

Welcome to YETI - Yet Another Emissions From Traffic Inventory’s documentation!

YETI is a tool for street level bottom-up traffic emission calculation. It helps you create high-resolution
traffic emission inventories.

YETI supports common emission calculation methodologies like COPERT or HBEFA. The methodologies
are implemented as Strategies. You can select which Strategy to use for a model run
in the configuration file.

YETI was originally built for the City of Berlin, but is flexible enough to be adopted to different datasets.
Find out how to customize YETI for your needs in the developer section. Start here: How does it work?

The code for YETI can be found on GitHub [https://github.com/twollnik/YETI/].

User Documentation

	Installation and Setup

	Demo

	Usage

	Configuring YETI

	Data Requirements

	Output data

	What is a Strategy?

	CopertStrategy

	CopertHotStrategy

	CopertHotFixedSpeedStrategy

	CopertColdStrategy

	HbefaStrategy

	HbefaHotStrategy

	PMNonExhaustStrategy

Developer Documentation

	How to support more pollutants, area types, …

	How does it work?

	Add a Strategy

	Change how data is validated

	Support a new data format

	Change how data in yeti_format is loaded

	How to update the documentation

	Contributing to YETI

Installation and Setup

1. Make sure your Python version is supported

This project requires Python 3.6 or above. You can find our your Python version by running
python --version on the command line. If your Python version is below 3.6, please upgrade to a newer version.

Note that YETI is tested for Python 3.6 and 3.7. However it should also work with newer Python versions. When in doubt
run the tests on your computer. If they pass you are good to go.

2. Clone the GitHub repository

Clone the GitHub repositiory by running git clone https://github.com/twollnik/YETI.git on the command line.
You need to have git installed for this step. If you don’t have git, get it here [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/].

These directories will be downloaded: code, diagrams, docs, example, and tests.

3. Install the necessary packages

Install dependencies with pip by running pip install -r requirements.txt on the command line
from the repository root directory.
If you want to do development work you should also install dev dependencies: pip install -r requirements-dev.txt.

Demo

We have included example configuration files and example data for you to try out. You can find the example files
in the folder example/. To run the demo, execute the following command on the command line from the
repository root directory: python -m run_yeti -c example/example_configs/copert_hot_config.yaml. Instead of the
copert_hot_config.yaml you can use any of the
config files [https://iass-yeti.readthedocs.io/en/latest/user/config.html] in example/example_configs/.

Usage

Run the model

All interactions with YETI use the script run_yeti.py. Run the script on the command line:
python -m run_yeti. Make sure to run the script from the
repository root directory.

run_yeti.py uses a configuration file in YAML format [https://en.wikipedia.org/wiki/YAML]
where a Strategy [https://iass-yeti.readthedocs.io/en/latest/user/what_is_strategy.html]
for the emission calculation method is defined together with all the necessary input/output file
locations and other parameters.

You may specify the location of the config file: python -m run_yeti -c path/to/config.yaml.
If you don’t specify a location for the config file explicitly, the path ./config.yaml is used.
Look here [https://iass-yeti.readthedocs.io/en/latest/user/config.html]
for more detailed information what should be included in the config file.

You can pass the argument -q to run YETI in quiet mode: python -m run_yeti -q. In quiet mode no DEBUG information
will be displayed.

Run python -m run_yeti --help for short usage information.

Output of a model run are one or multiple emissions csv files and a file run_info.txt.
All output files will be in the output_folder that you specify in the configuration file.

Run the tests

We include Python unit tests to test most of the YETI code. If you modified the code and want to see if
it still works, you may want to execute the tests. Note that the tests are also run on our test
server (Travis CI [https://travis-ci.com/twollnik/YETI/])automatically every time someone pushes to
the GitHub repository.

Execute the tests by running make test on the command line from the repository root
directory.
Note that GNU Make [https://www.gnu.org/software/make/] needs to be installed on your computer for
this to work. If you don’t have GNU Make installed, you can run the tests with
python -m unittest tests/*/test*.py tests/test*.py.

Configuring YETI

The configuration arguments for a YETI run are stored in a YAML file [https://en.wikipedia.org/wiki/YAML].
The configuration file (sometimes referred to as “config file” or “config.yaml”) contains all the configurations
for a model run.

What goes in the configuration file depends on the Strategy used for the run. You can find example configuration
files for most strategies in the folder example/example_configs/.
We encourage you to adapt the example configuration files to your needs instead of writing your own configuration files from
scratch.

A YETI config file contains the following:

	Mode

	Pollutants

	Strategy and functions

	Filenames

	Output folder(s)

	Optional config arguments

	Strategy-specific config arguments

Mode

You need to specify a mode. The mode expresses which data format
you would like to use for the run. Add one of the following lines to your configuration file:

mode: berlin_format

if you are looking to use berlin_format data or

mode: yeti_format

if you want to use yeti_format data.

Pollutants

The list of pollutants you want to calculate emissions for. Add this line to your configuration file:

pollutants: [PollutantType.{pollutant1}, PollutantType.{pollutant2}, ...]

For example:

pollutants: [PollutantType.NOx]

Note that different Strategies support different pollutants. Find out what pollutants a Strategy supports on the
Strategy’s documentation page.

Strategy and functions

Specify a Strategy in the configuration file:
strategy: path.to.a.Strategy

Along with the Strategy you need to specify functions to work with the data required for the Strategy.
Possible functions are:

	load_berlin_format_data_function: The path to a function that converts data in berlin_format to data in yeti_format
and saves the constructed yeti_format data to disc. This argument is only necessary for the mode
berlin_format.

	load_yeti_format_data_function: The path to a function that loads data in yeti_format from disc into memory.

	validation_function: Optional. The path to a function that validates the given data. Validation includes:
Check that all necessary files are present, Check the column names, check that categorical columns
use the right categories, check mappings between files, and check that percentage columns contain values
between 0 and 1.
Which validation function you want to use depends on the mode. Select a validation_function that fits the data
format you are working with.
If you don’t specify a validation_function in the configuration file, validation is skipped.

Take a look at the docs page for the strategy you want to use to see which functions you should specify in
the configuration file or consult the example configs in example/example_configs/.

Example:

strategy: code.copert_cold_strategy.CopertColdStrategy.CopertColdStrategy
load_berlin_format_data_function: code.copert_cold_strategy.load_berlin_format_data.load_copert_cold_berlin_format_data
load_yeti_format_data_function: code.copert_cold_strategy.load_yeti_format_data.load_copert_cold_yeti_format_data
validation_function: code.copert_hot_strategy.validate.file_paths_are_valid

Filenames

This section of the configuration file contains paths to the files you intend to use for the model run.
What files are required depends on the Strategy used for the run and on the mode. Find out more on
the Strategy’s documentation page.

Output folder(s)

You need to specify an output_folder. The Model output will be saved in this folder.

You may also specify an output_folder_for_yeti_format_data. If the mode is berlin_format, the yeti_format
files generated by YETI will be saved in the output_folder_for_yeti_format_data. If no
output_folder_for_yeti_format_data is given, the yeti_format files will be saved in the output_folder.
If you are using mode yeti_format, this argument is ignored.

Example:

output_folder: emission_output/
output_folder_for_yeti_format_data: yeti_format_data_new/

Optional config arguments

links_to_use
You may specify a list of LinkID s that should be used for this run. All links with IDs that are not in the
given list will be ignored. Example:

 Data Requirements

Data Requirements

YETI is a street level model. This means that the road network you want to calculate emissions for needs to be
divided into street links.

Find example datasets in example/example_berlin_format_data and example/example_yeti_format_data.

The two data classes

We differentiate between berlin_format and yeti_format.

berlin_format is data in the format that we were using at the start of
this project. It is not ideal for the calculations and needs to be
transformed to a different format more suitable for the emissions
calculation.

yeti_format is data in a unified format. It defines a layer of abstraction between the
berlin_format data and the emission calculation. We provide functions to
transform berlin_format data to yeti_format data for all Strategies.

The data that you are working with is likely in a different
format than our berlin_format, however chances are that you can
tranform your data to fit the yeti_format. If this is the
case, you only need to
write a function to convert your data [https://iass-yeti.readthedocs.io/en/latest/developer/add_load_berlin_format_data_function.html]
to yeti_format. Once this is done you can use YETI with your data and
don’t need to adapt any other part of the system.

Data requirements depend on Strategy

The data requirements depend on how you want to calculate emissions. For
example calculating emissions with the COPERT methodology requires
different input data than a calculation with the HBEFA methodology.

Take a look at the docs [https://iass-yeti.readthedocs.io/en/latest/user/what_is_strategy.html]
page of the Strategy you want to use to find out about the data requirements for that Strategy.

File format

All data files are csv files. They use comma (‘ , ‘) as seperator and the dot (‘ . ‘) for decimal points.

berlin_format

All Strategies need the following three files in berlin_format:

[image: ../_images/berlin_format_data.png]
How to read this diagram?

link data

This is a file with data about the street links in the region you are examining. Each street link corresponds to one line
in the link data file. These are the columns:

	LinkID: The unique ID for the street link

	Length_m: The length of the link in meters

	AreaCat: The area category for the street link. Currently allowed area categories are:
0 for rural and 1 for urban. If your input data uses different categories, you
can change the data loading behaviour to
support other categories.

	RoadCat: The road category for the street link. Currently allowed area categories are
listed below. If your input data uses different categories, you can change the data
loading behaviour to support other categories.

6 = Motorway-Nat.
5 = Motorway-City
9 = Trunk road / Primary-Nat.
8 = Trunk road / Primary-City
1 = Distributer / Secondary
3 = Loacal / Collector
0 = Access-residential

	MaxSpeed_kmh: The legal maximum speed for the street link in km/h

	PC_Perc: The percentage of passenger cars of total traffic at the link

	LCV_Perc: The percentage of light commercial vehicles of total traffic at the link

	HDV_Perc: The percentage of heavy duty vehicles of total traffic at the link

	Coach_Perc: The percentage of coaches of total traffic at the link

	UBus_Perc: The percentage of urban buses of total traffic at the link

	MC_Perc: The percentage of motorcycles and mopeds of total traffic at the link

Example:

	LinkID

	AreaCat

	RoadCat

	MaxSpeed_kmh

	PC_Perc

	LCV_Perc

	HDV_Perc

	Coach_Perc

	UBus_Perc

	MC_Perc

	42_123

	0

	5

	100

	0.4

	0.2

	0.05

	0.15

	0.1

	0.1

	65_485

	1

	3

	30

	0.8

	0.05

	0

	0

	0.1

	0.05

traffic data

This file contains the total vehicle count at for each street link, direction, day type and hour. It also contains
the distribution of traffic across the different levels of service. It has these columns:

	LinkID: The unique ID for the street link. The LinkIDs need to match the LinkIDs in the link data.

	Dir: The traffic direction for the given street link:

0 = left
1 = right

	DayType: One of four day types:

1 = Monday to Thursday
2 = Friday
3 = Saturday
7 = Sunday or Holiday

	Hour: A number between 0 and 23.

	VehCount: The total number of cars at the given street link for the given day type, hour and direction.

	LOSxPerc: The percentage of traffic attributed to the x level of service. Currently implemented levels
of service: 1 (Freeflow), 2 (Heavy), 3 (Satur.), and 4 (St+Go).

Example:

	LinkID

	Dir

	DayType

	Hour

	VehCount

	LOS1Percentage

	LOS2Percentage

	LOS3Percentage

	LOS4Percentage

	42_123

	0

	1

	0

	4

	1

	0

	0

	0

	65_485

	1

	7

	9

	80

	0.2

	0.5

	0.4

	0.1

fleet composition data

This file contains data on the composition of the fleet. The fleet composition applies to all links. It contains these
columns:

	VehName: The name of a vehicle class. For example PC petrol <1.4L Euro-1.

	VehCat: The category of the vehicle. Possible vehicle categories are:

- P = passenger cars
- L = light commercial vehicles
- S = heavy duty vehicles
- R = coaches
- B = urban buses
- Moped = mopeds
- M = motorcycles

	VehPercOfCat: The percentage of the vehicle with regard to all vehicles of its category. Should be between 0 and 1.

	NumberOfAxles: The number of axles for the given vehicle. This is only relevant for vehicles belonging to one of
these categories: S, R, or B. This column needs to be present, however its contents are only used
for the Strategy PMNonExhaustStrategy. So if you don’t have the number of axles data, you can leave the
column blank for all other Strategies.

Example:

	VehName

	VehCat

	VehPercOfCat

	NumberOfAxles

	PC petrol <1.4L Euro-1

	P

	0.2

	

	LCV diesel M+N1-I Euro-2

	L

	0.003

	

yeti_format

All Strategies work with these yeti_format datasets:

[image: ../_images/yeti_format_data.png]
How to read this diagram?

yeti_format link data

This is a file with data about the street links in the region you are examining. Each street link
corresponds to one line in the yeti_format link data file. It has these columns:

	LinkID: The unique ID for the street link

	Length: The length of the link in kilometers

	RoadType: The road type for the street link. Possible road categories are:

RoadType.MW_Nat = Motorway-Nat.
RoadType.MW_City = Motorway-City
RoadType.Trunk_Nat = Trunk road / Primary-Nat.
RoadType.Trunk_City = Trunk road / Primary-City
RoadType.Distr = Distributer / Secondary
RoadType.Local = Loacal / Collector
RoadType.Access = Access-residential

	AreaType: The area type for the street link. Possible area categories are:

AreaType.Urban = rural
AreaType.Rural = urban

	MaxSpeed: The legal maximum speed for the street link in km/h.

Example:

	LinkID

	AreaType

	RoadType

	MaxSpeed

	42_123

	AreaType.Rural

	RoadType.MW_City

	100

	65_485

	AreaType.Urban

	RoadType.Local

	30

yeti_format traffic data

This file contains vehicle count data for every vehicle in yeti_format vehicle data and for each street link, direction,
day type and hour. It has these columns:

	LinkID: The unique ID for the street link. The LinkIDs need to match the LinkIDs in the yeti_format link data.

	Dir: The traffic direction for the given street link:

Dir.R = right
Dir.L = left

	DayType: One of four day types:

DayType.MONtoTHU = Monday to Thursday
DayType.FRI = Friday
DayType.SAT = Saturday
DayType.SUN = Sunday or Holiday

	Hour: A number between 0 and 23.

	vehicle i: The number of vehicles belonging to class vehicle i at the street link for the
given day type, hour and direction. The file needs to contain vehicle count columns for
all vehicle names in the yeti_format vehicle data.

	LOSxPercentage: The percentage of traffic attributed to the x level of service. Currently implemented levels
of service: 1 (Freeflow), 2 (Heavy), 3 (Satur.), and 4 (St+Go).

Example

	LinkID

	Dir

	DayType

	Hour

	PC petrol <1.4L Euro-1

	LCV diesel M+N1-I Euro-2

	42_123

	Dir.L

	DayType.MONtoTHU

	0

	0.32

	0.0023999999

	65_485

	Dir.R

	DayType.SUN

	9

	12.8

	0.012

yeti_format vehicle data

A dataset linking each vehicle class to its category.

	VehicleName: The name of a vehicle class. For example PC petrol <1.4L Euro-1.

	VehicleCategory: The vehicle category the vehicle class belongs to. These are the possible categories:

VehicleCategory.PC = passenger cars
VehicleCategory.LCV = light commercial vehicles
VehicleCategory.HDV = heavy duty vehicles
VehicleCategory.COACH = coaches
VehicleCategory.UBUS = urban buses
VehicleCategory.MOPED = mopeds
VehicleCategory.MC = motorcycles

	NumberOfAxles: The number of axles for the given vehicle. This is only relevant for vehicles belonging to one of
these categories: VehicleCategory.HDV, VehicleCategory.COACH, or VehicleCategory.UBUS.
This column needs to be present, however its contents are only used
for the Strategy PMNonExhaustStrategy. So if you don’t have the number of axles data, you can leave the
column blank for all other Strategies.

Example

	VehicleName

	VehicleCategory

	NumberOfAxles

	PC petrol <1.4L Euro-1

	VehicleCategory.PC

	

	LCV diesel M+N1-I Euro-2

	VehicleCategory.LCV

	

 Output data

Output data

Data format

The model outputs one or multiple csv files. How many files are generated depends on the
Strategy used for the run.

The output files will be in this format:

[image: ../_images/emissions_output.png]
How to read this diagram?

	LinkID: The ID for the street link this row contains emissions data for.

	Dir: The traffic direction. Dir.R or Dir.L.

	DayType: One of four day types. DayType.MONtoTHU, DayType.FRI, DayType.SAT, or DayType.SUN.

	Hour: A number between 0 and 23.

	vehicle i: The emissions for the vehicle class named ‘vehicle i’ at the street link and for the given direction,
day type and hour. A real number.

Note that the emission columns match the vehicle names given in the fleet composition data file
(if using data in berlin_format) or the vehicle data file (if using data in yeti_format).

Output location

In the config file you specify an output_folder. The model outputs will be in the specified output_folder.

files in yeti_format

If you are using mode berlin_format, YETI generates files in unifed_data format during the run. These files are saved
in output_folder. If you specify output_folder_for_yeti_format_data in the config file, the yeti_format
files will be in output_folder_for_yeti_format_data instead.

 What is a Strategy?

What is a Strategy?

A Strategy implements a specific methodology/algorithm for calculating traffic emissions.
For example the CopertHotStrategy implements emission calculation with the COPERT methodology for hot emissions.

Each model run uses a specific Strategy to calculate emissions. Almost all configuration parameters are dependent on
the Strategy used. For instance the data requirements are different for all Strategies and most Strategies need
additional configuration parameters.

The use of Strategies makes it easy to extend YETI and include new ways of calculating emissions. If you
want to use a custom Strategy, look here.

List of Strategies

Take a look at the individual Strategy pages for further details.

	CopertColdStrategy

	CopertHotStrategy

	CopertHotFixedSpeedStrategy

	HbefaHotStrategy

	PMNonExhaustStrategy

 CopertStrategy

CopertStrategy

The CopertStrategy implements emission calculation for hot and (optionally) cold emissions focusing on
calculation with the Copert methodology.

Note

The possible configurations for this Strategy can become quite complex. Please have a look at the
example config files copert_config.yaml, copert_hot_config.yaml,
copert_cold_config.yaml, and copert_hot_fixed_speed_config.yaml in the folder
example/example_configs/. They contain example configurations
for the CopertStrategy and may help you to understand how the CopertStrategy can be used.

hot emissions

The Copert methodology for hot emissions is used to calculate hot emissions. By default the CopertHotStrategy
is used to calculate hot emissions.
If the config argument fixed_speed is set to True, the CopertHotFixedSpeedStrategy is used to
calculate hot emissions using fixed speeds instead.

cold emissions

By default the CopertColdStrategy is used to calculate cold emissions. In the config file the argument
cold_strategy may be used to specify the path to a different Strategy. If a cold_strategy is
given in the config file it will be used instead of the CopertColdStrategy. Note that cold emissions are only
calculated if the config argument only_hot is not set to True.

A note on the data loading process

The conversion of berlin_format data to yeti_format data is conducted independently for the hot
and the cold Strategies. This is done to keep the dependencies between the hot and cold Strategies
to a minimum. It enables the CopertStrategy to work with any cold Strategy you want.

The consequence is that some computations may be done twice, because they are done by both
the hot and the cold load_berlin_format_data_function s. The constructed yeti_format files
will be in two subfolders of the output folder (the output folder is specified in the config file).

Data Requirements

What data is required for the CopertStrategy depends on the config arguments. There are several cases:

	
	only_hot is set to yes in the config file.

	
	fixed_speed is set to yes in the config file. Then the Data Requirements are the same as for the
CopertHotFixedSpeedStrategy.

	fixed_speed is set to no or not given in the config file. Then the DataRequirements are the
same as for the CopertHotStrategy.

	
	only_hot is set to no or not given in the config file.

	
	The argument cold_strategy is given in the config file. Then the Data Requirements are the same as for the given
cold_strategy and the CopertHotStrategy (or CopertHotFixedSpeedStrategy
depending on the config argument fixed_speed).

	The argument cold_strategy is not given in the config file. Then the Data Requirements are the same as for the
CopertColdStrategy and the CopertHotStrategy (or CopertHotFixedSpeedStrategy
depending on the config argument fixed_speed).

What to put in the config.yaml

If you want to use the CopertStrategy for your calculations, you need to set the following options
in your config.yaml. Don’t forget to add the parameters specified here: Configuring YETI

If using mode berlin_format:

mode: berlin_format
strategy: code.copert_strategy.CopertStrategy.CopertStrategy
load_berlin_format_data_function: code.copert_strategy.load_berlin_format_data.load_copert_berlin_format_data
load_yeti_format_data_function: code.copert_strategy.load_yeti_format_data.load_copert_yeti_format_data

only_hot: no # or yes. Default is no
fixed_speed: no # or yes. Default is no

[..] # add the file locations for the data required by the CopertHotStrategy (or CopertHotFixedSpeedStrategy depending on fixed_speed)
[..] # add any additional args that you want to pass to the CopertHotStrategy (or CopertHotFixedSpeedStrategy depending on fixed_speed)

if only_hot is yes, the following arguments may be omitted.
cold_strategy: path.to.ColdStrategy
cold_load_berlin_format_data_function: path.to.load_berlin_format_data_function.for.cold_strategy
cold_load_yeti_format_data_function: path.to.load_yeti_format_data_function.for.cold_strategy

[..] # add the file locations of any additional files needed for the cold_strategy
[..] # add any additional args that you want to pass to the cold_strategy

If using mode yeti_format:

mode: yeti_format
strategy: code.copert_strategy.CopertStrategy.CopertStrategy
load_yeti_format_data_function: code.copert_strategy.load_yeti_format_data.load_copert_yeti_format_data

only_hot: no # or yes. Default is no
fixed_speed: no # or yes. Default is no

[..] # add the file locations for the data required by the CopertHotStrategy (or CopertHotFixedSpeedStrategy depending on fixed_speed)
[..] # add any additional args that you want to pass to the CopertHotStrategy (or CopertHotFixedSpeedStrategy depending on fixed_speed)

if only_hot is yes, the following arguments may be omitted.
cold_strategy: path.to.ColdStrategy
cold_load_yeti_format_data_function: path.to.load_yeti_format_data_function.for.cold_strategy

[..] # add the file locations of any additional files needed for the cold_strategy
[..] # add any additional args that you want to pass to the cold_strategy

How to deal with naming conflicts

Naming conflicts between the config arguments for the hot Strategy and the arguments for the
cold Strategy are a possible issue. For example berlin_format_emission_factors is a config argument
for the CopertHotStrategy and for the HbefaColdStrategy, however the two Strategies require input data
in a different format. How do we deal with this issue when we want to use the HbefaColdStrategy to
calculate cold emissions with the CopertStrategy?

We solve this naming issue by prefixing the argument that should go to the hot Strategy with hot_[..].
The argument that should go to the cold Strategy is prefixed with cold_[..].

In our example for berlin_format_emission_factors we would add these lines to the config:

hot_berlin_format_emission_factors: path/to/ef_data_for_hot_strategy.csv
cold_berlin_format_emission_factors: path/to/ef_data_for_cold_strategy.csv

If the two Strategies require the same config argument, there is no need to add prefixes. For example the config argument
berlin_format_link_data is required for the CopertHotStrategy and the HbefaColdStrategy. However both
Strategies require the exact same data. Therefore it is sufficient to specify it once:

berlin_format_link_data: path/to/berlin_format_link_data.csv

A note on the validation_function

We currently don’t provide a dedicated validation function for this Strategy. However in most cases you can use a
validation function for a different Strategy. Consider these cases:

	
	only_hot is set to yes in the config file.

	
	fixed_speed is set to yes in the config file. You can use the validation function for the
CopertHotFixedSpeedStrategy.

	fixed_speed is set to no or not given in the config file. You can use the validation function for the
CopertHotStrategy.

	
	only_hot is set to no or not given in the config file.

	
	cold_strategy is given in the config file. In this case we don’t provide a valiation function that you can use
out of the box. If you want to use validation, you will have to
write your own valiation function.

	cold_strategy is not given in the config file. You can use the validation function for the
CopertColdStrategy.

Output

The output of this Strategy depends on the config arguments. There are three cases:

	only_hot is set to True. Then the output is the same as for the CopertStrategy or the
CopertHotFixedSpeedStrategy (depending on the the value of the fixed_speed config argument)

	only_hot is not set to True and no cold_strategy is given in the config file.
Then the output is the same as for the CopertColdStrategy.

	only_hot is not set to True and a cold_strategy is given in the config file.
Then the output consists of the files generated by the CopertHotStrategy or CopertHotFixedSpeedStrategy
(prefixed with hot_[..]) and the files produced by the cold_strategy (prefixed with cold_[..]).

 CopertHotStrategy

CopertHotStrategy

Note

It is recommended to use the CopertStrategy with the config argument only_hot: yes
instead of this Strategy.

The CopertHotStrategy implements emission calculation with the
EEA Tier 1 methodology [https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/] for hot exhaust emissions
using COPERT [http://www.emisia.com/utilities/copert/] emission factors.

This Strategy uses speed-dependent emission factors with flexible speeds dependent on the level of service.
When developing YETI we had access to speed data that depended on the level of service, so we chose
to get the speed used for the COPERT emission factor calculation from there. If your speed data has a different format,
you can add your own Strategy to work with your speed data.

Data requirements

What data the CopertHotStrategy requires depends on the mode set in the configuration file for the run.

Data requirements for mode berlin_format

[image: ../_images/copert_hot_berlin_format_data_requirements.png]
How to read this diagram?

link data
Just like the link data required for the other Strategies. Look here.

 CopertHotFixedSpeedStrategy

CopertHotFixedSpeedStrategy

Note

It is recommended to use the CopertStrategy with the config arguments
only_hot: yes and fixed_speed: yes instead of this Strategy.

The CopertHotFixedStrategy implements emission calculation with the COPERT methodology
for hot emissions at the street level. It uses speed-dependent emission factors with fixed
speed values.

There are two ways to specify the fixed speed:

	Add the parameter v: {speed, an integer} to your configuration file. The specified speed
is used for all emission calculations.

	Add a speed column (Speed_kmh) to the input file with the link data to specify a fixed
speed for all emission calculations at a particular street link.

If you include v in the config file and add a speed column to the link data, the speed value in
v will take precedence.

Data requirements

What data the CopertHotFixedSpeedStrategy requires depends on the mode set in the configuration file for the run.

Data requirements for mode berlin_format

The same data in berlin_format as CopertHotStrategy is required with these modifications:

	los speeds data is not required.

	The link data may contain the column Speed_kmh with fixed speeds for each street link.

	The traffic data does not need to contain los percentage columns (LOS1Perc … LOS4Perc).

Data requirements for mode yeti_format

The same data in yeti_format as CopertHotStrategy is required with these modifications:

	yeti_format los speeds data is not required.

	The yeti_format link data may contain the column Speed with fixed speeds for each street link.

	The yeti_format traffic data does not need to contain los percentage columns (LOS1Percentage … LOS4Percentage)

Supported pollutants

CopertHotFixedSpeedStrategy supports these pollutants:

PollutantType.NOx
PollutantType.CO
PollutantType.NH3
PollutantType.VOC
PollutantType.PM_Exhaust

Set the pollutants for a run in your config file. For example:

pollutants: [PollutantType.CO, PollutantType.NOx]

Make sure to include emission factors for the pollutants you are using in the emission factor data.

What to put in the config.yaml

If you want to use the CopertHotFixedSpeedStrategy for the your calculations, you need to set
the following options in your config.yaml.
Don’t forget to add the parameters specified here: Configuring YETI.

If using mode berlin_format:

strategy: code.copert_hot_fixed_speed_strategy.CopertHotFixedSpeedStrategy.CopertHotFixedSpeedStrategy
load_berlin_format_data_function: code.copert_hot_fixed_speed_strategy.load_berlin_format_data.load_copert_fixed_speed_berlin_format_data
load_yeti_format_data_function: code.copert_hot_fixed_speed_strategy.load_yeti_format_data.load_copert_fixed_speed_yeti_format_data
validation_function: code.copert_hot_fixed_speed_strategy.validate.validate_copert_fixed_speed_berlin_format_files

if you want to use a global speed for all links, include this:
v: 50

berlin_format_link_data: path/to/link_data.csv
berlin_format_fleet_composition: path/to/fleet_composition_data.csv
berlin_format_emission_factors: path/to/emission_factor_data.csv
berlin_format_traffic_data: path/to/traffic_data.csv
berlin_format_vehicle_mapping: path/to/vehicle_mapping_data.csv

use_nh3_tier2_ef: yes or no
if you set use_nh3_tier2_ef to yes, also add these lines:
berlin_format_nh3_emission_factors: path/to/nh3_emission_factor_data.csv
berlin_format_nh3_mapping: path/to/nh3_mapping_data.csv

You may have data on Tier 2 emission factors for NH3. If you set use_nh3_tier2_ef: yes in the config file,
YETI will read them from the specified files and use them in the emission calculation for pollutant PollutantType.NH3.

If using mode yeti_format:

strategy: code.copert_hot_fixed_speed_strategy.CopertHotFixedSpeedStrategy.CopertHotFixedSpeedStrategy
load_yeti_format_data_function: code.copert_hot_fixed_speed_strategy.load_yeti_format_data.load_copert_fixed_speed_yeti_format_data
validation_function: code.copert_hot_fixed_speed_strategy.validate.validate_copert_fixed_speed_yeti_format_files

if you want to use a global speed for all links, include this:
v: 50

yeti_format_emission_factors: path/to/yeti_format_ef_data.csv
yeti_format_vehicle_data: path/to/yeti_format_vehicle_data.csv
yeti_format_link_data: path/to/yeti_format_link_data.csv
yeti_format_traffic_data: path/to/yeti_format_traffic_data.csv

 CopertColdStrategy

CopertColdStrategy

Warning

This Strategy cannot be used by itself. It can only be used as a cold_strategy with
the CopertStrategy or the HbefaStrategy.

The CopertColdStrategy implements emission calculation with the
COPERT methodology for cold start emissions [https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/].
It uses global assumptions about the average length of a trip (in km/h) and the average ambient temperature
(in degrees Celsius) that are set in the configuration file.

Also in the configuration file you may specify some road types and area types that will be excluded
from the cold emission calculation. This means that cold emissions will be zero for all vehicles at links that belong
to the road types or area types that you want to exclude.
Possible road types to be excluded are: MW_Nat, MW_City, Trunk_Nat, Trunk_City, Distr,
Local, and Access. Area types that can be excluded are Rural and Urban.

The CopertColdStrategy takes the emissions from the hot strategy that is used in the
CopertStrategy or HbefaStrategy as input. It uses the hot emissions to derive hot emission
factors and to calculate total emissions.

Output of a model run with this Strategy are two csv files per pollutant:

	cold start emissions

	total emissions

Data requirements

What data the CopertColdStrategy requires depends on the mode set in the configuration file for the run.

Data requirements for mode berlin_format

All input data in berlin_format required by the CopertHotStrategy is also required for the CopertColdStrategy.

Additionally a file with cold emission factors is required:

[image: ../_images/cold_ef_table.png]
How to read this diagram?

This is the cold ef table as provided by EEA recommendations.

	Pollutant: One of the following: CO, NOx, or VOC.

	VehSegment: A vehicle segment. One of the following: Mini, Small, Medium, or Large-SUV-Executive.

	MinSpeed: The minimum speed the A,B and C values in this row are valid for.

	MaxSpeed: The maximum speed the A,B and C values in this row are valid for.

	MinTemp: The minimum temperature the A,B and C values in this row are valid for.

	MaxTemp: The maximum temperature the A,B and C values in this row are valid for.

	A: The A parameter for the cold ef calculation.

	B: The B parameter for the cold ef calculation.

	C: The C parameter for the cold ef calculation.

Example:

	Pollutant

	VehSegment

	MinSpeed

	MaxSpeed

	MinTemp

	MaxTemp

	A

	B

	C

	CO

	Mini

	5

	25

	-20

	15

	0.563

	-0.895

	4.964

	CO

	Mini

	26

	45

	-20

	15

	0.842

	-0.349

	3.485

	CO

	Mini

	5

	45

	15

	
	0.222

	-0.876

	10.12

Data requirements for mode yeti_format

All data in yeti_format required by the CopertHotStrategy is also required for the CopertColdStrategy.

Additional requirements:

	A file with cold emission factors is required, as described above.

	A vehicle mapping file is required. It needs to be in this format.

Supported Pollutants

CopertColdStrategy supports these pollutants:

PollutantType.CO
PollutantType.NOx
PollutantType.VOC

Set the pollutants for a run in your config file. For example:

pollutants: [PollutantType.CO, PollutantType.NOx]

Make sure to include emission factors for the pollutants you are using in the emission factor data.

What to put in the config.yaml

If you want to use the CopertColdStrategy for your calculations, you need to set
the following options in your config.yaml.
Don’t forget to add the parameters specified here: Configuring YETI

If using mode berlin_format:

strategy: code.copert_strategy.CopertStrategy.CopertStrategy
load_berlin_format_data_function: code.copert_strategy.load_berlin_format_data.load_copert_berlin_format_data
load_yeti_format_data_function: code.copert_strategy.load_yeti_format_data.load_copert_yeti_format_data
validation_function: code.copert_cold_strategy.validate.validate_copert_cold_berlin_format_files

berlin_format_link_data: path/to/link_data.csv
berlin_format_fleet_composition: path/to/fleet_composition_data.csv
berlin_format_emission_factors: path/to/emission_factor_data.csv
berlin_format_los_speeds: path/to/los_speeds_data.csv
berlin_format_traffic_data: path/to/traffic_data.csv
berlin_format_vehicle_mapping: path/to/vehicle_mapping_data.csv
berlin_format_cold_ef_table: path/to/cold_ef_table.csv

ltrip: 12 # the average length of a trip in km/h
temperature: 15 # the average ambient temperature in °C
exclude_road_types: [MW_City] # Exclude multiple road types like this: [MW_City, Trunk_City]
exclude_area_types: [Rural] # Or: [Urban]

If using mode yeti_format:

strategy: code.copert_strategy.CopertStrategy.CopertStrategy
load_yeti_format_data_function: code.copert_strategy.load_yeti_format_data.load_copert_yeti_format_data
validation_function: code.copert_cold_strategy.validate.validate_copert_cold_yeti_format_files

yeti_format_emission_factors: path/to/yeti_format_ef_data.csv
yeti_format_los_speeds: path/to/yeti_format_los_speed_data.csv
yeti_format_vehicle_data: path/to/yeti_format_vehicle_data.csv
yeti_format_link_data: path/to/yeti_format_link_data.csv
yeti_format_traffic_data: path/to/yeti_format_traffic_data.csv
yeti_format_cold_ef_table: path/to/cold_ef_table.csv
yeti_format_vehicle_mapping: path/to/vehicle_mapping_data.csv

ltrip: 12 # the average length of a trip in km/g
temperature: 15 # the average ambient temperature in °C
exclude_road_types: [MW_City] # Exclude multiple road types like this: [MW_City, Trunk-City]
exclude_area_types: [Rural] # Or: [Urban]

 HbefaStrategy

HbefaStrategy

The HbefaStrategy implements emission calculation for hot and (optionally) cold emissions focusing
on calculation with the Hbefa methodology.

Note

The possible configurations for this Strategy can become quite complex. Please have a look at the
example config files hbefa_config.yaml, hbefa_hot_config.yaml,
and hbefa_hot_and_copert_cold_config.yaml in the folder
example/example_configs/. They contain example configurations
for the HbefaStrategy and may help you to understand how the HbefaStrategy can be used.

hot emissions

The HbefaHotStrategy is used to calculate hot emissions.

cold emissions

By default the HbefaColdStrategy is used to calculate cold emissions. In the config file the argument
cold_strategy may be used to specify the path to a different Strategy. If a cold_strategy is
given in the config file it will be used instead of the HbefaColdStrategy. Note that cold emissions are only
calculated if the config argument only_hot is not set to True.

A note on the data loading process

The conversion of berlin_format data to yeti_format data is conducted independently for the hot
and the cold Strategies. This is done to keep the dependencies between the hot and cold Strategies
to a minimum. It enables the HbefaStrategy to work with any cold Strategy you want.

The consequence is that some computations may be done twice, because they are done by both
the hot and the cold load_berlin_format_data_function s. The constructed yeti_format files
will be in two subfolders of the output folder (the output folder is specified in the config file).

Data Requirements

The data required for the HbefaHotStrategy is required for the HbefaStrategy in all cases.

If only_hot is set to no or not given in the config file additional data is required depending on
the config argument cold_strategy:

	The argument cold_strategy is not given in the config file. Then the data required for the
CopertColdStrategy is also required.

	The argument cold_strategy is given in the config file. Then the data required for the given cold_strategy is also required.

What to put in the config.yaml

If you want to use the HbefaStrategy for your calculations, you need to set the following options
in your config.yaml. Don’t forget to add the parameters specified here: Configuring YETI

If using mode berlin_format:

mode: berlin_format
strategy: code.hbefa_strategy.HbefaStrategy.HbefaStrategy
load_berlin_format_data_function: code.hbefa_strategy.load_berlin_format_data.load_hbefa_berlin_format_data
load_yeti_format_data_function: code.hbefa_strategy.load_yeti_format_data.load_hbefa_yeti_format_data

only_hot: no # or yes. Default is no

[..] # add the file locations for the data required by the HbefaHotStrategy

if only_hot is yes, the following arguments may be omitted.
cold_strategy: path.to.ColdStrategy
cold_load_berlin_format_data_function: path.to.load_berlin_format_data_function.for.cold_strategy
cold_load_yeti_format_data_function: path.to.load_yeti_format_data_function.for.cold_strategy

[..] # add the file locations of any additional files needed for the cold_strategy
[..] # add any additional args that you want to pass to the cold_strategy

If using mode yeti_format:

mode: yeti_format
strategy: code.copert_strategy.HbefaStrategy.HbefaStrategy
load_yeti_format_data_function: code.hbefa_strategy.load_yeti_format_data.load_hbefa_yeti_format_data

only_hot: no # or yes. Default is no

[..] # add the file locations for the data required by the HbefaHotStrategy

if only_hot is yes, the following arguments may be omitted.
cold_strategy: path.to.ColdStrategy
cold_load_yeti_format_data_function: path.to.load_yeti_format_data_function.for.cold_strategy

[..] # add the file locations of any additional files needed for the cold_strategy
[..] # add any additional args that you want to pass to the cold_strategy

How to deal with naming conflicts

Naming conflicts between the config arguments for the hot Strategy and the arguments for the
cold Strategy are an issue that you will certainly encounter. For example berlin_format_emission_factors is a config argument
for the HbefaHotStrategy and for the HbefaColdStrategy, however the two Strategies require input data
in a different format. How do we deal with this issue when we want to use the HbefaColdStrategy to
calculate cold emissions with the HbefaStrategy?

We solve this naming issue by prefixing the argument that should go to the hot Strategy with hot_[..].
The argument that should go to the cold Strategy is prefixed with cold_[..].

In our example for berlin_format_emission_factors we would add these lines to the config:

hot_berlin_format_emission_factors: path/to/ef_data_for_hot_strategy.csv
cold_berlin_format_emission_factors: path/to/ef_data_for_cold_strategy.csv

If the two Strategies require the same config argument, there is no need to add prefixes. For example the config argument
berlin_format_link_data is required for the HbefaHotStrategy and the HbefaColdStrategy. However both
Strategies require the exact same data. Therefore it is sufficient to specify it once:

berlin_format_link_data: path/to/berlin_format_link_data.csv

A note on the validation_function

We currently don’t provide a dedicated validation function for this Strategy.
If you are only calculating hot emissions (set only_hot: yes in the config file)
you can use the validation function for the HbefaHotStrategy.

Output

The output of this Strategy depends on the config arguments. There are three cases:

	only_hot is set to True. Then the output is the same as for the HbefaHotStrategy.

	only_hot is not set to True and no cold_strategy is given in the config file.
Then the output consists of the files generated by the HbefaHotStrategy
(prefixed with hot_[..]) and the files produced by the HbefaColdStrategy (prefixed with cold_[..]).

	only_hot is not set to True and a cold_strategy is given in the config file.
Then the output consists of the files generated by the HbefaHotStrategy
(prefixed with hot_[..]) and the files produced by the cold_strategy (prefixed with cold_[..]).

 HbefaHotStrategy

HbefaHotStrategy

HbefaHotStrategy implements emission calculation with the HBEFA methodology for hot exhaust emissions.
It uses emission factors that are dependent on the vehicle and the traffic situation.

We used HBEFA emission factors and values from the database [https://www.hbefa.net/e/index.html] v3.3.

Data Requirements

What data the HbefaHotStrategy requires depends on the mode set in the configuration file for the run.

Data requirements for mode berlin_format

[image: ../_images/hbefa_hot_berlin_format_data_requirements.png]
How to read this diagram?

link data
Just like the link data required for the other Strategies. See here.

 PMNonExhaustStrategy

PMNonExhaustStrategy

The PMNonExhaustStrategy implements emission calculation for PM from non-exhaust emissions.
Sources for PM non-exhaust emissions are tyre wear, brake wear and road surface emissions.

It uses a global assumption about the load_factor for trucks. You need to specify the assumed load_factor
in the configuration file as a number between 0 and 1.

This Strategy calculates TSP, PM 10, and PM 2.5 emissions independently
for tyre wear, brake wear, and road surface wear. Then it adds up the emissions
from all sources to obtain total PM non-exhaust emissions for TSP, PM 10, and PM 2.5.

Output of a model run with this Strategy are three csv files:

	TSP emissions

	PM 10 emissions

	PM 2.5 emissions

Data Requirements

What data the PMNonExhaustStrategy requires depends on the mode set in the configuration file for the run.

Data requirements for mode berlin_format

[image: ../_images/pm_non_exhaust_berlin_format_data_requirements1.png]
How to read this diagram?

link data
Just like the link data required for the other Strategies. See here.

 How to support more pollutants, area types, …

How to support more pollutants, area types, …

About

The docs impose a lot of restrictions on the input data. For example:

	The number of supported pollutants is quite small.

	There can only be two directions and two area types in the link data: R/L and 0/1 respectively.

	There are four day types: 1,2,3,7.

	The number of vehicle types is limited and their names are set.

This page covers how to work around these restrictions to make YETI work with your data.

Where do restrictions exist?

The restrictions for the input data are in place because some values are hard-coded. This applies to

	The conversion from berlin_format to yeti_format data for all Strategies.

	Some strategies use hard-coded values for the calculation step, thus imposing restrictions on
the input data. Most Strategies don’t.

Below are the Strategies that don’t impose any restrictions on the input data for the calculation step.
Remember that these Strategies still impose restrictions when it comes to converting berlin_format data to yeti_format data.

	CopertHotStrategy

	CopertHotFixedSpeedStrategy

	HbefaColdStrategy

	PMNonExhaustStrategy

The following Strategies impose some restrictions on the input data for the calculation step:

	HbefaHotStrategy: Possible road types and area types are hard-coded.
Refer to the docs page for HbefaHotStrategy for more.

	CopertColdStrategy: Possible pollutant types and vehicle categories are hard-coded.
Refer to the docs page for CopertColdStrategy for more.

How to work around the restrictions

If you want to work with data in berlin_format you will have to write your own load_berlin_data_function
that does not enforce the restrictions. The function should convert
your data to yeti_format. Make sure that the data in yeti_format is complete and coherent.
Look here for more information: Support a new data format

If you are already working with data in yeti_format you don’t need to write new data loading functions.

This should be sufficient for the Strategies that enforce restrictions for the calculation step, as listed above.
If you want to work with a Strategy that does enforce restrictions for the calculation step, you may need
to take additional action:

	If your data does not conflict with the hard-coded values nothing else needs to be done. Refer to the list above
to see which values are hard-coded in the Strategies. For example if you want to use different vehicle categories,
you don’t need to change the HbefaHotStrategy (it only uses hard-coded values for road and area types, not for
vehicle categories).

	If your data does conflict with the hard-coded values you need to change code for the Strategy. How exactly you need to change
the Strategy depends on the exact format of the data you want to use.

 How does it work?

How does it work?

Overview

[image: ../_images/high-level-process.png]

Validation

Data validation checks the format of the given files:

	All necessary columns are present

	The mapping files contain all the necessary values and do a correct mapping

	The levels in categorical columns are correct

	Percentage columns contain percentage values

Eather mode can use data validation. Data validation is done by a function designed specifically for data validation.
We provide validation functions for some Strategies. If you want to add data validation for your own Strategies
and datasets, look here: Change how data is validated

Specify the validation function to be used in the config:

validation_function: path.to.the.validation_function

You may not want to use data validation or no validation function may exists for the desired Strategy.
If that is the case simply don’t include the above statement in your config to skip validation.

Load data in berlin_format and convert it to data in yeti_format

This is the part where data in berlin_format is converted to data in yeti_format. It is only relevant for mode berlin_format.
The conversion is done by a function. Which function you want to use depends on the format of your input data
and on which Strategy you are looking to use. We provide functions to load and convert berlin_format data for all Strategies.

If you want to work with your own dataset, you will likely have to write your own function for this.
Look here for information on how to do that: Support a new data format

Specify the function to be used in the config:

load_berlin_format_data_function: path.to.the.berlin_format_data_loading_function

Note that the product of this step are multiple files containing the data in yeti_format. The files
will be loaded into memory in the next step.

Load data in yeti_format from file

Load the yeti_format dataset from file. This step is relevant for all modes. It will select the right columns
and set the correct data types.

Just like two steps above, this step is done by a function. You can specify the function to be used in the config:

load_yeti_format_data_function: path.to.the.yeti_format_data_loading_function

If you are working with data that can be converted to fit the yeti_format, you should not have to write your own
function for this step. If you do need to adapt how the data in yeti_format is loaded from file, look here:
Change how data in yeti_format is loaded

Calculate emissions from data in yeti_format using a Strategy

This step calculates and saves emissions with a Strategy. If you don’t know what a Strategy is, look here:
What is a Strategy?

Specify the Strategy to be used in the config:

strategy: path.to.the.Strategy

If you want to add a new way to calculate emissions, you need to add a new Strategy to the model. Look here for
instructions: Add a Strategy

 Add a Strategy

Add a Strategy

Add a new Strategy if you want to support a new methodology/algorithm for emission calculation.
Before you add a new Strategy be sure to check that none of the existing Strategies do what you want.

Before you continue reading, make sure you have understood the high level process
YETI works with.

Strategies are classes

A Strategy is a Python class that is defined in a .py file. Each Strategy needs to contain the function
calculate_emissions.

class MyStrategy:

 def calculate_emissions(self,
 traffic_and_link_data_row: Dict[str, Any],
 vehicle_dict: Dict[str, str],
 pollutants: List[str],
 **kwargs):

 # Put the emission calculation logic here.

The function signature may be confusing for now. That is okay, we will get to the parameters in a second.

Why do we use a class? The answer is that classes can have state. Having the option to store data or results
in attributes gives you a lot more flexibility in the implementation.

Strategies collaborate with data handling functions

The functions load_berlin_format_data_function and load_yeti_format_data_function (as specified in the config)
are used to load the data that is required by the Strategy.

load_berlin_format_data_function is a function that reads the data in berlin_format for the Strategy from file,
converts it to yeti_format and saves the constructed data in yeti_format to disc. more

load_yeti_format_data_function has the simple job of reading the required data in yeti_format for the Strategy from
disc. more

Each Strategy has a corresponding load_berlin_format_data_function and load_yeti_format_data_function.
If you write your own Strategy you may have to also write new data loading functions.

You can access the output of the data loading functions in calculate_emissions, as described
here.

How are Strategies called?

The Strategy’s function calculate_emissions is called many times in a model run. The class that calls
calculate_emissions is the StrategyInvoker.

Let’s take a look at the parameters of calculate_emissions:

traffic_and_link_data_row

The StrategyInvoker performs an
SQL-style inner join [https://www.w3resource.com/sql/joins/perform-an-inner-join.php] on the given
yeti_format link data and yeti_format traffic data. It then calls the Strategy’s method calculate_emissions once per row
in the resulting dataframe. The row is passed to calculate_emissions as a dictionary.

Let’s look at an example. Say your link data and traffic data (belonging to yeti_format class) look like this:

link data:

	LinkID

	AreaType

	RoadType

	MaxSpeed

	42_123

	AreaType.Rural

	RoadType.MW_City

	100

	65_485

	AreaType.Urban

	RoadType.Local

	30

traffic_data:

	LinkID

	Dir

	DayType

	Hour

	PC petrol <1.4L Euro-1

	LCV diesel M+N1-I Euro-2

	42_123

	Dir.L

	DayType.MONtoTHU

	0

	0.32

	0.0023999999

	65_485

	Dir.R

	DayType.SUN

	9

	12.8

	0.012

After the SQL-style join we have this dataframe with the traffic and link data:

	LinkID

	AreaType

	RoadType

	MaxSpeed

	Dir

	DayType

	Hour

	PC petrol <1.4L Euro-1

	LCV diesel M+N1-I Euro-2

	42_123

	AreaType.Rural

	RoadType.MW_City

	100

	Dir.L

	DayType.MONtoTHU

	0

	0.32

	0.0023999999

	65_485

	AreaType.Urban

	RoadType.Local

	30

	Dir.R

	DayType.SUN

	9

	12.8

	0.012

The first call to calculate_emissions will be with this traffic_and_link_data_row :

{
"LinkID": 42_123,
"AreaType": "AreaType.Rural",
"RoadType": "RoadType.MW_City",
"MaxSpeed": 100,
"Dir": "Dir.L",
"DayType": "DayType.MONtoTHU",
"Hour": 0,
"PC petrol <1.4L Euro-1": 0.32,
"LCV diesel M+N1-I Euro-2": 0.0023999999
}

Now the Strategy’s job is to take this dictionary and calculate emissions for the two vehicles.

The second call to calculate_emissions receives a dictionary with the data from the second
traffic and link data row as traffic_and_link_data_row.

vehicle_dict

This parameter is a dictionary mapping the names of vehicle classes to the corresponding vehicle category. For example
calculate_emissions may be called with a vehicle_dict such as this:

{
 "PC petrol <1.4L Euro-1": "VehicleCategory.PC",
 "LCV diesel M+N1-I Euro-2": "VehicleCategory.LCV"
}

In calculate_emissions you can use the vehicle_dict to access the category of a vehicle by its name or
use it to iterate over all vehicles. For example:

MyStrategy.py
class MyStrategy:
 def calculate_emissions(self,
 traffic_and_link_data_row: Dict[str, Any],
 vehicle_dict: Dict[str, str],
 pollutants: List[str],
 **kwargs):

 ...
 # access the category of a vehicle by its name:
 vehicle_a = ... # assign some vehicle name to vehicle_a
 category_of_vehicle_a = vehicle_dict[vehicle_a] # get vehicle_a's category
 ...
 # iterate over all vehicles:
 for vehicle_name, vehicle_category in vehicle_dict.items():
 # do some computation using vehicle_name and/or vehicle_category
 ...

The vehicle_dict is constructed from the yeti_format vehicle data by the StrategyInvoker class.

pollutants

A List of Strings. The pollutants as specified in the configuration file.

**kwargs

All parameters specified in the configuration file are passed to calculate_emissions as
keyword arguments [https://treyhunner.com/2018/04/keyword-arguments-in-python/]. This means that you
can use all arguments from the config file in your strategy. You can even define custom
config options for your Strategy. An example for using a config parameter in the Strategy:

config.yaml
average_slope: 0.15

MyStrategy.py
class MyStrategy:
 def calculate_emissions(self,
 traffic_and_link_data_row: Dict[str, Any],
 vehicle_dict: Dict[str, str],
 pollutants: List[str],
 **kwargs):

 average_slope = kwargs["average_slope"]
 # You can now use average_slope in the emission calculation.

The return value of the ``load_yeti_format_data_function`` is also passed to calculate_emissions as keyword
arguments. This means that you can load the required data for the Strategy in the
load_yeti_format_data_function and then access it in the Strategy. For more details
on the load_yeti_format_data_function look here.
An example for using a return value of the load_yeti_format_data_function in the Strategy:

function_to_load_yeti_format_data.py
import pandas as pd

def load_yeti_format_data(...):
 ...
 some_pandas_dataframe = pd.read_csv(...) # load the data
 ...
 return {
 "some_dataset": some_pandas_dataframe,
 ...
 }

MyStrategy.py
class MyStrategy:
 def calculate_emissions(self,
 traffic_and_link_data_row: Dict[str, Any],
 vehicle_dict: Dict[str, str],
 pollutants: List[str],
 **kwargs):

 some_dataset = kwargs["some_dataset"]
 # You can now use the dataframe some_dataset for the emission calculation.

What should Strategies return?

As discussed above, the Strategy’s function calculate_emissions is called once for each row in a dataframe
obtained from joining the link data and the traffic data in an SQL-style fashion.

Each call to calculate_emissions should return the emissions for one row in the output emissions dataframe(s) as
a dictionary. It is important to note that you should return the emissions for all pollutants.

The StrategyInvoker will associate the emissions with the right link ID, day type, hour and direction and
save the emissions to disc.

One emissions file per pollutant

Most Strategies want to output a single csv file for each pollutant with emission data for that pollutant.
To do so, a Strategy should return one dictionary with emissions per pollutant in the parameter pollutants
on each call to calculate_emissions.

For example:

Let’s say calculate_emissions was called with this traffic_and_link_data_row:

{
"LinkID": 42_123,
"AreaType": "AreaType.Rural",
"RoadType": "RoadType.MW_City",
"MaxSpeed": 100,
"Dir": "Dir.L",
"DayType": "DayType.MONtoTHU",
"Hour": 0,
"PC petrol <1.4L Euro-1": 0.32,
"LCV diesel M+N1-I Euro-2": 0.0023999999
}

Also let’s say that the parameter pollutants is [PollutantType.NOx, PollutantType.CO].

The Strategy should then return a dictionary in this format:

{
"PollutantType.NOx": {
 "PC petrol <1.4L Euro-1": some_emissions_value_for_NOx,
 "LCV diesel M+N1-I Euro-2": some_other_emissions_value_for_NOx
 },
"PollutantType.CO": {
 "PC petrol <1.4L Euro-1": some_emissions_value_for_CO,
 "LCV diesel M+N1-I Euro-2": some_other_emissions_value_for_CO
 }
}

This will result in the following rows being added to the emissions dataframes that are saved to disc:

NOx emissions:

	LinkID

	Dir

	DayType

	Hour

	PC petrol <1.4L Euro-1 LCV

	diesel M+N1-I Euro-2

	42_123

	Dir.L

	DayType.MONtoTHU

	0

	some_emissions_value_for_NOx

	some_other_emissions_value_for_NOx

CO emissions:

	LinkID

	Dir

	DayType

	Hour

	PC petrol <1.4L Euro-1 LCV

	diesel M+N1-I Euro-2

	42_123

	Dir.L

	DayType.MONtoTHU

	0

	some_emissions_value_for_CO

	some_other_emissions_value_for_CO

Multiple emission files per pollutant

Some Strategies want to output multiple emissions files per pollutant. This can be done by adding more
dictionaries to the return dictionary.

For example:

Let’s say that calculate_emissions is called with the same pollutants and traffic_and_link_data as in
the example above.
If we want the Strategy to output two emissions files per pollutant, we should return a dictionary like this:

{
"PollutantType.NOx_type_A":
 {
 "PC petrol <1.4L Euro-1": some type a emissions value for NOx,
 "LCV diesel M+N1-I Euro-2": some other type a emissions value for NOx,
 ...
 },
"PollutantType.NOx_type_B":
 {
 "PC petrol <1.4L Euro-1": some type b emissions value for NOx,
 "LCV diesel M+N1-I Euro-2": some other type b emissions value for NOx,
 ...
 },
"PollutantType.CO_type_A":
 {
 "PC petrol <1.4L Euro-1": some type a emissions value for CO,
 "LCV diesel M+N1-I Euro-2": some other type a emissions value for CO,
 ...
 },
"PollutantType.CO_type_B":
 {
 "PC petrol <1.4L Euro-1": some type b emissions value for CO,
 "LCV diesel M+N1-I Euro-2": some other type b emissions value for CO,
 ...
 }
}

This will create two emissions files per pollutant, one with type a emissions and one with type b emissions. You don’t need
to stick to the names “type_A” and “type_B”. Also you can return as many nested dictionaries as you want to create
as many emissions files as you want.

 Change how data is validated

Change how data is validated

Data validation is done by the validation_function, as specified in the config. This docs page covers how to
write your own validation_function.

How is a validation_function called?

A validation function is called with the single argument kwargs:

def validation_function(**kwargs)

 ...

kwargs is a Python dictionary that contains all arguments from the config file. For example if the config
file contains the line berlin_format_link_data: path/to/link_data.csv the kwargs dictionary will contain the
key-value pair "input_link_data": "path/to/link_data.csv".

kwargs lets you access the input files that are specified in the config file.
You can access these input files and do whatever you want with them. For example you can check if
an input file contains all necessary columns.

Example

import pandas as pd
import logging

def validation_function(**kwargs)

 # validate the link data
 # 1. Load link data from file
 link_data_file = kwargs["input_link_data"]
 link_data = pd.read_csv(link_data)

 # 2. Check that link data has the column 'LinkID', 'Length_m', 'MaxSpeed_kmh', 'AreaCat', and 'RoadCat'.
 for colname in ["LinkID", "Length_m", "MaxSpeed", "AreaCat", "RoadCat"]:
 if colname not in link_data.columns:
 logging.warning(f"link data is missing the column {colname}")

 # 3. perform other validation operations on the link data
 ...

 # validate other datasets
 ...

Output of the validation_function

What you want the validation_function to output is up to you.

The validation functions that we provide print warnings whenever a validation check fails. This means
that YETI will keep running even if the validation fails.
You can print warnings with logging.warning(".."), as shown in the example above.

If you want to stop the YETI run when a validation check fails, you should raise an Error. For example:

def validation_function(**kwargs):

 if some_validation_check_does_not_pass():
 raise RuntimeError("validation failed")

 Support a new data format

Support a new data format

This page describes how to adapt YETI to work with a dataset that is not in berlin_format and not in yeti_format.
We assume that the dataset you want to use can be converted to fit the yeti_format.

The function load_berlin_format_data_function (that you specify in the config file) is responsible for handling
input data. It does these four things:

	Load the input data from file.

	Convert the input data to fit yeti_format.

	Save the constructed data in yeti_format to file.

	Return the locations of the files in yeti_format.

It is likely that you can change the input data loading behaviour without having to write much code yourself.
We provide the class DataLoader that is extensible and can likely be adapted to your needs without
too much effort. More info below.

Example

This as an example load_berlin_format_data_function:

def load_berlin_format_data_for_my_strategy(**kwargs) -> Dict[str, str]:

 # load the data in berlin_format
 # convert the data to yeti_format
 # save the data in yeti_format to disc

 # then return the locations of the files in yeti_format in a dictionary
 return {
 "yeti_format_link_data": "path/to/yeti_format_link_data.csv",
 "yeti_format_traffic_data": "path/to/yeti_format_traffic_data.csv",
 ...
 }

How is the function called?

The load_berlin_format_data_function is called with a single argument: kwargs. kwargs is a
dictionary that contains all arguments from the config file.

For example, if your config file looks like this:

config.yaml
mode: berlin_format
strategy: path.to.Strategy
load_berlin_format_data_function: path.to.berlin_format_data_load_function
load_yeti_format_data_function: path.to.yeti_format_data_load_function
output_folder: output_folder
berlin_format_link_data: path/to/link_data.csv
berlin_format_fleet_composition: path/to/fleet_composition_data.csv
berlin_format_emission_factors: path/to/emission_factor_data.csv
berlin_format_los_speeds: path/to/los_speeds_data.csv
berlin_format_traffic_data: path/to/traffic_data.csv
berlin_format_vehicle_mapping: path/to/vehicle_mapping_data.csv

Then the kwargs dictionary the load_berlin_format_data_function is called with looks like this:

{
 "mode": "berlin_format",
 "strategy": "path.to.Strategy",
 "load_berlin_format_data_function": "path.to.berlin_format_data_load_function",
 "load_yeti_format_data_function": "path.to.yeti_format_data_load_function",
 "output_folder": "output_folder",
 "input_link_data": "path/to/link_data.csv",
 "input_fleet_composition": "path/to/fleet_composition_data.csv",
 "input_emission_factors": "path/to/emission_factor_data.csv",
 "input_los_speeds": "path/to/los_speeds_data.csv",
 "input_traffic_data": "path/to/traffic_data.csv",
 "input_vehicle_mapping": "path/to/vehicle_mapping_data.csv"
}

You can work with the kwargs like any other Python dictionary. kwargs gives you access to all
configuration arguments. Use them.

What should the function return?

The load_berlin_format_data_function should return a dictionary containing paths to the files with data in yeti_format
that were constructed and saved by the load_berlin_format_data_function.

Example

Let’s say the load_berlin_format_data_function creates the four files yeti_format_data/link_data.csv,
yeti_format_data/traffic_data.csv, yeti_format_data/vehicle_data.csv, and yeti_format_data/ef_data.csv that
contain data in yeti_format.
Then the return dictionary of the function should look like this:

{
 yeti_format_link_data: yeti_format_data/link_data.csv
 yeti_format_traffic_data: yeti_format_data/traffic_data.csv
 yeti_format_vehicle_data: yeti_format_data/vehicle_data.csv
 yeti_format_ef_data: yeti_format_data/ef_data.csv
}

Note that the load_yeti_format_data_function that is specified in the config will be called after the
load_berlin_format_data_function. The keys in the return dictionary must match the keyword arguments
that the load_yeti_format_data_function expects as input.

Use the existing DataLoader

As mentioned at the top of the page, there is an easy way to adapt to a new input data format (meaning
data in a format different from berlin_format). We provide the
class DataLoader that is responsible for loading input data from file and converting it to yeti_format.
We also provide the function save_dataframes to save the data in yeti_format to file and construct the
return dictionary.

The DataLoader is originally designed to work with data in berlin_format as required by the
CopertHotStrategy and output data in yeti_format as required by the
CopertHotStrategy. We will now discuss how to adapt the DataLoader to your data requirements.

There are two usage scenarios:

	One of your berlin_format files has a different format.

	You don’t use all the files in yeti_format that are used by the CopertHotStrategy.

We will take a detailed look at the two usage scenarios a bit later on the page. For now
we want to look at what they have in common:

You need to subclass the DataLoader and use the new class in the load_berlin_format_data_function. For example:

Let’s say you wrote the MyDataLoader that extends the DataLoader to fit your needs:

from code.data_loading.DataLoader import DataLoader

class MyDataLoader(DataLoader):

 ...

Now you want to use MyDataLoader in the load_berlin_format_data_function:

from path.to.MyDataLoader import MyDataLoader
from code.strategy_helpers.helpers import save_dataframes

def load_berlin_format_data(**kwargs):

 output_folder = kwargs["output_folder"]
 loader = MyDataLoader(**kwargs)
 data = loader.load_data(use_nh3_ef=False)
 (link_data, vehicle_data, traffic_data, los_speeds_data, emission_factor_data, _) = data

 yeti_format_data_file_paths = save_dataframes(
 output_folder,
 {
 "yeti_format_emission_factors": emission_factor_data,
 "yeti_format_los_speeds": los_speeds_data,
 "yeti_format_vehicle_data": vehicle_data,
 "yeti_format_link_data": link_data,
 "yeti_format_traffic_data": traffic_data
 }
)
 return yeti_format_data_file_paths

Now we will take a look at the two usage scenarios mentioned before.

1. One of your berlin_format files has a different format

This means that you will need to change

	How the input data is read from file.

	How one or multiple files in yeti_format are constructed.

For this you will need a DataLoader subclass so that you can change the behaviour of the DataLoader.

1. Change how the input data is read from file.

The class FileDataLoader is responsible for loading input data (e.g. data in berlin_format) from file.
To change how input data is loaded you should subclass the FileDataLoader, override relevant methods
and make your DataLoader use the new FileDataLoader

First, here is how to subclass the FileDataLoader:

from code.data_loading.FileDataLoader import FileDataLoader

MyFileDataLoader(FileDataLoader):

 ... # override the method you would like to change

Secondly, these are the methods you can override:

load_link_data_from_file(self) # override this method to change how berlin_format link data is loaded from file
load_fleet_comp_data_from_file(self) # override this method to change how berlin_format fleet composition data is loaded from file
load_traffic_count_data_from_file(self) # override this method to change how berlin_format traffic data is loaded from file
load_emission_factor_data_from_file(self) # override this method to change how berlin_format emission factor data is loaded from file
load_los_speeds_data_from_file(self) # override this method to change how berlin_format los_speeds data is loaded from file
load_vehicle_mapping_data_from_file(self) # override this method to change how berlin_format vehicle mapping data is loaded from file
load_nh3_ef_data_from_file_if_wanted(self, use_nh3_ef) # override this method to change how berlin_format tier 2 NH3 emission factor data is loaded from file

The self argument to the functions will give you access to these attributes:

self.emission_factor_file
self.los_speeds_file
self.fleet_comp_file
self.link_data_file
self.traffic_file
self.vehicle_name_to_category_mapping
self.nh3_ef_file
self.nh3_mapping_file

For example, here is how you would change the way that link data is loaded from file:

from code.data_loading.FileDataLoader import FileDataLoader

MyFileDataLoader(FileDataLoader):

 def load_link_data_from_file(self):

 link_data_file_location = self.link_data_file
 link_data = ... # read the link data from file
 return link_data

The last thing you need to do is to make your DataLoader use the new MyFileDataLoader:

from code.data_loading.DataLoader import DataLoader
from path.to.MyFileDataLoader import MyFileDataLoader

class MyDataLoader(DataLoader):

 # override the method load_berlin_format_data
 def load_berlin_format_data(self, use_nh3_ef: bool):
 return MyFileDataLoader(**self.filenames_dict).load_data(use_nh3_ef)

2. Change how one or multiple files in yeti_format are constructed

Every yeti_format file is constructed in a dedicated method by the DataLoader. To change
how a yeti_format file is constructed, override the method that constructs it.

These are the methods that construct data in yeti_format:

load_traffic_data depends on the berlin_format fleet composition data, link data, and traffic data
load_traffic_data(self, fleet_comp_data, link_data, traffic_data)

load_link_data depends on the berlin_format link data
load_link_data(self, link_data: pd.DataFrame)

load_vehicle_data depends on the berlin_format fleet composition data
load_vehicle_data(self, fleet_comp_data: pd.DataFrame)

load_emission_factor_data depends on the berlin_format fleet composition data, vehicle mapping data,
emission factor data, NH3 ef data, and NH3 ef mapping data
load_emission_factor_data(self,
 use_nh3_ef: bool,
 fleet_comp_data: pd.DataFrame,
 vehicle_mapping_data: pd.DataFrame,
 ef_data: pd.DataFrame,
 nh3_ef_data: pd.DataFrame,
 nh3_mapping_data: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]

load_los_speeds_data depends on the berlin_format link data and los speeds data
load_los_speeds_data(self, link_data: pd.DataFrame, los_speeds_data: pd.DataFrame)

The comments in the code block above show which methods need to be overridden when which input
dataset changes format. For example if the input link data changes, you need to override
load_traffic_data, load_link_data, and load_los_speeds_data.

For example if your traffic data format changes, you will need to override load_traffic_data:

from code.data_loading.DataLoader import DataLoader

class MyDataLoader(DataLoader):

 # override the method load_traffic_data
 def load_traffic_data(self, fleet_comp_data, link_data, traffic_data):

 # construct the traffic data in yeti_format
 yeti_format_traffic_data = ...

 return yeti_format_traffic_data

2. You don’t use all the files in yeti_format that are used by the CopertHotStrategy.

If this is the case you should override the method that constructs the yeti_format file that
you don’t want to use. Let the method return None. For example say you don’t want to use emission factor
data:

from code.data_loading.DataLoader import DataLoader

class MyDataLoader(DataLoader):

 load_emission_factor_data(self,
 use_nh3_ef: bool,
 fleet_comp_data: pd.DataFrame,
 vehicle_mapping_data: pd.DataFrame,
 ef_data: pd.DataFrame,
 nh3_ef_data: pd.DataFrame,
 nh3_mapping_data: pd.DataFrame):

 return None

 Change how data in yeti_format is loaded

Change how data in yeti_format is loaded

The load_yeti_format_data_function specified in a config file is responsible for loading data in yeti_format
from disc. Each load_yeti_format_data_function is related to a Strategy that works with the output of the
function.

How is load_yeti_format_data_function called?

load_yeti_format_data_function is called with the single argument kwargs. kwargs contains all all
arguments from the config file and the key-value pairs returned by the load_berlin_format_data_function that
was called earlier in the run.

def load_yeti_format_data(**kwargs):

 # load data in yeti_format from file

 return {
 # return dict with loaded data in yeti_format
 }

Example

Say you want to load los speeds data from file, because your Strategy requires los speeds data:

import pandas as pd

def load_yeti_format_data(**kwargs):

 los_speeds_data_file = kwargs["yeti_format_los_speeds_data_file"]
 los_speeds_data = pd.read_csv(los_speeds_file)

 ... # load the other relevant datasets

 return {
 "los_speeds_data": los_speeds_data,
 ...
 }

You need to make sure that eather the config file or the return dictionary from the load_berlin_format_data_function contains
the key yeti_format_los_speeds_data_file, so that you can access it in the kwargs.

What should the load_yeti_format_data_function return?

The function should return a dictionary. The dictionary should contain all dataframes that will be used by the Strategy.
Additionally the return dictionary needs to contain the keys "traffic_data", "link_data", and "vehicle_data".
For example:

def load_yeti_format_data(**kwargs):

 # load data in yeti_format from file

 return {
 "traffic_data": a_data_frame_with_yeti_format_traffic_data,
 "link_data": a_data_frame_with_yeti_format_link_data,
 "vehicle_data": a_data_frame_with_yeti_format_vehicle_data,
 ...
 }

 How to update the documentation

How to update the documentation

The documentation for YETI is written in reStructuredText [https://en.wikipedia.org/wiki/ReStructuredText/] (rst)
using Sphinx [http://www.sphinx-doc.org/en/master/]. Please familiarize yourself with the basics of rst and Sphinx
before updating the docs.

Each page of the documentation corresponds to one rst file in the folder docs/.
You can look at the rst sourcecode of existing documentation pages by clicking on “View page source”
in the top right corner of the page.

When writing documentation, you will want to look at what you created and see if it renders the way you
want it to. To see what the documentation website will look like with your changes follow these steps:

	Run make html on the command line from the folder docs/.

	Open the file docs/_build/index.html in your favourite browser.

If you have firefox installed, you can alternatively run make open on the command
line from the folder docs/.

Update an existing page

To update an existing page, find the rst file that contains the content of the page. You can find
the rst files for the user documentation in docs/user/ and the rst files for the developer documentation
in docs/developer/.

Once you have found the right file, make you changes. Then commit them to git and push to GitHub.
Make sure to merge the changes into the master branch, otherwise they won’t be added to the
documentation website.

Add a new page

1. Create an rst file in docs/

Create an rst file in the folder docs/ or one of its subfolders. You can also create your own subfolder.

2. Add content to the rst file

Add the desired content to the rst file you created. Follow this template:

Page Title
==========
Description of docs page

Major section 1

Some text and/or images

Paragraph 1.1
^^^^^^^^^^^^^
Some text and/or images

Major section 2

...

3. Add the new file to index.rst

To add your documentation page to the docs, you need to add it to the file docs/index.rst.

Add the path to your rst file to a toctree in docs/index.rst. The documentation
page will be displayed in the documentation subsection that corresponds to the chosen toctree
(“User documentation” or “Developer documentation”).
Note that the path to your rst file needs to be relative to docs/index.rst
and you should omit the .rst postfix in the path to your rst file.

If you want to create a new documentation subsection, you can add a new toctree to docs/index.rst.
Follow this template:

.. toctree::
 :maxdepth: 1
 :caption: Name of the new subsection

 path/to/pageA
 path/to/pageB
 ...

4. Commit and Push

When you are happy with the new documentation page, commit your changes to git and push them to GitHub.
Make sure to merge the changes into the master branch, otherwise they won’t be added to the
documentation website.

 Contributing to YETI

Contributing to YETI

We are open for collaboration, however we have limited resources to review contributions.

Anyhow, all contributions should follow these guidelines:

	Code should comply with the PEP8 style guide [https://www.python.org/dev/peps/pep-0008/] as much as possible.

	All new features should be tested. YETI uses the built-in unittest module.
If you are new to testing in Python, this website is a good starting point:
unittest introduction [http://pythontesting.net/framework/unittest/unittest-introduction/].

	We follow a green build policy. This means that all the tests should succeed on the
test server [https://travis-ci.com/twollnik/YETI/] before a Pull Request is merged.

 Index

Index

 How to read this diagram?

How to read this diagram?

Example diagram:

[image: _images/pm_non_exhaust_berlin_format_data_requirements.png]
Each of the yellow boxes represents one csv file containing a dataset. The example diagram above
describes four files: link data, traffic data, los speeds data, and fleet composition data.

The entries in the yellow boxes are the columns of the dataset. So the dataset los speeds data
contains the columns VehCat, TrafficSituation, and Speed_kmh.

The yellow key symbols next to some column names indicate that the column is part of the
primary key [https://www.techopedia.com/definition/5547/primary-key/] of
the dataset. (Note that the linked article mentions relational databases. Don’t get distracted by that, we
work with csv files.)
Key symbols with a little arrow indicate that the column is a foreign key [https://www.techopedia.com/definition/7272/foreign-key]
for a different dataset. If a column does not have a key symbol, it is not part of the primary key of the dataset.

Note that the column names for the datasets are fixed. You should adapt your datasets to fit the column
names shown in the diagram.

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to YETI - Yet Another Emissions From Traffic Inventory’s documentation!

 		
 Installation and Setup

 		
 1. Make sure your Python version is supported

 		
 2. Clone the GitHub repository

 		
 3. Install the necessary packages

 		
 Demo

 		
 Usage

 		
 Run the model

 		
 Run the tests

 		
 Configuring YETI

 		
 Mode

 		
 Pollutants

 		
 Strategy and functions

 		
 Filenames

 		
 Output folder(s)

 		
 Optional config arguments

 		
 Strategy-specific config arguments

 		
 Data Requirements

 		
 The two data classes

 		
 Data requirements depend on Strategy

 		
 File format

 		
 berlin_format

 		
 yeti_format

 		
 Output data

 		
 Data format

 		
 Output location

 		
 files in yeti_format

 		
 What is a Strategy?

 		
 List of Strategies

 		
 CopertStrategy

 		
 hot emissions

 		
 cold emissions

 		
 A note on the data loading process

 		
 Data Requirements

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 How to deal with naming conflicts

 		
 A note on the validation_function

 		
 Output

 		
 CopertHotStrategy

 		
 Data requirements

 		
 Data requirements for mode berlin_format

 		
 Data requirements for mode yeti_format

 		
 Supported pollutants

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 CopertHotFixedSpeedStrategy

 		
 Data requirements

 		
 Data requirements for mode berlin_format

 		
 Data requirements for mode yeti_format

 		
 Supported pollutants

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 CopertColdStrategy

 		
 Data requirements

 		
 Data requirements for mode berlin_format

 		
 Data requirements for mode yeti_format

 		
 Supported Pollutants

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 HbefaStrategy

 		
 hot emissions

 		
 cold emissions

 		
 A note on the data loading process

 		
 Data Requirements

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 How to deal with naming conflicts

 		
 A note on the validation_function

 		
 Output

 		
 HbefaHotStrategy

 		
 Data Requirements

 		
 Data requirements for mode berlin_format

 		
 Data requirements for mode yeti_format

 		
 Supported pollutants

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 PMNonExhaustStrategy

 		
 Data Requirements

 		
 Data requirements for mode berlin_format

 		
 Data requirements for mode yeti_format

 		
 Supported Pollutants

 		
 What to put in the config.yaml

 		
 If using mode berlin_format:

 		
 If using mode yeti_format:

 		
 How to support more pollutants, area types, …

 		
 About

 		
 Where do restrictions exist?

 		
 How to work around the restrictions

 		
 How does it work?

 		
 Overview

 		
 Validation

 		
 Load data in berlin_format and convert it to data in yeti_format

 		
 Load data in yeti_format from file

 		
 Calculate emissions from data in yeti_format using a Strategy

 		
 Add a Strategy

 		
 Strategies are classes

 		
 Strategies collaborate with data handling functions

 		
 How are Strategies called?

 		
 traffic_and_link_data_row

 		
 vehicle_dict

 		
 pollutants

 		
 **kwargs

 		
 What should Strategies return?

 		
 One emissions file per pollutant

 		
 Multiple emission files per pollutant

 		
 Change how data is validated

 		
 How is a validation_function called?

 		
 Example

 		
 Output of the validation_function

 		
 Support a new data format

 		
 Example

 		
 How is the function called?

 		
 What should the function return?

 		
 Use the existing DataLoader

 		
 1. One of your berlin_format files has a different format

 		
 2. You don’t use all the files in yeti_format that are used by the CopertHotStrategy.

 		
 Change how data in yeti_format is loaded

 		
 How is load_yeti_format_data_function called?

 		
 What should the load_yeti_format_data_function return?

 		
 How to update the documentation

 		
 Update an existing page

 		
 Add a new page

 		
 1. Create an rst file in docs/

 		
 2. Add content to the rst file

 		
 3. Add the new file to index.rst

 		
 4. Commit and Push

 		
 Contributing to YETI

_images/copert_hot_berlin_format_data_requirements.png
link data

(los speeds data \

|/ LinkID
Length_m
PC_Perc
LCV_Perc
HDV_Perc
Coach_Perc
UBus_Perc
MC_Perc
MaxSpeed_kmh
AreaCat
RoadCat

traffic data

LinkID

Dir

DayType
[Hour
VehCount
LOS1Perc
LOS2Perc
LOS3Perc
LOS4Perc

VehCat
TrafficSituation

Speed_kmh

(_ NH3 mapping data

X
~

VehCat

Fuel
VehSegment

EuroStandard
"ﬁl-l VehName

(&

-

("~ NH3 emission factor
data

VehCat

Fuel
VehSegment
EuroStandard

\ EF

(fleet composition data

VehName

VehCat
VehPercOfCat

-+

(mapping data

~

VehCat

Fuel
VehSegment
EuroStandard

Technology
"'IE!I-I VehName
Ok

S

(_emission factor data)
Fuel
VehCat
VehSegment
EuroStandard
Technology
Pollutant
Mode
Slope

| Load

MinSpeed_kmh

MaxSpeed_kmh

Alpha

Beta

Gamma

Delta

Epsilon

Zita

Hta

Thita

ReductionPerc

S J

_images/copert_hot_yeti_format_data_requirements.png
unified link data (unified vehicle data) (unified emission factor data)

i LinkID | VehicleName | VehicleName
Length VehicleCategory | Pollutant
AreaType NumberOfAxles | Mode
RoadType ~ J | Load
MaxSpeed Slope

(unified traffic data)

MinSpeed

LinkID MaxSpeed
Dir Alpha
DayType Beta
Hour Delta
unified los speeds data) vehicle 1 Epsilon
LinkID vehicle 2 Gamma
|| VehicleCategory vehicle n Hta
LOS1Speed LOS1Percentage Thita
LOS2Speed LOS2Percentage =
LOS3Speed ORI RNER) ReductionPerc
LOS4Speed \ LOS4Percentage) =]

_images/berlin_format_data.png
link data

(traffic data \

(fleet composition data)

|/ LinkID
Length_m
PC_Perc
LCV_Perc
HDV_Perc
Coach_Perc
UBus_Perc
MC_Perc
MaxSpeed_kmh
AreaCat
RoadCat

i/ LinkID

[Dir

| DayType
[Hour
VehCount
LOS1Perc
LOS2Perc
LOS3Perc

| VehName
VehCat
VehPercOfCat
NumberOfAxles

=] LOS4Perc
0

_images/cold_ef_table.png
cold ef table

f VehSegment
f Pollutant

f MinSpeed

f MaxSpeed

| MinTemp

|/ MaxTemp

A

B

=] C
)

_images/emissions_output.png
emissions data

LinkID

Dir

DayType

Hour

II vehicle 1

II vehicle 2

II vehicle n

_images/hbefa_hot_berlin_format_data_requirements.png
link data

(traffic data \

|/ LinkID
Length_m
PC_Perc
LCV_Perc
HDV_Perc
Coach_Perc

UBus_Perc
MC_Perc
MaxSpeed_kmh
AreaCat
RoadCat

LinkID

Dir

DayType
[Hour
VehCount
LOS1Perc
LOS2Perc
LOS3Perc

\ LOS4Perc)

hbefa emission factor
data

Component
TrafficSit
Subsegment

EFA

(fleet composition data")
| VehName
VehCat
VehPercOfCat
NumberOfAxles

_images/hbefa_hot_yeti_format_data_requirements.png
unified link data

(' unified vehicle data)

LinkID
Length
AreaType
RoadType

MaxSpeed

unified hbefa emission
factor data

VehicleName
VehicleCategory
NumberOfAxles

S J

(" unified traffic data)

VehicleName
Pollutant
TrafficSituation

EF

LinkID
Dir
DayType
Hour
iivemcm].
iivehkﬂez

vehicle n
LOS1Percentage

LOS2Percentage
LOS3Percentage
LOS4Percentage

S J

_images/pm_non_exhaust_berlin_format_data_requirements1.png
link data traffic data

|/ LinkID |/ LinkID
. Length_m | Dir
. PC_Perc | DayType
. LCV_Perc | Hour
. HDV_Perc . VehCount
. Coach_Perc . LOS1Perc
. UBus_Perc . LOS2Perc
. MC_Perc . LOS3Perc
. MaxSpeed_kmh . LOS4Perc
. AreaCat
. RoadCat
fleet composition data
| VehName
los speeds data . VehCat

| VehCat
. VehPercOfCat

| TrafficSituation
. NumberOfAxles

- Speed_kmh

_images/pm_non_exhaust_yeti_format_data_requirements.png
unified vehicle data

(unified link data \

| VehicleName
VehicleCategory
NumberOfAxles

unified traffic data

~

LinkID

Dir

DayType
[Hour
vehicle 1
vehicle 2

vehicle n
LOS1Percentage

LOS2Percentage
LOS3Percentage
LOS4Percentage

i LinkID
Length
AreaType
RoadType
=] MaxSpeed
\ c J

(unified los speeds data)

LinkID
| VehicleCategory
LOS1Speed
LOS2Speed
LOS3Speed
LOS4Speed

S J

_images/high-level-process.png
If mode is input_data do: If mode is unified_data do:

_images/pm_non_exhaust_berlin_format_data_requirements.png
link data traffic data

|/ LinkID |/ LinkID
. Length_m | Dir
. PC_Perc | DayType
. LCV_Perc | Hour
. HDV_Perc . VehCount
. Coach_Perc . LOS1Perc
. UBus_Perc . LOS2Perc
. MC_Perc . LOS3Perc
. MaxSpeed_kmh . LOS4Perc
. AreaCat
. RoadCat
fleet composition data
| VehName
los speeds data . VehCat

| VehCat
. VehPercOfCat

| TrafficSituation
. NumberOfAxles

- Speed_kmh

_static/comment-bright.png

_images/yeti_format_data.png
unified link data

(unified traffic data \

(_ unified vehicle data)

i LinkID
Length
AreaType
RoadType
MaxSpeed

LinkID

Dir

DayType
[Hour
vehicle 1
vehicle 2

vehicle n
LOS1Percentage

LOS2Percentage
LOS3Percentage

LOS4Percentage
o

| VehicleName
VehicleCategory
NumberOfAxles

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_s