ichnaea.async
	ichnaea.async.app

	ichnaea.async.config

	ichnaea.async.settings

	ichnaea.async.task

	ichnaea.cache

	ichnaea.config

	ichnaea.constants

	ichnaea.content
	ichnaea.content.views

	ichnaea.data
	ichnaea.data.tasks

	ichnaea.db

	ichnaea.exceptions

	ichnaea.floatjson

	ichnaea.geocalc

	ichnaea.geocode

	ichnaea.geoip

	ichnaea.http

	ichnaea.log

	ichnaea.models
	ichnaea.models.api

	ichnaea.models.base

	ichnaea.models.blue

	ichnaea.models.cell

	ichnaea.models.config

	ichnaea.models.constants

	ichnaea.models.content

	ichnaea.models.mac

	ichnaea.models.observation

	ichnaea.models.sa_types

	ichnaea.models.schema

	ichnaea.models.station

	ichnaea.models.wifi

	ichnaea.queue

	ichnaea.scripts
	ichnaea.scripts.datamap

	ichnaea.scripts.initdb

	ichnaea.scripts.region_json

	ichnaea.util

	ichnaea.webapp
	ichnaea.webapp.app

	ichnaea.webapp.config

	ichnaea.webapp.monitor

	ichnaea.webapp.settings

	ichnaea.webapp.view

	ichnaea.webapp.worker

ichnaea.api

	ichnaea.api.config

	ichnaea.api.exceptions

	ichnaea.api.locate

	ichnaea.api.rate_limit

	ichnaea.api.schema

	ichnaea.api.submit

	ichnaea.api.transfer

	ichnaea.api.views

ichnaea.api.config

ichnaea.api.exceptions

ichnaea.api.locate

	ichnaea.api.locate.blue

	ichnaea.api.locate.cell

	ichnaea.api.locate.constants

	ichnaea.api.locate.fallback

	ichnaea.api.locate.geoip

	ichnaea.api.locate.internal

	ichnaea.api.locate.mac

	ichnaea.api.locate.query

	ichnaea.api.locate.result

	ichnaea.api.locate.schema

	ichnaea.api.locate.schema_v0

	ichnaea.api.locate.schema_v1

	ichnaea.api.locate.searcher

	ichnaea.api.locate.source

	ichnaea.api.locate.views

	ichnaea.api.locate.wifi

ichnaea.api.locate.blue

ichnaea.api.locate.cell

ichnaea.api.locate.constants

ichnaea.api.locate.fallback

ichnaea.api.locate.geoip

ichnaea.api.locate.internal

ichnaea.api.locate.mac

ichnaea.api.locate.query

ichnaea.api.locate.result

ichnaea.api.locate.schema

ichnaea.api.locate.schema_v0

ichnaea.api.locate.schema_v1

ichnaea.api.locate.searcher

ichnaea.api.locate.source

ichnaea.api.locate.views

ichnaea.api.locate.wifi

ichnaea.api.rate_limit

ichnaea.api.schema

ichnaea.api.submit

	ichnaea.api.submit.schema

	ichnaea.api.submit.schema_v0

	ichnaea.api.submit.schema_v1

	ichnaea.api.submit.schema_v2

	ichnaea.api.submit.views

ichnaea.api.submit.schema

ichnaea.api.submit.schema_v0

ichnaea.api.submit.schema_v1

ichnaea.api.submit.schema_v2

ichnaea.api.submit.views

ichnaea.api.transfer

	ichnaea.api.transfer.schema

	ichnaea.api.transfer.views

ichnaea.api.transfer.schema

ichnaea.api.transfer.views

ichnaea.api.views

ichnaea.async

	ichnaea.async.app

	ichnaea.async.config

	ichnaea.async.settings

	ichnaea.async.task

ichnaea.async.app

This is also the Celery app public endpoint, used on the command line via:

bin/celery -A ichnaea.async.app:celery_app <worker, beat>

ichnaea.async.config

ichnaea.async.settings

ichnaea.async.task

ichnaea.cache

ichnaea.config

ichnaea.constants

ichnaea.content

	ichnaea.content.views

ichnaea.content.views

ichnaea.data

	ichnaea.data.tasks

ichnaea.data.tasks

ichnaea.db

ichnaea.exceptions

ichnaea.floatjson

ichnaea.geocalc

ichnaea.geocode

ichnaea.geoip

ichnaea.http

ichnaea.log

ichnaea.models

	ichnaea.models.api

	ichnaea.models.base

	ichnaea.models.blue

	ichnaea.models.cell

	ichnaea.models.config

	ichnaea.models.constants

	ichnaea.models.content

	ichnaea.models.mac

	ichnaea.models.observation

	ichnaea.models.sa_types

	ichnaea.models.schema

	ichnaea.models.station

	ichnaea.models.wifi

ichnaea.models.api

ichnaea.models.base

ichnaea.models.blue

ichnaea.models.cell

Cell Networks

As part of the public API and the internal models, we define unique keys
and additional data for each cell network. Depending on the cell radio
network type, these records contain different information.

The classification of radio types is based on the Android TelephonyManager
constants [http://developer.android.com/reference/android/telephony/TelephonyManager.html].
A similar classification exists for Firefox OS devices with the
MozMobileConnectionInfo API [https://developer.mozilla.org/en-US/docs/Web/API/MozMobileConnectionInfo.type].

GSM

If the network is either GSM or any high-data-rate variant of it, the radio
type should be specified as gsm. This includes GSM, EDGE and GPRS.

Example:

{
 "radio": "gsm",
 "mcc": 123,
 "mnc": 123,
 "lac": 12345,
 "cid": 12345,
 "signal": -61,
 "asu": 26,
 "ta": 10
}

	radio (required)

	The string gsm.

	mcc (required)

	The mobile country code. An integer in the range of 1 to 999.

	mnc (required)

	The mobile network code. An integer in the range of 0 to 999.

	lac (required)

	The location area code. An integer in the range of 1 to 65533.
According to TS 24.008 10.5.3 [http://www.etsi.org/deliver/etsi_ts/124000_124099/124008/12.07.00_60/ts_124008v120700p.pdf#page=431] both 0 and 65534 are reserved
values indicating a deleted state.

	cid (required)

	The cell id. An integer in the range of 1 to 65535.

	signal

	The received signal strength (RSSI) in dBm, typically in the range of
-51 to -113 (optional).

	asu

	The arbitrary strength unit. An integer in the range of 0 to 31 (optional).
Unknown values can be marked with a value of 99.
The formula: RSSI [dBm] = (2x ASU) – 113.

	ta

	The timing advance. An integer in the range of 0 to 63 (optional).

WCDMA

If the network is either WCDMA or any high-data-rate variant of it, the radio
field should be specified as wcdma. This includes UMTS, HSPA, HSDPA,
HSPA+ and HSUPA.

Example:

{
 "radio": "umts",
 "mcc": 123,
 "mnc": 123,
 "lac": 12345,
 "cid": 123456789,
 "psc": 123,
 "signal": -68,
 "asu": 48
}

	radio (required)

	The string wcdma.

	mcc (required)

	The mobile country code. An integer in the range of 1 to 999.

	mnc (required)

	The mobile network code. An integer in the range of 0 to 999.

	lac (required)

	The location area code. An integer in the range of 1 to 65533.
According to TS 24.008 10.5.3 [http://www.etsi.org/deliver/etsi_ts/124000_124099/124008/12.07.00_60/ts_124008v120700p.pdf#page=431] both 0 and 65534 are reserved
values indicating a deleted state.

	cid (required)

	The cell id. An integer in the range of 1 to 268435455.

	psc

	The primary scrambling code as an integer in the range of 0 to 511
(optional).

	signal

	The received signal code power (RSCP) in dBm, typically in the range of
-25 to -121 (optional).

	asu

	The arbitrary strength unit. An integer in the range of -5 to 91 (optional).
Unknown values can be marked with a value of 255.
The formula: RSCP [dBm] = ASU - 116.

A special case exists for WCDMA cells, to send data about neighboring cells.
For these it is acceptable to omit the lac and cid fields if at the same
time a valid psc field is submitted.

LTE

Example:

{
 "radio": "lte",
 "mcc": 123,
 "mnc": 123,
 "lac": 12345,
 "cid": 12345,
 "psc": 123,
 "signal": -69,
 "asu": 71,
 "ta": 10
}

	radio (required)

	The string lte.

	mcc (required)

	The mobile country code. An integer in the range of 1 to 999.

	mnc (required)

	The mobile network code. An integer in the range of 0 to 999.

	lac (required)

	The tracking area code. An integer in the range of 1 to 65533.
According to TS 24.301 9.9.3.32 [http://www.etsi.org/deliver/etsi_ts/124300_124399/124301/12.06.00_60/ts_124301v120600p.pdf#page=286] both 0 and 65534 are reserved
values indicating a deleted state.

	cid (required)

	The cell identity. An integer in the range of 1 to 268435455.

	psc

	The physical cell id as an integer in the range of 0 to 503 (optional).

	signal

	The received signal strength (RSRP) in dBm, typically in the range of
-43 to -140 (optional).

	asu

	The arbitrary strength unit. An integer in the range of 0 to 97 (optional).
The formula: RSRP [dBm] = ASU – 140.

	ta

	The timing advance. An integer in the range of 0 to 63 (optional).

A special case exists for LTE cells, to send data about neighboring cells.
For these it is acceptable to omit the lac and cid fields if at the same
time a valid psc field is submitted.

CDMA

We classify CDMA networks and their EVDO variants as cdma. This includes
1xRTT, CDMA, eHRPD, EVDO_0, EVDO_A, EVDO_B, IS95A and IS95B.

Note

Since CDMA networks are rare and only available in a minority
of regions, this project does not support them.

ichnaea.models.config

ichnaea.models.constants

ichnaea.models.content

ichnaea.models.mac

ichnaea.models.observation

ichnaea.models.sa_types

ichnaea.models.schema

ichnaea.models.station

ichnaea.models.wifi

ichnaea.queue

ichnaea.scripts

	ichnaea.scripts.datamap

	ichnaea.scripts.initdb

	ichnaea.scripts.region_json

ichnaea.scripts.datamap

ichnaea.scripts.initdb

ichnaea.scripts.region_json

ichnaea.util

ichnaea.webapp

	ichnaea.webapp.app

	ichnaea.webapp.config

	ichnaea.webapp.monitor

	ichnaea.webapp.settings

	ichnaea.webapp.view

	ichnaea.webapp.worker

ichnaea.webapp.app

ichnaea.webapp.config

ichnaea.webapp.monitor

ichnaea.webapp.settings

ichnaea.webapp.view

ichnaea.webapp.worker

Glossary

	Cell-ID	Cell ID	Cell IDs	CGI

	Cell ID [https://en.wikipedia.org/wiki/Cell_ID] describes both
a globally unique identifier for any logical cell network, as well
as an approach to locate devices based on prior knowledge of the
positions of these cell networks. Sometimes the term cell global
identity (CGI) can also be found. See also WPS.

	CID

	A term describing the GSM or WCDMA cell id, LTE cell identity
or CDMA base station id. All these form the last part of the
globally unique Cell ID.

	decimal degree	decimal degrees

	Decimal degrees [https://en.wikipedia.org/wiki/Decimal_degrees]
express latitude and longitude coordinates as decimal fractions,
for example 10.1234567.

	MLS

	The Mozilla Location Service [https://location.services.mozilla.com/]
is an instance of the ichnaea software hosted by Mozilla.

	observation	observations

	An observation describes the data collected about a single
station identified by its unique global identifier,
additional data about the station like signal strength
readings and report data about the position of the
station.

	OpenCellID	OCID

	OpenCellID [http://opencellid.org/] is a collaborative
project to create a free worldwide database of Cell IDs.

	report	reports

	A report describes the data collected in a single reading,
consisting of data about the position and movement at the time
of taking the reading and data about multiple stations
observable at the time. For example one report could contain
information about one cell network and 10 WiFi networks.

	station	stations

	A term referring to any radio signal emitting stationary device,
or the radio network it emits. Examples of what we call stations
are WiFi access points / WiFi network, cell towers / cell networks
and Bluetooth Beacons / Bluetooth LE networks.

	Web Mercator	WSG84

	WSG 84 Web Mercator [https://en.wikipedia.org/wiki/Web_Mercator]
refers to the geographic map projection used throughout this project.
The latitude and longitude values use
WSG 84 [https://en.wikipedia.org/wiki/World_Geodetic_System]
as the coordinate reference system.

	WiPS	WPS

	Wi-Fi based positioning system [https://en.wikipedia.org/wiki/Wi-Fi_positioning_system]
describes a system of using prior knowledge about the location
of WiFi networks, identified by their globally unique BSSID/MAC
address, to position devices. See also Cell ID.

 Changelog

Changelog

Changelogs

	Changelog

	Changelog 1.4

	Changelog 1.3

	Changelog 1.2

	Changelog 1.1

	Changelog 1.0

 Changelog

Changelog

1.5 (unreleased)

Untagged

Migrations

Changes

20170606213300

Changes

	Update Python dependencies.

	Adjust the text on the download and stats pages.

20170314161700

Migrations

	d2d9ecb12edc: Add modified index on datamap_* tables.

Changes

	No longer use secondary cell tables during lookups.

	Remove continous cell import functionality.

	Relax GeoIP database check to allow GeoLite2-City databases.

	Update region specific statistics once per day.

20170223205700

Migrations

	cad2875fd8cb: Add store_sample_* columns to api_key table.

Changes

	Add in-memory API key cache.

20161123180300

Changes

	Move numpy install into build step.

20161123162300

Changes

	Downgraded pip and virtualenv.

20161123125700

Changes

	Remove /leaders HTTP redirects.

	Replace the /apps page with a link to the Wiki.

	Add a workaround for a bug in the RTree library.

20160810110400

Migrations

	385f842b2526: Add allow_transfer column to api_key table.

Changes

	Use a docker volume for the css/js build pipeline.

20160809152200

Changes

	Add a new location_dump command line script to dump/export networks.

	#491: Add an alternate homepage if the web content is disabled.

	Reduce datamap detail.

	No longer log sentry messages for client errors.

	Replace station data for old stations with new conflicting observations.

	Make statsd and sentry optional service dependencies.

	Disable the web site content by default.

	#490: Limit full cell export to cells which were modified in the last year.

	Use the accuracy_radius field from the GeoIP database.

	Remove ipf fallback from responses for queries based only on GeoIP data.

20160525130100

Migrations

	Remove the celery section from the config file, add the web section.

Changes

	Lower maximum accuracy values returned from locate queries.

	Accept observations with slightly worse accuracy values.

	The website content can be disabled via a setting in the config file.

	Make map related settings configurable via the config file.

	Use the first of the month, to display stats for the entire month.

	Calculate and display stats for today.

	Preserve or derive both WiFi channel and frequency values.

20160429092200

Changes

	Allow report submissions without any position data.

	#485: Fix development documentation.

20160427100000

Migrations

	1bdf1028a085: Extend export config table.

	6ec824122610: Add export config table.

	4255b858a37e: Remove user/score tables.

	In service checks, change anything that checked the /__heartbeat__
view to check /__lbheartbeat__ instead. Change /__monitor__ to
/__heartbeat__.

Changes

	Be more explicit about closing socket connections.

	Use GNSS observations to replace purely query-based stations.

	Use query observations to confirm, blocklist and insert new stations.

	Configure release for raven/sentry client.

	Change hearbeat/monitor view to lbhearbeat/hearbeat views.

	Update last_seen column on each station update.

	Use Vincenty formula for lat/lon additions.

	Use Vincenty instead of Haversine formula for distance calculations.

	Take age into account during locate lookups.

	Filter out observations with too little weight.

	Take age and speed into account in observation weights.

	Pass queries into internal data pipeline.

	Allow stations to be blocklisted once per 30 days of their lifespan.

	Normalize age fields for internal observations to GPS time difference.

	Add stricter validation of radio, source and timestamp fields.

	Pass pressure and source data into internal data pipeline.

	Read export config from database instead of ini file.

20160412083700

Migrations

	27400b0c8b42: Drop api_key log columns.

	88d1704f1aef: Drop cell_ocid table.

Changes

	Remove intermediate schedule_export_reports task.

	#456: Retire old leaderboard.

	Remove intermediate upload_report task.

20160401185900

Changes

	Downgrade numpy to 1.10.4 due to build failures.

20160401110200

Migrations

	e23ba53ab89b: Add sharded OCID cell tables.

	fdd0b256cecc: Add fallback options to API key table.

Changes

	Tag location fallback metrics with the fallback name.

	#484: Allow per API key fallback configuration.

	Document and forward age argument through all layers of abstraction.

	Limit the columns loaded for API keys.

	Prevent errors when receiving invalid timestamps.

20160323102800

Changes

	#456: Deprecate weekly leaderboard.

	Remove the implied metadata setting from the config file.

	Enable extended metrics for all API keys.

	Speed up full cell export.

	Rename internal blue/wifi observation key to mac.

	Removed migrations before version 1.4.

 Changelog 1.4

Changelog 1.4

1.4 (2016-03-03)

20160303094100

Changes

	Deprecate hashkey and internaljson logic.

	Improve readability of downloads page.

	Restrict valid characters in API keys.

	Take signal strength into account for location queries.

	Decrease database session times in data tasks.

	Retry station updates on deadlocks and lock timeouts.

	Simplify and speed up InternalUploader.

20160218132400

Changes

	Display region specific BLE statistics.

	Remove geodude compatibility API again.

	Avoid intermediate Redis task round-trip.

	Queue data for up to 24 hours.

	Simplify colander schemata.

	Update dependencies.

20160202154300

Changes

	Avoid fancy syntax in build requirements.

20160202101600

Migrations

	4b11500c9014: Add Bluetooth region stat.

	b247526b9501: Add sharded Bluetooth tables.

	0987336d9d63: Add weight and last_seen columns to station tables.

	44e1b53944ee: Remove old cell tables.

Changes

	#476: Emit basic request metrics for region API.

	Remove internal API key human readable metric names.

	Accept and use Bluetooth networks in public HTTP APIs.

	Weight observations by their accuracy and signal strength values.

	Add stricter validation of asu, signal and ta values.

	Restrict observations to maximum accepted accuracy values.

	Allow queries to the fallback source if the combined score is too low.

	#151: Choose best position result based on highest combined score.

	#481: Fix broken cell export.

	#151: Choose best region result based on highest combined score.

	#371: Extend region API to use wifi data.

	#371: Extend region API to use cell area data.

	#151: Choose best region result based on highest score.

	Remove migrations and tests for 1.2 to 1.3 upgrade.

	Enable shapely.speedups to speed up GeoJSON parsing.

	Ship buffered region file with the code.

	Stop forwarding client IP address to data pipeline.

20160112143200

Migrations

	9743e7b8a17a: Add allow_locate column to API key table.

	5d245a440c6f: Remove unused user email field.

	d350610e27e: Shard cell table.

	40d609897296: Add sharded cell tables.

	The command line for starting gunicorn has changed. The -c option now
needs a python: prefix and has to be -c python:ichnaea.webapp.settings.

Changes

	#478: Restrict some API keys from using the locate API.

	Register OCID import tasks based on the configuration file.

	#471: Remove sentence about Firefox OS.

	#477: Decrease cell maximum radius to 100 km.

	Use sharded cell tables.

	Keep separate rate limits per API version.

	Update to latest versions of dependencies.

20151118134500

Migrations

	91fb41d12c5: Drop mapstat table.

Changes

	#469: Update to static tabzilla.

	#468: Add CORS headers and support OPTIONS requests.

	#467: Implement geodude compatibility API.

	#151: Choose best WiFi cluster based on a data quality score.

	Use up to top 10 WiFi networks in WiFi location.

	Use proper agglomerative clustering in WiFi clustering.

	Remove arithmetic/hamming distance analysis of BSSIDs.

	Accept and forward WiFi SSID’s in public HTTP API’s.

20151105120300

Migrations

	78e6322b4d9: Copy mapstat data to sharded datamap tables.

	4e8635b0f4cf: Add sharded datamap tables.

Changes

	Use new sharded datamap tables.

	Parallelize datamap CSV export, Quadtree generation and upload.

	Introduce upper bound for cell based accuracy numbers.

	Fix database lookup fallback in API key check.

	Switch randomness generator for data map, highlight more recent additions.

	Update to latest versions of lots of dependencies.

20151021143400

Migrations

	450f02b5e1ca: Update cell_area regions.

	582ef9419c6a: Add region stat table.

	238aca86fe8d: Change cell_area primary key.

	3fd11bfaca02: Drop api_key log column.

	583a68296584: Drop old OCID cell/area tables.

	2c709f81a660: Rename cell/area columns to radius/samples.

Changes

	Maintain block_first column.

	Introduce upper bound for Wifi based accuracy numbers.

	Provide better GeoIP accuracy numbers for cities and subdivisions.

	Fix cell queries containing invalid area codes but valid cids.

	#242: Add WiFi stats to region specific stats page.

	Add update_statregion task to maintain region_stat table.

	Update to latest versions of alembic, coverage, datadog, raven
and requests.

20151013115000

Migrations

	33d0f7fb4da0: Add api_type specific logging flags to api keys.

	460ce3d4fe09: Rename columns to region.

	339d19da63ee: Add new cell OCID tables.

	All OCID data has to be manually imported again into the new tables.

Changes

	Add new fallback_allowed tag to locate metrics.

	Calculate region radii based on precise shapefiles.

	Use subunits dataset to preserve smaller regions.

	Use GENC codes and names in GeoIP results.

	Consider more responses as high accuracy.

	Change internal names to refer to region.

	Change metric tag to region for region codes.

	Temporarily stop using cell/area range in locate logic.

	Discard too large cell networks during import.

	Use mcc in region determination for cells.

	Use new OCID tables in the entire code base.

	Use the intersection of region codes from GENC and our shapefile.

	Avoid base64/json overhead for simple queues containing byte values.

	Maintain a queue TTL value and process remaining data for inactive queues.

	Remove hashkey functionality from cell area models.

	Remove non-sharded update_wifi queue.

	Merge scan_areas/update_area tasks into a single new update_cellarea task.

	Remove backwards compatible tasks and area/mapstat task processing logic.

	Update to latest versions of bower, clean-css and uglify-js.

	Update to latest versions of cryptography, Cython, kombu, numpy,
pyasn1, PyMySQL, requests, Shapely, six and WebOb.

20150928100200

Migrations

	26c4b3a7bc51: Add new datamap table.

	47ed7a40413b: Add cell area id columns.

Changes

	Improve locate accuracy by taking station circle radius into account.

	Split out OCID cell area updates to their own queue.

	Switch mapstat queue to compact binary queue values.

	Speed up update_area task by only loading required cell columns.

	Validate all incoming reports against the region areas.

	Add a precision reverse geocoder for region lookups.

	Add a finer grained region border file in GeoJSON format.

	Shard update_wifi queue/task by the underlying table shard id.

	Update datatables JS library and fix default column ordering.

	Switch to GENC dataset for region names.

	#372: Add geocoding / search control to map.

	Support the new considerIp field in the geolocate API.

	#389: Treat accuracy, altitude and altitudeAccuracy as floats.

	Speed up /stats/regions by using cell area table.

	Use cell area ids in update_cellarea task queue.

	Enable country level result metrics.

	Removed migrations before version 1.2.

	Update to latest versions of numpy, pytz, raven, rtree and Shapely.

 Changelog 1.3

Changelog 1.3

1.3 (2015-09-16)

20150916130500

Migrations

	b24dbb9ccfe: Remove CDMA networks.

	18d72822fe20: Remove wifi table.

Changes

	Stop importing and exporting CDMA networks.

	#222: Maintain a country/region code estimate for new wifi networks.

	Add new location_load script to load cell dumps into a local db.

	Remove obsolete remove_wifi task.

	Update to latest versions of certifi, cryptography, coverage and Cython.

20150903095100

Migrations

	Manually run the wifi migration script in scripts/migrate.py.

Changes

	Stop using the wifi table.

	Update to latest versions of datadog, greenlet, mako and raven.

20150828125400

Changes

	Fix bug in block_count station update routine.

20150827110300

Migrations

	c1efc747c9: Remove unused api_key email/description columns.

	4f12bf0c0828: Remove standalone wifi blocklist table.

Changes

	Insert new wifi networks into sharded tables.

	Factor out more of the aggregate position logic.

	Optimize gzip compression levels.

	Add new celery queues (celery_cell, celery_ocid, celery_wifi).

	Remove extra internal_dumps call from insert task.

	Add a source tag for successful result metrics.

	Update data tables and stats/regions page.

	Setup Cython support and convert geocalc centroid and distance functions.

	Optimize OCID cell data export and import.

	Return multiple results from MCC based country source.

	Move best country result selection into searcher logic.

	Update to latest versions of alembic, cffi, cryptography, coverage,
cython, hiredis, numpy, pip and scipy.

20150813105600

Changes

	Use data_accuracy as the criteria to decide if more locate sources
should be consulted.

	Use both old and new wifi tables in locate logic.

	Add a new __version__ route.

	Cache Wifi-only based fallback position results.

	Don’t rate limit cache lookups for the fallback position source.

	Retry outbound connections once to counter expired keep alive connections.

20150806105100

Migrations

	2127f9dd0ed7: Move wifi blocklist entries into wifi shard tables.

	4860cb8e54f5: Add new sharded wifi tables.

	The structure of the application ini file changed and the ichnaea
section was replaced by a number of new more specific sections.

Changes

	Enable SSL verification for outbound network requests.

	Add new metrics for counting unique IPs per API endpoint / API key.

	Enable locate source level metrics.

	#457: Fix cell export to again use UMTS as the radio type string.

	Optimize various tasks by doing batch queries and inserts.

	Avoid using a metric tag called name as it conflicts with a default tag.

	Deprecate insert_measure_* tasks.

	Move new station score bookkeeping into insert_measures task.

	Update to latest version of datadog.

20150730143600

Changes

	Make report and observation drop metrics more consistent.

20150730111000

Migrations

	The statsd configuration moved from the statsd_host option in the
application ini file into its own section called statsd.

Changes

	Move blocklist and station creation logic into update_station tasks.

	Add new ratelimit_interval option to locate:fallback section.

	Set up a HTTPS connection pool used by the fallback source.

	Disable statsd request metrics for static assets.

	Let all internal data pipeline metrics use tags.

	Let all public API and fallback source metrics use tags.

	Let task, datamaps, monitor and HTTP counter/timer metrics use tags.

	Add support for statsd metric tagging.

	Use colander to map external to internal names in submit schemata.

	Add dependencies pyopenssl, ndg-httpsclient and pyasn1.

	Switch to datadog statsd client library.

	Consider Wifi based query results accurate enough to satisfy queries.

	Stop maintaining separate Python dependency list in setup.py.

	#433: Move GeoIP lookup onto the query object.

	#433: Add new detailed query metrics.

	Use a colander schema to describe the outbound fallback provider query.

	Set up and configure locate searchers and providers once during startup.

	Move all per-query state onto the locate query instance.

	Split customjson into internal and external pretty float version.

	Update to latest versions of alembic, setproctitle, simplejson and
SQLAlchemy.

 Changelog 1.2

Changelog 1.2

1.2 (2015-07-15)

20150716174000

Changes

	Add a database migration test from a fresh SQL structure dump.

Migrations

	1a320a751cf: Remove observation tables.

Changes

	#395: Move incomplete_observation logic onto colander schema.

	#287: Replace observation models with non-db-model classes.

	#433: Move query data validation into Query class.

	#433: Introduce a new api.locate.query.Query class.

	Handle any RedisError, e.g. TimeoutError and not just ConnectionErrors.

	Update to latest raven release and update transport configuration.

	Explicitly limit the cell cache key to its unique id parts.

	Add fallback key to all locate responses.

	#451: Properly test and reject empty submit requests.

	#376: Document the added home mcc/mnc fields.

	#419: Update geolocate docs to mention all GLS fields.

20150707130400

Migrations

	2e0e620ebc92: Remove id column from content models.

Changes

	Add workaround for andymccurdy/redis-py#633.

	Unify v1 and v2 parse error responses to v2 format.

	Batch key queries depending on a per-model batch size.

	#192: Suggest a observation data retention period.

	Optimize mapstat and station data tasks.

	Switch to using bower for CSS/JS dependency management.

	Update to latest versions of all CSS and JS dependencies.

	Update to latest versions of geoip2, SQLAlchemy and unittest2.

20150616104200

Migrations

	55db289fa497: Add content model composite primary keys.

	14dbafc4fec2: Remove new_measures indices.

	19d6d9fbdb6b: Increase stat table value column to biginteger.

Changes

	Fix locate errors for incomplete cell keys.

	Remove backwards compatibility code.

20150610103900

Migrations

	38fde2949750: Remove measure_block table.

Changes

	#287: Remove table based location_update tasks and old backup code.

	Adjust batch sizes for new update_station tasks.

	Bugzilla 1172833: Use apolitical names on country stats page.

	#443: Reorganize internal module/classes.

	Update to latest version of SQLAlchemy.

20150604164500

Changes

	#446: Filter out incomplete csv cell records.

	#287: Switch location_update tasks to new queue based system.

	#438: Add explicit fallback choices to geolocate API.

	Replace the last daily stats task with a queue based one.

	#440: Allow search/locate queries without a cell id.

	Update to latest versions of nose, simplejson and SQLAlchemy.

20150528085200

Changes

	#394: Replace magic schema values by None.

	#423: Add new public v2/geosubmit API.

	#242: Pass through submission IP address into the data pipeline.

	#242: Expose geoip database to async tasks.

	Make sure there are no unexpected raven messages left after each test.

	#434: Internal test only changes to test base classes.

	Update to latest versions of gevent and simplejson.

20150522094900

Changes

	#421: Pass through additional lookup data into the fallback query.

	#421: Cache cell-only lookups for fallback provider queries.

	#421: Add rate limiting to fallback provider.

	#421: Reordered data sources to prefer fallback over geoip responses.

	Fix api-key specific report upload counter.

	Add workaround for raven issue #608.

	Enable new stat counter tasks.

	#433: Remove the wifi specific query stats.

	Updated to latest version of alembic, celery, greenlet, kombu and pytz.

20150507103300

Changes

	Correct handling for requests without API keys.

	#421: Fix encoding of radioType in fallback queries.

20150505113200

Migrations

	e9c1224f6bb: Add allow_fallback column to api_key table.

Changes

	#287: Move mapstat and score processing to separate queues/tasks.

	#287: Keep track of uploaded data via Redis stat counters.

	#287: Add new backup to S3 export target.

	#421: Add fallback geolocation provider.

	Deal with nan/inf floating point numbers in data submissions.

	Fixed upload issues for cell entries without any radio field.

	Updated to latest versions of certifi, greenlet, pyramid, raven and requests.

20150423105800

Changes

	Allow anonymous data submission via the geosubmit API.

	#425: Refactor internal API key logic.

	Updated to latest raven version, requires a Sentry 7 server.

	Updated to latests versions of billiard, pyramid and WebOb.

20150416111700

Migrations

	The command line invocation for the services changed, please refer to
the deploy docs for the new syntax.

Changes

	#423: Add a first version of an export job.

	Expose all config file settings to the runtime services.

	Move runtime related code into async/webapp sub-packages.

	#385: Configure Python’s logging module.

	#423: Add a new queue system using the new geosubmit v2 internal format.

	Updated to latest versions of boto and maxminddb.

20150409120500

Changes

	Make radio an internally required field.

	Don’t validate radio fields in request side schema.

	#418: Remove country API shortcut implementation.

	Removed BBB code for old tasks and pre-hashkey queued values.

	Updated to latest versions of alabaster, boto, factory_boy and pytz.

20150320100800

Changes

	Remove the circus docs and example ini file.

	Remove the vaurien/integration tests.

	#416: Accept radioType inside the cellTowers mapping in geolocate queries.

	Updated to latest version of Sphinx and its new dependencies.

	Updated to latest versions of pyramid, requests, SQLAlchemy and statsd.

20150309175500

	Fix unittest2 version pin.

20150305122500

Migrations

	1d549c1d6cfe: Drop total_measures index on station tables.

	230bbf3fe044: Add index on mapstat.time column.

	6527bee5ac1: Remove auto-inc id columns from cell related tables.

	3b8d52a9eac4: Change score, stat and measure_block enum columns to tinyint.

Changes

	Replace heka-py-raven with a direct raven client.

	#319: Remove the per station ingress filtering.

	Allow partial cell ids in geolocate/geosubmit APIs.

	Removed the mixed locate/submit mode from the geosubmit API.

	#402: Avoid multiple validation of common report data fields.

	Add a new CellCountryProvider to allow country searches based on cell data.

	#406: Allow access to the country API via empty GET requests.

	Massive internal code refactoring and cleanup.

	Updated to latest versions of iso3166, pyramid and requests.

20150211113000

Changes

	Reestablish database connections on connection failures.

20150209110000

Changes

	Backup/delete all observation data except for the current day.

	Updated to latest versions of boto, Chameleon, gunicorn, jaraco.util, Mako,
psutil, Pygments, pyzmq and WebTest.

20150203093000

Changes

	Specify statsd prefix in application code instead of heka config.

	Fix geoip country lookup for entries without countries.

	#274: Extend monitor view to include geoip db status.

20150127130000

Migrations

	10542c592089: Remove invalid lac values.

	fe2cfea89f5: Change cell/_blacklist tables primary keys.

Changes

	#367: Tighten lac filtering to exclude 65534 (gsm) and 65535 (all).

	Remove alembic migrations before the 1.0 PyPi release.

	#353: Remove auto-inc id column from cell/_blacklist tables.

	Add additional stats to judge quality of WiFi based queries.

	#390: Remove command line importer script.

20150122140000

Migrations

	188e749e51ec: Change lac/cid columns to signed integers.

Changes

	#352: Switch to new maxmind v2 database format and libraries.

	#274: Add a new __monitor__ endpoint.

	#291: Allow 32bit UMTS cell ids, tighten checks for CDMA and LTE.

	#311: On station creation optionally use previous blacklist time.

	#378: Use colander for internal data validation.

	Remove explicit queue declaration from celery base task.

	Updated to latest versions of alembic, boto, Chameleon, jaraco.util,
mobile-codes, psutil, requests-mock, WSGIProxy2 and zope.deprecation.

20150105140000

Migrations

	48ab8d41fb83: Move cell areas into separate table.

Changes

	Prevent non-countries from being returned by the country API.

	#368: Add per API key metrics for uploaded batches, reports and observations.

	Clarify metric names related to batches/reports/observations,
add new items.uploaded.batch_size pseudo-timer and
items.uploaded.reports counter.

	Introduce new internal GeoIPWrapper.country_lookup API.

	#343: Fall back to GeoIP for incomplete search requests.

	#349/#350: Move cell areas into new table.

	Give all celery queues a prefix to better distinguish them in Redis.

	#354: Remove scan_lacs fallback code looking at new_measures.

	Updated to latest versions of alembic, argparse, billiard, celery, colander,
filechunkio, iso8601, kombu, PyMySQL, pytz, requests, six,
WebTest and zope.interface.

20141218093500

	#371: Add new country API.

20141120130000

	Add api key specific stats to count best data lookup hits/misses.

	Validate WiFi data in location lookups earlier in the process.

	#312: Add email field to User model.

	#287: Move lac update scheduling to Redis based queue.

	#304: Auto-correct radio field of GSM cells with large cid values.

	Move responsibility for lac entry deletion into update_lac task.

	Accept more ASU values but tighten signal strength validation.

	#305: Stricter range check for mnc values for non-CDMA networks.

	Add a convenience session.on_post_commit helper method.

	#17: Remove the unused code for cell backfill.

	#41: Explicitly allow anonymous data submissions.

	#335: Omit incomplete cell records from exports.

	Delete measures in batches of 10k rows in backup tasks.

	Re-arrange backup tasks to avoid holding db session open for too long.

	Report errors for malformed data in submit call to sentry.

	Report errors during backup job to sentry.

	#332: Fix session handling in map tiles generation.

	Updated to latest versions of argparse, Chameleon, irc, Pygments, pyramid,
translationstring and unittest2.

20141103125500

	#330: Expand api keys and download sections.

	Close database session early in map tiles generation.

	Close database session early in export task to avoid timeout errors
while uploading data to S3.

	Optimize cell export task and avoid datetime/unixtime conversions.

	Add an index on cell.modified to speed up cell export task.

	Updated to latest versions of boto, irc, pygeoip, pytz, pyzmq,
simplejson and unittest2.

20141030113700

	Add play store link for Mozilla Stumbler to apps page.

	Updated privacy notice style to match general Mozilla style.

	Switch gunicorn to use a gevent-based worker.

	Clean last database result from connections on pool checkin.

	Close the database connections even if exceptions occurred.

 Changelog 1.1

Changelog 1.1

1.1 (2014-10-27)

20141027122000

	Lower DB pool and overflow sizes.

	Update Mozilla Stumbler screenshot.

	Update to new privacy policy covering both Fennec and Mozilla Stumbler.

20141023094000

	Updated Fennec link to point to Aurora channel.

	Renamed MozStumbler to Mozilla Stumbler, added new screenshot.

	Increase batch size for insert_measures_wifi task.

	Extend queue maximum lifetime for incoming reports to six hours.

	Extend observation task batching logic to apply to cell observations.

	#328: Let gunicorn start without a valid geoip database file.

	Extend the make release step to deal with Python files with
incompatible syntax.

	Update to latest versions of configparser, greenlet, irc and pyzmq.

20141016123300

	Log gunicorn errors to stderr.

	#327: Add an anchor to the leaderboard table.

	Move the measure tables gauges to an hourly task.

	Fix initdb script to explicitly import all models.

20141014161400

	#311: Filter out location areas from unique cell statistics.

	Introduce a 10 point minimum threshold to the leaderboard.

	Change download page to list files with kilobytes (kB) sizes.

	#326: Quantize data maps image tiles via pngquant.

	Optimize file size of static image assets.

	Remove task modules retained for backwards compatibility.

	Update to latest version of SQLAlchemy.

20141009121300

	Add a task to monitor the last import time of OCID cells.

	Change api_key rate limitation monitoring task to use shortnames.

	Small improvements to the manual importer script.

	#276: Fix bug in batch processing, when receiving more than 100
observations in one submission.

	Refactor some internals and move code around.

	Create a new lbcheck MySQL user in the location_initdb command.

	Fix monitor_api_key_limits task to work without api limit entries.

	#301: Schedule hourly differential imports of OCID cell data.

	Update to latest versions of boto, celery, iso3166, jaraco.util,
requests and simplejson.

20141002103900

	#301: Add OCID cell data to statistics page.

	Allow a radio type of lte for the geolocate API. Relates to
https://bugzilla.mozilla.org/show_bug.cgi?id=1010284.

	#315: Add a show my location control to the map.

	Reverse ordering of download files to display latest files first.

	Extend db ping to retry connections for 2003 connection refused errors.

	Ignore more exception types in API key check, to continue degraded service
in case of database downtimes.

	Switch from d3.js/rickshaw to flot.js and prepare graphs to plot multiple
lines in one graph.

	Make country statistics table sortable.

	Remove auto-increment column from ocid_cell table and make the
radio, mcc, mnc, lac, cid combination the primary key. Also optimize the
column types of the lac and cid fields.

	Update to latest versions of alembic, amqp, celery, configparser, cornice,
greenlet, jaraco.util, kombu, protobuf, psutil, pytz, requests, six,
Sphinx and WebTest.

	#301: Add code to do continuous updates of the OpenCellID data and add
license note for OCID data.

20140904094000

	#308: Fixed header row in cell export files.

20140901114000

	#283: Add manual logic to trigger OpenCellID imports.

	Add Redis based caching for SQL queries used in the website.

	#295: Add a downloads section to the website and enable cell export tasks.

	Clarify api usage policy.

	Monitor api key rate limits and graph them in graphite.

	Update to latest versions of nose and simplejson.

	#282: Add a header row to the exported CSV files.

20140821114200

	#296: Trust WiFi positions over GeoIP results.

	Optimized SQL types of mnc, psc, radio and ta columns in cell tables.

	Update to latest versions of country-bounding-boxes, gunicorn and redis.

	#282: Added code to do exports of cell data, both daily snapshots as
well as hourly diffs. Currently the automatic schedule is still disabled.
This also adds a new modified column to the cell and wifi tables.

20140812120000

	Include links to blog and new @MozGeo twitter account.

	Update to latest version of alembic, boto, redis, simplejson and statsd.

	Add a monitoring task to record Redis queue length.

	Make a Redis client available in Celery tasks.

	#285: Update favicon, add touch icon and tile image.

	Only retain two days of observation data inside the DB.

	Fixed image tiles generation to generate up to zoom level 13 again.

	#279: Offer degraded service if Redis is unavailable.

	#72: Always log sentry messages for exceptions inside tasks.

	#53: Document testing approaches.

	#130: Add a test for syntactic correctness of the beat schedule.

	#27: Require sufficiently different BSSIDs in WiFi lookups.
This reduces the chance of being able to look up a single device with
multiple logical networks.

20140730133000

	Avoid using on_duplicate for common update tasks of tables.

	Remove GeoIP country submission filter, as GeoIP has shown to be too
inaccurate.

	#280: Relax the GeoIP country restriction and also trust the mcc derived
country codes.

	#269: Improve search logic when dealing with multiple location areas.

	Correctly deal with multiple country codes per mcc value and don’t
restrict lookups to one arbitrary of those countries.

	Fix requirement in WiFi lookups to really only require two networks.

	Added basic setup for documenting internal code API’s and use the geocalc
and service.locate modules as first examples.

	Initialize the application and outbound connections as part of the
gunicorn worker startup process, instead of waiting for the first
request and slowing it down.

	Switch pygeoip module to use memory caching, to prevent errors from
changing the datafile from underneath the running process.

	Introduce 10% jitter into gunicorn’s max_requests setting, to prevent
all worker processes from being recycled at once.

	Update gunicorn to 19.1.0 and use the new support for config settings
based on a Python module. The gunicorn invocation needs to include
-c ichnaea.gunicorn_config now and can drop various of the other
arguments.

	Updated production Python dependencies to latest versions.

	Updated supporting Python libraries to latest versions.

	Update clean-css to 2.2.9 and uglify-js to 2.4.15.

	Update d3.js to 3.4.11 and jQuery 1.11.1.

	Changed graphs on the stats page to show a monthly count for the past
year, closes https://bugzilla.mozilla.org/show_bug.cgi?id=1043386.

	Update rickshaw.js to 1.5.0 and tweak stats page layout.

	Add MLS logo and use higher resolution images where available.

	Always load cdn.mozilla.net resources over https.

	Updated deployment docs to more clearly mention the Redis dependency
and clean up Heka / logging related docs.

	Split out circus and its dependencies into a separate requirements file.

	Remove non-local debug logging from map tiles generation script.

	Test all additional fields in geosubmit API and correctly retain new
signalToNoiseRatio field for WiFi observations.

	Improve geosubmit API docs and make them independent of the submit docs.

	Update and tweak metrics docs.

	Adjust Fennec link to point to Fennec Nightly install instructions.
https://bugzilla.mozilla.org/show_bug.cgi?id=1039787

20140715114000

	Adjust beat schedule to update more rows during each location update task.

	Let the backup tasks retain three full days of measures in the DB.

	Remove the database connectivity test from the heartbeat view.

 Changelog 1.0

Changelog 1.0

1.0 (2014-07-14)

	Initial production release.

0.1 (2013-11-22)

	Initial prototype.

 Index

Index

 C
 | D
 | M
 | O
 | R
 | S
 | W

C

 	
 	Cell ID

 	Cell IDs

 	
 	Cell-ID

 	CGI

 	CID

D

 	
 	decimal degree

 	
 	decimal degrees

M

 	
 	MLS

O

 	
 	observation

 	observations

 	
 	OCID

 	OpenCellID

R

 	
 	report

 	
 	reports

S

 	
 	station

 	
 	stations

W

 	
 	Web Mercator

 	WiPS

 	
 	WPS

 	WSG84

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Ichnaea

 		
 Using the Service

 		
 HTTP API

 		
 Applications / Libraries

 		
 Services API

 		
 API Access Keys

 		
 Errors

 		
 Invalid API Key

 		
 API Key Limit

 		
 Parse Error

 		
 Service Error

 		
 APIs

 		
 Geolocate

 		
 Region

 		
 Geosubmit Version 2

 		
 Geosubmit (Deprecated)

 		
 Search (Deprecated)

 		
 Submit (Deprecated)

 		
 Transfer (private)

 		
 Data Export

 		
 Cell Fields

 		
 Installation

 		
 Configuration

 		
 Configuration File

 		
 Database Configuration

 		
 Deployment

 		
 Diagram

 		
 MySQL / Amazon RDS

 		
 Redis / Amazon ElastiCache

 		
 Amazon S3

 		
 Datadog / Statsd / Sentry

 		
 Image Tiles

 		
 Development

 		
 Prerequisites

 		
 Docker

 		
 Requirements

 		
 Code

 		
 Documentation

 		
 Python Dependencies

 		
 CSS / JS / Images

 		
 Cleanup

 		
 Release Build

 		
 Metrics

 		
 API Request Metrics

 		
 API User Metrics

 		
 API Query Metrics

 		
 API Result Metrics

 		
 API Source Metrics

 		
 API Fallback Source Metrics

 		
 Data Pipeline Metrics

 		
 Data Pipeline Export Metrics

 		
 Internal Monitoring

 		
 HTTP Counters

 		
 HTTP Timers

 		
 Task Timers

 		
 Datamaps Timers

 		
 Testing

 		
 Unit Tests

 		
 Testing Tasks

 		
 Testing Multiple Python Versions

 		
 Algorithms

 		
 Accuracy

 		
 Bluetooth / WiFi

 		
 GSM Cells

 		
 WCDMA Cells

 		
 LTE Cells

 		
 GeoIP

 		
 Internal Code API

 		
 Overview

 		
 Indices and Tables

 		
 ichnaea.api

 		
 ichnaea.async

 		
 ichnaea.cache

 		
 ichnaea.config

 		
 ichnaea.constants

 		
 ichnaea.content

 		
 ichnaea.data

 		
 ichnaea.db

 		
