

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Welcome

Hyperstack is a Ruby-based DSL and modern web toolkit for building spectacular, interactive web applications fast!

	One language throughout the client and server. All Ruby code is compiled by Opal [https://opalrb.com/] into JavaScript automatically.

	Webpacker and Yarn tooling for a modern, fast hot-reloader build environment with Ruby source maps.

	A well documented and stable Ruby DSL for wrapping React and ReactRouter as well as any JavaScript library or component. No need to learn JavaScript!

	Isomorphic Models with bi-directional data so you can access your models as if they were on the client.

All that means you can write simple front-end code like this:

class GoodBooksToRead < Hyperstack::Component
 render(UL) do
 Book.good_books.each do |book|
 LI { "Read #{book.name}" }.on(:click) { display book } if book.available?
 end
 end
end

In the code above, if the good_books scope changed (even on the server), the UI would update automatically. That’s the magic of React and Isomorphic Models with bi-directional data at work!

Website and Documentation

While we have over 1000 specs passing in 3 different configurations, and several large apps using Hyperstack, documentation is lagging. If you see this icon it means we are working hard to
get the docs up to the same state as the code.

Chapters without the work-in-progress flag are still draft, and any issues are greatly appreciated, or better yet follow the Edit on Github link, make your proposed corrections, and submit a pull request.

 Table of contents

Table of contents

	Welcome

	Rails Installation and Configuration

	Prerequisites

	Using the Hyperstack Installer

	Using the Generators

	File Structure

	Routing and Mounting Components

	Other Rails Configuration Details

	Why Rails? Other Frameworks?

	HyperComponent

	Component Classes

	HTML Tags & CSS Classes

	Component Children, Keys and Fragments

	Component Params

	Lifecycle Methods

	Component State

	Events and Callbacks

	Interlude: Tic Tac Toe

	Recovering from Errors

	JavaScript Components

	Elements and Rendering

	Summary of Methods

	List of Predefined Tags & Components

	Predefined Events

	Notes

	Further Reading

	HyperState

	HyperRouter

	HyperModel

	Operations

	Policies

	Internationalization

	Development Tools, Workflow and Procedures

	Debugging

	HyperTrace

	HyperSpec

	Installation

	Tutorial

	Methods and Features

	Using with Rack

	Deploy To Heroku

	Tutorial

	TodoMVC Tutorial Part I

	TodoMVC Tutorial Part II

	Community

 Community

Community

Community and support

Hyperstack is supported by a friendly, helpful community, both for users, and contributors. We welcome new people, please reach out and say hello.

	Join [https://join.slack.com/t/hyperstack-org/shared_invite/enQtNTg4NTI5NzQyNTYyLWQ4YTZlMGU0OGIxMDQzZGIxMjNlOGY5MjRhOTdlMWUzZWYyMTMzYWJkNTZmZDRhMDEzODA0NWRkMDM4MjdmNDE] our Slack group

	After you have joined there is a shortcut at https://hyperstack.org/slack

StackOverflow questions

Please ask technical questions on StackOverflow as the answers help people in the future. We use the hyperstack tag, but also add ruby-on-rails, ruby and react-js tags to get this project exposed to a broader community.

	Please ask questions here: https://hyperstack.org/question

	All the hyperstack tagged questions are here: https://hyperstack.org/questions

Github issues

If you find a bug please create an issue or better still a PR! There are also a list of issues marked as “good first issue”

	Our Github issues are here: https://github.com/hyperstack-org/hyperstack/issues

Improving the docs

	We always welcome any improvements to the docs, so please issue a PR from the docs pages

Write a tutorial or blog

	More than anything, this project needs promotion. If you like this project there is no greater way to show it than write about it and broadcast it to the world. Writing a tutorial is a fantastic way of learning as well.

 Feature Matrix

Feature Matrix

Table with Ruby (on Rails) features and the implemenatation status for Hyperstack/Opal.

jRuby is not working at this time as the libv8 gem is not compatible with jRuby, therubyrhino gem might work as an alternative.

Feature	Type	Module	Status	Links	Exsisting Documenation	Exsisting Server Implementations	Implemenation At**
:—	:—	:—	:—	:—	:—	:—	:—
new_record?	instance method	ActiveRecord	missing	Github issues?	new_record?@apidock [https://api.rubyonrails.org/classes/ActiveRecord/Persistence.html#method-i-new_record-3F]		hyper-model [https://github.com/hyperstack-org/hyperstack/blob/edge/ruby/hyper-model/lib/reactive_record/active_record/instance_methods.rb]
find	class method	ActiveRecord	buged?	reproducable example [https://github.com/Tim-Blokdijk/hyperstack-experiments/blob/master/app/hyperstack/components/search.rb]			hyper-model [https://github.com/hyperstack-org/hyperstack/blob/edge/ruby/hyper-model/lib/reactive_record/active_record/class_methods.rb]
destroy	instance method	ActiveRecord	buged?	reproducable example [https://github.com/Tim-Blokdijk/hyperstack-experiments/blob/master/app/hyperstack/components/index.rb]			hyper-model [https://github.com/hyperstack-org/hyperstack/blob/edge/ruby/hyper-model/lib/reactive_record/active_record/instance_methods.rb]
DateTime	class	StdLib	missing		DateTime@ruby-doc [https://ruby-doc.org/stdlib-2.6/libdoc/date/rdoc/DateTime.html]		Opal
truncate	instance method	ActiveSupport	missing		truncate@apidock [https://apidock.com/rails/String/truncate]		opal-activesupport@github [https://github.com/opal/opal-activesupport/tree/master/opal/active_support/core_ext]
i18n	lib	Rails-I18N	basic			rails-i18n@github [https://github.com/svenfuchs/rails-i18n]	hyper-i18n [https://github.com/hyperstack-org/hyperstack/tree/edge/ruby/hyper-i18n]

** Implemenation At: If Status is missing the place (file or directory) where the code should probably be impemented. Otherwise the actual implemenation.

 <no title>

 Your Hyperstack Application is built from a series of Components which are Ruby Classes that display portions of the UI. Hyperstack Components are implemented using React [https://reactjs.org/], and can interoperate with existing React components and libraries. Here is a simple example that displays a ticking clock:

Components inherit from the HyperComponent base class
which supplies the DSL to translate from Ruby into React
function calls
class Clock < HyperComponent
 # Components can be parameterized.
 # in this case you can override the default
 # with a different format
 param format: "%m/%d/%Y %I:%M:%S"
 # After_mount is an example of a life cycle method.
 after_mount do
 # Before the component is first rendered (mounted)
 # we setup a periodic timer that will update the
 # current_time instance variable every second.
 # The mutate method signals a change in state
 every(1.second) { mutate @current_time = Time.now }
 end
 # every component has a render block which describes what will be
 # drawn on the UI
 render do
 # Components can render other components or primitive HTML or SVG
 # tags. Components also use their state to determine what to render,
 # in this case the @current_time instance variable
 DIV { @current_time.strftime(format) }
 end
end

The following chapters cover these aspects and more in detail.

 Defining a Component

 The Hyperstack Component DSL is a set of class and instance methods that are used to describe React components and render the user-interface.

The following sections give a brief orientation to the structure of a component and the methods that are used to define and control its behavior.

Defining a Component

Hyperstack Components are Ruby classes that inherit from the HyperComponent base class:

class MyComponent < HyperComponent
 ...
end

More on the HyperComponent base class

The render Callback

At a minimum every concrete component class must define a render block which generates one or more child elements. Those children may in turn have an arbitrarily deep structure. More on concrete and abstract components…

class Component < HyperComponent
 render do
 DIV { } # render an empty div
 end
end

The code between do and end and { .. } are called blocks. More here…

To save a little typing you can also specify the top level element to be rendered:

class Component < HyperComponent
 render(DIV, class: 'my-special-class') do
 # everything will be rendered in a div
 end
end

To create a component instance, you reference its class name as a method call from another component. This creates a new instance, passes any parameters and proceeds with the component lifecycle.

The actual type created is an Element, read on for details…

class FirstComponent < HyperComponent
 render do
 NextComponent() # ruby syntax requires either () or {} following the class name
 end
end

While a component is defined as a class, and a rendered component is an instance of that class, we do not in general use the new method, or need to modify the components initialize method.

Invoking Components

Note: when invoking a component you must have a (possibly empty) parameter list or (possibly empty) block.

MyCustomComponent() # ok
MyCustomComponent {} # ok
MyCustomComponent # <— breaks

Component Params

A component can receive params to customize its look and behavior:

class SayHello < HyperComponent
 param :to
 render(DIV, class: :hello) do
 "Hello #{to}!"
 end
end

...

 SayHello(to: "Joe")

Components can receive new params, causing the component to update. More on Params ….

Component State

Components also have state, which is stored in instance variables. You signal a state change using the mutate method. Component state is a fundamental concept covered here.

Life Cycle Callbacks

A component may be updated during its life time due to either changes in state or receiving new params. You can hook into the components life cycle using the
the life cycle methods. Two of the most common lifecycle methods are before_mount and after_mount that are called before a component first renders, and
just after a component first renders respectively.

class Clock < HyperComponent
 param format: "%m/%d/%Y %I:%M:%S"
 after_mount do
 every(1.second) { mutate @current_time = Time.now }
 end
 render do
 DIV { @current_time.strftime(format) }
 end
end

The complete list of life cycle methods and their syntax is discussed in detail in the Lifecycle Methods section.

Events, Event Handlers, and Component Callbacks

Events such as mouse clicks trigger callbacks, which can be attached using the on method:

class ClickCounter < HyperComponent
 before_mount { @clicks = 0 }
 def adverb
 @clicks.zero? ? 'please' : 'again'
 end
 render(DIV) do
 BUTTON { "click me #{adverb}" }
 .on(:click) { mutate @clicks += 1 } # attach a callback
 DIV { "I've been clicked #{pluralize(@clicks, 'time')}" } if @clicks > 0
 end
end

This example also shows how events and state mutations work together to change the look of the display. It also demonstrates that because a HyperComponent
is just a Ruby class you can define helper methods, use conditional logic, and call on predefined methods like pluralize.

In addition components can fire custom events, and make callbacks to the upper level components. More details …

Application Structure

Your Application is built out of many smaller components using the above features to control the components behavior and communicate between components. To conclude this section let’s create a simple Avatar component which shows a profile picture and username using the Facebook Graph API.

class Avatar < HyperComponent
 param :user_name

 render(DIV) do
 # for each param a method with the same name is defined
 ProfilePic(user_name: user_name)
 ProfileLink(user_name: user_name)
 end
end

class ProfilePic < HyperComponent
 param :user_name

 # note that in Ruby blocks can use do...end or { ... }
 render { IMG(src: "https://graph.facebook.com/#{user_name}/picture") }
end

class ProfileLink < HyperComponent
 param :user_name
 render do
 A(href: "https://www.facebook.com/#{user_name}") do
 user_name
 end
 end
end

 Children

Children

Components often have child components. If you consider HTML tags like DIV, UL, and TABLE
you will see you are already familiar with this concept:

DIV(id: 1) do
 SPAN(class: :span_1) { 'hi' }
 SPAN(class: :span_2) { 'there' }
end

Here we have a DIV that receives one param, an id equal to 1 and has two child elements - the two spans.

The SPANs each have one param (its css class) and has one child element - a string to render.

Hopefully at this point the DSL is intuitive to read, and you can see that this will generate the following HTML:

<div id=1>
 hi
 there
</div>

Dynamic Children

Children do not have to be statically generated. Let’s sort a string of text
into individual word counts and display it in a list:

assume text is a string of text
UL do
 word_count(text).each_with_index do |word, count|
 LI { "#{count} - #{word}" }
 end
end

In this case you can see that we don’t determine the actual number or contents of the LI children until runtime.

The word_count method…

Dynamically generating components creates a new concept called ownership. More here…

Keys

In the above example what would happen if the contents of text were dynamically changing? For
example if it was associated with a text box that the user was typing into, and we updated text
whenever a word was entered.

In this case as the user typed new words, the word_count would be updated and the list would change.
However actually only the contents of one of the list items (LI blocks) would actually change, and
perhaps the sort order. We don’t need to redraw the whole list, just the one list item that changed,
and then perhaps shuffle two of the items. This is going to be much faster than redrawing the whole
list.

Like React, Hyperstack provides a special key param that can identify child elements so that the
rendering engine will know that while the content and order may change on some children, it can easily
identify the ones that are the same:

 LI(key: word) { "#{count} - #{word}"}

You don’t have to stress out too much about keys, its easy to add them later. Just keep the concept in
mind when you are generating long lists, tables, and divs with many children.

More on how Hyperstack generates keys…

Rendering Children

Application defined components can also receive and render children.
A component’s children method returns an enumerable that is used to access the unrendered children of a component. The children can then be rendered
using the render method which will merge any additional parameters and
render the child.

class Indenter < HyperComponent
 render(DIV) do
 IndentLine(by: 10) do # see IndentLine below
 DIV {"Line 1"}
 DIV {"Line 2"}
 DIV {"Line 3"}
 end
 end
end

class IndentLine < HyperComponent
 param by: 20, type: Integer

 render(DIV) do
 children.each_with_index do |child, i|
 child.render(style: {"margin-left" => by*i})
 end
 end
end

Rendering Multiple Values and the FRAGMENT component

A render block may generate multiple values. React assumes when a Component generates multiple items, the item order and quantity may
change over time and so will give a warning unless each element has a key:

class ListItems < HyperComponent
 render do
 # without the keys you would get a warning
 LI(key: 1) { 'item 1' }
 LI(key: 2) { 'item 2' }
 LI(key: 3) { 'item 3' }
 end
end

somewhere else:
 UL do
 ListItems()
 end

If you are sure that the order and number of elements will not change over time you may wrap the items in the FRAGMENT pseudo component:

class ListItems < HyperComponent
 render(FRAGMENT) do
 LI { 'item 1' }
 LI { 'item 2' }
 LI { 'item 3' }
 end
end

 The Hyperstack::Component Module

 This section documents some technical details of the interface between React and Hyperstack as well as some useful low level methods.

The Hyperstack::Component Module

The Hyperstack::Component module can be included in any Ruby class, and will add the methods that interface between that class and React. Specifically it will

	Define the class level methods such as param, render and the other lifecycle methods,

	Provide the render DSL which has the same role as JSX but uses Ruby methods,

	Provide a suitable Javascript class constructor that so that React will recognize the instances of the Component as React Elements

The only major difference between the systems is that JSX compiles directly to React API calls (such as createElement) while Hyperstack executes an expression like MyBigComponent(class: :red, some_param: :foo) and directly calls createElement passing the MyBigComponent react class, and translating it as needed from Ruby to JS conventions.

As each React element is generated it is stored by Hyperstack in a rendering buffer, and when the component finishes the rendering block, the buffer is returned as the result of the components render callback. If the expression has a child block (like DIV { 'hello' }) the block is passed to the createElement as a the child function the same
as JSX would do.

When an expression like this is evaluated (see the full example in the section on params…)

 Reveal(content: DIV { 'I came from the App' })

we need to remove the generated DIV element out of the rendering buffer before passing it to Reveal. This is done automatically by applying the ~ (remove) operator to the
DIV as it is passed on.

In general you will never have to manually use the remove (~) operator, as React’s declarative nature makes storing elements for later use not as necessary as in more
procedural frameworks.

Creating Elements Programmatically

Component classes (including tags like DIV) respond to two methods for programmatically creating elements:

component_class evaluates to some Component Class
component_class.create_element(<params hash>) { <optional block> }
component_class.insert_element(<params hash>) { <optional block> }

both methods return the generated element, the second also inserts into the current rendering buffer.

Rendering to the DOM

Sooner or later it has to end up in the DOM. If you are using Rails then Hyperstack includes several
methods to mount your components onto the display. See the Rails installation section for details.

Otherwise if using jQuery then you can use the render method:

Document.ready? do # ready runs when document is loaded
 jQ['div#mount_point'].render(App)
end

or do it completely yourself with the low level ReactAPI

somewhere in a JS onload page handler:
Hyperstack::Component::ReactAPI.render(App.create_element, `getElementById('mount_point')`)

React.unmount_component_at_node

To remove a element that has been mounted:

Hyperstack::Component::ReactAPI.unmount_component_at_node(dom_container)

This removes a mounted component from the DOM and cleans up its event handlers and state. If no component was mounted in the container, calling this function does nothing. Returns true if a component was unmounted and false if there was no component to unmount.

React.render_to_string

Hyperstack::Component::ReactAPI.render_to_string(element)

Render an element to its initial HTML. This is should only be used on the server for prerendering content. React will return a string containing the HTML. You can use this method to generate HTML on the server and send the markup down on the initial request for faster page loads and to allow search engines to crawl your pages for SEO purposes.

If you call ReactAPI.render on a node that already has this server-rendered markup, React will preserve it and only attach event handlers, allowing you to have a very performant first-load experience.

If you are using rails, then the prerendering functions are automatically performed. Otherwise you can use render_to_string to build your own prerendering system.

React.render_to_static_markup

React.render_to_static_markup(element)

Similar to render_to_string, except this doesn’t create extra DOM attributes such as data-react-id, that React uses internally. This is useful if you want to use React as a simple static page generator, as stripping away the extra attributes can save lots of bytes.

HTML Entities

If you want to display an HTML entity within dynamic content, you will run into double escaping issues as React.js escapes all the strings you are displaying in order to prevent a wide range of XSS attacks by default.

DIV {'First · Second' }
 # Bad: It displays "First · Second"

To workaround this you have to insert raw HTML.

DIV(dangerously_set_inner_HTML: { __html: "First · Second"})

Custom HTML Attributes

If you pass properties to native HTML elements that do not exist in the HTML specification, React will not render them. If you want to use a custom attribute, you should prefix it with data-.

DIV("data-custom-attribute" => "foo")

Web Accessibility [http://www.w3.org/WAI/intro/aria] attributes starting with aria- will be rendered properly.

DIV("aria-hidden" => true)

 When things go wrong…

When things go wrong…

The rescues lifecycle callbacks run when an error is raised from within or below a component.

At the end of the rescue the component tree will be completely re-rendered from scratch. In its
simplest form we need nothing but an empty block.

class App < HyperComponent
 render(DIV) do
 H1 { "Welcome to Our App" }
 ContentWhichFailsSometimes()
 end

 rescues do
 end
end

When an error occurs it will be caught by
the rescues block, and App and all lower components will be re-generated (not just re-rendered).

In most cases you may want to warn the user that something is going wrong, and also record some data
about the event:

class App < HyperComponent
 render(DIV) do
 H1 { "Welcome to Our App" }
 if @failure_fall_back
 DIV { 'Whoops we had a little problem' }
 BUTTON { 'retry' }.on(:click) { mutate @failure_fall_back = false }
 else
 ContentWhichFailsSometimes()
 end
 end

 rescues do |err|
 @failure_fall_back = true
 ReportError.run(err: err)
 end
end

If you don’t want to involve the user, then be careful: To prevent infinite loops the React engine
will not rescue failures occurring during the re-generation of the component tree. If not involving
the user you may want to consider how to insure that system state is completely reset in the rescue.

The rescues method can also take explicit Error types to be rescued:

 rescues StandardError, MyInternalError do |err|
 ...
 end

Like other lifecycle methods you can have multiple rescues in the same component:

 rescues StandardError do |err|
 # code for handling StandardError
 end
 rescues MyInternalError do |err|
 # different code for handling MyInternalError
 end

Like Ruby’s rescue keyword, errors will be caught by the innermost component with a rescues callback that
handles that error.

The data passed to the rescue handler is an array of two items, the Ruby error that was thrown, and details generated by the React engine.

 rescues do |e, info|
 # e is a Ruby error, and responds to backtrace, message, etc
 # info is a hash currently with the single key :componentStack
 # which is string representing the backtrace through the component
 # hierarchy
 end

Caveats

	You cannot rescue errors raised in lifecycle handlers in the same component. Errors raised by lifecycle handlers in inner components are fine, just not in the same component as the rescue.

	Errors raised in event handlers will neither stop the rendering cycle, nor will they be caught by a rescue callback.

 Firing Events from Components

 Params pass data downwards from owner to owned-by component. Data comes back upwards asynchronously
via callbacks, which are simply Procs passed as params into the owned-by component.

More on Ruby Procs here …

The upwards flow of data via callbacks is triggered by some event such as a mouse click, or input change:

class ClickDemo2 < HyperComponent
 render do
 BUTTON { "click" }.on(:click) { |evt| puts "I was clicked"}
 end
end

When the BUTTON is clicked, the event (evt) is passed to the attached click handler.

The details of the event object will be discussed below.

Firing Events from Components

You can also define events in your components to communicate back to the owner:

class Clicker < HyperComponent
 param title: "click"
 fires :clicked
 before_mount { @clicks = 0 }
 render do
 BUTTON { title }.on(:click) { clicked!(@clicks += 1) }
 end
end

class ClickDemo3 < HyperComponent
 render(DIV) do
 DIV { "I have been clicked #{pluralize(@clicks, 'times')}" } if @clicks
 Clicker().on(:clicked) { |clicks| mutate @clicks = clicks }
 end
end

Each time the Clicker's button is clicked it fires the clicked event, indicated
by the event name followed by a bang (!).

The clicked event is received by ClickDemo3, and it updates its state. As you
can see events can send arbitrary data back out.

Notice also that Clicker does not call mutate. It could, but since the change in
@clicks is not used anywhere to control its display there is no need for Clickerto mutate.

Relationship between Events and Params

Notice how events (and callbacks in general as we will see) move data upwards, while
params move data downwards. We can emphasize this by updating our example:

class ClickDemo4 < HyperComponent
 def title
 @clicks ? "Click me again!" : "Let's start clicking!"
 end

 render(DIV) do
 DIV { "I have been clicked #{pluralize(@clicks, 'times')}" } if @clicks
 Clicker(title: title).on(:clicked) { |clicks| mutate @clicks = clicks }
 end
end

When ClickDemo4 is first rendered, the title method will return “Let’s start clicking!”, and
will be passed to Clicker.

The user will (hopefully so we can get on with this chapter) click the button, which will
fire the event. The handler in ClickDemo4 will mutate its state, causing title to change
to “Click me again!”. The new value of the title param will be passed to Clicker, and Clicker
will re-render with the new title.

Events (and callbacks) push data up, params move data down.

Callbacks and Proc Params

Under the hood Events are simply params of type Proc, with the on and fires method
using some naming conventions to clean things up:

class IntemittentButton < HyperComponent
 param :frequency
 param :pulse, type: Proc
 before_mount { @clicks = 0 }
 render do
 BUTTON(
 on_click: lambda {} do
 @clicks += 1
 pulse(@clicks) if (@clicks % frequency).zero?
 end
) { 'click me' }
 end
end

class ClickDemo5 < HyperComponent
 render do
 IntermittentButton(
 frequency: 5,
 pulse: -> (total_clicks) { alert "you are clicking a lot" }
)
 end
end

There is really no reason not to use the fires method to declare Proc params, and
no reason not use the on method to attach handlers. Both will keep your code clean and tidy.

Naming Conventions

The notation on(:click) is short for passing a proc to a param named on_click. In general on(:xxx) will pass the
given block as the on_xxx parameter in a Hyperstack component and onXxx in a JS component.

All the built-in events and many React libraries follow the on_xxx (or onXxx in JS) convention. However even if a library does not use
this convention you can still attach the handler using on('<name-of-param>'). Whatever string is inside the <..> brackets will
be used as the param name.

Likewise the fires method is shorthand for creating a Proc param following the on_xxx naming convention:

fires :foo is short forparam :on_foo, type: Proc, alias: :foo!

The Event Object

UI events like click send an object of class Event to the handler. Some of the data you can get from Event objects are:

	target : the DOM object that was the target of the UI interaction

	target.value : the value of the DOM object

	key_code : the key pressed (for key_down and key_up events)

Refer to the Predefined Events section for complete details…

Other Sources of Events

Besides the UI there are several other sources of events:

	Timers

	HTTP Requests

	Hyperstack Operations

	Websockets

	Web Workers

The way you receive events from these sources depends on the event. Typically though the method will either take a block, or callback proc, or in many cases will return a Promise.
Regardless, the event handler will do one of three things: mutate some state within the component, fire an event to a higher level component, or update some shared store.

For details on updating shared stores, which is often the best answer see the chapter on HyperState…

You have seen the every method used to create events throughout this chapter, here is an example with an HTTP post (which returns a promise.)

class SaveButton < HyperComponent
 fires :saved
 fires :failed
 render do
 BUTTON { "Save" }
 .on(:click) do
 # Posting to some non-hyperstack endpoint for example
 # Data is our class holding some data
 Hyperstack::HTTP.post(
 END_POINT, payload: Data.to_payload
).then do |response|
 saved!(response.json)
 end.fail do |response|
 failed!(response.json)
 end
 end
 end
end

 Further Reading

Further Reading

React

To master Hyperstack you do need a solid understanding of the underlying philosophy of React and its component based architecture. The ‘Thinking in React’ tutorial below is an excellent place to start. Most searches for help on Google will take you to examples written in JSX or ES6 JavaScript but you will learn over time to translate this to Hyperstack easily.

	Thinking in React [https://facebook.github.io/react/docs/thinking-in-react.html]

	React [https://facebook.github.io/react/docs/getting-started.html]

	React Router [https://github.com/reactjs/react-router]

Opal

Hyperstack uses Opal to generate JavaScript from Ruby code. It is well worth reading the Opal guides and the Opal JQuery docs.

	Opal [https://opalrb.com/]

	Opal JQuery Docs [https://www.rubydoc.info/github/opal/opal-jquery/Element]

	Awesome Opal [https://github.com/fazibear/awesome-opal]

 HTML and CSS DSL

HTML and CSS DSL

HTML elements

Each Hyperstack component renders a series of HTML (and SVG) elements, using Ruby expressions to control the output.

UL do
 5.times { |n| LI { "Number #{n}" }}
end

For example

DIV(class: 'green-text') { "Let's gets started!" }

would create the following HTML:

<div class="green-text">Let's gets started!</div>

And this would render a table:

TABLE(class: 'ui celled table') do
 THEAD do
 TR do
 TH { 'One' }
 TH { 'Two' }
 TH { 'Three' }
 end
 end
 TBODY do
 TR do
 TD { 'A' }
 TD(class: 'negative') { 'B' }
 TD { 'C' }
 end
 end
end

See the predefined tags summary for the complete list of HTML and SVG elements.

Naming Conventions

To distinguish between HTML and SVG tags, builtin components and application defined components the following
naming conventions are followed:

	ALLCAPS denotes a HTML, SVG or builtin React psuedo components such as FRAGMENT.

	CamelCase denotes an application defined component class like TodoList.

HTML parameters

You can pass any expected parameter to a HTML or SVG element:

A(href: '/') { 'Click me' } # Click me
IMG(src: '/logo.png') #

Each key-value pair in the parameter block is passed down as an attribute to the tag as you would expect.

CSS

You can specify the CSS class on any HTML element.

P(class: 'bright') { }
... or
P(class: :bright) { }
... or
P(class: [:bright, :blue]) { } # class='bright blue'

For style you need to pass a hash using the React style conventions [https://reactjs.org/docs/dom-elements.html#style]:

P(style: { display: item[:some_property] == "some state" ? :block : :none })

Complex Arguments

You can pass multiple hashes which will be merged, and any individual symbols
(or strings) will be treated as =true. For example

A(:flag, {href: '/'}, class: 'my_class')

will generate

more on passing hashes to methods

 The Game Board

 At this point if you have been reading sequentially through these chapters you know enough to put together a simple tic-tac-toe game.

The Game Board

The board is represented by an array of 9 cells. Cell 0 is the top left square, and cell 8 is the bottom right.

Each cell will contain nil, an :X or an :O.

Displaying the Board

The DisplayBoard component displays a board. DisplayBoard accepts a board param, and will fire back a clicked_at event when the user clicks one of the squares.

A small helper function draw_squares draws an individual square which is displayed as a BUTTON. A click handler is attached which
will fire the clicked_at event with the appropriate cell id.

Notice that DisplayBoard has no internal state of its own. That is handled by the DisplayGame component.

class DisplayBoard < HyperComponent
 param :board
 fires :clicked_at

 def draw_square(id)
 BUTTON(class: :square, id: id) { board[id] }
 .on(:click) { clicked_at!(id) }
 end

 render(DIV) do
 (0..6).step(3) do |row|
 DIV(class: :board_row) do
 (row..row + 2).each { |id| draw_square(id) }
 end
 end
 end
end

The Game State

The DisplayGame component has two state variables:

	@history which is an array of boards, each board being the array of cells.

	@step which is the current step in the history (we begin at zero)

@step and @history allows the player to move backwards or forwards and replay parts of the game.

These are initialized in the before_mount callback. Because Ruby will adjust the array size as needed
and return nil if an array value is not initialized, we can simply initialize the board to an empty array.

There are three reader methods that read the state:

	player returns the current player’s token. The first player is always :X so even steps
are :X, and odd steps are :O.

	current returns the board at the current step.

	history uses state_reader to encapsulate the history state.

Encapsulated access to state in reader methods like this is not necessary but is good practice

class DisplayGame < HyperComponent
 before_mount do
 @history = [[]]
 @step = 0
 end

 def player
 @step.even? ? :X : :O
 end

 def current
 @history[@step]
 end

 state_reader :history
end

Calculating the Winner Based on the Game State

We also have a current_winner? method that will return the winning player or nil based on the value of the current board:

class DisplayGame < HyperComponent
 WINNING_COMBOS = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 3, 6],
 [1, 4, 7],
 [2, 5, 8],
 [0, 4, 8],
 [2, 4, 6]
]

 def current_winner?
 WINNING_COMBOS.each do |a, b, c|
 return current[a] if current[a] && current[a] == current[b] && current[a] == current[c]
 end
 false
 end
end

Mutating the Game State

There are two mutator methods that change state:

	handle_click! is called with the id of the square when a user clicks on a square.

	jump_to! moves the user back and forth through the history.

The handle_click! mutator first checks to make sure that no one has already won at the current step, and that
no one has played in the cell that the user clicked on. If either of these conditions is true handle_click!
returns, no mutation is signaled and nothing changes.

If we had wanted to return AND signal a state mutation we would use the Ruby next keyword instead of return.s

To update the board handle_click! duplicates the squares; adds the player’s token to the cell; makes a new
history with the new squares on the end, and finally updates the value of @step.

We like to use the convention where practical of ending mutator methods with a bang (!) so that readers of the
code are aware that these will change state.

class DisplayGame < HyperComponent
 mutator :handle_click! do |id|
 board = history[@step]
 return if current_winner? || board[id]

 board = board.dup
 board[id] = player
 @history = history[0..@step] + [board]
 @step += 1
 end

 mutator(:jump_to!) { |step| @step = step }
end

The Game Display

Now we have a couple of helper methods to build parts of the game display.

	moves creates the list items that allow the user to move back and forth through the history.

	status provides the play state

class DisplayGame < HyperComponent
 def moves
 return unless history.length > 1

 history.length.times do |move|
 LI(key: move) { move.zero? ? "Go to game start" : "Go to move ##{move}" }
 .on(:click) { jump_to!(move) }
 end
 end

 def status
 if (winner = current_winner?)
 "Winner: #{winner}"
 else
 "Next player: #{player}"
 end
 end
end

And finally our render method which displays the Board and the game info:

class DisplayGame < HyperComponent
 render(DIV, class: :game) do
 DIV(class: :game_board) do
 DisplayBoard(board: current)
 .on(:clicked_at, &method(:handle_click!))
 end
 DIV(class: :game_info) do
 DIV { status }
 OL { moves }
 end
 end
end

&method turns an instance method into a Proc rather than having to say { |id| handle_click(id) }

Summary

This small game uses everything covered in the previous sections: HTML Tags, Component Classes, Params, Events and Callbacks, and State.
The project was derived from this React tutorial: https://reactjs.org/tutorial/tutorial.html.
You may want to compare our Ruby code with the React original.

The following sections cover reference materials, and some advanced information. You may want to skip to the HyperState section which
will use this example to show how state can be encapsulated, extracted and shared resulting in easier to understand and maintain code.

 Javascript Components

Javascript Components

Hyperstack gives you full access to the entire universe of JavaScript libraries and components directly within your Ruby code.

Everything you can do in JavaScript is simple to do in Opal-Ruby; this includes passing parameters between Ruby and JavaScript and even passing Ruby methods as JavaScript callbacks.

For more information on writing Javascript within your Ruby code…

Importing Javascript or React Libraries

Importing and using React libraries from inside Hyperstack is very simple and very powerful. Any JavaScript or React based library can be accessible in your Ruby code.

Using Webpacker there are just a few simple steps:

	Add the library source to your project using yarn or npm

	Import the JavaScript objects you require

	Use the JavaScript or React component as if it were a Ruby class

Here is an example using the Material UI [https://material-ui.com/] library:

Firstly, you install the library:

yarn add @material-ui/core

Next you import the objects you plan to use:

// app/javascript/packs/client_and_server.js

// to import the whole library
Mui = require('@material-ui/core')
// or to import a single component
Button = require('@material-ui/core/Button')

Theoretically webpacker will detect the change and rebuild everything, but you might have to do the following:

bin/webpack # rebuild the webpacks
rm -rf tmp/cache # clear the cached sprockets files

Now you can use Material UI Components in your Ruby code:

if you imported the whole library
Mui::Button(variant: :contained, color: :primary) { "Click me" }.on(:click) do
 alert 'you clicked the primary button!'
end

if you just imported the Button component
Button(variant: :contained, color: :secondary) { "Click me" }.on(:click) do
 alert 'you clicked the secondary button!'
end

Libraries used often with Hyperstack projects:

	Material UI [https://material-ui.com/] Google’s Material UI as React components

	Semantic UI [https://react.semantic-ui.com/] A React wrapper for the Semantic UI stylesheet

	ReactStrap [https://reactstrap.github.io/] Bootstrap 4 React wrapper

Making Custom Wrappers - WORK IN PROGRESS …

 Hyperstack will automatically import Javascript components and component libraries as discussed above. Sometimes for
complex libraries that you will use a lot it is useful to add some syntactic sugar to the wrapper.

 Lifecycle Methods

Lifecycle Methods

A component may define lifecycle methods for each phase of the components lifecycle:

	before_mount

	render

	after_mount

	before_new_params

	before_update

	render will be called again here

	after_update

	before_unmount

	rescues The rescues callback is described here…

All the Component Lifecycle methods (except render) may take a block or the name(s) of instance method(s) to be called. The render method always takes a block.

class MyComponent < HyperComponent
 before_mount do
 # initialize stuff here
 end

 render do
 # return some elements
 end

 before_unmount :cleanup # call the cleanup method before unmounting
 ...
end

Except for render, multiple lifecycle callbacks may be defined for each lifecycle phase, and will be executed in the order defined, and from most deeply nested subclass outwards. Note the implication that the callbacks are inherited, which can be useful in creating abstract component classes.

Rendering

The lifecycle revolves around rendering the component. As the state or parameters of a component change, its render callback will be executed to generate the new HTML.

render do
 ...
end

The render method may optionally take the container component and params:

render(DIV, class: 'my-class') do
 ...
end

which would be equivalent to:

render do
 DIV(class: 'my-class') do
 ...
 end
end

Before Mounting (first render)

before_mount do
 ...
end

Invoked once when the component is first instantiated, immediately before the initial rendering occurs. This is where state variables should be initialized.

This is the only life cycle callback run during render_to_string used in server side pre-rendering.

After Mounting (first render)

after_mount do
 ...
end

Invoked once, only on the client (not on the server during prerendering), immediately after the initial rendering occurs. At this point in the lifecycle, you can access any refs to your children (e.g., to access the underlying DOM representation). The after_mount callbacks of child components are invoked before that of parent components.

If you want to integrate with other JavaScript frameworks, set timers using the after or every methods, or send AJAX requests, perform those operations in this callback. Attempting to perform such operations in before_mount will cause errors during prerendering because none of these operations are available in the server environment.

Before Receiving New Params

before_new_params do |new_params_hash|
 ...
end

Invoked when a component is receiving new params (React props). This method is not called for the initial render.

Use this as an opportunity to react to receiving new param values before render is called by updating any instance variables. The new_params block parameter contains a hash of the new values.

before_new_params do |next_params|
 @likes_increasing = (next_params[:like_count] > like_count)
end

Note: There is no analogous method before_receive_state. An incoming param may cause a state change, but the opposite is not true. If you need to perform operations in response to a state change, use before_update.

Before Updating (re-rendering)

before_update do
 ...
end

Invoked immediately before rendering when new params or state are being received.

After Updating (re-rendering)

after_update do
 ...
end

Invoked immediately after the component’s updates are flushed to the DOM. This method is not called for the initial render.

Use this as an opportunity to operate on the DOM when the component has been updated.

Unmounting

before_unmount do
 ...
end

Invoked immediately before a component is unmounted from the DOM.

Perform any necessary cleanup in this method, such as cleaning up any DOM elements that were created in the after_mount method. Note that periodic timers and
broadcast receivers are automatically cleaned up when the component is unmounted.

The before_render and after_render convenience methods

These call backs occur before and after all renders (first and re-rerenders.) They provide no added functionality but allow you to keep
your render methods focused on generating components.

The force_update! method

force_update! is a component instance method that causes the component to re-rerender. This method is seldom (if ever) needed.

The force_update! instance method causes the component to re-render. Usually this is not necessary as rendering will occur when state variables change, or new params are passed.

 Class Methods

Class Methods

The following methods are used to define the interface and behavior of instances of the component
class. You may also use any other Ruby constructs such as method definition as
you would in any Ruby class.

Interface Definition
These methods define the signature of the component’s params.

	param(*args) - specifies params and creates accessor methods

	fires(name, alias: internal_name) - specifies an event call-back

	others(name) accessor method that collects all params not otherwise specified

	other, other_params, opts, collect_other_params_as aliases for others

Lifecycle Methods
These methods define the behavior of the component through its lifecycle. All
components must have a render callback. If no signature is specified the method will
take a list of method names, and/or a callback block. Except for render, you may
define multiple handlers for each callback.

	render(opt_comp_name, opt_params, &block)

	before_mount

	after_mount

	before_new_params

	before_update

	after_update

	before_render before all renders

	after_render after all renders

	rescues(*klasses_to_rescue, &block)

State Management
Each component instance has internal state represented by the contents of instance variables:
changes to the state is signaled using the mutate method. The following methods
define additional instance methods that access state with built-in calls to the mutate method.

	mutator defines an instance method with a built-in mutate.

	state_reader creates an instance state read only accessor method.

	state_writer creates an instance state write only accessor method.

	state_accessor creates instance reader and writer methods.

Other Class Level Methods

	mounted_components - returns an array of all currently mounted components of this class and subclasses

	force_update! forces all components in this class and its subclasses to update

	create_element(*params, &children) - create an element from this class

	insert_element(*params, &children) - create and insert an element into the rendering buffer

Instance Methods

Inserting Elements

All HTML and SVG tags, and all other Components visible to this instance can be inserted into the
rendering buffer by using the tag or component class name followed either by parens and/or a block:

DIV(...) or DIV { ... } or DIV(...) { ... }

Note that this is just short for DIV.insert_element(...) { ... }

Parameters can be passed as a combination of strings and symbols followed by any number of hashes.

Any symbols or strings will be treated as a hash key with a value of true and will be merged with the rest of the
hashes:

MyComp(:foo, 'bar-ski', {class: :joe, id: 12}, data: 123)
is the same as
MyComp(foo: true, 'bar-ski' => true, class: :joe, id: 12, data: 123)

Attaching Callback Handlers

Component params that expect Procs can passed as normal or using the .on method:

BUTTON { 'click me' }.on(:click) { alert('you clicked?') }
is the same as
BUTTON(on_click: -> { alert('you clicked') }) { 'click me' }

State Management

When an event occurs it will probably change state. The mutate method is used to signal the
state change.

	mutate signals that this instance’s state has been mutated

	toggle(:foo) is short for mutate @foo = !@foo

Other Methods

	children enumerates the children of this component

	alert(message) js alert

	after(time, &block) run block after time seconds

	every(time, &block) run block every time seconds

	pluralize(count, singular, plural = nil) equivalent to Rails pluralize helper

	dom_node returns the DOM node of this component

	jq_node short for jQ[dom_node]

	force_update! Almost always components should render due to a state change or when receiving new params.

	~ Removes the instance from the current rendering buffer. This is done automatically in most cases when needed.

 Notes

Notes

Blocks in Ruby

Ruby methods may receive a block which is simply an anonymous function.

The following code in Ruby:

some_method(1, 2, 3) { |x| puts x }

is roughly equivilent to this Javascript

some_method(1, 2, 3 function(x) { console.log(x) })

In Ruby blocks may be specified either using do ... end or with { ... }:

some_method { an_expression }
or
some_method do
 several
 expressions
end

Standard style reserves the { ... } notation for single line blocks, and do ... end for multiple line blocks.

Component Instances

Currently when generating a component the actual value returned after processing by React is an instance of class
Element. The long term plan is to merge these two concepts back together so that Element instances and
Component instances will be the same. The major difference at the moment is that an Element carries all the data
needed to create a Component Instance, but has not yet been rendered. Through out this document we will use
element and component instance interchangeably.

Ruby Hash Params

In Ruby if the final argument to a method is a hash you may leave the {...} off:

some_method(1, 2, {a: 2, b: 3}) # same as
some_method(1, 2, a: 2, b: 3)

The HyperComponent Base Class

By convention all your components inherit from the HyperComponent base class, which would typically look like this:

components/hyper_component.rb
class HyperComponent
 # All component classes must include Hyperstack::Component
 include Hyperstack::Component
 # The Observable module adds state handling
 include Hyperstack::State::Observable
 # The following turns on the new style param accessor
 # i.e. param :foo is accessed by the foo method
 param_accessor_style :accessors
end

The Hyperstack Rails installer and generators will create this class for you if it does not exist, or you may copy the
above to your components directory.

Having an application wide HyperComponent class allows you to modify component behavior on an application basis, similar to the way Rails uses ApplicationRecord and ApplicationController classes.

This is just a convention. Any class that includes the Hyperstack::Component module can be used as a Component. You also do not have
to name it HyperComponent. For example some teams prefer ApplicationComponent more closely following the
Rails convention. If you use a different name for this class be sure to set the Hyperstack.component_base_class setting so the
Rails generators will use the proper name when generating your components. more details…

Abstract and Concrete Components

An abstract component class is intended to be the base class of other components, and thus does not have a render block.
A class that defines a render block is a concrete class. The
distinction between abstract and concrete is useful to distinguish classes like HyperComponent that are intended
to be subclassed.

Abstract classes are often used to share common code between subclasses.

Word Count Method

def word_count(text)
 text.downcase # all lower case
 .gsub(/\W/, ' ') # get rid of special chars
 .split(' ') # divide into an array of words
 .group_by(&:itself) # group into arrays of the same words
 .map{|k, v| [k, v.length]} # convert to [word, # of words]
 .sort { |a, b| b[1] <=> a[1] } # sort descending (that was fun!)
end

Ownership

In the Avatar example instances of Avatar own instances of ProfilePic and ProfileLink. In Hyperstack (like React), an owner is the component that sets the params of other components. More formally, if a component X is created in component Y’s render method, it is said that X is owned by Y. As will be discussed later a component cannot mutate its params — they are always consistent with what its owner sets them to. This fundamental invariant leads to UIs that are guaranteed to be consistent.

It’s important to draw a distinction between the owner-owned-by relationship and the parent-child relationship. The owner-owned-by relationship is specific to Hyperstack/React, while the parent-child relationship is simply the one you know and love from the DOM. In the example above, Avatar owns the DIV, ProfilePic and ProfileLink instances, and DIV is the parent (but not owner) of the ProfilePic and ProfileLink instances.

class Avatar < HyperComponent
 param :user_name

 render do # this can be shortened to render(DIV) do - see the previous section
 DIV do
 ProfilePic(user_name: user_name) # belongs to Avatar, owned by DIV
 ProfileLink(user_name: user_name) # belongs to Avatar, owned by DIV
 end
 end
end

class ProfilePic < HyperComponent
 param :user_name
 render { IMG(src: "https://graph.facebook.com/#{user_name}/picture") }
end

class ProfileLink < HyperComponent
 param :user_name
 render do
 A(href: "https://www.facebook.com/#{user_name}") do
 user_name
 end
 end
end

Generating Keys

Every Hyperstack object whether its a string, integer, or some complex class responds to the to_key method.
When you provide a component’s key parameter with any object, the object’s to_key method will be called, and
return a unique key appropriate to that object.

For example strings, and numbers return themselves. Other complex objects return the internal object_id, and
some classes provide their own to_key method that returns some invariant value for each instance of that class. HyperModel records
return the database id for example.

If you are creating your own data classes keep this in mind. You simply define a to_key method on the class
that returns some value that will be unique to that instance. And don’t worry if you don’t define a method, it will
default to the one provided by Hyperstack.

Proper Use Of Keys

For best results the key is supplied at highest level possible.

NOTE THIS MAY NO LONGER BE AN ISSUE IN LATEST REACT)

WRONG!
class ListItemWrapper < HyperComponent
 param :data
 render do
 LI(key: data[:id]) { data[:text] }
 end
end

class MyComponent < HyperComponent
 param :results
 render do
 UL do
 result.each do |result|
 ListItemWrapper data: result
 end
 end
 end
end

CORRECT
class ListItemWrapper < HyperComponent
 param :data
 render do
 LI { data[:text] }
 end
end

class MyComponent < HyperComponent
 param :results
 render do
 UL do
 results.each do |result|
 ListItemWrapper key: result[:id], data: result
 end
 end
 end
end

Ruby Procs

A core class of objects in Ruby is the Proc. A Proc (Procedure) is an
object that can be called.

some_proc.call(1, 2, 3)

Ruby has several ways to create procs:

create a proc that will add its three parameters together
using Proc.new
some_proc = Proc.new { |a, b, c| a + b + c }
using the lambda method:
some_proc = lambda { |a, b, c| a + b + c }
or the hash rocket notation:
some_proc = -> (a, b, c) { a + b + c }
using a method (assuming self responds to foo)
some_proc = method(:foo)

And there are several more ways, each with its differences and uses. You can
find lots of details on Procs by searching online. Here is a good article to get you started… [https://blog.appsignal.com/2018/09/04/ruby-magic-closures-in-ruby-blocks-procs-and-lambdas.html]

The most common ways you will use Procs in your Hyperstack code is to define
either lifecycle or component callbacks:

class Foo < HyperComponent
 before_mount :do_it_before
 after_mount { puts "I did it after" }
 render do
 BUTTON(on_click: ->() { puts "clicked Using a lambda" }) { "click me" }
 BUTTON { "no click me" }.on(:click) { puts "clicked using the on method" }
 end
 def do_it_before
 puts "I did it before"
 end
end

The different ways of specifying callbacks allow you to keep your code clear and consise, but in the end they do the same thing.

Note that there are subtle differences between Proc.new and lambda, that are beyond the scope of this note.

Javascript

Opal-Ruby uses the backticks and %x{ ... } to drop blocks of Javascript code directly into your Ruby code.

def my_own_console(message)
 # crab-claws can be used to escape back out to Ruby
 `console.log(#{message})`
end

Both the backticks and %x{ ... } work the same, but the %{ ... } notation is useful for multiple lines of code.

How Importing Works

Hyperstack automates as much of the process as possible for bridging between React and Javascript, however you do have
lower level control as needed.

Let’s say you have an existing React Component written in Javascript that you would like to access from Hyperstack.

Here is a simple hello world component:

window.SayHello = class extends React.Component {
 constructor(props) {
 super(props);
 this.displayName = "SayHello"
 }
 render() { return React.createElement("div", null, "Hello ", this.props.name); }
}

I’m sorry I can’t resist. Really?

class SayHello < HyperComponent
 param :name
 render(DIV) { "Hello #{name}"}
end

In what world is the Ruby not much better than that JS hot mess.

Assuming that this component is loaded some place in your assets, you can then access this from Hyperstack by creating a wrapper Component:

class SayHello < HyperComponent
 imports 'SayHello'
end

class MyBigApp < HyperComponent
 render(DIV) do
 # SayHello will now act like any other Hyperstack component
 SayHello name: 'Matz'
 end
end

The imports directive takes a string (or a symbol) and will simply evaluate it and check to make sure that the value looks like a React component, and then set the underlying native component to point to the imported component.

Normally you do not have to use imports explicitly. When Hyperstack finds a component named in your code that is undefined it searches for
a Javascript class whose matches, and which acts like a React component class. Once find it creates the class and imports for you.

You may also turn off the autoimport function if necessary in your hyperstack.rb initializer:

do not use the auto-import module
Hyperstack.cancel_import 'hyperstack/component/auto-import'

The Enter Event

The :enter event is short for catching :key_down and then checking for a key code of 13.

class YouSaid < HyperComponent
 state_accessor :value
 render(DIV) do
 INPUT(value: value)
 .on(:enter) do
 alert "You said: #{value}"
 self.value = ""
 end
 .on(:change) do |e|
 self.value = e.target.value
 end
 end
end

 Accessing param values

 The param class method gives read-only access to each of the params passed to the component. Params are accessed as instance methods of the component.

In React params are called props, but Hyperstack uses the more common Rails term param.

Within a component class the param method is used to define the parameter signature of the component. You can think of params as the values that would normally be sent to the instance’s initialize method, but with the difference that a component will get new parameters during its lifecycle.

The param declaration has several options providing a default value, expected type, and an internal alias name.

Examples:

param :foo # declares that we must provide a parameter foo when the component is instantiated or re-rerendered.
param :foo => "some default" # declares that foo is optional, and if not present the value "some default" will be used.
param foo: "some default" # same as above using ruby 1.9 JSON style syntax
param :foo, default: "some default" # same as above but uses explicit default key
param :foo, type: String # foo is required and must be of type String
param :foo, type: [String] # foo is required and must be an array of Strings
param foo: [], type: [String] # foo must be an array of strings, and has a default value of the empty array.
param :foo, alias: :something # the alias name will be used for the param (instead of foo)

Accessing param values

Params are accessible in the component as instance methods. For example:

class Hello < HyperComponent
 # visitor has a default value (so its not required)
 # and must be of type (i.e. instance of) String
 param visitor: "World", type: String

 render do
 "Hello #{visitor}"
 end
end

Param Validation

As your app grows it’s helpful to ensure that your components are used correctly.You do this by specifying the expected ruby class of your parameters. When an invalid value is provided for a param, a warning will be shown in the JavaScript console. Note that for performance reasons type checking is only done in development mode. Here is an example showing typical type specifications:

class ManyParams < HyperComponent
 param :an_array, type: [] # or type: Array
 param :a_string, type: String
 param :array_of_strings, type: [String]
 param :a_hash, type: Hash
 param :some_class, type: SomeClass # works with any class
 param :a_string_or_nil, type: String, allow_nil: true
end

Note that if the param has a type but can also be nil, add allow_nil: true to the specification.

Default Param Values

You can define default values for your params:

class ManyParams < HyperComponent
 param :an_optional_param, default: "hello", type: String, allow_nil: true

If no value is provided for :an_optional_param it will be given the value "hello", it may also be given the value nil.

Defaults can be provided by the default key or using the syntax param foo: 12 which would default foo to 12.

Component Instances as Params

You can pass an instance of a component as a param and then render it in the receiving component.

class Reveal < HyperComponent
 param :content
 render do
 BUTTON { "#{@show ? 'hide' : 'show'} me" }
 .on(:click) { mutate @show = !@show }
 content.render if @show
 end
end
class App < HyperComponent
 render do
 Reveal(content: DIV { 'I came from the App' })
 end
end

see the spec… [https://github.com/hyperstack-org/hyperstack/blob/24131990ea1cdacfc9efc328d4994a7c2d86a0f4/docs/specs/spec/client-dsl/params_spec.rb#L4-L25]

render is used to render the child components. For details …

Notice that this is just a way to pass a child to a component but instead of sending it to the “block” with other children you are passing it as a single named child.

Other Params

A common type of component is one that extends a basic HTML element in a simple way. Often you’ll want to copy any HTML attributes passed to your component to the underlying HTML element.

To do this use the others method which will gather all the params you did not declare into a hash. Then you can pass this hash on to the child component

class CheckLink < HyperComponent
 others :attributes
 render do
 # we just pass along any incoming attributes
 A(attributes) { '√ '.span; children.each &:render }
 end
end

 # elsewhere
 CheckLink(href: "/checked.html")

Note: others builds a hash, so you can merge other data in or even delete elements out as needed.

Aliasing Param Names

Sometimes we can make our component code more readable by using a different param name inside the component than the owner component will use.

class Hello < HyperComponent
 param :name
 param include_time: true, alias: :time?
 render { SPAN { "Hello #{name}#{'the time is '+Time.now if time?}" } }
end

This way we can keep the interface very clear, but keep our component code short and sweet.

Updating Params

Each time a component is rendered any of the components it owns may be re-rendered as well but only if any of the params will change in value.
If none of the params change in value, then the owned-by component will not be rerendered as no parameters have changed.

Hyperstack determines if a param has changed through a simple Ruby equality check. If old_params == new_params then no update is needed.

For strings, numbers and other scalar values equality is straight forward. Two hashes are equal if they each contain the same number of keys
and if each key-value pair is equal to the corresponding elements in the other hash. Two arrays are equal if they contain the same number of
elements and if each element is equal to the corresponding element in the other array.

For other objects unless the object defines its own equality method the objects are equal only if they are the same instance.

Also keep in mind that if you pass an array or hash (or any other non-scalar object) you are passing a reference to the object not a copy.

Lets look at a simple (but contrived) example and see how this all plays out:

class App < HyperComponent
 render do
 DIV do
 BUTTON { "update" }.on(:click) { force_update! }
 new_hash = {foo: {bar: [12, 13]}}
 Comp2(param: new_hash)
 end
 end
end

class Comp2 < HyperComponent
 param :param
 render do
 DIV { param }
 end
end

Even though we have not gotten to event handlers yet, you can see what is going on: When we click the update button we call force_update!
which will force the App component to rerender.

By the way force_update! is almost never used, but we are using it here
just to make the example clear. Its also one of the reasons this example gets into trouble. Read on!

Will Comp2 rerender? No - because even though we are creating a new hash, the old hash and new hash are equal in value.

What if we change the hash to be {foo: {bar: [12, Time.now]}}. Will Comp2 re-render now? Yes because the old and new hashes are no longer equal.

What if we changed App like this:

class App < HyperComponent
 # initialize an instance variable before rendering App
 before_mount { @hash = {foo: {bar: [12, 13]}} }
 render do
 DIV do
 BUTTON { "update" }.on(:click) do
 @hash[:foo][:bar][2] = Time.now
 force_update!
 end
 Comp2(param: @hash)
 end
 end
end

Will Comp2 still update? No. Comp2 received the value of @hash on the first render, and so Comp2 is rendering the same copy of @hash that App is changing.
So when we compare old verses new we are comparing the same object, so the values are equal even though the contents of the hash has changed.

Conclusion

That does not seem like a very happy ending, but the case we used was not very realistic. If you stick to passing simple scalars, or hashes and arrays
whose values don’t change after they have been passed, things will work fine. And for situations where you do need to store and
manipulate complex data, you can use the the Hyperstack::Observable module to build safe classes that don’t
have the problems seen above.

 Event Handlers

Event Handlers

Event Handlers are attached to tags and components using the on method.

SELECT ... do
 ...
end.on(:change) do |e|
 mutate @mode = e.target.value.to_i
end

The on method takes the event name symbol (note that onClick becomes :click) and the block is passed the React.js event object.

BUTTON { 'Press me' }.on(:click) { do_something }
you can add an event handler to any HTML element
H1(class: :cursor_hand) { 'Click me' }.on(:click) { do_something }

Event handlers can be chained like so

 INPUT ... do
 ...
 end.on(:key_up) do |e|
 ...
 end.on(:change) do |e|
 ...
 end

Event Handling and Synthetic Events

The React engine ensures that all events behave identically in IE8 and above by implementing a synthetic event system. That is, React knows how to bubble and capture events according to the spec, and the events passed to your event handler are guaranteed to be consistent with the W3C spec [http://www.w3.org/TR/DOM-Level-3-Events/], regardless of which browser you’re using.

Under the Hood: Event Delegation

React doesn’t actually attach event handlers to the nodes themselves. When React starts up, it starts listening for all events at the top level using a single event listener. When a component is mounted or unmounted, the event handlers are simply added or removed from an internal mapping. When an event occurs, React knows how to dispatch it using this mapping. When there are no event handlers left in the mapping, React’s event handlers are simple no-ops. To learn more about why this is fast, see David Walsh’s excellent blog post … [http://davidwalsh.name/event-delegate].

React::Event

Your event handlers will be passed instances of Hyperstack::Component::Event, a wrapper around react.js’s SyntheticEvent which in turn is a cross browser wrapper around the browser’s native event. It has the same interface as the browser’s native event, including stop_propagation() and prevent_default(), except the events work identically across all browsers.

For example:

class YouSaid < HyperComponent
 state_accessor :value
 render(DIV) do
 INPUT(value: value)
 .on(:key_down) do |e|
 next unless e.key_code == 13

 alert "You said: #{value}"
 self.value = ""
 end
 .on(:change) do |e|
 self.value = e.target.value
 end
 end
end

Hyperstack also includes an enter event that fires on key_down when the key_code == 13. See that version here …

If you find that you need the underlying browser event for some reason use the native_event method (i.e. evt.native_event).

In the following responses shown as (native …) indicate the value returned is a native object with an Opal wrapper. In some cases there will be opal methods available (i.e. for native DOMNode values) and in other cases you will have to convert to the native value with .to_n and then use javascript directly.

Every Event has the following methods:

bubbles -> Boolean
cancelable -> Boolean
current_target -> (native DOM node)
default_prevented -> Boolean
event_phase -> Integer
is_trusted -> Boolean
native_event -> (native Event)
prevent_default -> Proc
is_default_prevented -> Boolean
stop_propagation -> Proc
is_propagation_stopped -> Boolean
target -> (native DOMEventTarget)
timestamp -> Integer (use Time.at to convert to Time)
type -> String

Event pooling

The underlying React SyntheticEvent is pooled. This means that the SyntheticEvent object will be reused and all properties will be nullified after the event method has been invoked. This is for performance reasons. As such, you cannot access the event in an asynchronous way - don’t store the whole event and
think you can use it later after you ate breakfast.

Clipboard Events

Event names:

:copy, :cut, :paste

Available Methods:

clipboard_data -> (native DOMDataTransfer)

Composition Events (not tested)

Event names:

:composition_end, :composition_start, :composition_update

Available Methods:

data -> String

Keyboard Events

Event names:

:key_down, :key_press, :key_up, :enter

The enter event is fired on key_down where key_code == 13 (the enter key)

Available Methods:

alt_key -> Boolean
char_code -> Integer
ctrl_key -> Boolean
get_modifier_state(key) -> Boolean (i.e. get_modifier_key(:Shift)
key -> String
key_code -> Integer
locale -> String
location -> Integer
meta_key -> Boolean
repeat -> Boolean
shift_key -> Boolean
which -> Integer

Focus Events

Event names:

:focus, :blur

Available Methods:

related_target -> (Native DOMEventTarget)

These focus events work on all elements in the React DOM, not just form elements.

Form Events

Event names:

:change, :input, :submit

Mouse Events

Event names:

:click, :context_menu, :double_click, :drag, :drag_end, :drag_enter, :drag_exit
:drag_leave, :drag_over, :drag_start, :drop, :mouse_down, :mouse_enter,
:mouse_leave, :mouse_move, :mouse_out, :mouse_over, :mouse_up

The :mouse_enter and :mouse_leave events propagate from the element being left to the one being entered instead of ordinary bubbling and do not have a capture phase.

Available Methods:

alt_key -> Boolean
button -> Integer
buttons -> Integer
client_x -> Integer
number client_y -> Integer
ctrl_key -> Boolean
get_modifier_state(key) -> Boolean
meta_key -> Boolean
page_x -> Integer
page_y -> Integer
related_target -> (Native DOMEventTarget)
screen_x -> Integer
screen_y -> Integer
shift_key -> Boolean

Drag and Drop example

Here is a Hyperstack version of this w3schools.com [https://www.w3schools.com/html/html5_draganddrop.asp] example:

DIV(id: :div1, style: { width: 350, height: 70, padding: 10, border: '1px solid #aaaaaa' })
.on(:drop) do |evt|
 evt.prevent_default
 data = `#{evt.native_event}.native.dataTransfer.getData("text")`
 `#{evt.target}.native.appendChild(document.getElementById(data))`
end
.on(:drag_over, &:prevent_default)

IMG(id: :drag1, src: "https://www.w3schools.com/html/img_logo.gif", draggable: "true", width: 336, height: 69)
.on(:drag_start) do |evt|
 `#{evt.native_event}.native.dataTransfer.setData("text", #{evt.target}.native.id)`
end

Selection events

Event names:

onSelect

Touch events

Event names:

:touch_cancel, :touch_end, :touch_move, :touch_start

Available Methods:

alt_key -> Boolean
changed_touches -> (Native DOMTouchList)
ctrl_key -> Boolean
get_modifier_state(key) -> Boolean
meta_key -> Boolean
shift_key -> Boolean
target_touches -> (Native DOMTouchList)
touches -> (Native DomTouchList)

UI Events

Event names:

:scroll

Available Methods:

detail -> Integer
view -> (Native DOMAbstractView)

Wheel Events

Event names:

wheel

Available Methods:

delta_mode -> Integer
delta_x -> Integer
delta_y -> Integer
delta_z -> Integer

Media Events

Event names:

:abort, :can_play, :can_play_through, :duration_change,:emptied, :encrypted, :ended, :error, :loaded_data,
:loaded_metadata, :load_start, :pause, :play, :playing, :progress, :rate_change, :seeked, :seeking, :stalled,
:on_suspend, :time_update, :volume_change, :waiting

Image Events

Event names:

:load, :error

 HTML Tags

HTML Tags

A ABBR ADDRESS AREA ARTICLE ASIDE AUDIO
B BASE BDI BDO BIG BLOCKQUOTE BODY BR BUTTON
CANVAS CAPTION CITE CODE COL COLGROUP
DATA DATALIST DD DEL DETAILS DFN DIALOG DIV DL DT
EM EMBED
FIELDSET FIGCAPTION FIGURE FOOTER FORM
H1 H2 H3 H4 H5 H6 HEAD HEADER HR HTML
I IFRAME IMG INPUT INS
KBD KEYGEN
LABEL LEGEND LI LINK
MAIN MAP MARK MENU MENUITEM META METER
NAV NOSCRIPT
OBJECT OL OPTGROUP OPTION OUTPUT
P PARAM PICTURE PRE PROGRESS
Q
RP RT RUBY
S SAMP SCRIPT SECTION SELECT SMALL SOURCE SPAN STRONG STYLE SUB SUMMARY SUP
TABLE TBODY TD TEXTAREA TFOOT TH THEAD TIME TITLE TR TRACK
U UL
VAR VIDEO
WBR

SVG Tags

CIRCLE CLIPPATH
DEFS
ELLIPSE
G
LINE LINEARGRADIENT
MASK
PATH PATTERN POLYGON POLYLINE
RADIALGRADIENT RECT
STOP
SVG
TEXT TSPAN

The FRAGMENT Tag

The FRAGMENT tag is used to return multiple static children from a component or block. The only valid param to FRAGMENT is key. See the React documentation [https://reactjs.org/docs/fragments.html] for more details. If a render block returns dynamic children that will change in number and order, each child should be assigned a unique key, and the FRAGMENT tag does not have to be used.

 It’s that Simple Really

 When a component is rendered what it displays depends on some combination of three things:

	the value of the params passed to the component

	the state of the component

	the state of some other objects on which a component depends

Whenever one of these three things change the component will need to re-render. In this section we
discuss how a component’s internal state is managed within Hyperstack. Params were covered here… and sharing state
between components will be covered here…

The idea of state is built into Ruby and is represented by the instance variables of an object instance.

Components very often have state. For example, is an item being displayed or edited? What is the current
value of a text box? A checkbox? The time that an alarm should go off? All these are state and will be
represented as values stored somewhere in instance variables.

Lets look at a simple clock component:

class Clock < HyperComponent
 after_mount do
 every(1.second) do
 mutate @time = Time.now
 end
 end

 render(DIV) { "The time is #{@time}" }
end

The after_mount call back sets up a periodic timer that goes off every second and updates the
@time instance variable with the current time. The assignment to @time is wrapped in the mutate method
which signals the React Engine that the state of Clock has been mutated, this in turn will add Clock to
the list of components that need to be re-rendered.

It’s that Simple Really

To reiterate: Components (and other Ruby objects) have state, and the state + the params will determine what
is rendered. When state changes we signal this using the mutate method, and any components depending on the state
will be re-rendered.

State Mutation Always Drives Rendering

It is always a mutation of state that triggers the UI to begin a render cycle. That mutation may in turn cause components
to render and send different params to lower level components, but it begins with a state mutation.

What Causes State To Mutate?

Right! Good question! State is mutated by your code’s reaction to some external event. A button click, text being typed,
or the arrival of data from the server. We will cover these in upcoming sections, but once an event occurs your
code will probably mutate some state as a result, causing component depending on this state to update.

Details on the mutate Syntax

The main purpose of mutate is to signal that state has changed, but it also useful to clarify how your code works.
Therefore mutate can be used in a number of flexible ways:

	It can take any number of expressions:

mutate @state1 = 'something', @state2 = 'something else'

	or it can take a block:

mutate do
 ... compute the new state ...
 @state = ...
end

In both cases the result returned by mutate will be the last expression executed.

The mutator Class Method

This pattern:

class SomeComponent < HyperComponent
 def update_some_state(some_args)
 ... compute new state ...
 mutate ...
 end
 ...
end

is common enough that Hyperstack provides two ways to shorten this code. The first is the
mutator class method:

 ...
 mutator :update_some_state do |some_args|
 ...compute new state ...
 end
 ...

In other words mutator defines a method that is wrapped in a call to mutate. It also has
the advantage of clearly declaring that this method will be mutating the components state.

Important note: If you do an early exit from the mutator using a return or break no mutation
will occur. If you want to do an early exit then use the next keyword.

The state_accessor, state_reader and state_writer Methods

Often all a mutator method will do is assign a new value to a state. For this case Hyperstack provides
the state_accessor, state_reader and state_writer methods, that parallel Ruby’s attribute_accessor,
attribute_reader and attribute_writer methods:

 state_accessor :some_state
 ...
 some_state = some_state + 1 # or just some_state += some_state

In otherwords the state_accessor creates methods that allow read/write access to the underlying instance variable
including the call to mutate.

Again the advantage is not only less typing but also clarity of code and intention.

Sharing State

You can also use and share state at the class level and create “stateful” class libraries. This is described in the chapter on HyperState…

The force_update! Method

We said above only state mutation can start a rerender. The force_update! method is the exception to this rule, as it will
force a component to rerender just because you said so. If you have to use force_update! you may be doing something
wrong, so use carefully.

 Development Tools and Procedures

Development Tools and Procedures

 JavaScript Console

 Debugging any UI code is difficult. Hyperstack’s declarative approach, and lack of redundant boilerplate helps a lot. Simply having 1/4 the code base
to deliver the same functionality is going to make things easier.

However all that said, Debugging UI Code is Difficult. The UI’s main job is to deal with events coming from multiple directions and unpredictable sources, this makes tracking down failures difficult as timing can become an issue.

Here are few tips to go along with the other tools in this section (HyperSpec and HyperTrace) to make your life a bit easier.

JavaScript Console

At any time during program execution you can breakout into the JavaScript console by simply adding the debugger keyword to your Ruby code.

If you have source maps turned on you will then be able to see your ruby code (and the compiled JavaScript code) and set browser breakpoints, examine values and continue execution.

Important Note: The Opal compiler will not handle the debugger keyword at the end of blocks, method definitions, or begin..end statements.

def buggy_method
 ...
 debugger # this will break add any expression on the next line to fix
end

You can also inspect Ruby objects from the JavaScript console. The mapping between the Javascript and Ruby is fairly easy to follow thanks to the great Opal team.

Here are some tips: https://dev.mikamai.com/2014/11/19/3-tricks-to-debug-opal-code-from-your-browser/

The puts method is your friend

Anywhere in your HyperReact code you can simply puts any_value which will display the contents of the value in the browser console. This can help you understand React program flow as well as how data changes over time.

class Thing < Hyperstack::Component
 param initial_mode: 12

 before_mount do
 state.mode! params.initial_mode
 puts "before_mount params.initial_mode=#{params.initial_mode}"
 end

 after_mount do
 @timer = every(60) { force_update! }
 puts "after_mount params.initial_mode=#{params.initial_mode}"
 end

 render do
 div(class: :time) do
 puts "render params.initial_mode=#{params.initial_mode}"
 puts "render state.mode=#{state.mode}"
 ...
 end.on(:change) do |e|
 state.mode!(e.target.value.to_i)
 puts "on:change e.target.value.to_i=#{e.target.value.to_i}"
 puts "on:change (too high) state.mode=#{state.mode}" if state.mode > 100
 end
 end
 end
end

HyperTrace

Sometimes popping in a trace can reveal a lot about what is going on. HyperTrace wraps your selected method calls in
a dump of incoming parameters, instance variable state, and return values. You can also setup conditional
breakpoints. So keep HyperTrace handy in your tool belt.

HyperSpec

IMHO the best debugging tool is a spec. As soon as you start creating a new feature, or find a bug, start
writing a spec. Once you can reproduce the problem by running a spec, you are 90% of the way to fixing the problem,
and you will have another spec to add to your tests, making your app more robust. HyperSpec extends RSpec so that
can control and interrogate the client from within your specs, using Ruby code.

 On Going Development

 There are a number of issues and additional items that need to been done when deploying to Heroku (or other production environments.)
Even if not deploying to Heroku these steps will cover most of the gotchas that you will encounter.

If you do find any problems please log an issue, or better yet do a pull request on this page.

	You need to use postgresql rather than sqlite or mysql. You can find instructions on how to do this online, or better yet when you create your rails app, create it from the beginning with postgresql: https://www.digitalocean.com/community/tutorials/how-to-set-up-ruby-on-rails-with-postgres

	Remove app/models/application_record.rb This is no longer needed due to a recent rails fix, and confuses Heroku.

	Use harmonly uglifier. In config/environments/production.rb you need to change this line from:config.assets.js_compressor = :uglifiertoconfig.assets.js_compressor = Uglifier.new(harmony: true)

	Insure webpacker:compile occurs before assets:precompile: at the end of the Rakefile (in the root directory) add this line:Rake::Task["assets:precompile"].enhance(['yarn:install', 'webpacker:compile'])

	Setup your database Make sure you runHeroku run rake db:migrate

	Update your production policies By default the Hyperstack installer will leave your Policies wide open but not in production.For a production app you will want to add restrictive Policies to protect your data. If you just want to get things working on Heroku you can remove the guard from the end of the policies/application.rb file.

	Add stylesheet_pack_tags: Hyperstack does not automatically pull in the .css packs. Instead you have to add one or both these lines to your layouts, if you are requiring css assets in the pack files:<%= stylesheet_pack_tag 'client_only' %>If you are requiring css libraries in the client_only.js pack fileand<%= stylesheet_pack_tag 'client_and_server' %>If you are requiring css libraries in the client_and_server.js pack file

	Setup ActionCable (see full instructions [https://blog.Heroku.com/real_time_rails_implementing_websockets_in_rails_5_with_action_cable#deploying-our-application-to-Heroku] for details)
provision Redis on Heroku Heroku addons:add redistogothen get the Heroku url: Heroku config --app action-cable-example | grep REDISTOGO_URLuse the url in config/cable.yml (in the production section)in config/environments/production.rb add these two lines:config.web_socket_server_url = "wss://your-app.Herokuapp.com/cable" config.action_cable.allowed_request_origins = ['https://your-app.Herokuapp.com', 'http://action-your-app.Herokuapp.com']

On Going Development

After updating anything in the hyperstack initializer you will need to force Heroku to clear the cache:

First install the Heroku-repo plugin (on your console)
$ Heroku plugins:install Heroku-repo

and then to clear the cache do:

$ Heroku repo:purge_cache -a appname
$ git commit --allow-empty -m "Purge cache"
$ git push Heroku master

 This Page Under Construction

HyperTrace provides a simple way to log information to the Javascript console. You get a real time display of the parameters being passed to
the traced methods, the state of their instance variables, and the return values. You can also set conditional breakpoints so you can stop execution
and dig deeper from the Javascript console.
This Page Under Construction

 HyperSpec Installation

HyperSpec Installation

Add gem 'hyper-spec' to your Gemfile in the usual way.Typically in a Rails app you will add this in the test section of your Gemfile:

group :test do
 gem 'hyper-spec', '~> 1.0.alpha1.0'
end

Make sure to bundle install.

HyperSpec is integrated with the pry gem for debugging, so it is recommended to add the pry gem as well.

HyperSpec will also use the timecop gem if present to allow you to control and synchronize time on the server and the client.

A typical spec_helper file when using HyperSpec will look like this:

spec_helper.rb
require 'hyper-spec'
require 'pry' # optional

ENV["RAILS_ENV"] ||= 'test'
require File.expand_path('../test_app/config/environment', __FILE__)

require 'rspec/rails'
require 'timecop' # optional

any other rspec configuration you need
note HyperSpec will include chrome driver for providing the client
run time environment

To load the webdriver and client environment your spec should have the
:js flag set:

the js flag can be set on the entire group of specs, or a context
describe 'some hyper-specs', :js do
 ...
end

or for an individual spec
 it 'an individual hyper-spec', :js do
 ...
 end

 Tutorial

Tutorial

For this quick tutorial lets assume you have an existing Rails app that
already uses RSpec to which you have added a first Hyperstack component to
try things out.

For your trial, you have created a very simple component that shows
the number of orders shipped by your companies website:

class OrdersShipped < HyperComponent
 def format_number(number)
 number.to_s.reverse.gsub(/(\d{3})(?=\d)/, '\\1,').reverse
 end

 render(DIV, class: 'orders-shipped') do
 format_number Order.shipped.count
 end
end

Note that styling can be taken care of in the usual way by
providing styles for the orders-shipped css class. All we care
about here is the function of the component.

Meanwhile Order is an ActiveRecord Model that would look something like this:

class Order < ApplicationRecord
 ...
 scope :shipped, -> () { where(status: :shipped) }
 ...
end

Note that when using ActiveRecord models in your specs you will
need to add the appropriate database setup and cleaner methods like you would
for any specs used with ActiveRecord. We assume here that as each
spec starts there are no records in the database

The OrdersShipped component can be mounted on any page of your site,
and assuming the proper policy permissions are provided it will
show the total orders shipped, and will dynamically increase in
realtime.

A partial spec for this component might look like this:

require 'spec_helper'

describe 'OrdersShipped', :js do
 it 'dynamically displays the orders shipped' do
 mount 'OrdersShipped'
 expect(find('div.orders-shipped')).to have_content(0)
 Order.create(status: :shipped)
 expect(find('div.orders-shipped')).to have_content(1)
 Order.last.destroy
 expect(find('div.orders-shipped')).to have_content(0)
 end

 it '#format method' do
 on_client { @comp = OrdersShipped.new }
 ['1,234,567', '123', '1,234'].each do |n|
 expect { @comp.format_number(n.gsub(',','').to_i) }
 .on_client_to eq(n)
 end
 end
end

If you are familiar with Capybara then the first spec should
look similar to an integration spec. The difference is instead
of visiting a page, we mount the OrdersShipped component on a blank page
that hyper-spec will set up for us. This lets us unit test
components outside of any application specific view logic.

Note that like Capybara we indicate that a client environment should
be set up by adding the :js tag.

Once mounted we can use Capybara finders and matchers to check
if our content is as expected. Because we are running on the server
we can easily add and delete orders, and check the response on the UI.

The second spec shows how we can do some white box unit testing of our
component. Instead of mounting the component we just create a new
instance which will be invisible since it was not mounted. For this we
use the on_client method.

The on_client method takes a block, and will
compile that block using
Opal, and execute it on the client. In this case we simply create a
new OrderShipped instance, and assign it to an instance variable, which as you
will see will continue to be available to us later in the spec.

Note, if you are an RSpec purist, you would probably prefer to see
something like let be used here instead of an instance variable. Shall we
say its on the todo list.

Now that we have our test component setup we can test its format_number
method. To do this we put the test expression in a block followed by
on_client_to. Again the block will be compiled using Opal, executed on
the client, and the result will be returned to the expectation.

Notice that the server side variable n can be read (but not written) within
the client block. All local variables, memoized variables, and instance variables can
can be read in the client block as long as they represent objects that can be
sensibly marshalled and unmarshalled.

This has covered the basics of Hyperspec - in summary:

	The js tag indicates the spec will be using a client environment.

	mount: Mount a component on a blank page. This replaces the visit method
for unit testing components.

	on_client: Execute Ruby code on the client (and return the result).

	on_client_to: Execute the expectation block on the client, and then check
the expectation (on the server.)

	Instance variables retain their values between client execution blocks.

	All variables accessible to the spec are copied to the client if possible.

There are many other features such as dealing with promises, passing data to
and from a mounted component, using the Timecop gem, and working with a pry
session. So read on.

 HyperSpec Methods and Features

HyperSpec Methods and Features

Expectation Helpers

These can be used any where within your specs:

	on_client - executes code on the client

	isomorphic - executes code on the client and the server

	mount - mounts a hyperstack component in an empty window

	before_mount - specifies a block of code to be executed before the first call to mount, isomorphic or on_client

	insert_html - insert some html into a page

	client_options - allows options to be specified globally

	run_on_client - same as on_client but no value is returned

	reload_page - resets the page environment

	add_class - adds a CSS class

	size_window - specifies how big the client window should be

	attributes_on_client - returns any ActiveModel attributes loaded on the client

These methods are used after mounting a component to retrieve
events sent outwards from the component:

	callback_history_for

	last_callback_for

	clear_callback_history_for

	event_history_for

	last_event_for

	clear_event_history_for

Expectation Targets

These can be used within expectations replacing the to and not_to methods. The expectation expression must be inclosed in a block.

	on_client_to, to_on_client_not - the expression will be evaluated on the client, and matched on the server.

These methods have the following aliases to make your specs more readable:

	to_on_client

	on_client_to_not

	on_client_not_to

	to_not_on_client

	not_to_on_client

	to_then

	then_to_not

	then_not_to

	to_not_then

	not_to_then

in addition

	with - can be chained with the above methods to pass data to initialize local variables on the client

Other Debugging Aids

The following methods are used primarly at a debug break point, most require you use binding.pry as your debugger:

	to_js - returns the ruby code compiled to JS.

	c? - alias for on_client.

	ppr - print the results of the ruby expression on the client console.

	debugger - Sets a debug breakpoint on code running on the client.

	open_in_chrome - Opens a chrome browser that will load the current state.

	pause - Halts execution on the server without blocking I/O.

Available Webdrivers

HyperSpec comes integrated with Chrome and Chrome headless webdrivers. The default configuration will run using Chrome headless. To see what is going on set the DRIVER environment variable to chrome

DRIVER=chrome bundle exec rspec

Timecop Integration

You can use the timecop gem [https://github.com/travisjeffery/timecop] to control the flow of time within your specs. Hyperspec will coordinate things with the client so the time on the client is kept in sync with the time on the server. So for example if you use Timecop to advance time 1 day on the server, time on the browser will also advance by one day.

See the Client Initialization Options section for how to control the client time zone, and clock resolution.

The no_reset flag

By default the client environment will be reinitialized at the beginning of every spec. If this is not needed you can speed things up by adding the no_reset flag to a block of specs.

Known Issues

See the last section below for known issues.

Details

The on_client method

The on_client method takes a block. The ruby code inside the block will be executed on the client, and the result will be returned.

 it 'will print a message on the client' do
 on_client do
 puts 'hey I am running here on the client!'
 end
 end

If the block returns a promise Hyperspec will wait for the promise to be resolved (or rejected) before returning. For example:

 it 'waits for a promise' do
 start_time = Time.now
 result = on_client do
 promise = Promise.new
 after(10.seconds) { promise.resolve('done!') }
 promise
 end
 expect(result).to eq('done!')
 expect(Time.now-start_time).to be >= 10.seconds
 end

HyperSpec will do its best to reconstruct the result back on the server in some sensible way. Occasionally it just doesn’t work, in which case you can end the block with a nil or some other simple expression, or use the run_on_client method, which does not return the result.

Accessing variables on the client

It is often useful to pass variables from the spec to the client. Hyperspec will copy all your local variables, memoized variables, and instance variables known at the time the on_client block is compiled to the client.

 Using Hyperspec with Rack

Using Hyperspec with Rack

Hyperspec will run with Rails out of the box, but you can also use Hyperspec with any Rack application, with just a little more setup. For example here is a sample configuration setup with Sinatra:

Gemfile
...

gem "sinatra"
gem "rspec"
gem "pry"
gem "opal"
gem "opal-sprockets"
gem "rack"
gem "puma"
group :test do
 # gem 'hyper-spec', '~> 1.0.alpha1.0'
 # or to use edge:
 gem 'hyper-spec',
 git: 'git://github.com/hyperstack-org/hyperstack.git',
 branch: 'edge',
 glob: 'ruby/*/*.gemspec'
end

spec/spec_helper.rb

require "bundler"
Bundler.require
ENV["RACK_ENV"] ||= "test"

require your application files as needed
require File.join(File.dirname(__FILE__), "..", "app.rb")

bring in needed support files
require "rspec"
require "rack/test"
require "hyper-spec/rack"

assumes your sinatra app is named app
Capybara.app = HyperSpecTestController.wrap(app: app)

set :environment, :test
set :run, false
set :raise_errors, true
set :logging, false

Details

The interface between Hyperspec and your application environment is defined by the HyperspecTestController class. This file typically includes a set of helper methods from HyperSpec::ControllerHelpers, which can then be overridden to give whatever behavior your specific framework needs. Have a look at the hyper-spec/rack.rb and hyper-spec/controller_helpers.rb files in the Hyperspec gem directory.

Example

A complete (but very simple) example is in this repos ruby/examples/misc/sinatra_app directory

 HyperSpec

HyperSpec

Adding client side testing to RSpec

The hyper-spec gem supports the Hyperstack goals of programmer productivity and seamless web development by allowing testing to be done with minimal concern for the client-server interface.

The hyper-spec gem adds functionality to the rspec, capybara, timecop and pry gems allowing you to do the following:

	write component and integration tests using the rspec syntax and helpers

	write specs that run on both the client and server

	evaluate client side ruby expressions from within specs and while using pry

	share data between the client and server within your specs

	control and synchronize time on the client and the server

HyperSpec can be used standalone, but if used as part of a Hyperstack application it allows straight forward testing of Hyperstack Components and your ActiveRecord Models.

So for example here is part of a simple unit test of a TodoIndex component:

it "will update the TodoIndex", js: true do
 # mounts the TodoIndex component (client side)
 mount 'TodoIndex'
 # Todo is an ActiveRecord Model
 # create a new Todo on the server (we could use FactoryBot of course)
 todo_1 = Todo.create(title: 'this todo created on the server')
 # verify that UI got updated
 expect(find('.ToDoItem-Text').text).to eq todo_1.title
 # verify that the count of Todos on the client side DB matches the server
 expect { Todo.count }.on_client_to eq Todo.count
 # now create another Todo on the client
 new_todo_title = 'this todo created on the client'
 # note that local variables are copied from the server to the client
 on_client { Todo.create(title: new_todo_title) }
 # the Todo should now be reflected on the server
 expect(Todo.last.title).to eq new_todo_title
end

When using HyperSpec all the specs execute on the server side, but they may also interrogate the state of the UI as well as the state
of any of the client side objects. The specs can execute any valid Ruby code client side to create new test objects as well as do
white box testing. This keeps the logic of your specs in one place.

 This Page Under Construction

HyperModel extends Rails ActiveRecord models so that you have direct access to them on the client, using the same ActiveRecord classes and methods as you
would on the server. Nothing new to learn, or configure, just plug in and go.
This Page Under Construction

In Hyperstack, your ActiveRecord Models are available in your Isomorphic code.

Components, Operations, and Stores have CRUD access to your server side ActiveRecord Models, using the standard ActiveRecord API.

In addition, Hyperstack implements push notifications (via a number of possible technologies) so changes to records on the server are dynamically pushed to all authorized clients.

In other words, one browser creates, updates, or destroys a Model, and the changes are persisted in ActiveRecord models and then broadcast to all other authorized clients.

	You access your Model data in your Components, Operations, and Stores just like you would on the server or in an ERB or HAML view file.

	If an optional push transport is connected Hyperstack broadcasts any changes made to your ActiveRecord models as they are persisted on the server or updated by one of the authorized clients.

	Some Models (or even parts of Models) can be designated as server-only which means they are not available to the client code.

For example, consider a simple model called Dictionary which might be part of Wiktionary type app.

class Dictionary < ActiveRecord::Base

 # attributes
 # word: string
 # definition: text
 # pronunciation: string

 scope :defined, -> { 'definition IS NOT NULL AND pronunciation IS NOT NULL' }
end

Here is a very simple Hyperstack Component that shows a random word from the dictionary:

class WordOfTheDay < Hyperstack::Component

 def pick_entry!
 # pick a random word and assign the selected record to entry
 mutate @entry = Dictionary.defined[rand(Dictionary.defined.count)]
 # Notice that we use standard ActiveRecord constructs to select our
 # random entry value
 end

 # pick an initial entry before we mount our component...
 before_mount :pick_entry

 # Again in our render block we use the standard ActiveRecord API, such
 # as the 'defined' scope, and the 'word', 'pronunciation', and
 # 'definition' attribute getters.
 render(DIV) do
 DIV { "total definitions: #{Dictionary.defined.count}" }
 DIV do
 DIV { @entry.word }
 DIV { @entry.pronunciation }
 DIV { @entry.definition }
 BUTTON { 'pick another' }.on(:click) { pick_entry! }
 end
 end

This is the entire code. There are no application APIs needed. The synchronization between server and client is completely taken care of by HyperModel. If you have
an existing code base little to updates to your existing Models is needed, and you will use the same ActiveRecord API you have been using.

Isomorphic Models

Depending on the architecture of your application, you may decide that some of your models should be Isomorphic and some should remain server-only. The consideration will be that your Isomorphic models will be compiled by Opal to JavaScript and accessible on he client (without the need for a boilerplate API) - Hyperstack takes care of the communication between your server-side models and their client-side compiled versions and you can use Policy to govern access to the models.

In order for Hyperstack to see your Models (and make them Isomorphic) you need to move them to the hyperstack/models folder. Only models in this folder will be seen by Hyperstack and compiled to Javascript. Once a Model is on this folder it ill be accessable to both your client and server code.

Location of Models	Scope
:—	:—
app\models	Server-side code only
app\hyperstack\models	Isomorphic code (client and server)

ActiveRecord API

Hyperstack uses a subset of the standard ActiveRecord API to give your Isomorphic Components, Operations and Stores access to your server side Models. As much as possible Hyperstack follows the syntax and semantics of ActiveRecord.

Interfacing to React

Hyperstack integrates with React (through Components) to deliver your Model data to the client without you having to create extra APIs or specialized controllers. The key idea of React is that when state (or params) change, the portions of the display effected by this data will be updated.

On the client each database record being used by the client is represented as an observable store (see the chapter on HyperState for details) which will mutate as server side data is loaded or changes. When these states change the associated parts of the display will be updated.

A brief overview of how this works will help you understand the how HyperStack gets the job done.

Rendering Cycle

On the UI you will be reading models in order to display data.

If during the rendering of the display the Model data is not yet loaded, placeholder values (the default values from the database schema) will be returned by Hyperstack.

Hyperstack then keeps track of where these placeholders (or DummyValues) are displayed, and when they do get loaded, those parts of the display will re-render.

If later the data changes (either due to local user actions, or receiving push updates) then again any parts of the display that were dependent on the current values will be re-rendered.

You normally do not have to be aware of this. Just access your Models using the normal scopes and finders, then compute values and display attributes as you would on the server. Initially the display will show the placeholder values and then will be replaced with the real values.

Prerendering

During server-side pre-rendering, Hyperstack has direct access to the server so on initial page load all the values will be loaded and present.

Lazy Loading

Hyperstack lazy loads values, and does not load any thing until an explicit displayable value is requested. For example Todo.all will have no action, but Todo.all.pluck[:title] will return an array of titles.

At the end of the rendering cycle the set of all values requested will be merged into a tree structure and sent to the server, returning the minimum amount of data needed.

Load Cycle Methods

There are a number of methods that allow you to interact with this load cycle when needed. These are documented below.

Class Methods

New and Create

new: Takes a hash of attributes and initializes a new unsaved record. The values of any attributes not specified in the hash will be taken from the Models default values specified in the data base schema.

If new is passed a native javascript object it will be treated as a hash and converted accordingly.

create: Short hand for new(...).save. See the save instance method for details on how saving is done.

Scoping and Finding

scope and default_scope: Hyperstack adds four new options to these methods: joins, client, select and server. The joins option provides information on how the scope will be joined with other models. The client and select options allow scoping to be done on the client side to offload this from the server, and the server option is there just for symmetry with the other options.

the active scope proc is executed on the server
scope :active, -> () { where(completed: true) }

if the scope does a join (or include) this must be indicated
using the joins: option.
scope :with_recent_comments,
 -> { joins(:comments).where('comment.created_at >= ?', Time.now-1.week) },
 joins: ['comments'] # or joins: 'comments'

the server side proc can be indicated by the server: option
an optional client side proc can be provided to compute the scope
locally at the client
scope :completed,
 server: -> { where(complete: true) }
 client: -> { complete } # return true if the record should be included

unscoped and all: These builtin scopes work just like standard ActiveRecord.

BTW: to save typing you can skip the all: Models will respond like enumerators.

Word.all.each { |word| LI { word.text }}

where: The where method can be used to filter records:

Word.where("LENGTH(text) = ?", n)

The where method is implemented internally as a scope on the client that
will execute the where method on the server. If the parameters to the where
method the scope will be updated on the client, but using SQL in the where as
in the above example will get executed on the server.

find: takes an id and delivers the corresponding record.

find_by: takes a single item hash indicating an attribute value pair to find.

find_by_...: i.e. find_by_first_name these methods will find the first record with a matching attribute.

Word.find_by_text('hello') # short for Word.find_by(text: 'hello')

limit and offset: These builtin scopes behave as they do on the server:

Word.offset(500).limit(20) # get words 500-519

Applying Class Methods to Collections

Like Rails if you define a class method on a model, you can apply it to a collection of those records, allowing you
to chain methods with scopes (and relationships)

class Word < ApplicationRecord
 def self.page(pg)
 offset(pg-1 * 20).limit(20)
 end
end
...
 Word.some_scope.page(3)

Relationships and Aggregations

belongs_to, has_many, has_one: These all work as on the server. However it is important that you fully specify both sides of the relationship.

class Todo < ActiveRecord::Base
 belongs_to :assigned_to, class_name: 'User'
end

class User < ActiveRecord::Base
 has_many :todos, foreign_key: 'assigned_to_id'
end

Note that on the client the linkages between relationships are live and direct. In the above example this works:

Todo.create(assigned_to: some_user)

but this may not:

Todo.create(assigned_to_id: some_user.id)

composed_of: You can create aggregate models like ActiveRecord.

Similar to the linkages in relationships, aggregate records are represented on the client as actual independent objects.

Defining server methods

Normally an application defined instance method will run on the client and the server:

class User < ActiveRecord::Base
 def full_name
 "#{first_name} #{last_name}"
 end
end

Sometimes it is desirable to only run the method on the server. This can be done using the server_method macro:

class User < ActiveRecord::Base
 server_method :full_name, default: '' do
 "#{first_name} #{last_name}"
 end
end

When the method is first called on the client the default value will be returned, and there will be a reactive update when the true value is returned from the server.

To force the value to be recomputed at the server append a ! to the end of the name, otherwise the last value returned from the server will continue to be returned.

Model Information

column_names: returns a list of the database columns.

columns_hash: returns the details of the columns specification. Note that on the server columns_hash returns a hash of objects specifying column information. On the client the entire structure is just one big hash of hashes.

abstract_class=, abstract_class?, primary_key, primary_key=, inheritance_column, inheritance_column=, model_name: All work as on the server. See ActiveRecord documentation for more info.

Instance Methods

Attribute and Relationship Getter and Setters

All attributes have an associated getter and setter. All relationships have a getter. All belongs_to relationships also have a setter. has_many relationships can be updated using the push (<<) operator or using the delete method.

 puts my_todo.title
 my_todo.title = "neutitle"
 my_todo.comments << a_new_comment
 a_new_comment.todo == my_todo # true!

In addition if the attribute getter ends with a bang (!) then this will force a fetch of the attribute from the server. This is typically not necessary if push updates are configured.

Saving

The save method works like ActiveRecord save, except it returns a promise that is resolved when the save completes (or fails.)

my_todo.save(validate: false).then do |result|
 # result is a hash with {success: ..., message: , models:}
end

After a save operation completes the models will have an errors hash (just like on the server) with any validation problems.

During the save operation the method saving? will return true. This can be used to instead of (or with) the promise to update the screen:

render do
 ...
 if some_model.saving?
 ... display please wait ...
 elsif some_model.errors.any?
 ... highlight the errors ...
 else
 ... display data ...
 end
 ...
end

Destroy

Like save destroy returns a promise that is resolved when the destroy completes.

After the destroy completes the record’s destroyed? method will return true.

Other Instance Methods

new? returns true if the model is new and not yet saved.

primary_key returns the primary key for the model

id returns the value of the primary key for this instance

model_name returns the model_name.

revert Undoes any unsaved changes to the instance.

changed? returns true if any attributes have changed (always true for a new model)

dup duplicate the instance.

== two instances are the same if it is known that they reference the same underlying table row.

..._changed? (i.e. name_changed?) returns true if the specific attribute has changed.

itself returns the record, but will override lazy loading and force a load of at least the model’s id.

Load and Render Cycle

loading? and loaded?

All Ruby objects will respond to these methods. If you want to put up a “Please Wait” message, spinner, etc, you can use the loaded? or loading? method to determine if the object represents a real loaded value or not. Any value for which loaded? returns false (or loading? returns true) will eventually load and cause a re-render

Hyperstack::Model.load method

Sometimes it is necessary to insure values are loaded outside of the rendering cycle. For this you can use the Hyperstack::Model.load method:

Hyperstack::Model.load do
 x = my_model.some_attribute
 OtherModel.find(x+12).other_attribute
 # code in here can be arbitrarily complex and load
 # will re-execute it until all values are loaded
 # the final expression is passed to the promise
end.then |result|
 puts result
end

Force Loading Attributes

Normally you will simply display attributes as part of the render method, and when the values are loaded from the server the component will re-render.

Sometimes outside of the render method you may need to insure an attribute (or a server side method) is loaded before proceeding. This is typically when you are building some kind of higher level store.

The load method takes a list of attributes (symbols) and will insure these are loaded. Load returns a promise that is resolved when the load completes, or can be passed a block that will execute when the load completes.

before_mount do
 Todo.find(1).load(:name).then do |name|
 @name = name;
 state.loaded! true
 end
end

Think hard about how you are using this, as Hyperstack already acts as flux store, and is managing state for you. It may be you are just creating a redundant store!

Client Side Scoping

By default scopes will be recalculated on the server. For simple scopes that do not use joins or includes no additional action needs to be taken to make scopes work with Hyperstack. For scopes that do use joins, or if you want to offload the scoping computation from the server to the client read this section.

ActiveRecord Scope Enhancement

When the client receives notification that a record has changed Hyperstack finds the set of currently rendered scopes that might be effected, and requests them to be updated from the server.

On the server scopes are a useful way to structure code. On the client scopes are vital as they limit the amount of data loaded, viewed, and updated in the browser. Consider a factory floor management system that shows job state as work flows through the factory. There may be millions of jobs that a production floor browser is authorized to view, but at any time there are probably only 50 being shown. Using ActiveRecord scopes is the way Hyperstack keeps the data requested by the browser limited to a reasonable amount.

To make scopes work efficiently on the client Hyperstack adds some features to the ActiveRecord scope and default_scope macros. Note you must use the scope macro (and not class methods) for things to work with Hyperstack.

The additional features are accessed via the :joins, :client, and :select options.

The :joins option tells the Hyperstack client which models are joined with the scope. You must add a :joins option if the scope has any data base join operations in it, otherwise if a joined model changes, Hyperstack will not know to update the scope.

The :client and :select options provide the client a way to update scopes without having to contact the server. Unlike the :joins option this is an optimization and is not required for scopes to work.

class Todo < ActiveRecord::Base

 # Standard ActiveRecord form:
 # the proc will be evaluated as normal on the server, and as needed updates
 # will be requested from the clients

 scope :active, -> () { where(completed: true) }

 # In the simple form the scope will be reevaluated if the model that is
 # being scoped changes, and if the scope is currently being used to render data.

 # If the scope joins with other data you will need to specify this by
 # passing a relationship or array of relationships to the `joins` option.

 scope :with_recent_comments,
 -> { joins(:comments).where('comment.created_at >= ?', Time.now-1.week) },
 joins: ['comments'] # or joins: 'comments'

 # Now with_recent_comments will be re-evaluated whenever a Todo record, or a Comment
 # joined with a Todo change.

 # Normally whenever Hyperstack detects that a scope may be effected by a changed
 # model, it will request the scope be re-evaluated on the server. To offload this
 # computation to the client provide a client side scope method:

 scope :with_recent_comments,
 -> { joins(:comments).where('comment.created_at >= ?', Time.now-1.week) },
 joins: ['comments']
 client: -> { comments.detect { |comment| comment.created_at >= Time.now-1.week }

 # The client proc is executed on each candidate record, and if it returns true the record
 # will be added to the scope.

 # Instead of a client proc you can provide a select proc, which will receive the entire
 # collection which can then be filtered and sorted.

 scope :sort_by_created_at,
 -> { order('created_at DESC') }
 select: -> { sort { |a, b| b.created_at <=> a.created_at }}

 # To keep things tidy you can specify the server scope proc with the :server option

 scope :completed,
 server: -> { where(complete: true) }
 client: -> { complete }

 # The expressions in the joins array can be arbitrary sequences of relationships and
 # scopes such as 'comments.author'.

 scope :with_managers_comments,
 server: -> { ... }
 joins: ['comments.author', 'owner']
 client: -> { comments.detect { |comment| comment.author == owner.manager }}}

 # You can also use the client, select, server, and joins option with the default_scope macro

 default_scope server: -> { where(deleted: false).order('updated_at DESC') }
 select: -> { select { |r| !r.deleted }.sort { |a, b| b <=> a } }

 # NOTE: it is highly recommend to provide a client proc with default_scopes. Otherwise
 # every change is going to require a server interaction regardless of what other client procs
 # you provide.

end

How it works

Consider this scope on the Todo model

scope :with_managers_comments,
 server: -> { joins(owner: :manager, comments: :author).where('managers_users.id = authors_comments.id').distinct },
 client: -> { comments.detect { |comment| comment.author == owner.manager }}
 joins: ['comments.author', 'owner']

The joins ‘comments.author’ relationship is inverted so that we have User ‘has_many’ Comments which ‘belongs_to’ Todos.

Thus we now know that whenever a User or a Comment changes this may effect our with_managers_comments scope

Likewise ‘owner’ becomes User ‘has_many’ Todos.

Lets say that a user changes teams and now has a new manager. This means according to the relationships that the User model will change (i.e. there will be a new manager_id in the User model) and thus all Todos belonging to that User are subject to evaluation.

While the server side proc efficiently delivers all the objects in the scope, the client side proc just needs to incrementally update the scope.

Configuring the Transport

Hyperstack implements push notifications (via a number of possible technologies) so changes to records on the server are dynamically pushed to all authorized clients.

The can be accomplished by configuring one of the push technologies below:

Push Technology	When to choose this…
:—	:—
Simple Polling	The easiest push transport is the built-in simple poller. This is great for demos or trying out Hyperstack but because it is constantly polling it is not suitable for production systems or any kind of real debug or test activities.
Action Cable	If you are using Rails 5 this is the perfect route to go. Action Cable is a production ready transport built into Rails 5.
Pusher.com	Pusher.com is a commercial push notification service with a free basic offering. The technology works well but does require a connection to the internet at all times.
Pusher Fake	The Pusher-Fake gem will provide a transport using the same protocol as pusher.com but you can use it to locally test an app that will be put into production using pusher.com.

Setting up Simple Polling

The easiest push transport is the built-in simple poller. This is great for demos or trying out Hyperstack but because it is constantly polling it is not suitable for production systems or any kind of real debug or test activities.

Simply add this initializer:

#config/initializers/Hyperstack.rb
Hyperstack.configuration do |config|
 config.transport = :simple_poller
 # options
 # config.opts = {
 # seconds_between_poll: 5, # default is 0.5 you may need to increase if testing with Selenium
 # seconds_polled_data_will_be_retained: 1.hour # clears channel data after this time, default is 5 minutes
 # }
end

That’s it. Hyperstack will use simple polling for the push transport.

Setting up Action Cable

To configure Hyperstack to use Action Cable, add this initializer:

#config/initializers/Hyperstack.rb
Hyperstack.configuration do |config|
 config.transport = :action_cable
end

If you are already using ActionCable in your app that is fine, as Hyperstack will not interfere with your existing connections.

Otherwise go through the following steps to setup ActionCable.

Firstly, make sure the action_cable js file is required in your assets.

Typically app/assets/javascripts/application.js will finish with a require_tree . and this will pull in the cable.js file which will pull in action_cable.js

However at a minimum if application.js simply does a require action_cable that will be sufficient for Hyperstack.

Make sure you have a cable.yml file:

config/cable.yml
development:
 adapter: async

test:
 adapter: async

production:
 adapter: redis
 url: redis://localhost:6379/1

Set allowed request origins (optional):

By default action cable will only allow connections from localhost:3000 in development. If you are going to something other than localhost:3000 you need to add something like this to your config:

config/environments/development.rb
Rails.application.configure do
 config.action_cable.allowed_request_origins = ['http://localhost:3000', 'http://localhost:5000']
end

That’s it. Hyperstack will use Action Cable as the push transport.

Setting up Pusher.com

Pusher.com [https://pusher.com/] provides a production ready push transport for your App. You can combine this with Pusher-Fake [https://github.com/hyperstack-org/hyperstack/tree/a530e3955296c5bd837c648fd452617e0a67a6ed/docs/pusher_faker_quickstart] for local testing as well. You can get a free pusher account and API keys at https://pusher.com

First add the Pusher and Hyperstack gems to your Rails app:

add gem 'pusher' to your Gemfile.

Next Add the pusher js file to your application.js file:

app/assets/javascript/application.js
...
//= require 'Hyperstack/pusher'
//= require_tree .

Finally set the transport:

config/initializers/Hyperstack.rb
Hyperstack.configuration do |config|
 config.transport = :pusher
 config.channel_prefix = "Hyperstack"
 config.opts = {
 app_id: "2....9",
 key: "f.....g",
 secret: "1.......3"
 }
end

That’s it. You should be all set for push notifications using Pusher.com.

Setting up Pusher Fake

The Pusher-Fake [https://github.com/tristandunn/pusher-fake] gem will provide a transport using the same protocol as pusher.com. You can use it to locally test an app that will be put into production using pusher.com.

Firstly add the Pusher, Pusher-Fake and Hyperstack gems to your Rails app

	add gem 'pusher' to your Gemfile.

	add gem 'pusher-fake' to the development and test sections of your Gemfile.

Next add the pusher js file to your application.js file

app/assets/javascript/application.js
...
//= require 'Hyperstack/pusher'
//= require_tree .

Add this initializer to set the transport:

typically app/config/initializers/Hyperstack.rb
or you can do a similar setup in your tests (see this gem's specs)
require 'pusher'
require 'pusher-fake'
Assign any values to the Pusher app_id, key, and secret config values.
These can be fake values or the real values for your pusher account.
Pusher.app_id = "MY_TEST_ID" # you use the real or fake values
Pusher.key = "MY_TEST_KEY"
Pusher.secret = "MY_TEST_SECRET"
The next line actually starts the pusher-fake server (see the Pusher-Fake readme for details.)
it is important this require be AFTER the above settings, as it will use these
require 'pusher-fake/support/base' # if using pusher with rspec change this to pusher-fake/support/rspec
now copy over the credentials, and merge with PusherFake's config details
Hyperstack.configuration do |config|
 config.transport = :pusher
 config.channel_prefix = "Hyperstack"
 config.opts = {
 app_id: Pusher.app_id,
 key: Pusher.key,
 secret: Pusher.secret
 }.merge(PusherFake.configuration.web_options)
end

That’s it. You should be all set for push notifications using Pusher Fake.

Debugging

Sometimes you need to figure out what connections are available, or what attributes are readable etc.

Its usually all to do with your policies, but perhaps you just need a little investigation.

TODO check rr has become Hyperstack (as below)

You can bring up a console within the controller context by browsing localhost:3000/Hyperstack/console

Note: change rr to wherever you are mounting Hyperstack in your routes file.

Note: in rails 4, you will need to add the gem ‘web-console’ to your development section

Within the context you have access to session.id and current acting_user which you will need, plus some helper methods to reduce typing

	Getting auto connection channels: channels(session_id = session.id, user = acting_user) e.g. channels returns all channels connecting to this session and user providing nil as the acting_user will test if connections can be made without there being a logged in user.

	Can a specific class connection be made: can_connect?(channel, user = acting_user) e.g. can_connect? Todo returns true if current acting_user can connect to the Todo class. You can also provide the class name as a string.

	Can a specific instance connection be made: can_connect?(channel, user = acting_user) e.g. can_connect? Todo.first returns true if current acting_user can connect to the first Todo Model. You can also provide the instance in the form ‘Todo-123’

	What attributes are accessible for a Model instance: viewable_attributes(instance, user = acting_user)

	Can the attribute be viewed: view_permitted?(instance, attribute, user = acting_user)

	Can a Model be created/updated/destroyed: create_permitted?(instance, user = acting_user) e.g. create_permitted?(Todo.new, nil) can anybody save a new todo? e.g. destroy_permitted?(Todo.last) can the acting_user destroy the last Todo

You can of course simulate server side changes to your Models through this console like any other console. For example

Todo.new.save will broadcast the changes to the Todo Model to any authorized channels.

Common Errors

	No policy class If you don’t define a policy file, nothing will happen because nothing will get connected. By default Hyperstack will look for a ApplicationPolicy class.

	Wrong version of pusher-fake (pusher-fake/base vs. pusher-fake/rspec) See the Pusher-Fake gem repo for details.

	Forgetting to add require pusher in application.js file this results in an error like this:

Exception raised while rendering #<TopLevelRailsComponent:0x53e>
 ReferenceError: Pusher is not defined

To resolve make sure you require 'pusher' in your application.js file if using pusher. DO NOT require pusher from your components manifest as this will cause prerendering to fail.

	No create/update/destroy policies You must explicitly allow changes to the Models to be made by the client. If you don’t you will see 500 responses from the server when you try to update. To open all access do this in your application policy: allow_change(to: :all, on: [:create, :update, :destroy]) { true }

	Cannot connect to real pusher account If you are trying to use a real pusher account (not pusher-fake) but see errors like this

pusher.self.js?body=1:62 WebSocket connection to
'wss://127.0.0.1/app/PUSHER_API_KEY?protocol=7&client=js&version=3.0.0&flash=false'
failed: Error in connection establishment: net::ERR_CONNECTION_REFUSED

Check to see if you are including the pusher-fake gem. Hyperstack will always try to use pusher-fake if it sees the gem included. Remove it and you should be good to go. See issue #5 [https://github.com/hyper-react/HyperMesh/issues/5] for more details.

	Cannot connect with ActionCable. Make sure that config.action_cable.allowed_request_origins includes the url you use for development (including the port) and that you are using Puma.

	Attributes are not being converted from strings, or do not have their default values Eager loading is probably turned off. Hyperstack needs to eager load Hyperstack/models so it can find all the column information for all Isomorphic models.

	When starting rails you get a message on the rails console couldn't find file 'browser' The hyper-component v0.10.0 gem removed the dependency on opal-browser. You will have to add the ‘opal-browser’ gem to your Gemfile.

	On page load you get a message about super class mismatch for DummyValue You are still have the old reactive-record gem in your Gemfile, remove it from your gemfile and your components manifest.

	On page load you get a message about no method session for nil You are still referencing the old reactive-ruby or reactrb gems either directly or indirectly though a gem like reactrb-router. Replace any gems like reactrb-router with hyper-router. You can also just remove reactrb, as hyper-model will be included by the hyper-model gem.

	You keep seeing the message WebSocket connection to 'ws://localhost:3000/cable' failed: WebSocket is closed before the connection is established. every few seconds in the console. There are probably lots of reasons for this, but it means ActionCable can’t get itself going. One reason is that you are trying to run with Passenger instead of Puma, and trying to use async mode in cable.yml file. async mode requires Puma.

 This Page Under Construction

**HyperRouter is a DSL wrapper for [ReactRouter v4.x](https://github.com/ReactTraining/react-router) to provide
client-side routing for Single Page Applications (SPA). As the user changes "pages" instead of reloading from the server your App will mount
different components.**
This Page Under Construction

Usage

class AppRouter
 include Hyperstack::Component
 include Hyperstack::Router::Helpers
 include Hyperstack::Router

 render(DIV) do
 UL do
 LI { Link('/') { 'Home' } }
 LI { Link('/about') { 'About' } }
 end
 Route('/', exact: true, mounts: Home)
 Route('/about', mounts: About)
 end
end

class Home
 include Hyperstack::Component
 render(DIV) do
 H2 { 'Home' }
 end
end

DSL

Router

This is the Router module which you include in your top level component:

class MyRouter
 include Hyperstack::Component
 include Hyperstack::Router
end

With the base Router class, you can also specify the history you want to use.

This can be done either using a macro:

class MyRouter
 include Hyperstack::Component
 include Hyperstack::Router

 history :browser # this is the default option if no other is specified
end

The macro accepts three options: :browser, :hash, or :memory.

Or by defining the history method:

class MyRouter
 include Hyperstack::Component
 include Hyperstack::Router

 def history
 self.class.browser_history
 end
end

Rendering a Router

Use the render macro as normal. Note you cannot redefine the render instance method in a Router componenent

class MyRouter
 ...

 render(DIV) do
 H1 { 'Hello world!' }
 end
end

Routes

Routes are defined with special pseudo components you call inside the router/components. The router determines which of the routes to actually mount based on the current URL.

class MyRouter
 ...

 render(DIV) do
 Route('/', mounts: HelloWorld)
 end
end

class HelloWorld
 render do
 H1 { 'Hello world!' }
 end
end

The Route method takes a url path, and these options:

	mounts: Component The component you want to mount when routed to

	exact: Boolean When true, the path must match the location exactly

	strict: Boolean When true, the path will only match if the location and path both have/don’t have a trailing slash

The Route method can also take a block instead of the mounts option.

class MyRouter
 ...

 render(DIV) do
 Route('/', exact: true) do
 H1 { 'Hello world!' }
 end
 end
end

The block will be given the match, location, and history data:

class MyRouter
 ...

 render(DIV) do
 Route('/:name') do |match, location, history|
 H1 { "Hello #{match.params[:name]} from #{location.pathname}, click me to go back!" }
 .on(:click) { history.go_back }
 end
 end
end

	The Hyperstack::Router::Helpers is useful for components mounted by the router.

	This automatically sets the match, location, and history params,

and also gives you instance methods with those names.

	You can use either params.match or just match.

and gives you access to the Route method and more.

	This allows you to create inner routes as you need them.

class MyRouter
 include Hyperstack::Component
 include Hyperstack::Router::Helpers
 include Hyperstack::Router

 render(DIV) do
 Route('/:name', mounts: Greet)
 end
end

class Greet
 include Hyperstack::Component
 include Hyperstack::Router::Helpers

 render(DIV) do
 H1 { "Hello #{match.params[:foo]}!" }
 Route(match.url, exact: true) do
 H2 { 'What would you like to do?' }
 end
 Route("#{match.url}/:activity", mounts: Activity)
 end
end

class Activity
 include Hyperstack::Component
 include Hyperstack::Router::Helpers
 include Hyperstack::Router

 render(DIV) do
 H2 { params.match.params[:activity] }
 end
end

Normally routes will always render alongside sibling routes that match as well.

class MyRouter
 ...

 render(DIV) do
 Route('/goodbye', mounts: Goodbye)
 Route('/:name', mounts: Greet)
 end
end

Switch

Going to /goodbye would match /:name as well and render Greet with the name param with the value ‘goodbye’. To avoid this behavior and only render one matching route at a time, use a Switch component.

class MyRouter
 ...

 render(DIV) do
 Switch do
 Route('/goodbye', mounts: Goodbye)
 Route('/:name', mounts: Greet)
 end
 end
end

Now, going to /goodbye would match the Goodbye route first and only render that component.

Links

Links are provided by both the Hyperstack::Router and Hyperstack::Router::Helper modules.

The Link method takes a url path, and these options:

	search: String adds the specified string to the search query

	hash: String adds the specified string to the hash location

it can also take a block of children to render inside it.

class MyRouter
 ...

 render(DIV) do
 Link('/Gregor Clegane')

 Route('/', exact: true) { H1() }
 Route('/:name') do |match|
 H1 { "Will #{match.params[:name]} eat all the chickens?" }
 end
 end
end

NavLinks

NavLinks are the same as Links, but will add styling attributes when it matches the current url

	active_class: String adds the class to the link when the url matches

	active_style: String adds the style to the link when the url matches

	active: Proc A proc that will add extra logic to determine if the link is active

class MyRouter
 ...

 render(DIV) do
 NavLink('/Gregor Clegane', active_class: 'active-link')
 NavLink('/Rodrik Cassel', active_style: { color: 'grey' })
 NavLink('/Oberyn Martell',
 active: ->(match, location) {
 match && match.params[:name] && match.params[:name] =~ /Martell/
 })

 Route('/', exact: true) { H1() }
 Route('/:name') do |match|
 H1 { "Will #{match.params[:name]} eat all the chickens?" }
 end
 end
end

Pre-rendering

Pre-rendering is automatically taken care for you under the hood.

Setup

To setup HyperRouter:

	Install the gem

	Your page should render your router as its top-level-component (first component to be rendered on the page) - in the example below this would be AppRouter

	You will need to configure your server to route all unknown routes to the client-side router (Rails example below)

With Rails

Assuming your router is called AppRouter, add the following to your routes.rb

root 'Hyperstack#AppRouter' # see note below
match '*all', to: 'Hyperstack#AppRouter', via: [:get] # this should be the last line of routes.rb

Note:

root 'Hyperstack#AppRouter' is shorthand which will automagically create a Controller, View and launch AppRouter as the top-level Component. If you are rendering your Component via your own COntroller or View then ignore this line.

Example

Here is the basic JSX example that is used on the react-router site [https://reacttraining.com/react-router/]

import React from 'react'
import {
 BrowserRouter as Router,
 Route,
 Link
} from 'react-router-dom'

const BasicExample = () => (
 <Router>
 <div>

 <Link to="/">Home</Link>
 <Link to="/about">About</Link>
 <Link to="/topics">Topics</Link>

 <hr/>

 <Route exact path="/" component={Home}/>
 <Route path="/about" component={About}/>
 <Route path="/topics" component={Topics}/>
 </div>
 </Router>
)

const Home = () => (
 <div>
 <h2>Home</h2>
 </div>
)

const About = () => (
 <div>
 <h2>About</h2>
 </div>
)

const Topics = ({ match }) => (
 <div>
 <h2>Topics</h2>

 <Link to={`${match.url}/rendering`}>Rendering with React</Link>
 <Link to={`${match.url}/components`}>Components</Link>
 <Link to={`${match.url}/props-v-state`}>Props v. State</Link>

 <Route path={`${match.url}/:topicId`} component={Topic}/>
 <Route exact path={match.url} render={() => (
 <h3>Please select a topic.</h3>
)}/>
 </div>
)

const Topic = ({ match }) => (
 <div>
 <h3>{match.params.topicId}</h3>
 </div>
)

export default BasicExample

And here is the same example in Hyperstack:

class BasicExample
 include Hyperstack::Component
 include Hyperstack::Router::Helpers
 include Hyperstack::Router

 render(DIV) do
 UL do
 LI { Link('/') { 'Home' } }
 LI { Link('/about') { 'About' } }
 LI { Link('/topics') { 'Topics' } }
 end

 Route('/', exact: true, mounts: Home)
 Route('/about', mounts: About)
 Route('/topics', mounts: Topics)
 end
end

class Home
 include Hyperstack::Component
 include Hyperstack::Router::Helpers

 render(DIV) do
 H2 { 'Home' }
 end
end

class About
 include Hyperstack::Component
 include Hyperstack::Router::Helpers

 render(:div) do
 H2 { 'About' }
 end
end

class Topics
 include Hyperstack::Component
 include Hyperstack::Router::Helpers

 render(DIV) do
 H2 { 'Topics' }
 UL() do
 LI { Link("#{match.url}/rendering") { 'Rendering with React' } }
 LI { Link("#{match.url}/components") { 'Components' } }
 LI { Link("#{match.url}/props-v-state") { 'Props v. State' } }
 end
 Route("#{match.url}/:topic_id", mounts: Topic)
 Route(match.url, exact: true) do
 H3 { 'Please select a topic.' }
 end
 end
end

class Topic
 include Hyperstack::Component
 include Hyperstack::Router::Helpers

 render(:div) do
 H3 { match.params[:topic_id] }
 end
end

 Revisiting the Tic Tac Toe Game

Revisiting the Tic Tac Toe Game

The easiest way to understand HyperState is by example. If you you did not see the Tic-Tac-Toe example, then please review it now, as we are going to use this to demonstrate how to use the Hyperstack::State::Observable module.

In our original Tic-Tac-Toe implementation the state of the game was stored in the DisplayGame component. State was updated by
“bubbling up” events from lower level components up to DisplayGame where the event handler updated the state.

This is a nice simple approach but suffers from two issues:

	Each level of lower level components must be responsible for bubbling up the events to the higher component.

	The DisplayGame component is responsible for both managing state and displaying the game.

As our applications become larger we will want a way to keep each component’s interface isolated and not dependent on the overall
architecture, and to insure good separation of concerns.

The Hyperstack::State::Observable module allows us to put the game’s state into a separate class which can be accessed from any
component: No more need to bubble up events, and no more cluttering up our DisplayGame component with state management
and details of the game’s data structure.

Here is the game state and associated methods moved out of the DisplayGame component into its own class:

class Game
 include Hyperstack::State::Observable

 def initialize
 @history = [[]]
 @step = 0
 end

 observer :player do
 @step.even? ? :X : :O
 end

 observer :current do
 @history[@step]
 end

 state_reader :history

 WINNING_COMBOS = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

 def current_winner?
 WINNING_COMBOS.each do |a, b, c|
 return current[a] if current[a] && current[a] == current[b] && current[a] == current[c]
 end
 false
 end

 mutator :handle_click! do |id|
 board = history[@step]
 return if current_winner? || board[id]

 board = board.dup
 board[id] = player
 @history = history[0..@step] + [board]
 @step += 1
 end

 mutator(:jump_to!) { |step| @step = step }
end

Let’s go over the each of the differences from the code that was in the DisplayGame component.

class Game
 include Hyperstack::State::Observable

Game is now in its own class and includes Hyperstack::State::Observable. This adds a number of methods to Game that allows our class to become
a reactive store. When Game interacts with other stores and components they will be updated as the state of Game changes.

 def initialize
 @history = [[]]
 @step = 0
 end

In the original implementation we initialized the two state variables @history and @step in the before_mount callback. The same initialization
is now in the initialize method which will be called when a new instance of the game is created. This will still be done in the DisplayGame
before_mount callback (see below.)

 observer :player do
 @step.even? ? :X : :O
 end

 observer :current do
 @history[@step]
 end

In the original implementation we had instance methods player and current. Now that Game is a separate class we define these
methods using observer.

The observer method creates a method that is the inverse of mutator. While mutate (and mutator) indicate that state has
been changed observe and observer indicate that state has been accessed outside the class.

 attr_reader :history

Just as we have mutate, mutator, and state_writer, we have observe, observer, and state_reader.

 WINNING_COMBOS = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

 def current_winner?
 WINNING_COMBOS.each do |a, b, c|
 return current[a] if current[a] && current[a] == current[b] && current[a] == current[c]
 end
 false
 end

We don’t need any changes to current_winner?. It accesses the internal state through the current method
so there is no need to explicitly make current_winner? an observer (but we could, without affecting anything.)

 mutator :handle_click! do |id|
 board = history[@step]
 return if current_winner? || board[id]

 board = board.dup
 board[id] = player
 @history = history[0..@step] + [board]
 @step += 1
 end

 mutator(:jump_to!) { |step| @step = step }
end

Finally we need no changes to the handle_click! and jump_to! mutators either.

The Updated DisplayGame Component

class DisplayGame < HyperComponent
 before_mount { @game = Game.new }
 def moves
 return unless @game.history.length > 1

 @game.history.length.times do |move|
 LI(key: move) { move.zero? ? "Go to game start" : "Go to move ##{move}" }
 .on(:click) { @game.jump_to!(move) }
 end
 end

 def status
 if (winner = @game.current_winner?)
 "Winner: #{winner}"
 else
 "Next player: #{@game.player}"
 end
 end

 render(DIV, class: :game) do
 DIV(class: :game_board) do
 DisplayCurrentBoard(game: @game)
 end
 DIV(class: :game_info) do
 DIV { status }
 OL { moves }
 end
 end
end

The DisplayGame before_mount callback is still responsible for initializing the game, but it no longer needs to be aware of
the internals of the game’s state. It simply calls Game.new and stores the result in the @game instance variable. For the rest
of the component’s code we call the appropriate method on @game.

We will need to pass the entire game to DisplayBoard (we will see why shortly) so we will rename it to DisplayCurrentBoard.

As we will see DisplayCurrentBoard will be responsible for directly notifying the game that a user has clicked, so we do not
need to handle any events coming back from DisplayCurrentBoard.

The DisplayCurrentBoard Component

class DisplayCurrentBoard < HyperComponent
 param :game

 def draw_square(id)
 BUTTON(class: :square, id: id) { game.current[id] }
 .on(:click) { game.handle_click!(id) }
 end

 render(DIV) do
 (0..6).step(3) do |row|
 DIV(class: :board_row) do
 (row..row + 2).each { |id| draw_square(id) }
 end
 end
 end
end

The DisplayCurrentBoard component receives the entire game, and it will access the current board, using the
current method, and will directly notify the game when a user clicks using the handle_click! method.

By having DisplayCurrentBoard directly deal with user actions, we simplify both components as they do not have to
communicate back upwards via events. Instead we communicate through the central game store.

The Flux Loop

Rather than sending params down to lower level components, and having the components bubble up events, we have created a Flux Loop.
The Game store holds the state, the top level component reads the state and sends it down to lower level components, those
components update the Game state causing the top level component to re-rerender.

This structure greatly simplifies the structure and understanding of our components, and keeps each component functionally isolated.

Furthermore algorithms such as current_winner? now are neatly abstracted out into their own class.

Classes and Instances

If we are sure we will only want one game board, we could define Game with class methods like this:

class Game
 include Hyperstack::State::Observable

 class << self
 def initialize
 @history = [[]]
 @step = 0
 end

 observer :player do
 @step.even? ? :X : :O
 end

 observer :current do
 @history[@step]
 end

 state_reader :history

 WINNING_COMBOS = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

 def current_winner?
 WINNING_COMBOS.each do |a, b, c|
 return current[a] if current[a] && current[a] == current[b] && current[a] == current[c]
 end
 false
 end

 mutator :handle_click! do |id|
 board = history[@step]
 return if current_winner? || board[id]

 board = board.dup
 board[id] = player
 @history = history[0..@step] + [board]
 @step += 1
 end

 mutator(:jump_to!) { |step| @step = step }
 end
end

class DisplayBoard < HyperComponent
 param :board

 def draw_square(id)
 BUTTON(class: :square, id: id) { board[id] }
 .on(:click) { Game.handle_click!(id) }
 end

 render(DIV) do
 (0..6).step(3) do |row|
 DIV(class: :board_row) do
 (row..row + 2).each { |id| draw_square(id) }
 end
 end
 end
end

class DisplayGame < HyperComponent
 def moves
 return unless Game.history.length > 1

 Game.history.length.times do |move|
 LI(key: move) { move.zero? ? "Go to game start" : "Go to move ##{move}" }
 .on(:click) { Game.jump_to!(move) }
 end
 end

 def status
 if (winner = Game.current_winner?)
 "Winner: #{winner}"
 else
 "Next player: #{Game.player}"
 end
 end

 render(DIV, class: :game) do
 DIV(class: :game_board) do
 DisplayBoard(board: Game.current)
 end
 DIV(class: :game_info) do
 DIV { status }
 OL { moves }
 end
 end
end

Now instead of creating an instance and passing it around we
call the class level methods on Game throughout.

The Hyperstack::State::Observable module will call any class level initialize methods in the class or subclasses
before the first component mounts.

Note that with this approach we can go back to passing just the current board to DisplayBoard as DisplayBoard can
directly access Game.handle_click! since there is only one game.

Thinking About Stores

To summarize: a store is simply a Ruby object or class that using the observe and mutate methods marks when its internal data
has been observed by some other class, or when its internal data has changed.

When components render they observe stores throughout the system, and when those stores mutate the components will rerender.

You as the programmer need only to remember that public methods that read internal state must at some point
during their execution declare this using observe, observer,
state_reader or state_accessor methods. Likewise a method that changes internal state must declare this using mutate, mutator, state_writer or state_accessor methods.

If your store’s methods access other stores, you do not need worry about their state, only your own. On the other hand keep in mind
that the built in Ruby Array and Hash classes are not stores, so when you modify or read an Array or a Hash its up to you to use
the appropriate mutate or observe method.

Stores and Parameters

Typically in a large system you will have one or more central stores, and what you end up passing as parameters are either instances of those stores, or some other kind of index into the store. If there is only one store (as in the case of our Game), you
need not pass any parameters at all.

We can rewrite the previous iteration of DisplayBoard to demonstrate this:

class DisplaySquare
 param :id
 render
 BUTTON(class: :square, id: id) { Game.current[id] }
 .on(:click) { Game.handle_click(id) }
 end
end

class DisplayBoard < HyperComponent
 render(DIV) do
 (0..6).step(3) do |row|
 DIV(class: :board_row) do
 (row..row + 2).each { |id| DisplaySquare(id: id) }
 end
 end
 end
end

Here DisplayBoard no longer takes any parameter (and could be renamed again to DisplayCurrentBoard) and now a new component -
DisplaySquare - takes the id of the square to display, but the game or the current board are never passed as parameters;
there is no need to as they are implicit.

Whether to pass (or not pass) a store class, an instance of a store, or some other index into the store is a design decision that depends on
lots of factors, mainly how you see your application evolving over time.

Summary of Methods

All the observable methods can be used either at the class or instance level.

Observing State: observe, observer, state_reader

The observe method takes any number of arguments and/or a block. The last argument evaluated or the value of the block is returned.

The arguments and block are evaluated then the object’s state will be observed.

If the block exits with a return or break, the state will not be observed.

evaluate and return a value
observe @history[@step]

evaluate a block and return its value
observe do
 @history[@step]
end

The observer method defines a new method with an implicit observe:

observer :foo do |x, y, z|
 ...
end

is equivilent to

def foo(x, y, z)
 observe do
 ...
 end
end

Again if the block exits with a return or break the state will not be observed.

The state_reader method declares one or more state accessors with an implicit state observation:

state_reader :bar, :baz

is equivilent to

def bar
 observe @bar
end
def baz
 observe @baz
end

Mutating State: mutate, mutator, state_writer, toggle

The mutate method takes any number of arguments and/or a block. The last argument evaluated or the value of the block is returned.

The arguments and block are evaluated then the object’s state will be mutated.

If the block exits with a return or break, the state will not be mutated.

evaluate and return a value
mutate @history[@step]

evaluate a block and return its value
mutate do
 @history[@step]
end

The mutator method defines a new method with an implicit mutate:

mutator :foo do |x, y, z|
 ...
end

is equivilent to

def foo(x, y, z)
 mutate do
 ...
 end
end

Again if the block exits with a return or break the state will not be mutated.

The state_writer method declares one or more state accessors with an implicit state mutation:

state_reader :bar, :baz

is equivilent to

def bar=(x)
 mutate @bar = x
end
def baz=(x)
 observe @baz = x
end

The toggle method reverses the polarity of a instance variable:

toggle(:foo)

is equivilent to

mutate @foo = !@foo

The state_accessor Method

Combines state_reader and state_writer methods.

state_accessor :foo, :bar

is equivilent to

state_reader :foo, :bar
state_writer :foo, :bar

Components and Stores

The standard HyperComponent base class includes Hyperstack::State::Observable so any HyperComponent has access to
all of the above methods. A component also always observes itself so you never need to use observe within
a component unless the state will be accessed outside the component. However once you start doing that you
would be better off to move the state into a separate store.

In addition components also act as the Observers in the system. What this means is
that the current component that is running its render method is recording all stores that call observe, when
a store mutates, then all the components that recorded observations will be rerendered.

 Installation

Installation

The easiest way to install Hyperstack in either a new or existing Rails app is to run installer.

Pre-Requisites

- Rails >= 5.x

Rails Install Instructions [http://railsinstaller.org/en]

- Yarn

For a full system install including webpacker for managing javascript assets you will
need yarn. To skip adding webpacker use hyperstack:install:skip-webpack

Yarn Install Instructions [https://yarnpkg.com/en/docs/install#mac-stable]

- Creating a New Rails App

If you don’t have an existing Rails app to add Hyperstack to, you can create a new Rails app
with the following command line:

bundle exec rails new NameOfYourApp -T

To avoid much pain, do not name your app Application as this will conflict with all sorts of
things in Rails and Hyperstack.

Once you have created the app cd into the newly created directory.

The -T option will skip adding minitest directories, as Hyperstack prefers RSpec.

- Installing HyperStack

	add gem 'rails-hyperstack', "~> 1.0.alpha1.0" to your gem file

	run bundle install

	run bundle exec rails hyperstack:install

Note: if you want to use the unreleased edge branch your gem specification will be:

gem 'rails-hyperstack',
 git: 'git://github.com/hyperstack-org/hyperstack.git',
 branch: 'edge',
 glob: 'ruby/*/*.gemspec'

- Start the Rails app

	bundle exec foreman start to start Rails and the Hotloader

	Navigate to http://localhost:5000/

 Configuration

Configuration

Hyperstack configuration is set in an initializer.

Note: You will need to stop and start your Rails server when changing this configuration.

Example configuration:

config/initializers/hyperstack.rb
Hyperstack.configuration do |config|
 config.prerendering = :off

 config.import 'jquery', client_only: true
 config.import 'hyperstack/component/jquery', client_only: true
 config.import 'browser'
 config.import 'active_support'

 # config.import 'my-gem-name'
 # config.imports 'my-gem-name' # same as above
 # config.import 'my-gem-name', server_only: true
 # config.import 'my-gem-name', client_only: true
 # config.import 'path', tree: true # same as saying require_tree 'path' in a manifest file
 # config.import_tree 'path' # same as above
 # config.import 'asset_name' # same as saying require 'asset_name' in a manifest file

 # Cancel importing React and ReactRouter if you are using Webpack
 # config.cancel_import 'react/react-source-browser'
 # config.cancel_import 'hyperstack/router/react-router-source'

 if Rails.env.development?
 config.import 'hyperstack/hotloader', client_only: true
 config.hotloader_port = 25222
 end
end

The listed gem will be automatically added to the hyperstack-loader manifest. This means all you do is add a gem to Rails, and it will get sent on to the client (plus any other dependencies you care to require.)

The require method can be used in the Hyperstack initializer as well to add code to the manifest (i.e. add a gem to that is not using Hyperstack.import)

To define an initializer:

module Hyperstack
 on_config_reset do
 # anything you want to run when initialization begins
 end

 on_config_initialized do
 # anything you want when initialization completes
 end

 define_setting :default_prerendering_mode, :on

 define_setting(:transport, :none) do |transport|
 # value of transport is whatever the user set in the initializer
 # you do what you want here...
 end

 Manual Installation

Manual Installation

To manually install a complete Hyperstack system there are quite a few steps. However these can be broken down into six separate activities each of which will leave your system in a working and testable state:

	Adding the rails-hyperstack gem

	Adding and Mounting Hyperstack Components

	Installing the Hotloader

	Integrating with Webpacker

	Adding Policies and Integrating with ActiveRecord

Steps 3, 4 and 5 can be done in any order, and can be skipped as needed. The following sections review each of the steps.

Adding the rails-hyperstack gem

Add

 gem 'rails-hyperstack', '~> 1.0.alpha1.0'

to your gem file.

Then bundle install. Your Rails app will continue to work as before.

Note: if you want to use the unreleased edge branch your rails-hyperstack gem specification will be:

gem 'rails-hyperstack',
 git: 'git://github.com/hyperstack-org/hyperstack.git',
 branch: 'edge',
 glob: 'ruby/*/*.gemspec'

Adding and Mounting Hyperstack Components

Once you have added the rails-hyperstack gem to your system you can easily add a new component to your system by running the following command:

bundle exec rails g hyper:component TestApp --add-route="/test/(*others)"

After running this command you should be able to start your server

bundle exec rails s

and visit localhost:3000/test and you will see TestApp displayed.

This command accomplishes four tasks which you can also manually perform if you prefer:

	Insure that the hyperstack-loader is required in your application.js file;

	Insure that the webpacker manifest file is loading JS files;

	Insure that you have a HyperComponent base class defined;

	Add a skeleton TestApp component and

	Add a route to the TestApp component in your rails routes file.

Requiring hyperstack-loader

Each time the hyper:install, hyper:component and hyper:router generators run they insure that the hyperstack-loader require is present, and will print a warning if it cannot successfully add it to the application.js file.

The hyperstack-loader is a dynamically generated asset manifest that will load all your client side Ruby code. It needs to be the last require in app/assets/javascripts/application.js file. That is it should be just before the final require_tree directive

// assets/javascripts/application.js
...
//= require hyperstack-loader
//= require_tree .

Check the webpacker manifest file

In Rails 6 the webpacker default installation no longer links to the javascripts directory, but because Opal uses sprockets we need to add it back in. Check to see if you have a app/assets/config/manifest.js file, and if you do, insure it has the following line:

//= link_directory ../javascripts .js

Once hyperstack-loader and link_directory directives are added you can reload any page you will see the hyperstack asset manifest on the Rails console and the browser’s debug console which looks like this:

require 'opal'
require 'browser' # CLIENT ONLY
require 'hyperstack-config'
require 'hyperstack/autoloader'
require 'hyperstack/autoloader_starter'
require 'hyper-state'
require 'react/react-source-browser' # CLIENT ONLY
require 'react_ujs'
require 'hyper-router'
require 'hyper-model'
require 'browser/delay' # CLIENT ONLY
require 'hyper-component'
require 'hyperstack/component/auto-import'
require 'hyper-operation'
require 'hyperstack/router/react-router-source'
require 'config/initializers/inflections.rb'

Note: By default you will get the entire Hyper Stack, but you can selectively remove parts you do not need in the hyperstack initializer file, which will be discussed later.

The HyperComponent base class

Each time the hyper:install, hyper:component and hyper:router generators run they insure that there is an application defined HyperComponent base class defined in the app/hyperstack/components/ directory. If not present one will be added.

All your Hyperstack code goes into the app/hyperstack directory, which is at the same level as app/models, app/views, app/controllers, etc.

Inside this directory are subdirectories for each of the different parts of you Hyperstack application code. Components go in the app/hyperstack/components directory.

Like Rails models, and Rails controllers, Hyperstack components by convention inherit from an application defined base class. So while a typical Rails model inherits from the ApplicationRecord class, your Hyperstack components will inherit from the HyperComponent class.

The typical HyperComponent class definition looks like this:

app/hyperstack/components/hyper_component.rb
class HyperComponent
 # All component classes must include Hyperstack::Component
 include Hyperstack::Component
 # The Observable module adds state handling
 include Hyperstack::State::Observable
 # The following turns on the new style param accessor
 # i.e. param :foo is accessed by the foo method
 param_accessor_style :accessors
end

When the generators run they check for this file, and if not present will add it.

Note having a HyperComponent base class is only convention. The Hyperstack system (except for the generators) assumes nothing about HyperComponent or how you define components. Any class that includes the Hyperstack::Component module will be a component. For example you may want to name your base class ApplicationComponent to more closely following the rails convention.

In this case you would have an app/hyperstack/component/application_component.rb file that defines your ApplicationComponent class. Then your components would be subclasses of ApplicationComponent.

You can even define several base classes. For example you might define a StaticComponent class which does not include the Hyperstack::State:Observable, and thus create a static (functional) component class.

To tell the generators to use a different base class name use the --base-class switch. For example --base-class=ApplicationComponent

Add Components

All your components by convention are kept in the app/hyperstack/components directory. A simple component would look like this:

app/hyperstack/components/test_app.rb
class TestApp < HyperComponent
 render(DIV)
 "TestApp" # render the string TestApp in a DIV
 end
end

Once you add any .rb file to any subdirectory of app/hyperstack it will be added to the hyperstack-loader manifest for you.

The hyper:component and hyper:router generators add a skeleton component file like the one above, after insuring that the hyperstack-loader require and the HyperComponent base class are present in the correct places.

Mount components using the routes file

Now that you have a have a component it needs to be mounted for it to be rendered. You have three options for doing this depending on your needs.

The easiest way is to route to your top level component in your Rails routes file. For example if you have a component named TestApp you can route to it and mount it by adding the following line near the beginning of the config/routes.rb file:

get '/test/(*others)', to: 'hyperstack#test_app'

Now all URLs beginning with test/ will bring up a page with TestApp mounted in it.

The first parameter to the get route method describes the path that will be matched. In this case /test/ followed by any other sub path will match. When matched the built in hyperstack controller will accept the request, and will build a page with the TestApp component mounted in it. Notice the translation of test_app to TestApp.

The hyper:component and hyper:router generators accept an optional add-route parameter which indicates that you want a route added. The default value for this parameter is the path /(*others):

... --add-route # adds path '/(*others)'
... --add-route='/fred' # adds path '/fred'

Mount components using the render_component view helper

If you are adding Hyperstack to an existing application you may want to simply mount components somewhere in an existing view. To do this use the render_component view helper:

...
 <% render_component 'TestApp' %>
...

will render the component named TestApp at that position in your view.

The render_component helper can also pass parameters to the component so for example if you had a component DisplayFormattedName, and your controller had set @name you might have this in your ERB file:

... <% render_component 'DisplayFormattedName', name: @name %>

Mount components from a controller

You can also use render_component in a controller in place of the standard Rails render method. Like the render_component view helper you can pass the component parameters in from the controller.

Installing the Hotloader

The Hotloader watches your directories, and when client side files change, it will compile those files, and surgically update the client environment to contain the new code. The update process is near instantaneous, so it makes developing and debugging components easy.

There are three steps to installing the Hotloader:

	Importing Hotloader into your hyperstack-loader manifest;

	Adding the foreman gem to your Gemfile and

	Adding a Procfile to the root of our application directory.``

By default the Hotloader is not included in the hyperstack manifest so the first step is to add the config/initializers/hyperstack.rb initializer file, and import the Hotloader:

config/initializers/hyperstack.rb
Hyperstack.configuration do |config|
 config.import 'hyperstack/hotloader',
 client_only: true if Rails.env.development?
end

Note that we don’t need or want the Hotloader running in test or production so we put the import on a switch, so the import only occurs in development.

Because you have changed the system manifest its best to clear the Rails cache to insure the new configuration is rebuilt, and not loaded from cache. In the shell run

rm -rf tmp/cache # clear the cache

The Hotloader needs to run in a separate process, so bring up a separate terminal window and run

bundle exec hyperstack-hotloader -p 25222 -d app/hyperstack

This will tell the Hotloader to use port 25222, and to scan the app/hyperstack directory.

If for some reason you cannot use port 25222 you can change it, but you need to also configure this in the Hyperstack initializer file:

 ...
 config.hotloader_port = 12345 # override default of 25222
 ...

Now that the Hotloader is running, you can start your Rails server the normal way, and refresh your browser page. You should now see require 'hyperstack/hotloader' # CLIENT ONLY added to the manifest, and you will also see a message indicating that your browser has connected to the Hotloader.

Now go into your editor and make a change to the component. You should see the browser window updating as soon as you save the file.

Hire a Foreman

Having to start (and stop) two separate shells is painful so you can add the foreman gem which will manage all that for you. Add

 gem `foreman` group: :development

To your gemfile and do a bundle install.

Now add the following Procfile to the root of your applications directory:

web: bundle exec rails s -b 0.0.0.0
hot-loader: bundle exec hyperstack-hotloader -p 25222 -d app/hyperstack

Now stop both our server and hotloader processes if they are still running, and then run

bundle exec foreman start

Which will have foreman start both the processes, and will also allow a single CTRL-C to cancel both processes.

By convention when using foreman we load the server over port 5000, so you will visit localhost:5000 instead of locahost:3000.

Integrating with Webpacker

Using the Rails webpacker gem you can easily add other NPM (node package manager) assets to your Hyperstack application. This allows you Hyperstack components use any of the thousands of existing React component libraries, as well as packages like jQuery.

There is a bit of configuration needed to add webpacker to your application which can be done by running

bundle exec rails g hyperstack:webpack

Note that you also need to have yarn installed Install Instructions [https://yarnpkg.com/en/docs/install#mac-stable]

For details on how to import and use NPM packages in your application see Importing React Components [https://docs.hyperstack.org/client-dsl/javascript-components]

To manually install webpacker follow these steps:

Insure yarn is installed

Install Instructions [https://yarnpkg.com/en/docs/install#mac-stable]

Add the Hyperstack dependencies

Then run these commands to install Hyperstack’s NPM dependencies using yarn:

yarn 'react', '16'
yarn 'react-dom', '16'
yarn 'react-router', '^5.0.0'
yarn 'react-router-dom', '^5.0.0'
yarn 'react_ujs', '^2.5.0'

Stop Hyperstack from importing the above dependencies

Because we are now managing these components via yarn, we don’t want the Hyperstack loader to include them. So we use the Hyperstack cancel_import config directive in the config/initializers/hyperstack.rb file:

config/initializers/hyperstack.rb
Hyperstack.configuration do |config|
 config.cancel_import 'react/react-source-browser'
end

Of course if you already have a hyperstack.rb config file, you will be just adding the one cancel_import line.

Add the Webpacker manifests

Create a new app/javascript/packs directory and add these two files:

//app/javascript/packs/client_and_server.js
// these packages will be loaded both during prerendering and on the client
React = require('react'); // react-js library
History = require('history'); // react-router history library
ReactRouter = require('react-router'); // react-router js library
ReactRouterDOM = require('react-router-dom'); // react-router DOM interface
ReactRailsUJS = require('react_ujs'); // interface to react-rails
// to add additional NPM packages call run yarn add package-name@version
// then add the require here.

//app/javascript/packs/client_only.js
// add any requires for packages that will run client side only
ReactDOM = require('react-dom'); // react-js client side code
// jQuery = require('jquery');
// to add additional NPM packages call run yarn add package-name@version
// then add the require here.

If configured Hyperstack will prerender pages serverside, so that the initial download to the client has your component tree already rendered into HTML.

Because prerendering runs on the server it does not have access to things like the current time, or the window object. NPM packages that can only sensibly be run on the client are included in the client_only.js pack file, while packages designed to be run in the server environment as well go into client_and_server.js

Add the packs directory to the Rails asset search path

In config/initializers/assets.rb add the following line at the end of the file:

 Rails.application.config.assets.paths <<
 Rails.root.join('public', 'packs', 'js').to_s

and in config/environments/test.rb add the following line before the final end statement:

config/environments/test.rb
Rails.application.configure do
 # other stuff...

 config.assets.paths <<
 Rails.root.join('public', 'packs-test', 'js').to_s
end

Add the webpacker gem

Add

 gem 'webpacker'

to your Gemfile then

bundle install

Run the rails webpacker installer

bundle exec rails webpacker:install

This installs all the base webpacker stuff that Rails needs.

Adding Policies and Integrating with ActiveRecord

Hyperstack uses Policies to control client access to your Models and Operations (Hyperstacks implementation of ServiceObjects.)

Hyperstack shares the contents of the models, operations and shared directories with both the server and the client, so both server and client can access code in those directories.

Together these two mechanisms give you secure access to your models, operations, and other shared code on both the client and server.

Steps to Access Models on the Client

	Create a Development Policy

	Move app/models/application_record.rb to app/hyperstack/models/

	Create a stub app/models/application_record.rb file

	Move any models you want to use on the client from the app/models directory to app/hyperstack/models directory

Hyperstack uses Policies to control communication between the client and server. Policies go in the app/policies directory. The following Policy will give unrestricted access to your models unless in production:

app/policies/application_policy.rb

Policies regulate access to your public models
The following policy will open up full access (but only in development)
The policy system is very flexible and powerful. See the documentation
for complete details.
class Hyperstack::ApplicationPolicy
 # Allow any session to connect:
 always_allow_connection
 # Send all attributes from all public models
 regulate_all_broadcasts { |policy| policy.send_all }
 # Allow all changes to models
 allow_change(to: :all, on: [:create, :update, :destroy]) { true }
 # allow remote access to all scopes - i.e. you can count or get a list of ids
 # for any scope or relationship
 ApplicationRecord.regulate_scope :all
end unless Rails.env.production?

This policy specifies the following: 1. allow any client to connect to the Hyperstack::Application 2. the server will broadcast all data changes to the Hyperstack::Application 3. the application can create, update and destroy all models 4. the client can filter all models using any scope But only if we are not running in production!

As your application develops you can begin defining more restrictive policies (only allowing Users to see their own data for example)

Note: The policy mechanism does not depend on Pundit [https://github.com/varvet/pundit] but is compatible with it.

Once you have a basic Policy defined the client can access your Rails models. For your ActiveRecord model class definitions to be visible on the client you need to move them to the app/hyperstack/models directory. This directory (along with app/hyperstack/operations and app/hyperstack/shared) are isomorphic directories. The code in these directories will be accessible on both the client and the server.

For example if you have the following class definition

class Todo < ApplicationRecord
 scope :active, -> () { where(completed: false) }
 scope :completed -> () { where(completed: true) }
end

You could then on the server execute Todo.active and get all the todos in the active scope. But as long as this class stays in the app/models directory it will not exist on the client.

Once you move the Todo class definition to app/hyperstack/models it will also be visible on the client, and Todo.active will now return a list of all active todos on the server and the client.

Because all your ActiveRecord models are (typically) defined as subclasses of ApplicationRecord, you need to also move the app/models/application_record.rb file to the app/hyperstack/models/ directory.

At this point everything will work, until you run a Rails migration. Then Rails will discover that there is no app/models/application_record.rb file (because you moved it) and will generate a new one for you!

So to prevent that you need to add this file to app/models/application_record.rb

app/models/application_record.rb
the presence of this file prevents rails migrations from recreating application_record.rb
see https://github.com/rails/rails/issues/29407

this will grab the real file from the hyperstack directory
require 'models/application_record.rb'

Note that the last line is not a typo. Rails paths begin with the subdirectory name. So 'models/application_record.rb' means to search all directories for a file name application_record.rb in the models subdirectory

4. Add the hyperstack directories

Hyperstack will load code out of the app/hyperstack directory. Within this directory there are typically the following subdirectories:

	app/hyperstack/components - Component classes (client only)

	app/hyperstack/models - Shared active record model classes

	app/hyperstack/operations - Shared operation classes

	app/hyperstack/stores - Other data stores (client only)

	app/hyperstack/shared - Misc shared modules and classes

	app/hyperstack/lib - Client only libraries

These directories are all optional. The models, operations, and shared subdirectories are both loaded on the client, and will be also included as part of the Rails constant lookup search path.

Any other subdirectories will be treated as client only. The names listed above such as components, stores and lib are just conventions. For example you may prefer client_lib.

Note that you will still have the standard Rails app/models directory, which can be used to keep server-only models. This is useful for models that will never be accessed from the client to reduce payload size. You can also add an app/operations directory if you wish to have Operations that only run on the server.

This does not effect security. See the section 7 for how Policies are setup.

6. Replicate the application_record.rb file

Rails models files normally inherit from the ApplicationModel class, so you must move the app/models/application_record.rb to app/hyperstack/models/application_record.rb so that it is accessible both on the client and server.

However Rails will automatically generate a new application_record.rb file if it does not find one in the app/models directory. To prevent this create a new app/models/application_record.rb that looks like this:

app/models/application_record.rb
the presence of this file prevents rails migrations from recreating application_record.rb
see https://github.com/rails/rails/issues/29407

this will grab the real file from the hyperstack directory
require 'models/application_record.rb'

Note that the above is not a typo. Rails paths begin with the subdirectory name. So 'models/application_record.rb' means to search all directories for a file name application_record.rb in the models subdirectory

7. Add a basic application_policy.rb file

Your server side model data is protected by Policies defined in Policy classes stored in the app/policy directory. The following file creates a basic “wide open” set of policies for development mode. You will then need to add specific Policies to protect your data in production mode.

app/policies/application_policy.rb

Policies regulate access to your public models
The following policy will open up full access (but only in development)
The policy system is very flexible and powerful. See the documentation
for complete details.
class Hyperstack::ApplicationPolicy
 # Allow any session to connect:
 always_allow_connection

 # Send all attributes from all public models
 regulate_all_broadcasts { |policy| policy.send_all }

 # Allow all changes to models
 allow_change(to: :all, on: [:create, :update, :destroy]) { true }

 # Allow remote access to all scopes - i.e. you can count or get a list of ids
 # for any scope or relationship
 # You can also add the line `regulate_scope :all` directly to your
 # ApplicationRecord class.
 ApplicationRecord.regulate_scope :all
end unless Rails.env.production?

Note that regardless of whether models are public (i.e stored in the hyperstack/models directory) or private, they are ultimately protected by the Policy system.

8. Add the hyperstack.rb initializer file

Add the following file to the config/initializers/ directory:

config/initializers/hyperstack.rb
Hyperstack.configuration do |config|
 # If you do not want to use ActionCable,
 # see http://hyperstack.orgs/docs/models/configuring-transport/
 # for setting up other options.
 config.transport = :action_cable # or :pusher or :simple_poller

 # typically you will want to develop with prerendering off, and
 # once the system is working, turn it on for final debug and test.
 config.prerendering = :off # or :on

 # We bring in React and ReactRouter via Yarn/Webpacker
 config.cancel_import 'react/react-source-browser'

 # remove the following line if you don't need jquery (see notes in application.js)
 config.import 'hyperstack/component/jquery', client_only: true

 # remove this line if you don't want to use the hotloader
 config.import 'hyperstack/hotloader', client_only: true if Rails.env.development?
end

useful for debugging
module Hyperstack
 def self.on_error(operation, err, params, formatted_error_message)
 ::Rails.logger.debug(
 "\#{formatted_error_message}\\n\\n" +
 Pastel.new.red(
 'To further investigate you may want to add a debugging '\\
 'breakpoint to the on_error method in config/initializers/hyperstack.rb'
)
)
 end
end if Rails.env.development?

The first section configures Hyperstack and the assets that will be included (or not included) in the asset manifest.

The on_error method defines what you want to do when errors occur. In production you will may want to direct the output to a dedicated log file for example.

10. Add the Hyperstack engine to the routes file

At the beginning of the config/routes.rb file mount the Hyperstack engine:

config/routes.rb
Rails.application.routes.draw do
 # this route should be first in the routes file so it always matches
 mount Hyperstack::Engine => '/hyperstack'

 # the rest of your routes here
end

You can mount the engine under any name you please. All of internal Hyperstack requests will be prefixed with whatever name you use.

Note: You can also directly ask Hyperstack to mount your top level components via the routes file. For example

Rails.application.routes.draw do
 mount Hyperstack::Engine => '/hyperstack' # this must be the first route
 get '/(*other)', to: 'hyperstack#app'

will pass all requests (i.e. /(*other)) to the hyperstack engine, and find and mount a component named App. Whatever you name the engine mount point (i.e. hyperstack in this case) is what you direct the requests to.

Likewise get /price-quote/(*other), to: hyperstack#price_quote would mount a component named PriceQuote when the url begins with price-quote.

Remember though that the first route that matches will be used, so if you had both examples in your routes, the price-quote route would be before the wildcard route.

This the way you have have 2 or more single page apps served by the same Rails backend.

11. Add/Update the Procfile

If you are using the Hotloader, then you will also want to use the foreman gem. The Hotloader runs in its own application process, and foreman will start and stop both Rails and the Hotloader together.

The foreman gem is configured by a Procfile at the root of your application:

web: bundle exec rails s -b 0.0.0.0
hot-loader: bundle exec hyperstack-hotloader -p 25222 -d app/hyperstack

This instructs foreman to start rails in one process, and the Hotloader in a second process. -p 25222 is the port Hotloader will use and -d app/hyperstack is the directory that will be watched for changes.

To run foreman simply execute bundle exec foreman start, and CTRL-C to quit.

Note when running foreman with the above Procfile your port will be 5000 instead of the usual 3000.

12. Using generators

No matter which way you installed Hyperstack you can use the included generators to add new components.

bundle exec rails g hyper:router App will create a skeleton top level (router) component named App.

bundle exec rails g hyper:component Index will create a skeleton component named Index.

13. Adding a test component

Once you have installed Hyperstack you have a couple of options to see how things work.

Adding a top level router

The easiest way to make sure everything is installed okay is to use the generator to add an App router

bundle exec rails g hyper:router App

and then route everything to this component from your routes file:

get '/(*other)', to: 'hyperstack#app'.

Mounting a component from an existing page

Another approach is to add a simple component using the component generator:

bundle exec rails g hyper:component HyperTest

and then mount this component using ERB from within an existing view:

<% render_component 'HyperTest' %>

 Upgrading from legacy Hyperloop

Upgrading from legacy Hyperloop

This guide sets out to provide the steps necessary to move an existing project from legacy Hyperloop to Hyperstack. There are a number of changes which need to be considered.

Summary of changes

	Creating a new Hyperstack Rails application

	Adding Hyperstack to an existing Rails application

	New Hyperstack gems

	Renamed folders

	Hyperstack configuration

	Changes to the application.js file

	Hotloader

	Hyperloop classes have been renamed Hyperstack

	There is a new concept of a base HyperComponent and HyperStore base class

	State syntax has changed

	Param syntax has changed

	The Router DSL has changed slightly

Creating a new Hyperstack Rails application

In Hyperstack we are using Rails templates to create new applications.

	Follow these instructions: https://github.com/hyperstack-org/hyperstack/tree/edge/install

	See the template for an understanding of the installation steps: https://github.com/hyperstack-org/hyperstack/blob/edge/install/rails-webpacker.rb

Adding Hyperstack to an existing Rails application

	add gem 'rails-hyperstack', "~> 1.0.alpha1" to your gem file

	run bundle install

	run rails g hyperstack:install

If you are not upgrading an existing Hyoperloop application, you do not need to follow the rest of these instructions.

Hyperstack gem

Hyperstack (with Rails) requires just one Gem:

gem 'webpacker' # if you are using webpacker
gem 'rails-hyperstack'

Delete all Hyperloop gems from your gemfile and do a bundle update.

Renamed folders

	app/hyperloop has become app/hyperstack

	The sub-folder structure has not changed (components, models, stores, etc)

Hyperstack configuration

	config/initializers/hyperloop.rb has been renamed config/initializers/hyperstack.rb

The configuration initialiser has changed a little. Please see this page for details: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/installation/config.md

Changes to the application.js file

The end of the application.js file now looks like this:

...
//= require jquery
//= require jquery_ujs
//= require hyperstack-loader

Hotloader

The Hotloader is now directly included in the gem set, but is optionally loaded via the hyperstack.rb initializer:

Hyperstack.configuration do |config|
 ...
 config.import 'hyperstack/hotloader' if Rails.env.dev?
 ...
end

The foreman proc file has also changed slightly to incorporate the hotloaders port parameter:

web: bundle exec rails s -b 0.0.0.0
hot-loader: bundle exec hyperstack-hotloader -p 25222 -d app/hyperstack

Hyperloop classes have been renamed Hyperstack

In all cases, Hyperloop has been replaced with Hyperstack. For example:

In Hyperloop:

Hyperloop::Application.acting_user_id

In Hyperstack becomes:

Hyperstack::Application.acting_user_id

The simplest way to implement this change is a global search and replace in your project.

There is a new concept of a base HyperComponent and HyperStore base class

In Hyperloop, all Components and Stores inherited from a base Hyperloop::Component class. In HyperStack (following the new Rails convention), we do not provide the base class but encourage you to create your own. This is very useful for containing methods that all your Components share.

To implement this change, you need to create your HyperComponent class:

class HyperComponent
 include Hyperstack::Component
 include Hyperstack::State::Observable # if you are using state
 include Hyperstack::Router::Helpers # if you are using the router
 param_accessor_style :accessors

 def some_shared_method
 # a helper method that all your Component might need
 end
end

Then you need to do a search and replace on all your Hyperloop::Component classes and replace them with HyperComponent. For example:

In Hyperloop:

class MyComp < Hyperloop::Component
 render do
 ...
 end
end

In Hyperstack becomes:

class MyComp < HyperComponent
 render do
 ...
 end
end

HyperComponent is explained here: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/dsl-client/hyper-component.md#hypercomponent

The same is true for Hyperloop::Store to HyperStore.

You will need to create a HyperStore class and make the same changes as above.

Note that in Hyperstack, any ruby class can be a store by merely including the include Hyperstack::State::Observable mixin.

For example:

class StoresAreUs
 include Hyperstack::State::Observable

 def store_something thing
 mutate @thing = thing # note the new mutate syntax
 end
end

State syntax has changed

In Hyperloop you mutated state like this:

mutate.something true

In Hyperstack becomes:

mutate @something = true

You also use reference in a different way:

In Hyperloop:

H1 { 'Yay' } if state.something

In Hyperstack becomes:

H1 { 'Yay' } if @something

There are several advantages to this new approach:

	It is significantly faster

	It feels more natural to think about state variables as normal instance variables

	You only use the mutate method when you want React to re-render based on the change to state. This gives you more control.

	You can string mutations together. For example:

mutate @something[12] = true, @amount = 100, @living = :good

You can read more about state here: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/dsl-client/hyper-component.md#state

Param syntax has changed

The syntax for using params has changed:

In Hyperloop:

class SayHello < Hyper::Component
 param :first_name

 render do
 H1 { "Hello #{params.first_name}" }
 end

In Hyperstack becomes:

class SayHello < HyperComponent
 param :first_name

 render do
 H1 { "Hello #{first_name}" } #
 end

You can read more about this here: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/dsl-client/hyper-component.md#params

The Router DSL has changed slightly

Routers are now normal Components that include the Hyperstack::Router mixin.

A Hyperstack router looks like this:

class MainFrame < HyperComponent
 include Hyperstack::Router # note the inclusion of the Router mixin

 render(DIV) do # note the render method instead of the router method
 Switch do
 Route('/', exact: true, mounts: HomeIndex)
 Route('/app', exact: true, mounts: AppIndex)
 end
 end
end

 This Page Under Construction

HyperI18n seamlessly brings Rails I18n into your Hyperstack application.
This Page Under Construction

Installation and Setup

TODO these steps are wrong

	Add gem 'hyper-i18n', git: 'https://github.com/ruby-Hyperstack/hyper-i18n.git' to your Gemfile

	Install the Gem: bundle install

	Add require 'hyper-i18n' to your components manifest

Usage

Hyper-I18n brings in the standard ActiveSupport API.

ActiveRecord Models

The methods Model.model_name.human and Model.human_attribute_name are available:

config/locales/models/en.yml
en:
 activerecord:
 models:
 user: 'Customer'
 attributes:
 name: 'Name'

User.model_name.human
'Customer'

User.human_attribute_name(:name)
'Name'

Views

Hyper-I18n makes available the method t to components, just as ActiveSupport does for views. It also implements the same lazy-loading pattern, so if you name space your locale file the same as your components, it will just work:

config/locales/views/en.yml
en:
 users:
 show:
 title: 'Customer View'

module Users
 class Show < Hyperstack::Component
 render do
 H1 { t(:title) }
 end
 end
end

<h1>Customer View</h1>

Server Rendering

HyperI18n is fully compatible with server rendering! All translations are also sent to the client, so as to bypass fetching/rendering again on the client.

 This Page Under Construction

HyperOperations are HyperStack's implementation of Service Objects based on Trailblazer Operations. Operations can be used on the client, the server, or can act like a remote procedure call mechanism communicating between the client and the server.
This Page Under Construction

“A class that performs an action” A simple explanation of Service Objects for Ruby on Rails [https://medium.freecodecamp.org/service-objects-explained-simply-for-ruby-on-rails-5-a8cc42a5441f]

Why do we need Service Objects? Because in any real world system you have logic that does not belong in models (or stores) because it effects multiple models or stores, and it does not belong in components because the logic of the task is independent of the specific user interface design. In MVC frameworks this kind of logic is often shoved in the controller, but it doesn’t belong there either.

There are also those boundary areas between gathering and processing external data and getting data into or out of our stores and models. You don’t want that kind of logic in your model or store, so where does it go? It belongs in a service object or Operation in Hyperstack terminology.

The term Operation, the key concepts of the Operation, and a lot of the implementation was taken from Trailblazer [http://trailblazer.to/guides/trailblazer/2.0/01-operation-basics.html]

Simply put an Operation is like a large standalone method that has no internal state of its own. You run an operation, it does it thing, and it returns an answer.

Any state that an operation needs to retrieve or save is stored somewhere else: in a model, a store, or even in a remote API. Once the operation completes, it has no memory of its own.

Being a stand-alone, glue and business logic method is an Operation’s full time mission. The Hyperstack Operation base class is therefor structured to make writing this kind of code easy.

	An Operation may take parameters (params) just like any other method;

	An Operation may validate the parameters;

	An Operation then executes a number of steps;

	The steps can be part of a success track or a failure track;

	The value of the final step is returned to the caller;

	And the results can be broadcast to any interested parties.

Hyperstack’s Operations often involve asynchronous methods such as HTTP requests and so Operations always return Promises. Likewise each of the steps of an Operation can itself be an asynchronous action, and the Operation class will take care of chaining the promises together for you.

Another key feature of Operations is that because they are stateless they make a perfect RPC (Remote Procedure Call) mechanism. So an Operation can be called on the client, but will run on the server, and then return or broadcast the results to the clients. Thus Operations form the underlying data transport mechanism between the server and clients.

That is a lot to digest, and truly Operations are the swiss-army knife of Hyperstack. So let’s dive into some examples.

In this simple example we are going to use a third-party API to determine our browser’s IP address. First without Operations:

class App < HyperComponent
 before_mount do
 HTTP.get('https://api.ipify.org?format=json').then do |response|
 mutate @ip_address = response.json[:ip]
 end
 end

 render do
 H1 { "Hello world from Hyperstack your ip address: #{@ip_address}" }
 end
end

Nice and simple. Our App mounts, does a HTTP get from our API, and when it returns it updates the state. The problem is our view logic is cluttered up with low level specifics of how to get the address. Lets fix that by moving that logic to a separate service object:

class GetIPAddress
 def self.run
 HTTP.get('https://api.ipify.org?format=json').then do |response|
 response.json[:ip]
 end
 end
end

Notice that the object is stateless and because it has no state it is simply a class method. We then use our service object like this:

class App < HyperComponent
 before_mount do
 GetIPAddress.run.then { |ip_address| mutate @ip_address = ip_address}
 end

 render do
 H1 { "Hello world from Hyperstack. Your ip address is #{@ip_address}" }
 end
end

If we were to change how we get the IP address, the Component now doesn’t have to change.

Now we will redefine our service object using the Hyperstack::Operation class.

class GetIPAddress < Hyperstack::Operation
 step { HTTP.get('https://api.ipify.org?format=json') }
 step { |response| response.json[:ip] }
end

You invoke Operations using the run method, so our Component does not have to change at all.

The advantage is that the Operation syntax takes care of a lot of clutter, allows our promise to be chained neatly, and makes our intention clear to the reader.

We will see how these advantages multiply as our example becomes more complex.

Before moving on lets understand the basics of Operations.

	Every Operation has as its external API a single run method.

	The work of the Operation is defined by a series of steps.

	When the run method is called, the code associated with each step is executed.

	If a step returns a promise the next step will wait till the promise is resolved.

	The result of the final step is wrapped in a promise and is the result of the operation.

The final point means that regardless of the Operation’s internal implementation, the Operation always returns a promise, so its API is consistent. As operations always return promises you can simply apply the then and fail promise methods directly to the Operation rather than saying Op.run.then.

Let’s say that rather than a simple ip address what we want is a full set of geo-location data. We can use another third party API to do the job. This API requires we supply our IP address, so we will reuse our IPAddress Op.

class GetGeoData < Hyperstack::Operation
 step GetIPAddress
 step { |ip_address| HTTP.get("https://ipapi.co/#{ip_address}/json/") }
 step { |response| response.json }
end

Here we can see one of the different ways to define a step: We simply delegate the first step to our already defined GetIPAddress operation.

Again lets compare to a traditional ServiceObject:

class GetGeoData
 def self.run
 IPAddress.run.then do |ip_address|
 HTTP.get("https://ipapi.co/#{ip_address}/json/")
 end.then do |response|
 response.json
 end
 end
end

Again its the same logic, but the body of our service object is over twice the number of lines and logic is obscured by the promise handlers.

It would be nice if we could include a flag icon to go with the country in the response data. Lets do that:

class GetGeoData < Hyperstack::Operation
 step IPAddress
 step { |ip_address| HTTP.get("https://ipapi.co/#{ip_address}/json/") }
 step { |response| response.json }
 step { |json| json.merge flag_url: "https://www.countryflags.io/#{json['country']}/shiny/64.png" }
end

Of course its just Ruby, so we can further clean up our code by defining some helper methods:

class GetGeoData < Hyperstack::Operation
 step IPAddress
 step { |ip_address| HTTP.get(geo_data_url_for(ip_address)) }
 step { |response| response.json }
 step { |json| json.merge flag_url: flag_url_for(json['country']) }

 def geo_data_url_for(ip_address)
 "https://ipapi.co/#{ip_address}/json/"
 end

 def flag_url_for(country_code)
 "https://www.countryflags.io/#{country_code}/shiny/64.png"
 end
end

Our GetGeoData uses two remote third party operations, which may occasionally fail so we add a retry mechanism. This will introduce four new features of Operation: The failure track, parameters, and the abort! and succeed! methods.

Tracks

Operations have two tracks of execution. The normal success track which is defined by the step method, and a failure track which is defined by a series of failed methods.

Execution begins with the first step, and continues with each step until an exception is raised, or a promise fails. When that happens execution jumps to the next failed step, and the continues executing failed steps. The result of the Operation will be value of the last failed step, and the Operation’s promise will be be rejected (i.e. will be in the fail state.)

Parameters

Operations can take a series of named parameters defined by the param method. Parameters can have type information, defaults, and can be validated. This helps Operations act like a firewall between various parts of the system, making debugging and error handling easier. For now we are just going to use a simple case of a parameter that takes a default value.

The abort! and succeed! methods

These provide an early exit like return, break and next statements. Calling abort! and succeed! immediately exits the Operation by the appropriate track.

Putting it together:

class GetGeoData < Hyperstack::Operation
 param attempts: 0

 step IPAddress
 step { |ip_address| HTTP.get(geo_data_url_for(ip_address)) }
 step { |response| response.json }
 step { |json| json.merge flag_url: flag_url_for(json['country']) }

 failed { abort! if params.attempts > 3 }
 failed { sleep 1.second }
 failed { GeoData.run(attempts: params.attempts+1).then(&:succeed!) }

 def geo_data_url_for(ip_address)
 "https://ipapi.co/#{ip_address}/json/"
 end

 def flag_url_for(country_code)
 "https://www.countryflags.io/#{country_code}/shiny/64.png"
 end
end

; they orchestrate the interactions between Components, external services, Models, and Stores. Operations provide a tidy place to keep your business logic.

Operations receive parameters, va and execute a series of steps They have a simple structure which is not dissimilar to a Component:

class SimpleOperation < Hyperstack::Operation
 param :anything
 step { do_something }
end

#to invoke from anywhere
SimpleOperation.run(anything: :something)
.then { success }
.fail { fail }

Hyperstack’s Isomorphic Operations span the client and server divide automagically. Operations can run on the client, the server, and traverse between the two.

This goal of this documentation is to outline Operations classes and provides enough information and examples to show how to implement Operations in an application.

Operations have three core functions

Operations are packaged as one neat package but perform three different functions:

	Operations encapsulate business logic into a series of steps

	Operations can dispatch messages (either on the client or between the client and server)

	ServerOps can be used to replace boiler-plate APIs through a bi-directional RPC mechanism

Important to understand: There is no requirement to use all three functions. Use only the functionality your application requires.

Operations encapsulate business logic

In a traditional MVC architecture, the business logic ends up either in Controllers, Models, Views or some other secondary construct such as service objects, helpers, or concerns. In Hyperstack, Operations are first class objects who’s job is to mutate state in the Stores, Models, and Components. Operations are discreet logic, which is of course, testable and maintainable.

An Operation does the following things:

	receives incoming parameters, and does basic validations

	performs any further validations

	executes the operation

	dispatches to any listeners

	returns the value of the execution (step 3)

These are defined by series of class methods described below.

Operation Structure

Hyperstack::Operation is the base class for an Operation

As an example, here is an Operation which ensures that the Model being saved always has the current created_by and updated_by Member.

class SaveWithUpdatingMemberOp < Hyperstack::Operation
 param :model
 step { params.model.created_by = Member.current if params.model.new? }
 step { params.model.updated_by = Member.current }
 step { model.save.then { } }
end

This Operation is run from anywhere in the client or server code:

SaveWithUpdatingMemberOp.run(model: MyModel)

Operations always return Promises, and those Promises can be chained together. See the section on Promises later in this documentation for details on how Promises work.

Operations can invoke other Operations so you can chain a sequence of steps and Promises which proceed unless the previous step fails:

class InvoiceOpertion < Hyperstack::Operation
 param :order, type: Order
 param :customer, type: Customer

 step { CheckInventoryOp.run(order: params.order) }
 step { BillCustomerOp.run(order: params.order, customer: params.customer) }
 step { DispatchOrderOp.run(order: params.order, customer: params.customer) }
end

This approach allows you to build readable and testable workflows in your application.

Running Operations

To run an Operation:

	use the run method:

MyOperation.run

	passing params:

MyOperation.run(params)

	the then and fail methods, which will dispatch the operation and attach a promise handler:

MyOperation.run(params)
.then { do_the_next_thing }
.fail { puts 'failed' }

Parameters

Operations can take parameters when they are run. Parameters are described and accessed with the same syntax as Hyperstack Components.

The parameter filter types and options are taken from the Mutations [https://github.com/cypriss/mutations] gem with the following changes:

	In Hyperstack::Operations all params are declared with the param macro

	The type can be specified using the type: option

	Array and hash types can be shortened to [] and {}

	Optional params either have the default value associated with the param name or by having the default option present

	All other Mutation filter options [https://github.com/cypriss/mutations/wiki/Filtering-Input] (such as :min) will work the same

 # required param (does not have a default value)
 param :sku, type: String
 # equivalent Mutation syntax
 # required { string :sku }

 # optional params (does have a default value)
 param qty: 1, min: 1
 # alternative syntax
 param :qty, default: 1, min: 1
 # equivalent Mutation syntax
 # optional { integer :qty, default: 1, min: 1 }

All incoming params are validated against the param declarations, and any errors are posted to the @errors instance variable. Extra params are ignored, but missing params unless they have a default value will cause a validation error.

Defining Execution Steps

Operations may define a sequence of steps to be executed when the operation is run, using the step, failed and async callback macros.

class Reset < Hyperstack::Operation
 step { HTTP.post('/logout') }
end

	step: runs a callback - each step is run in order.

	failed: runs a callback if a previous step or validation has failed.

	async: will be explained below.

 step { } # do something
 step { } # do something else once above step is done
 failed { } # do this if anything above has failed
 step { } # do a third thing, unless we are on the failed track
 failed { } # do this if anything above has failed

Together step and failed form two railway tracks. Initially, execution proceeds down the success track until something goes wrong; then execution switches to the failure track starting at the next failed statement. Once on the failed track execution continues performing each failed callback and skipping any step callbacks.

Failure occurs when either an exception is raised, or a Promise fails (more on this in the next section.) The Ruby fail keyword can be used as a simple way to switch to the failed track.

Both step and failed can receive any results delivered by the previous step. If the last step raised an exception (outside a Promise), the failure track would receive the exception object.

The callback may be provided to step and failed either as a block, a symbol (which will name a method), a proc, a lambda, or an Operation.

 step { puts 'hello' }
 step :say_hello
 step -> () { puts 'hello' }
 step Proc.new { puts 'hello' }
 step SayHello # your params will be passed along to SayHello

FYI: You can also use the Ruby next keyword as expected to leave the current step and move to the next one.

Promises and Operations

Within the browser, the code does not wait for asynchronous methods (such as HTTP requests or timers) to complete. Operations use Opal’s Promise library [http://opalrb.org/docs/api/v0.10.3/stdlib/Promise.html] to deal with these situations cleanly. A Promise is an object that has three states: It is either still pending, or has been rejected (i.e. failed), or has been successfully resolved. A Promise can have callbacks attached to either the failed or resolved state, and these callbacks will be executed once the Promise is resolved or rejected.

If a step or failed callback returns a pending Promise then the execution of the operation is suspended, and the Operation will return the Promise to the caller. If there is more track ahead, then execution will resume at the next step when the Promise is resolved. Likewise, if the pending Promise is rejected execution will resume on the next failed callback. Because of the way Promises work, the operation steps will all be completed before the resolved state is passed along to the caller so that everything will execute in its original order.

Likewise, the Operation’s dispatch occurs when the Promise resolves as well.

The async method can be used to override the waiting behavior. If a step returns a Promise, and there is an async callback further down the track, execution will immediately pick up at the async. Any steps in between will still be run when the Promise resolves, but their results will not be passed outside of the operation.

These features make it easy to organize, understand and compose asynchronous code:

class AddItemToCart < Hyperstack::Operation
 step { HTTP.get('/inventory/#{params.sku}/qty') }
 # previous step returned a Promise so next step
 # will execute when that Promise resolves
 step { |response| fail if params.qty > response.to_i }
 # once we are sure we have inventory we will dispatch
 # to any listening stores.
end

Operations will always return a Promise. If an Operation has no steps that return a Promise the value of the last step will be wrapped in a resolved Promise. Operations can be easily changed regardless of their internal implementation:

class QuickCheckout < Hyperstack::Operation
 param :sku, type: String
 param qty: 1, type: Integer, minimum: 1

 step { AddItemToCart.run(params) }
 step ValidateUserDefaultCC
 step Checkout
end

You can also use Promise#when if you don’t care about the order of Operations

class DoABunchOStuff < Hyperstack::Operation
 step { Promise.when(SomeOperation.run, SomeOtherOperation.run) }
 # dispatch when both operations complete
end

Early Exits

Any step or failed callback, can have an immediate exit from the Operation using the abort! and succeed! methods. The abort! method returns a failed Promise with any supplied parameters. The succeed! method does an immediate dispatch and returns a resolved Promise with any supplied parameters. If succeed! is used in a failed callback, it will override the failed status of the Operation. This is especially useful if you want to dispatch in spite of failures:

class Pointless < Hyperstack::Operation
 step { fail } # go to failure track
 failed { succeed! } # dispatch and exit
end

Validation

An Operation can also have some validate callbacks which will run before the first step. This is a handy place to put any additional validations. In the validate method you can add validation type messages using the add_error method, and these will be passed along like any other param validation failures.

class UpdateProfile < Hyperstack::Operation
 param :first_name, type: String
 param :last_name, type: String
 param :password, type: String, nils: true
 param :password_confirmation, type: String, nils: true

 validate do
 add_error(
 :password_confirmation,
 :doesnt_match,
 "Your new password and confirmation do not match"
) unless params.password == params.confirmation
 end

 # or more simply:

 add_error :password_confirmation, :doesnt_match, "Your new password and confirmation do not match" do
 params.password != params.confirmation
 end

 ...
end

If the validate method returns a Promise, then execution will wait until the Promise resolves. If the Promise fails, then the current validation fails.

abort! can be called from within validate or add_error to exit the Operation immediately. Otherwise, all validations will be run and collected together, and the Operation will move onto the failed track. If abort! is called within an add_error callback the error will be added before aborting.

You can also raise an exception directly in validate if appropriate. If a Hyperstack::AccessViolation exception is raised the Operation will immediately abort, otherwise just the current validation fails.

To avoid further validations if there are any failures in the basic parameter validations, this can be added

 validate { abort! if has_errors? }

before the first validate or add_error call.

Handling Failed Operations

Because Operations always return a promise, the Promise’s fail method can be used on the Operation’s result to detect failures.

QuickCheckout.run(sku: selected_item, qty: selected_qty)
.then do
 # show confirmation
end
.fail do |exception|
 # whatever exception was raised is passed to the fail block
end

Failures to validate params result in Hyperstack::ValidationException which contains a Mutations error object [https://github.com/cypriss/mutations#what-about-validation-errors].

MyOperation.run.fail do |e|
 if e.is_a? Hyperstack::ValidationException
 e.errors.symbolic # hash: each key is a parameter that failed validation,
 # value is a symbol representing the reason
 e.errors.message # same as symbolic but message is in English
 e.errors.message_list # array of messages where failed parameter is
 # combined with the message
 end
end

Instance Versus Class Execution Context

Typically the Operation’s steps are declared and run in the context of an instance of the Operation. An instance of the Operation is created, runs and is thrown away.

Sometimes it’s useful to run a step (or other macro such as validate) in the context of the class. This is useful especially for caching values between calls to the Operation. This can be done by defining the steps in the class context, or by providing the option scope: :class to the step.

Note that the primary use should be in interfacing to an outside APIs. Application state should not be hidden inside an Operation, and it should be moved to a Store.

class GetRandomGithubUser < Hyperstack::Operation
 def self.reload_users
 @promise = HTTP.get("https://api.github.com/users?since=#{rand(500)}").then do |response|
 @users = response.json.collect do |user|
 { name: user[:login], website: user[:html_url], avatar: user[:avatar_url] }
 end
 end
 end
 self.class.step do # as one big step
 return @users.delete_at(rand(@users.length)) unless @users.blank?
 reload_users unless @promise && @promise.pending?
 @promise.then { run }
 end
end
or
class GetRandomGithubUser < Hyperstack::Operation
 class << self # as 4 steps - whatever you like
 step { succeed! @users.delete_at(rand(@users.length)) unless @users.blank? }
 step { succeed! @promise.then { run } if @promise && @promise.pending? }
 step { self.class.reload_users }
 async { @promise.then { run } }
 end
end

An instance of the operation is always created to hold the current parameter values, dispatcher, etc. The first parameter to a class level step block or method (if it takes parameters) will always be the instance.

class Interesting < Hyperstack::Operation
 param :increment
 param :multiply
 outbound :result
 outbound :total
 step scope: :class { @total ||= 0 }
 step scope: :class { |op| op.params.result = op.params.increment * op.params.multiply }
 step scope: :class { |op| op.params.total = (@total += op.params.result) }
 dispatch
end

The Boot Operation

Hyperstack includes one predefined Operation, Hyperstack::Application::Boot, that runs at system initialization. Stores can receive Hyperstack::Application::Boot to initialize their state. To reset the state of the application, you can just execute Hyperstack::Application::Boot

Operations can dispatch messages

Hyperstack Operations borrow from the Flux pattern where Operations are dispatchers and Stores are receivers. The choice to use Operations in this depends entirely on the needs and design of your application.

To illustrate this point, here is the simplest Operation:

class Reset < Hyperstack::Operation
end

To ‘Reset’ the system you would say

 Reset.run

Elsewhere your HyperStores can receive the Reset Dispatch using the receives macro:

class Cart < Hyperstack::Store
 receives Reset do
 mutate.items Hash.new { |h, k| h[k] = 0 }
 end
end

Note that multiple stores can receive the same Dispatch.

Note: Flux pattern vs. Hyperstack Operations Operations serve the role of both Action Creators and Dispatchers described in the Flux architecture. We chose the name Operation rather than Action or Mutation because we feel it best captures all the capabilities of a Hyperstack::Operation. Nevertheless, Operations are fully compatible with the Flux Pattern.

Dispatching With New Parameters

The dispatch method sends the params object on to any registered receivers. Sometimes it’s useful to add additional outbound params before dispatching. Additional params can be declared using the outbound macro:

class AddItemToCart < Hyperstack::Operation
 param :sku, type: String
 param qty: 1, type: Integer, minimum: 1
 outbound :available

 step { HTTP.get('/inventory/#{params.sku}/qty') }
 step { |response| params.available = response.to_i }
 step { fail if params.qty > params.available }
 dispatch
end

Dispatching messages or invoking steps (or both)?

Facebook is very keen on their Flux architecture where messages are dispatched between receivers. In an extensive and complicated front end application it is easy to see why they are drawn to this architecture as it creates an independence and isolation between Components.

As stated earlier in this documentation, the step idea came from Trailblazer, which is an alternative Rails architecture that posits that business functionality should not be kept in the Models, Controllers or Views.

In designing Hyperstack’s Isomorphic Operations (which would run on the client and the server), we decided to borrow from the best of both architectures and let Operations work in either way. The decision as to adopt the dispatching or stepping based model is left down to the programmer as determined by their preference or the needs of their application.

ServerOps can be used to replace boiler-plate APIs

Some Operations simply do not make sense to run on the client as the resources they depend on may not be available on the client. For example, consider an Operation that needs to send an email - there is no mailer on the client so the Operation has to execute from the server.

That said, with our highest goal being developer productivity, it should be as invisible as possible to the developer where the Operation will execute. A developer writing front-end code should be able to invoke a server-side resource (like a mailer) just as easily as they might invoke a client-side resource.

Hyperstack ServerOps replace the need for a boiler-plate HTTP API. All serialization and de-serialization of params are handled by Hyperstack. Hyperstack automagically creates the API endpoint needed to invoke a function from the client which executes on the server and returns the results (via a Promise) to the calling client-side code.

Server Operations

Operations will run on the client or the server. However, some Operations like ValidateUserDefaultCC probably need to check information server side and make secure API calls to our credit card processor. Rather than build an API and controller to “validate the user credentials” you just specify that the operation must run on the server by using the Hyperstack::ServerOp class.

class ValidateUserCredentials < Hyperstack::ServerOp
 param :acting_user
 add_error :acting_user, :no_valid_default_cc, "No valid default credit card" do
 !params.acting_user.has_default_cc?
 end
end

A Server Operation will always run on the server even if invoked on the client. When invoked from the client, the ServerOp will receive the acting_user param with the current value that your ApplicationController’s acting_user method returns. Typically the acting_user method will return either some User model or nil (if there is no logged in user.) It’s up to you to define how acting_user is computed, but this is easily done with any of the popular authentication gems. Note that unless you explicitly add nils: true to the param declaration, nil will not be accepted.

Note regarding Rails Controllers: Hyperstack is quite flexible and rides along side Rails, without interfering. So you could still have your old controllers, and invoke them the “non-Hyperstack” way by doing say an HTTP.post from the client, etc. Hyperstack adds a new mechanism for communicating between client and server called the Server Operation (which is a subclass of Operation.) A ServerOp has no implication on your existing controllers or code, and if used replaces controllers and client side API calls. HyperModel is built on top of Rails ActiveRecord models, and Server Operations, to keep models in sync across the application. ActiveRecord models that are made public (by moving them to the Hyperstack/models folder) will automatically be synchronized across the clients and the server (subject to permissions given in the Policy classes.) Like Server Operations, HyperModel completely removes the need to build controllers, and client side API code. However all of your current active record models, controllers will continue to work unaffected.

As shown above, you can also define a validation to ensure further that the acting user (with perhaps other parameters) is allowed to perform the operation. In the above case that is the only purpose of the Operation. Another typical use would be to make sure the current acting user has the correct role to perform the operation:

 ...
 validate { raise Hyperstack::AccessViolation unless params.acting_user.admin? }
 ...

You can bake this kind logic into a superclass:

class AdminOnlyOp < Hyperstack::ServerOp
 param :acting_user
 validate { raise Hyperstack::AccessViolation unless params.acting_user.admin? }
end

class DeleteUser < AdminOnlyOp
 param :user
 add_error :user, :cant_delete_user, "Can't delete yourself, or the last admin user" do
 params.user == params.acting_user || (params.user.admin? && AdminUsers.count == 1)
 end
end

Because Operations always return a Promise, there is nothing to change on the client to call a Server Operation. A Server Operation will return a Promise that will be resolved (or rejected) when the Operation completes (or fails) on the server.

Isomorphic Operations

Unless the Operation is a Server Operation, it will run where it was invoked. This can be handy if you have an Operation that needs to run on both the server and the client. For example, an Operation that calculates the customers discount will want to run on the client so the user gets immediate feedback, and then will be run again on the server when the order is submitted as a double check.

Parameters and ServerOps

You cannot pass an object from the client to the server as a parameter as the server has no way of knowing the state of the object. Hyperstack takes a traditional implementation approach where an id (or some unique identifier) is passed as the parameter and the receiving code finds and created an instance of that object. For example:

class IndexBookOp < Hyperstack::ServerOp
 param :book_id
 step { index_book Book.find_by_id params.book_id }
end

Restricting server code to the server

There are valid cases where you will not want your ServerOp’s code to be on the client yet still be able to invoke a ServerOp from client or server code. Good reasons for this would include:

	Security concerns where you would not want some part of your code on the client

	Size of code, where there will be unnecessary code downloaded to the client

	Server code using backticks (`) or the %x{ … } sequence, both of which are interpreted on the client as escape to generate JS code.

To accomplish this, you wrap the server side implementation of the ServerOp in a RUBY_ENGINE == 'opal' test which acts as a compiler directive so that this code is not compiled by Opal.

There are several strategies you can use to apply the RUBY_ENGINE == ‘opal’ guard to your code.

strategy 1: guard blocks of code and declarations that you don't want to compile to the client
class MyServerOp < Hyperstack::ServerOp
 # stuff that is okay to compile on the client
 # ... etc
 unless RUBY_ENGINE == 'opal'
 # other code that should not be compiled to the client...
 end
end

strategy 2: guard individual methods
class MyServerOp < Hyperstack::ServerOp
 # stuff that is okay to compile on the client
 # ... etc
 def my_secret_method
 # do something we don't want to be shown on the client
 end unless RUBY_ENGINE == 'opal'
end

strategy 3: describe class in two pieces
class MyServerOp < Hyperstack::ServerOp; end # publically declare the operation
provide the private implementation only on the server
class MyServerOp < Hyperstack::ServerOp
 #
end unless RUBY_ENGINE == 'opal'

Here is a fuller example:

app/Hyperstack/operations/list_files.rb
class ListFiles < Hyperstack::ServerOp
 param :acting_user, nils: true
 param pattern: '*'
 step { run_ls }

 # because backticks are interpreted by the Opal compiler as escape to JS, we
 # have to make sure this does not compile on the client
 def run_ls
 `ls -l #{params.pattern}`
 end unless RUBY_ENGINE == 'opal'
end

app/Hyperstack/components/app.rb
class App < Hyperstack::Component
 state files: []

 after_mount do
 @pattern = ''
 every(1) { ListFiles.run(pattern: @pattern).then { |files| mutate.files files.split("\n") } }
 end

 render(DIV) do
 INPUT(defaultValue: '')
 .on(:change) { |evt| @pattern = evt.target.value }
 DIV(style: {fontFamily: 'Courier'}) do
 state.files.each do |file|
 DIV { file }
 end
 end
 end
end

Dispatching From Server Operations

You can also broadcast the dispatch from Server Operations to all authorized clients. The dispatch_to will determine a list of channels to broadcast the dispatch to:

class Announcement < Hyperstack::ServerOp
 # no acting_user because we don't want clients to invoke the Operation
 param :message
 param :duration, type: Float, nils: true
 # dispatch to the built-in Hyperstack::Application Channel
 dispatch_to Hyperstack::Application
end

class CurrentAnnouncements < Hyperstack::Store
 state_reader all: [], scope: :class
 receives Announcement do
 mutate.all << params.message
 after(params.duration) { delete params.message } if params.duration
 end
 def self.delete(message)
 mutate.all.delete message
 end
end

Channels

As seen above broadcasting is done over a Channel. Any Ruby class (including Operations) can be used as class channel. Any Ruby class that responds to the id method can be used as an instance channel.

For example, the User active record model could be a used as a channel to broadcast to all users. Each user instance could also be a separate instance channel that would be used to broadcast to a specific user.

The purpose of having channels is to restrict what gets broadcast to who, therefore typically channels represent connections to

	the application (represented by the Hyperstack::Application class)

	or some function within the application (like an Operation)

	or some class which is authenticated like a User or Administrator,

	instances of those classes,

	or instances of classes in some relationship - like a team that a user belongs to.

A channel can be created by including the Hyperstack::Policy::Mixin, which gives three class methods: regulate_class_connection always_allow_connection and regulate_instance_connections.

For example…

class User < ActiveRecord::Base
 include Hyperstack::Policy::Mixin
 regulate_class_connection { self }
 regulate_instance_connection { self }
end

will attach the current acting user to the User channel (which is shared with all users) and to that user’s private channel.

Both blocks execute with self set to the current acting user, but the return value has a different meaning. If regulate_class_connection returns any truthy value, then the class level connection will be made on behalf of the acting user. On the other hand, if regulate_instance_connection returns an array (possibly nested) or Active Record relationship then an instance connection is made with each object in the list. So, for example, you could add:

class User < ActiveRecord::Base
 has_many chat_rooms
 regulate_instance_connection { chat_rooms }
 # we will connect to all the chat room channels we are members of
end

To broadcast to all users, the Operation would have

 dispatch_to { User } # dispatch to the User class channel

or to send an announcement to a specific user

class PrivateAnnouncement < Hyperstack::ServerOp
 param :receiver
 param :message
 # dispatch_to can take a block if we need to
 # dynamically compute the channels
 dispatch_to { params.receiver }
end
...
 # somewhere else in the server
 PrivateAnnouncement.run(receiver: User.find_by_login(login), message: 'log off now!')

The above will work if PrivateAnnouncement is invoked from the server, but usually, some other client would be sending the message so the operation could look like this:

class PrivateAnnouncement < Hyperstack::ServerOp
 param :acting_user
 param :receiver
 param :message
 validate { raise Hyperstack::AccessViolation unless params.acting_user.admin? }
 validate { params.receiver = User.find_by_login(receiver) }
 dispatch_to { params.receiver }
end

On the client::

 PrivateAnnouncement.run(receiver: login_name, message: 'log off now!').fail do
 alert('message could not be sent')
 end

and elsewhere in the client code, there would be a component like this:

class Alerts < Hyperstack::Component
 include Hyperstack::Store::Mixin
 # for simplicity we are going to merge our store with the component
 state alert_messages: [] scope: :class
 receives PrivateAnnouncement { |params| mutate.alert_messages << params.message }
 render(DIV, class: :alerts) do
 UL do
 state.alert_messages.each do |message|
 LI do
 SPAN { message }
 BUTTON { 'dismiss' }.on(:click) { mutate.alert_messages.delete(message) }
 end
 end
 end
 end
end

This will (in only 28 lines of code)

	associate a channel with each logged in user

	invoke the PrivateAnnouncement Operation on the server (remotely from the client)

	validate that there is a logged in user at that client

	validate that we have a non-nil, non-blank receiver and message

	validate that the acting_user is an admin

	look up the receiver in the database under their login name

	dispatch the parameters back to any clients where the receiver is logged in

	those clients will update their alert_messages state and

	display the message

The dispatch_to callback takes a list of classes, representing Channels. The Operation will be dispatched to all clients connected to those Channels. Alternatively dispatch_to can take a block, a symbol (indicating a method to call) or a proc. The block, proc or method should return a single Channel, or an array of Channels, which the Operation will be dispatched to. The dispatch_to callback has access to the params object. For example, we can add an optional to param to our Operation, and use this to select which Channel we will broadcast to.

class Announcement < Hyperstack::Operation
 param :message
 param :duration
 param to: nil, type: User
 # dispatch to the Users channel only if specified otherwise announcement is application wide
 dispatch_to { params.to || Hyperstack::Application }
end

Defining Connections in ServerOps

The policy methods always_allow_connection and regulate_class_connection may be used directly in a ServerOp class. This will define a channel dedicated to that class, and will also dispatch to that channel when the Operation completes.

class Announcement < Hyperstack::ServerOp
 # all clients will have an Announcement Channel which will
 # receive all dispatches from the Announcement Operation
 always_allow_connection
end

class AdminOps < Hyperstack::ServerOp
 # subclasses can be invoked from the client if an admin is logged in
 # and all other clients that have a logged in admin will receive the dispatch
 regulate_class_connection { acting_user.admin? }
 param :acting_user
 validate { param.acting_user.admin? }
end

Regulating Dispatches in Policy Classes

Regulations and dispatch lists can be grouped and specified in Policy files, which are by convention kept in the Rails app/policies directory.

app/policies/announcement_policy.rb
class AnnouncementPolicy
 always_allow_connection
 dispatch_to { params.acting_user }
end

app/policies/user_policy.rb
class UserPolicy
 regulate_instance_connection { self }
end

Serialization

If you need to control serialization and deserialization across the wire you can define the following class methods:

def self.serialize_params(hash)
 # receives param_name -> value pairs
 # return an object ready for to_json
 # default is just return the input hash
end

def self.deserialize_params(object)
 # recieves whatever was returned from serialize_to_server
 # (param_name => value pairs by default)
 # must return a hash of param_name => value pairs
 # by default this returns object
end

def self.serialize_response(object)
 # receives the object ready for to_json
 # by default this returns object
end

def self.deserialize_response(object)
 # receives whatever was returned from serialize_response
 # by default this returns object
end

def self.serialize_dispatch(hash)
 # input is always key - value pairs
 # return an object ready for to_json
 # default just returns the input hash
end

def self.deserialize_dispatch(object)
 # recieves whatever was returned from serialize_to_server
 # (param_name => value pairs by default)
 # must return a hash of param_name => value pairs
 # by default this returns object
end

Accessing the Controller

ServerOps have the ability to receive the “controller” as a param. This is handy for low-level stuff (like login) where you need access to the controller. There is a subclass of ServerOp called ControllerOp that simply declares this param and will delegate any controller methods to the controller param. So within a ControllerOp if you say session you will get the session object from the controller.

Here is a sample of the SignIn operation using the Devise Gem:

class SignIn < Hyperstack::ControllerOp
 param :email
 inbound :password
 add_error(:email, :does_not_exist, 'that login does not exist') { !(@user = User.find_by_email(params.email)) }
 add_error(:password, :is_incorrect, 'password is incorrect') { !@user.valid_password?(params.password) }
 # no longer have to do this step { params.password = nil }
 step { sign_in(:user, @user) }
end

In the code above there is another parameter type in ServerOps, called inbound, which will not get dispatched.

Broadcasting to the current_session

Let’s say you would like to be able to broadcast to the current session. For example, after the user signs in we want to broadcast to all the browser windows the user happens to have open so that they can update.

For this, we have a current_session method in the ControllerOp that you can dispatch to.

class SignIn < Hyperstack::ControllerOp
 param :email
 inbound :password
 add_error(:email, :does_not_exist, 'that login does not exist') { !(@user = User.find_by_email(params.email)) }
 add_error(:password, :is_incorrect, 'password is incorrect') { !@user.valid_password?(params.password) }
 step { sign_in(:user, @user) }
 dispatch_to { current_session }
end

The Session channel is special so to attach to the application to it you would say in the top level component:

class App < Hyperstack::Component
 after_mount :connect_session
end

Additional information

Operation Capabilities

Operations have the following capabilities:

	Can easily be chained because they always return Promises

	declare both their parameters and what they will dispatch

	Parameters can be validated and type checked

	Can run remotely on the server

	Can be dispatched from the server to all authorized clients.

	Can hold their own state data when appropriate

	Operations also serves as the bridge between client and server

	An operation can run on the client or the server and can be invoked remotely.

Use Operations as you choose. This architecture is descriptive but not prescriptive. Depending on the needs of your application and your overall thoughts on architecture, you may need a little or a lot of the functionality provided by Operations. If you chose, you could keep all your business logic in your Models, Stores or Components - we suggest that it is better application design not to do this, but the choice is yours.

Background

The design of Hyperstack’s Operations have been inspired by three concepts: Trailblazer Operations [http://trailblazer.to/gems/operation/2.0/] (for encapsulating business logic in steps), the Flux pattern [https://facebook.github.io/flux/] (for dispatchers and receivers), and the Mutation Gem [https://github.com/cypriss/mutations] (for validating params).

Hyperstack Operations compared to Flux

Flux	Hyperstack
:—	:—
Action	Hyperstack::Operation subclass
ActionCreator	Hyperstack::Operation.step/failed/async methods
Action Data	Hyperstack::Operation parameters
Dispatcher	Hyperstack::Operation#dispatch method
Registering a Store	Store.receives

 This Page Under Construction

**Your data is protected by Hyperstack's policy mechanism. Policies regulate Create, Read/Broadcast, Update and Delete access based on the browsers logged in
user. You define in one set of files what data can be seen by who, and who can update the database**
This Page Under Construction

Access to your Isomorphic Models is controlled by Policies that describe how the current acting_user and channels may access your Models.

Each browser session has an acting_user (which may be nil) and you will define create, update, and destroy policies giving (or denying) the acting_user the ability to do these operations.

Read and broadcast access is defined based on channels which are connected based again on the current acting_user. Read access is initiated when a specific browser tries to read a record attribute, and broadcasts are initiated whenever a model changes.

An application can have several channels and each channel and each active record model can have different policies to determine which attributes are sent when a record changes.

For example a Todo application might have an instance of a channel for each currently logged in user; an instance of a channel for each team if that team has one or more logged in users; and a general AdminUser channel shared by all administrators that are logged in.

Lets say a specific Todo changes, which is part of team id 123’s Todo list, and users 7 and 8 who are members of that team are currently logged in as well as two of the AdminUsers.

When the Todo changes we want all the attributes of the Todo broadcast on team 123’s channel, as well on the AdminUser’s channel. Now lets say User 7 sends User 8 a private message, adding a new record to the Message model. This update should only be sent to user 7 and user 8’s private channels, as well as to the AdminUser channel.

We can define all these policies by creating the following classes:

class UserPolicy # defines policies for the User class
 # The regulate_instance_connections method enables instances of the User
 # class to be treated as a channel.

 # The policy is defined by a block that is executed in the context of the
 # current acting_user.

 # For our User instance connection the policy is that there must be a
 # logged-in user, and the connection is made to that user:
 regulate_instance_connections { self }
 # If there is no logged in user self will be nil, and no connection will be
 # made.
end

class TeamPolicy # defines policies for the Team class
 # Users can only connect to Teams that they belong to
 regulate_instance_connections { teams }
end

class AdminUserPolicy
 # All AdminUsers share the same connection so we setup a class wide
 # connection available to any users who are admins.
 regulate_class_connection { admin? }

 # The AdminUser channel will receive all attributes
 # of all records, unless the attribute is named :password
 regulate_all_broadcasts do |policy|
 policy.send_all_but(:password)
 end
end

class TodoPolicy
 # Policies can be established for models that are not channels as well.

 # The regulate_broadcast method will describe what attributes to send
 # when a Todo model changes.

 # The blocks of broadcast policies run in the context of the changed model
 # so we have access to all the models methods. In this case Todo
 # belongs to a Team through the 'team' relationship.
 regulate_broadcast do |policy|
 # send all Todo attributes to the todo's team channel
 policy.send_all.to(team)
 end
end

class MessagePolicy
 # Broadcast policies can be arbitrarily complex. In this case we
 # want to broadcast the entire message to the sender and the
 # recipient's instance channels.
 # In addition if the message is not private, then we want to send to all
 # the team instance channels that are shared between the sender and
 # recipient's teams.
 regulate_broadcast do |policy|
 policy.send_all.to(sender, recipient)
 policy.send_all.to(sender.teams.merge(recipient.teams)) unless private?
 end
end

Before we begin using these channels and policies we need to first define the Reactive-Record acting_user method in our ApplicationController:

class ApplicationController < ActionController::Base
 def acting_user
 # The acting_user method should return nil, or some object that corresponds to a
 # logged in user. Specifics will depend on your application and whatever other
 # authentication mechanisms you are using.
 @acting_user ||= session[:current_user_id] && User.find_by_id(session[:current_user_id])
 end
 end
end

Note that acting_user is also used by ReactiveRecord’s permission system.

Our entire set of policies is defined in 29 lines of code of which 8 actually execute the policies. Our existing classes form the foundation, and we simply add Hyperloop specific policy directives. Pretty sweet huh?

Details

Hyperloop uses Policies to regulate what connections are opened between clients and the server and what data is distributed over those connections.

Connections are made on channels of data flowing between the server and a number of clients. Each channel is associated with either a class or an instance of a class. Typically the channel class represents an entity (or is associated with an entity) that can be authenticated like a User, an AdminUser, or a Team of users. A channel associated with the class itself broadcasts data that is received by any member of that class. A channel associated with an instance is for data that is available only to that specific instance.

As Models on the server change (i.e. created, updated, or destroyed) the changes are broadcast over open channels. What specific attributes are sent (if any) is determined by broadcast policies.

Broadcast policies can be associated with Models. As the Model changes the broadcast policy will regulate what attributes of the changed model will be sent over which channels.

Broadcast policies can also be associated with a channel and will regulate all model changes over specific channels. In other words this is just a convenient way to associate a common policy with all Models.

Note that Models that are associated with channels can also broadcast their changes on the same or different channels.

Defining Policies and Policy Classes

The best way to define policies is to use a Policy Class. A policy class has the same class name as the class it is regulating, with Policy added to the end. Policy classes are compatible with Pundit, and you can add regular pundit policies as well.

Policies are defined using four methods:

	regulate_class_connection controls connections to the class channels,

	regulate_instance_connections controls connections to instance channels,

	regulate_broadcast controls what data will be sent when a model or object changes and,

	regulate_all_broadcasts controls what data will be sent of some channels when any model changes.

In addition always_allow_connection is short hand for regulate_class_connection { true }

A policy class can be defined for which there is no regulated class. This is useful for application wide connections, which are typically open even if no one is logged in:

#app/policies/application.rb
class ApplicationPolicy
 regulate_class_connection { true }
end

Note that by default policy classes go in the app/policies directory. Hyperloop will require all the files in this directory.

If you wish, you can also add policies directly in your Models by including the Hyperloop::PolicyMethods module in your model. You can then use the regulate_class_connection, regulate_instance_connections, regulate_all_broadcasts and regulate_broadcast methods directly in the model.

class User < ActiveRecord::Base
 include Hyperloop::PolicyMethods
 regulate_class_connection ...
 regulate_instance_connections ...
 regulate_all_broadcasts ...
 regulate_broadcast ...
end

Normally the policy methods are regulating the class with the prefix as the policy, but you can override this by providing specific class names to the policy method. This allows you to group several different class policies together, and to reuse policies:

class ApplicationPolicy
 regulate_connection { ... } # Application is assumed
 regulate_class_connection(User) { ... }
 # regulate_class_connection, regulate_instance_connections and
 # regulate_all_broadcasts can take a list of channels.
 regulate_all_broadcasts(User, Application)
 # regulate_broadcast takes a list of object classes which
 # may also be channels.
 regulate_broadcast(Todo, Message, User) { ... }
end

Channels and connection policies

Any ruby class that has a connection policy is a Hyperloop channel. The fully scoped name of the class becomes the root of the channel name.

The purpose of having channels is to restrict what gets broadcast when models change, therefore typically channels represent connections to

	the application, or some function within the application

	or some class which is authenticated like a User or Administrator,

	instances of those classes,

	or instances of related classes.

So a channel that is connected to the User class would get information readable by any logged-in user, while a channel that is connected to a specific User instance would get information readable by that specific user.

The regulate_class_connection takes a block that will execute in the context of the current acting_user (which may be nil), and if the block returns any truthy value, the connection will be made.

The regulate_instance_connections likewise takes a block that is executed in the context of the current acting_user. The block may do one of following:

	raise an error meaning the connection cannot be made

	return a falsy value also meaning the connection cannot be made

	return a single object meaning the connection can be made to that object

	return a enumerable of objects meaning the connection can made to any member of the enumerable

Note that the object (or objects) returned are expected to be of the same class as the regulated policy.

Create a class connection only if the acting_user is non-nil (i.e. logged in:)
regulate_class_connection { self }
Always open the connection:
regulate_class_connection { true }
Which can be shortened to:
always_allow_connection
Create a class level connection if the acting_user is an admin:
regulate_class_connection { admin? }
Create an instance connection for the current user:
regulate_instance_connections { self }
Create an instance connection for the current user if the user is an admin:
regulate_instance_connections { self if admin? }
create an instance_connection to the users' group
regulate_instance_connections { group }
create an instance connection for any team the user belongs to
regulate_instance_connections { teams }

Class Names Instances and IDs

While establishing connections, classes are represented as their fully scoped name, and instances are represented as the class name plus the result of calling id on the instance.

Typically connections are made to ActiveRecord models, and if those are in the app/hyperloop/models folder everything will work fine.

Acting User

Hyperloop looks for an acting_user method typically defined in the ApplicationController and would normally pick up the current session user, and return an appropriate object.

class ApplicationController < ActiveController::Base
 def acting_user
 @acting_user ||= session[:current_user_id] && User.find_by_id(session[:current_user_id])
 end
 end
end

Automatic Connection

Connections to channels available to the current acting_user are automatically made on the initial page load. This behavior can be turned off with the auto_connect option.

class TeamPolicy
 # Allow current users to establish connections to any teams they are
 # members of, but disable_auto_connect
 regulate_instance_connections(auto_connect: false) { teams }
end

Its important to consider turning off automatic connections for cases like the above where the user is likely to be a member of many teams. Typically the client application will want to dynamically determine which specific teams to connect to given the current state of the application.

Manually Connecting to Channels

Normally the client will automatically connect to the available channels when a page loads, but you can also manually connect on the client in response to some user action like logging in, or the user deciding to display a specific team status on their dashboard.

To manually connect a client use the Hyperloop.connect method.

The connect method takes any number of arguments each of which is either a class, an object, a String or Array.

If the argument is a class then the connection will be made to the matching class channel on the server.

connect the client to the AdminUser class channel
Hyperloop.connect(AdminUser)
if the connection is successful the client will begin getting updates on the
AdminUser class channel

If the argument is an object then a connection will be made to the matching object on the server.

assume current_user is an instance of class User
Hyperloop.connect(current_user)
current_user.id is used to establish which User instance to connect to on the
server

The argument can also be a string, which matches the name of a class on the server

Hyperloop.connect('AdminUser')
same as AdminUser class

or the argument can be an array with a string and the id:

Hyperloop.connect(['User', current_user.id])
same as saying current_user

You can make several connections at once as well:

Hyperloop.connect(AdminUser, current_user)

Finally falsy values are ignored.

You can also send connect directly to ActiveRecord models:

AdminUser.connect # same as Hyperloop.connect(AdminUser)
current_user.connect # same as Hyperloop.connect(current_user)

Connection Sequence Summary

For class connections:

	The client calls Hyperloop.connect.

	Hyperloop sends the channel name to the server.

	Hyperloop has its own controller which will determine the acting_user,

	and call the channel’s regulate_class_connection method.

	If regulate_class_connection returns a truthy value then the connection is made,

	otherwise a 500 error is returned.

For instance connections:

	The process is the same but the channel name and id are sent to the server.

	The Hyperloop controller will do a find of the id passed to get the instance,

	and if successful regulate_instance_connections is called,

	which must return an either the same instance, or an enumerable with that instance as a member.

	Otherwise a 500 error is returned.

Note that the same sequence is used for auto connections and manually invoked connections.

Disconnecting

Calling Hyperloop.disconnect(channel) or channel.disconnect! will disconnect from the channel.

Broadcasting and Broadcast Policies

Broadcast policies can be defined for channels using the regulate_all_broadcasts method, and for individual objects (typically ActiveRecord models) using the regulate_broadcast method. A regulate_all_broadcasts policy is essentially a regulate_broadcast that will be run for every record that changes in the system.

After an ActiveRecord Model change is committed, all active class channels run their channel broadcast policies, and then the instance broadcast policy associated with the changing Model is run. So for any change there may be multiple channel broadcast policies involved, but only one (at most) regulate_broadcast.

The result is that each channel may get a filtered copy of the record which is broadcast on that channel.

The purpose of the policies then is to determine which channel sees what. Each broadcast policy receives the instance of the policy which responds to the following methods

	send_all: send all the attributes of the record.

	send_only: send only the listed attributes of the record.

	send_all_but: send all the attributes except the ones listed.

The result of the send... method is then directed to the set of channels using the to method:

policy.send_all_but(:password).to(AdminUser)

Within channel broadcast policies the channel is assumed to be the channel in question:

class AdminUserPolicy
 regulate_all_broadcasts do |policy|
 policy.send_all_but(:password) #.to(AdminUser) is not needed.
 end
end

The to method can take any number of arguments:

	a class naming a channel,

	an object that is instance channel,

	an ActiveRecord collection,

	any falsy value which will be ignored,

	or an array that will be flattened and merged with the other arguments.

The broadcast policy executes in the context of the model that has just changed, so the policy can use all the methods of that model, especially relationships. For example:

class Message < ActiveRecord::Base
 belongs_to :sender, class: "User"
 belongs_to :recipient, class: "User"
end

class MessagePolicy
 regulate_broadcast do |policy|
 # send all attributes to both the sender, and recipient User instance channels
 policy.send_all.to(sender, recipient)
 # send all attributes to intersection
 policy.send_all.to(sender.teams.merge(recipient.teams)) unless private?
 end
end

It is possible that the same channel may be sent a record from different policies, in this case the minimum set of attributes will be sent regardless of the order of the send operations. For example:

policy.send_all_but(:password).to(MyChannel)
... later
policy.send_all.to(MyChannel)
MyChannel gets everything but the password

or even

policy.send_only(:foo, :bar).to(MyChannel)
policy.send_only(:baz).to(MyChannel)
MyChannel gets nothing

Keep in mind that the broadcast policies are sent a copy of the policy object so you can use helper methods in your policies. Also you can add policy specific methods to your models using class_eval thus keeping policy logic out of your models.

So we could for example we can rewrite the above MessagePolicy like this:

class MessagePolicy
 Message.class_eval do
 scope :teams_for_policy, -> () { sender.teams.merge(recipient.teams) }
 end
 def teams # the obj method returns the instance being regulated
 [obj.sender, obj.recipient, !obj.private? && obj.teams_for_policy]
 end
 regulate_broadcast { |policy| policy.send_all.to(policy.teams) }
end

Browser Initiated Change policies

To allow code in the browser to create, update or destroy a model, there must be a change access policy defined for that operation.

Each change access policy executes a block in the context of the record that will be accessed. The current value of acting_user is also defined for the life of the block.

If the block returns a truthy value access will be allowed, otherwise if the block returns a falsy value or raises an exception, access will be denied.

In the below examples we assume that your user model responds to admin? but this is not built into Hyperloop.

class TodoPolicy
 # allow creation to any logged in user
 allow_create { acting_user }
 # only allow the owner, author any any admin to update a todo
 allow_update { acting_user == owner || acting_user == author || acting_user.admin? }
 # don't allow Todo's to be destroyed
 # this is the default behavior so its not actually needed
 allow_destroy { false }
end

There are several variants of the access policy method:

class ConfigDataPolicy
 allow_change(on: [:create, :update, :destroy]) { acting_user.admin? }
 # which can be shortened to:
 allow_change { acting_user.admin? }
end

class ApplicationPolicy
 # do any thing to all models unless we are in production! Be careful!
 allow_change(to: :all) { true } unless Rails.env.production?
 # and always allow admins to destroy models globally:
 allow_change(to: :all, on: :destroy) { acting_user.admin? }
 # which is the same as saying:
 allow_destroy(to: :all) { acting_user.admin? }
 # you can create model specific policies in the Application Policy as well.
 # Here we allow the author of a message to destroy the message within 5
 # minutes of creation.
 allow_destroy(to: Message) do
 return true if acting_user == author && created_at > 5.minutes.ago
 return true if acting_user.admin?
 end
end

Note that there is no allow_read method. Read access is granted if this browser would have the attribute broadcast to it.

Method Summary and Name Space Conflicts

Policy classes (and the Hyperloop::PolicyMethods module) define the following class methods:

	regulate_connection

	regulate_all_broadcasts

	regulate_broadcast

As well as the following instance methods:

	send_all

	send_all_but

	send_only

	obj

To avoid name space conflicts with your classes, Hyperloop policy classes (and the Hyperloop::PolicyMethods module) maintain class and instance attr_accessors named synchromesh_internal_policy_object. The above methods call methods of the same name in the appropriate internal policy object.

You may thus freely redefine of the class and instance methods if you have name space conflicts

class ProductionCenterPolicy < MyPolicyClass
 # MyPolicyClass already defines our version of obj
 # so we will call it 'this'
 def this
 synchromesh_internal_policy_object.obj
 end
 ...
end

TODO: rewrite the following:

First as you say to explicitly send stuff to all applicants. Policies work “backwards” to how you might think in a controller. In a controller you might check something like acting_user.chatrooms.include?(message.chatroom) whereas Hyperloop starts from the other end, it’ll effectively do something like this message.chatroom.participants.include?(acting_user). Your job in a policy is to start with the actual record, then traverse the relationships to return the user or users it belongs to. Think in terms of “I have a thing, who are all the people who are allowed to see it?”. Now that may or may not work in your case. If you have anonymous accounts for applicants but they all still have user records and thus IDs then it will work — job_posting.hiring_manager.applicants. But if applicants didn’t have any record then you couldn’t use this style of “instance channel policy”. Instance == ids == non-public. So if something is public you can use a class channel. send_all.to(Applicant). Finally you can have many channels or just a few. In our app I’ve gone with a user instance channel, and a user class channel. That’s just what works for my mental model. But you could have other instance and class channels to make dividing things up easier, your scope chains shorter, etc. Hopefully you can look at the docs now and see instance, class, channel, broadcast, etc. and come up with a way that works for you. Mitch’s snippet looks good, I just tried to give some surrounding color.

The policy send all bit is about once you’ve got a record/records, are you allowed to see it and what attributes are you allowed to see (in that case all, but you can permit a subset). The regulate bit is about what relations are you allowed to access. It may seem redundant as without regulations event if you loaded the relation you still wouldn’t be able see any of the record attributes without a policy. So even without regulations there’s no risk of exposing private information. BUT what would leak is lists IDs and counts. A count doesn’t instantiate any records so there’s nothing to run a policy on. Leaking counts and IDs is metadata that may or may not be sensitive, aka you wouldn’t want an insurance company to be able to do patient.diseases.count. And if you’re using UUIDs so you don’t sequentially leak all of your public pages, again you’d want a regulation to protect that. They can also prevent denial of service attacks loading big expensive relations. So, broadcast policies are about who can see the attributes of an individual record (or collection but it’s still run on each record individually). Regulations are about preventing business data leakage.

from Mitch…

These work very similar to pundit, and by design you can even mix pundit and hyperloop policies. Here is an example pundit policy from the pundit tutorial:

app/policies/article_policy.rb
class ArticlePolicy < ApplicationPolicy
 def index?
 true
 end

 def create?
 user.present?
 end

 def update?
 return true if user.present? && user == article.user
 end

 def destroy?
 return true if user.present? && user == article.user
 end

 private

 def article
 record
 end
end

class ArticlePolicy < ApplicationPolicy
 # def index?
 # true
 # end

 # read policies are defined as part of broadcast policies. (if you can receive
 # it in a broadcast then you can read it)
 # There is no controller in hyperloop so broadcast/read policies
 # are defined in terms of what data is sent to what channel

 regulate_broadcast do |policy|
 policy.send_all.to Application
 end

 # def create?
 # user.present? <- create is okay if user is not nil
 # end

 allow_create { acting_user } # <- create is okay if acting_user is not nil

 # def update?
 # return true if user.present? && user == article.user
 # end

 # only difference is hyperloop makes it easier by
 # 1) running the block with self == the the record
 # 2) adding the acting_user method to self
 # 3) treating exceptions as the same as nil

 allow_update { acting_user == user }

 # def destroy?
 # return true if user.present? && user == article.user
 # end

 allow_destroy { acting_user == user }

 # the above two regulations are the same and so can be dried up like this:

 allow_change(on: [:update, :destroy]) { acting_user == user }

 # private
 #
 # def article
 # record
 # end
end

without comments….

class ArticlePolicy < ApplicationPolicy
 regulate_broadcast { |policy| policy.send_all.to Application }

 allow_create { acting_user } # <- create is okay if acting_user is not nil

 allow_change(on: [:update, :destroy]) { acting_user == user }
end

BTW what if you want to restrict what data is broadcast? In Hyperloop you just update the regulation. In pundit you may have to edit both the index controller method and Policy class.

 Rails Installation

Rails Installation

The easiest way to get the full benefit of Hyperstack is to integrate it with a Rails application.

Adding Hyperstack to your existing Rails App is as simple as adding the gem and running the installer.

Continue to the next section to make sure you have the necessary prerequisites on your machine.

For more info on why we use Rails

 Application File Structure

Application File Structure

Hyperstack adds the following files and directories to your Rails
application:

/app/hyperstack
/app/operations
/app/policies
/config/initializers/hyperstack.rb
/app/javascript/packs/client_and_server.js
/app/javascript/packs/client_only.js

In addition there are configuration settings in existing Rails files that are explained in the next section. Below we cover the purpose of each these files, and their contents.

The /app/hyperstack/ Directory

Here lives all your Hyperstack code that will run on the client. Some of the subdirectories are isomorphic meaning the code is shared between the client and the server, other directories are client only.

Within the hyperstack directory there can be the following sub-directories:

	components (client-only) is where your components live.

Following Rails conventions a component with a class of Bar::None::FooManchu should be in a file named components/bar/none/foo_manchu.rb

	models (isomorphic) is where ActiveRecord models are shared with the client. More on this below.

	operations (isomorphic) is where Hyperstack Operations will live.

	shared (isomorphic) is where you can put shared code that are not models or operations.

	Any other subdirectory (such as libs and client-ops) will be considered client-only.

Sharing Models and Operations

Files in the hyperstack /models and /operations directories are loaded on the client and the server. So when you place a model’s class definition in the hyperstack/models directory the class is available on the client.

Assuming:

app/hyperstack/models/todo.rb
class Todo < ApplicationRecord
 ...
end

Then

 Todo.count # will return the same value on the client and the server

See the Policy section below for how access to the actual data is controlled. Remember a Model describes some data, but the actual data is stored in the database, and protected by Policies.

Likewise Operations placed in the /operations directory can be run on the client or the server, or in the case of a ServerOp the operation can be invoked on the client, but will run on the server.

Hyperstack sets things up so that Rails will first look in the hyperstack /models and /operations directories, and then in the server only app/models and app/operations directories. So if you don’t want some model shared you can just leave it in the normal app directory.

Splitting Class Definitions

There are cases where you would like split a class definition into its shared and server-only aspects. For example there may be code in a model that cannot be sensibly run on the client. Hyperstack augments the Rails dependency lookup mechanism so that when a file is found in a hyperstack directory we will also load any matching file in the normal app directory.

This works because Ruby classes are open, so that you can define a class (or module) in multiple places.

Server Side Operations

Operations are Hyperstack’s way of providing Service Objects: classes that perform some operation not strictly belonging to a single model, and often involving other services such as remote APIs. The idea of Operations comes from the Trailblazer Framework. [https://trailblazer.to/2.0/gems/operation/2.0/index.html]

As such Operations can be useful strictly on the server side, and so can be added to the app/operations directory.

Server side operations can also be remotely run from the client. Such operations are defined as subclasses of Hyperstack::ServerOp.

The right way to define a ServerOp is to place its basic definition including its parameter signature in the hyperstack/operations directory, and then placing the rest of the operation’s definition in the app/operations directory.

Policies

Hyperstack uses Policies to define access rights to your models. Policies are placed in the app/policies directory. For example the policies for the Todo model would defined by the TodoPolicy class located at app/policies/todo_policy.rb Details on policies can be found Policy section of this document. [https://docs.hyperstack.org/isomorphic-dsl/hyper-policy].

Example Directory Structure

└── app/
 ├── models/
 │ └── user.rb # private section of User model
 ├── operations/
 │ └── email_the_owner.rb # server code
 ├── hyperstack/
 │ ├── components/
 │ │ ├── app.rb
 │ │ ├── edit_todo.rb
 │ │ ├── footer.rb
 │ │ ├── header.rb
 │ │ ├── show_todo.rb
 │ │ └── todo_index.rb
 │ ├── models/
 │ │ ├── application_record.rb # usually no need to split this
 │ │ ├── todo.rb # note all of Todo definition is public
 │ │ └── user.rb # user has a public and private section
 │ └── operations/
 │ └── email_the_owner.rb # serverop interface only
 └── policies/
 ├── todo_policy.rb
 └── user_policy.rb

These directories are where most of your work will be done during Hyperstack development.

What about Controllers and Views?

Hyperstack works alongside Rails controllers and views. In a clean-sheet Hyperstack app you never need to create a controller or a view. On the other hand if you have existing code or aspects of your project that you feel would work better using a traditional MVC approach everything will work fine. You can also merge the two worlds: Hyperstack includes two helpers that allow you to mount components either from a controller or from within a view.

The Hyperstack Initializer

The Hyperstack configuration can be controlled via the config/initializers/hyperstack.rb initializer file. Using the installer will set up a reasonable set of of options, which you can tweak as needed.

Here is a summary of the various configuration settings:

config/initializers/hyperstack.rb

server_side_auto_require will patch the ActiveSupport Dependencies module
so that you can define classes and modules with files in both the
app/hyperstack/xxx and app/xxx directories.

require "hyperstack/server_side_auto_require.rb"

By default the generators will generate new components as subclasses of
HyperComponent. You can change this using the component_base_class setting.

Hyperstack.component_base_class = 'HyperComponent' # i.e. 'ApplicationComponent'

prerendering is default :off, you should wait until your
application is relatively well debugged before turning on.

Hyperstack.prerendering = :off # or :on

The transport setting controls how push (websocket) communications are
implemented. The default is :none, but will be set to :action_cable if you
install hyper-model.

Other possibilities are :action_cable, :pusher (see www.pusher.com)
or :simple_poller which is sometimes handy during system debug.

Hyperstack.transport = :action_cable # :pusher, :simple_poller or :none

hotloader settings:
sets the port hotloader will listen on. Note this must match the value used
to start the hotloader typically in the foreman Procfile.
Hyperstack.hotloader_port = 25222
seconds between pings over the hotloader websocket. Normally not needed.
Hyperstack.hotloader_ping = nil
hotloader will automatically reload callbacks when effected classes are
reloaded. Not recommended to change this.
Hyperstack.hotloader_ignore_callback_mapping = false

Transport settings
seconds before timeout when sending messages between the rails console and
the server.
Hyperstack.send_to_server_timeout = 10

Transport specific options
Hyperstack.opts, {
 # pusher specific options
 app_id: 'your pusher app id',
 key: 'your pusher key',
 secret: 'your pusher secret',
 cluster: 'mt1', # pusher cluster defaults to mt1
 encrypted: true, # encrypt pusher comms, defaults to true
 refresh_channels_every: 2.minutes, # how often to check which channels are alive

 # simple poller specific options
 expire_polled_connection_in: 5.minutes, # when to kill simple poller connections
 seconds_between_poll: 5.seconds, # how fast to poll when using simple poller
 expire_new_connection_in: 10.seconds, # how long to keep initial sessions alive
}

Namespace used to keep hyperstack communication separate from other websockets
Hyperstack.channel_prefix = 'synchromesh'

If there a JS console available should websocket comms be logged?
Hyperstack.client_logging = true

Automatically create a (possibly temporary) websocket connection as each
browser session starts. Usually this is needed for further authentication and
should be left as true
Hyperstack.connect_session = true

Where to store the connection tables. Default is :active_record but you
can also specify redis. If specifying redis the redis url defaults to
redis://127.0.0.1:6379
Hyperstack.connection = [adapter: :active_record] # or
 # [adapter: :redis, redis_url: 'redis://127.0.0.1:6379]

The import directive loads optional portions of the various hyperstack gems.
Here are the common imports typically included:

Hyperstack.import 'hyperstack/hotloader', client_only: true if Rails.env.development?

and these are typically not imported:

React source is normally brought in through webpacker
Hyperstack.import 'react/react-source-browser'

add this line if you need jQuery AND ARE NOT USING WEBPACK
Hyperstack.import 'hyperstack/component/jquery', client_only: true

The following are less common settings which you should never have to change:
Hyperstack.prerendering_files = ['hyperstack-prerender-loader.js']
Hyperstack.public_model_directories = ['app/hyperstack/models']

change definition of on_error to control how errors such as validation
exceptions are reported on the server
module Hyperstack
 def self.on_error(operation, err, params, formatted_error_message)
 ::Rails.logger.debug(
 "#{formatted_error_message}\n\n" +
 Pastel.new.red(
 'To further investigate you may want to add a debugging '\
 'breakpoint to the on_error method in config/initializers/hyperstack.rb'
)
)
 end
end if Rails.env.development?

Hyperstack Packs

Rails webpacker organizes javascript into packs. Hyperstack will look for and load one of two packs depending on if you are prerendering or not.

The default content of these packs are as follows:

//app/javascript/packs/client_and_server.js
// these packages will be loaded both during prerendering and on the client
React = require('react'); // react-js library
createReactClass = require('create-react-class'); // backwards compatibility with ECMA5
History = require('history'); // react-router history library
ReactRouter = require('react-router'); // react-router js library
ReactRouterDOM = require('react-router-dom'); // react-router DOM interface
ReactRailsUJS = require('react_ujs'); // interface to react-rails
// to add additional NPM packages run `yarn add package-name@version`
// then add the require here.

//app/javascript/packs/client_only.js
// add any requires for packages that will run client side only
ReactDOM = require('react-dom'); // react-js client side code
jQuery = require('jquery'); // remove if you don't need jQuery
// to add additional NPM packages call run yarn add package-name@version
// then add the require here.

 Hyperstack Generators

Hyperstack Generators

As well as the installer Hyperstack includes two generators to create
basic component skeletons.

Summary:

bundle exec rails g hyper:component ComponentName # add a new component
bundle exec rails g hyper:router RouterName # add a new router component

both support the following flags:

	--no-help don’t add extra comments and method examples

	--add-route=... add a route to this component to the Rails routes file

	--base-class=... change the base class name from the default

The Component Generator

To add a new component skeleton use the hyper:component generator:

bundle exec rails g hyper:component ComponentName

File directories and Name Spacing Components

The above will create a new class definition for MyComponent in a file named my_component.rb and place it in
the app/hyperstack/components/ directory. The component may be name spaced and
will be placed in the appropriate subdirectory. I.e. Foo::BarSki will generate
app/hyperstack/components/foo/bar_ski.rb

The --no-help flag

By default the skeleton will be verbose and contain examples of the most often used
class methods which you can keep or delete as needed. You can generate a minimal
component with the --no-help flag.

Router Generator

Typically your top level component will be a Router which will take care of dispatching to specific components as the URL changes. This provides the essence of a Single Page App where as the user moves between parts of
the application the URL is updated, the back and forward buttons work, but the page is not reloaded from the server.

A component becomes a router by including the Hyperstack::Router module
which provides a number of methods that will be used in the router
component.

To generate a new router skeleton use the hyper:router generator:

bundle exec rails g hyper:router App

Note that in any Single Page App there will be two routers in play.
On the server the router is responsible dispatching each incoming HTTP request to a
controller. The controller will deliver back (usually using a view) the contents of the request.

In addition on a Single Page App you will have a router running on the client, which will dispatch to different components depending on the current value of the URL. The server is only contacted if the current URL leaves the set of URLs that client router knows how to deal with.

Adding a Route to the Rails routes.rb File

When you generate a new component you can use the --add-route option to add the route for you. For example:

bundle exec rails g hyper:router MainApp \
 --add-route="/(*others)"

will add

 get '/(*others)', to: 'hyperstack#main_app'

to the Rails routes.rb file, which will direct all URLS to the MainApp component.

For details see Routing and Mounting Components.

Specifying the Base Class

By default components will inherit from the HyperComponent base class.

You can globally override this by changing the value Hyperstack.component_base_class in the hyperstack.rb initializer.

For example some teams prefer ApplicationComponent as their base class name.

You can also override the base class name when generating a component using the --base-class option.

This is useful when you have a common library subclass that other classes will inherit from. For example:

bundle exec rails g hyper:component UserBio --base-class=TextArea

will generate

class UserBio < TextArea
...
end

 Other Rails Configuration Details

Other Rails Configuration Details

Hyperstack internally sets a number of Rails configurations as outlined below.

These are all setup
automatically by the hyperstack generators and installers. They are documented here for advanced configuration or in the sad chance that something gets broken during your setup. Please report any issues with setup, or if you feel you have to manually tweak things.

Require the hyperstack-loader

The app/assets/javascripts/application.js file needs to require the hyperstack-loader.

//= require hyperstack-loader // add as the last require directive

The loader handles bringing in client side code, getting it compiled (using sprockets) and adding it to the webpacks (if using webpacker.)

Note that now that Rails is using webpacker by default you may have to create
this file, and the single line above. If so be sure to checkout your layout
file, as the javascript_include_tag will also be missing there.

app/assets/config/manifest.js

If you are using webpacker this file must exist and contain the following line:

//= link_directory ../javascripts .js

This line insures that the any javascript in the assets directory are included in the webpacks. In older versions of Rails, this line will already be there, and if not
using webpacker its actually not necessary (but doesn’t hurt anything.)

The application layout

If using a recent version of rails with webpacker you may find that the application.html.erb file no longer loads the application.js file. Make sure that your layout file has this line:

 <%= javascript_include_tag 'application' %>

Required NPM modules

If using Webpacker Hyperstack needs the following NPM modules:

yarn 'react', '16'
yarn 'react-dom', '16'
yarn 'react-router', '^5.0.0'
yarn 'react-router-dom', '^5.0.0'
yarn 'react_ujs', '^2.5.0'
yarn 'jquery', '^3.4.1' # this is only needed if using jquery
yarn 'create-react-class'

Routing

If using hyper-model you need to mount the Hyperstack engine in the routes file like this:

config/routes.rb
Rails.application.routes.draw do
 # this route should be first in the routes file so it always matches'
 mount Hyperstack::Engine => '/hyperstack' # you can use any path you choose
 ...

To directly route from a URL to a component you can use the builtin Hyperstack
controller with a route like this:

 get "hyperstack-page/(*others)", "hyperstack#comp_name"

Where comp_name is the underscored name of the component you want to mount. I.e. MyComp becomes my_comp. The /(*others) indicates that all routes beginning with
hyperstack-page/ will be matched, if that is your desired behavior.

Note that the engine mount point can be any string you wish but the controller routed to above is always hyperstack.

Other Rails Configuration Settings

Hyperstack will by default set a number of Rails configuration settings. To disable this
set

 config.hyperstack.auto_config = false

In your Rails application.rb configuration file.

Otherwise the following settings are automatically applied in test and staging:

This will prevent any data transmitted by HyperOperation from appearing in logs
config.filter_parameters << :hyperstack_secured_json

 # Add the hyperstack directories
 config.eager_load_paths += %W(#{config.root}/app/hyperstack/models)
 config.eager_load_paths += %W(#{config.root}/app/hyperstack/models/concerns)
 config.eager_load_paths += %W(#{config.root}/app/hyperstack/operations)
 config.eager_load_paths += %W(#{config.root}/app/hyperstack/shared)

 # But remove the outer hyperstack directory so rails doesn't try to load its
 # contents directly
 delete_first config.eager_load_paths, "#{config.root}/app/hyperstack"

but in production we autoload instead of eager load.

 # add the hyperstack directories to the auto load paths
 config.autoload_paths += %W(#{config.root}/app/hyperstack/models)
 config.autoload_paths += %W(#{config.root}/app/hyperstack/models/concerns)
 config.autoload_paths += %W(#{config.root}/app/hyperstack/operations)
 config.autoload_paths += %W(#{config.root}/app/hyperstack/shared)

 # except for the outer hyperstack directory
 delete_first config.autoload_paths, "#{config.root}/app/hyperstack"

 Prerequisites

Prerequisites

Rails

Hyperstack is currently tested on Rails ~> 5.0 and ~> 6.0.

If you are on Rails 4.0 it might be time to upgrade, but that said you probably can manually install Hyperstack on Rails 4.0 and get it working.

Rails Install Instructions [http://railsinstaller.org/en]

Yarn

For a full system install including webpacker for managing javascript assets you will
need yarn. To skip adding webpacker use hyperstack:install:skip-webpack when installing Hyperstack.

Yarn Install Instructions [https://yarnpkg.com/en/docs/install#mac-stable]

Database

To fully utilize Hyperstack’s capabilities you will be need an SQL database that has an ActiveRecord adapter. If you have a choice we have found Postgresql works best (and it also deploys to Heroku without issue.) If you are new to Rails, then the default Sqlite database (which rails will install) will work fine.

Why don’t we support NoSql databases? The biggest reasons are security and effeciency. Hyperstack access-policies are based on known table names and attributes and after-commit hooks. Keep in mind that modern DBs support the json and jsonb attribute types allowing you to add arbitrary json based data to your database.

Creating a New Rails App

If you don’t have an existing Rails app you can create a new Rails app
with the following command line:

rails new NameOfYourApp -T

To avoid much pain do not name your app Application as this will conflict with all sorts of
things in Rails and Hyperstack.

Once you have created the app cd into the newly created directory.

The -T option will skip adding minitest directories as Hyperstack prefers RSpec. However if you have an existing app with minitest that is okay too.

 Routing and Mounting Components

Routing and Mounting Components

Within a Rails Application there are three ways to render or mount a
component on a page:

	Route directly to the component from the rails routes.rb file.

	Render a component directly from a controller.

	Render a component from within a layout or view file.

Routing Directly to Components

Components can be directly mounted from the Rails routes.rb file, using the builtin Hyperstack controller.

For example a Rails routes.rb file containing

 get 'some_page/(*others)', to: 'hyperstack#some_component'

will route all urls beginning with some_page to SomeComponent.

When you generate a new component you can use the --add-route option to add the route for you (see the previous section.)

Note that typically the Rails route will be going to a Router Component. That is why we typically add the wild card to the Rails route so that all urls beginning with some_page/ will all be handled by SomeComponent without having to reload the page.

Also note that for the purposes of the example we used rather dubious names, a more logical setup would be:

 get `/(*others)`, to 'hyperstack#app'

Which you could generate with

bundle exec rails g hyper:router App --add-route="/(*others)"

You could also divide your application into several single page apps, for example

...
 get 'admin/(*others)', to: 'hyperstack#admin'
 get '/(*others)', to: 'hyperstack#app'
...

would route all URLS beginning with admin to the Admin component, and everything else
to the main App component. Note that order of the routes is important as Rails will
dispatch to the first route it matches.

If the component is named spaced separate each module with a double underscore (__) and
leave the module names CamelCase:

 get 'admin/(*others)', to: 'hyperstack#Admin__App'

Rendering a Component from a Controller

To render a component from a controller use the render_component helper:

 render_component 'Admin', {user_id: params[:id]}, layout: 'admin'
 # would pass the user_id to the Admin component and use the admin layout

 # in general:
 render_component 'The::Component::Name'
 { ... component params ... },
 { other render params such as layout }

Only the component name is required, but note that if you want to have other
render params, you will have to supply at least an empty hash for the component
params.

Rendering (or Mounting) a Component from a View

To mount a component directly in a view use the mount_component view helper:

 <%= mount_component 'Clock' %>

Like render_component may take params which will be passed to the mounted component.

Mounting a component in an existing view, is a very useful way to integrate Hyperstack
into existing applications. You mount a component to serve a specific function such as
a dynamic footer or a tweeter feed onto an existing view without having to do a major redesign.

 Installing HyperStack

Installing HyperStack

In the directory of your existing or newly created Rails app:

	add gem 'rails-hyperstack', "~> 1.0.alpha1.0" to your Gemfile

	run bundle install

	run bundle exec rails hyperstack:install

Note: if you want to use the unreleased edge branch your gem specification will be:

gem 'rails-hyperstack',
 git: 'git://github.com/hyperstack-org/hyperstack.git',
 branch: 'edge',
 glob: 'ruby/*/*.gemspec'

HOWEVER currently we are doing weekly alpha updates, you should not need to do this.

Start the Rails app

	bundle exec foreman start to start Rails and the Hotloader

	Navigate to http://localhost:5000/

You will see an empty page with the word “App” displayed.

Open your editor and find the file /app/hyperstack/components/app.rb

Change the 'App' to 'Hello World' and save the file.

You should see the page on the browser change to “Hello World”

You are in business!

If this does not work, please contact us on slack [https://hyperstack.org/slack], or create an issue on github. [https://github.com/hyperstack-org/hyperstack/issues/new]

Installer Options

You can control what gets installed with the following options:

bundle exec rails hyperstack:install:webpack # just add webpack
bundle exec rails hyperstack:install:skip-webpack # all but webpack
bundle exec rails hyperstack:install:hyper-model # just add hyper-model
bundle exec rails hyperstack:install:skip-hyper-model # all but hyper-model
bundle exec rails hyperstack:install:hotloader # just add the hotloader
bundle exec rails hyperstack:install:skip-hotloader # skip the hotloader

Note that the :webpack and :skip-webpack options control whether the installer will
add the webpacker Gem. If webpacker is already installed in the Gemfile then the
installer will always integrate with webpacker.

 Why Rails?

Why Rails?

Rails provides a robust, tried and true tool chain that takes care of much of the day to day details of building your app. Hyperstack builds on the Rails philosophy of convention over configuration, meaning that there is almost no boiler plate code in your Rails-Hyperstack application. Almost every line that you write for your Hyperstack application will deal with the application requirements. We have seen real reductions of up to 400% in the lines of code needed to deliver high quality functionality.

People sometimes balk at Rails because when they see the huge number of files and directories generated by the Rails installer, it looks crazy, complex, and ineffecient. Keep in mind that this has very little if any impact on your application’s performance, and when developing code 90% of your time will be spent in the following directories: app/models and app/hyperstack. The rest of the files are there to hold configuration files, and seldom used content, so they have a place out of the way of your main development activities.

Developers often believe that Rails modules like ActionController and ActiveRecord while powerful are slow.
In the case of Hyperstack this is largely irrelevant since one of our goals is to offload as much work to the client as possible. For example rather than have a multitude of controllers delivering different page views and updates, your client side Hyperstack code is now responsible for that. The role of the server becomes the central database, and the place where secure operations are executed (such as sending mail, authenticating users etc.)

How about other Rack Frameworks?

But still you may have specific needs for a lighter weight system, or have an existing Sinatra app (for example) that you would like to use with Hyperstack. For now we will say it’s in the plan, and it’s just a matter of time. If you are interested leave a comment on this issue: https://github.com/hyperstack-org/hyperstack/issues/340

 README

README

This README would normally document whatever steps are necessary to get the
application up and running.

Things you may want to cover:

	Ruby version

	System dependencies

	Configuration

	Database creation

	Database initialization

	How to run the test suite

	Services (job queues, cache servers, search engines, etc.)

	Deployment instructions

	…

 Tips and Tricks

Tips and Tricks

Work in progress - ALPHA (docs and code)

Everything we have learned

 Tutorial

Tutorial

 Community

Community

Tutorials

Writing a tutorial is a fantastic way of learning and sharing the knowledge. Over the years many people have written great tutorials and we would like to share them here.

Not all of the tutorials listed here are current with the latest versions of Rails or Hyperstack, but that does not always matter as long as you know that what you are reading might be outdated, there is still great insight and value.

	HelloWorld Tutorial [https://github.com/fzingg/hyperloop-rails-helloworld]
by Frederic ZINGG - an overview of all the core Hyperloop modules. This tutorial is based on Hyperloop (pre Hyperstack) but many of the same concepts are relevant in Hyperstack.

	Heart Cards [https://github.com/barriehadfield/heart-cards] by Barrie Hadfield - a Rails application using Components and Models and Semantic UI React. The tutorial is incomplete but the readme is comprehensive and it does demonstrate the use of JavaScript components in Hyperstack code.

	Hyperloop and Devise [https://github.com/barriehadfield/hyperloop_devise_tutorial] by Barrie Hadfield - a Rails project showing how to integrate Hyperloop and Devise. This tutorial is based on Hyperloop, but is still relevant.

Care to write a tutorial and have it on this list? Please submit a PR against this page and we would love to include it.

Blogs

Writing a blog is a fantsatic way to expand out community and express your thoughts. Please add anything you write (or you find and think is relevent to this project).

Some recent blogs:

	The Exact Same App in Hyperstack part I [https://medium.com/@mitch_23203/the-exact-same-app-in-hyperstack-7f281cef46ca] - A comparison between React and Hyperstack. Hyperstack is a full stack framework. And when we say full stack we mean it. With Hyperstack you build your entire app in Ruby, from HTML layout and event handlers all the way to the database models.

	The Exact Same App in Hyperstack part II — Hold on to your socks!) [https://medium.com/@mitch_23203/the-exact-same-app-in-hyperstack-part-ii-5b062074ec20] - Persistance and push notifications in two lines of code!

Videos

	Hyperstack approaching 1.0 [https://www.youtube.com/watch?v=GEe7hHIhyUs] - a great overview of all the new functionality in 1.0 by @catmando

Questions and Answers

Please use Stack Overflow [https://stackoverflow.com/questions/ask?tags=hyperstack+ruby-on-rails+reactjs+ruby+isomorphic] to post any questions. We monitor the hyperstack tag carefully so you should get a reply quickly, but please also post the URL of your question to the Gitter chat [https://gitter.im/ruby-hyperloop/chat] to get our attention quicker.

 TUTORIALS

TUTORIALS

HelloWorld Tutorial

 What Are We Building?

 #Tutorial: Intro to React

This tutorial doesn’t assume any existing HyperStack or React knowledge.

##Before We Start the Tutorial

This tutorial is shamelessly stolen for pedagogical reasons from this React tutorial [https://reactjs.org/tutorial/tutorial.html]

In this tutorial you will build a small game. Even though its just a small game, the techniques you’ll learn are fundamental to building any HyperStack app, and mastering it will give you a deep understanding of not only Hyper Conponents but also of React.

Tip: This tutorial is designed for people who prefer to learn by doing. If you prefer learning concepts from the ground up, check out our step-by-step guide. You might find this tutorial and the guide complementary to each other.

The tutorial is divided into several sections:

	Setup for the Tutorial will give you a starting point to follow the tutorial.

	Overview will teach you the fundamentals of HyperStack: Components, Params and State.

	Completing the game will teach you the most common techniques in Hyperstack development.

	Adding Time Travel will give you a deeper insight into the unique strengths of HyperStack and the underlying React technologies.

You don’t have to complete all of the sections at once to get the value out of this tutorial. Try to get as far as you can — even if it’s one or two sections.

What Are We Building?

In this tutorial, we’ll show how to build an interactive tic-tac-toe game with HyperStack.

###Prerequisites

We’ll assume that you have some familiarity with HTML and Ruby, but you should be able to follow along even if you’re coming from a different programming language such as Javascript, or if you have familiarit with React. We’ll also assume that you’re familiar with programming concepts like methods (functions), objects, arrays, and to a lesser extent, classes.

Setup for the Tutorial
There are two ways to complete this tutorial: you can either write the code in your browser, or you can set up a local development environment on your computer.

Setup Option 1: Write Code in the Browser
This is the quickest way to get started!

First, open this Starter Code in a new tab. The new tab should display an empty tic-tac-toe game board and React code. We will be editing the React code in this tutorial.

You can now skip the second setup option, and go to the Overview section to get an overview of React.

Setup Option 2: Local Development Environment
This is completely optional and not required for this tutorial!

Optional: Instructions for following along locally using your preferred text editor
Help, I’m Stuck!
If you get stuck, check out the community support resources. In particular, Reactiflux Chat is a great way to get help quickly. If you don’t receive an answer, or if you remain stuck, please file an issue, and we’ll help you out.

Overview
Now that you’re set up, let’s get an overview of React!

What Is React?
React is a declarative, efficient, and flexible JavaScript library for building user interfaces. It lets you compose complex UIs from small and isolated pieces of code called “components”.

React has a few different kinds of components, but we’ll start with React.Component subclasses:

class ShoppingList extends React.Component {
render() {
return (

Shopping List for {this.props.name}

	Instagram

	WhatsApp

	Oculus

);
}
}

// Example usage:
We’ll get to the funny XML-like tags soon. We use components to tell React what we want to see on the screen. When our data changes, React will efficiently update and re-render our components.

Here, ShoppingList is a React component class, or React component type. A component takes in parameters, called props (short for “properties”), and returns a hierarchy of views to display via the render method.

The render method returns a description of what you want to see on the screen. React takes the description and displays the result. In particular, render returns a React element, which is a lightweight description of what to render. Most React developers use a special syntax called “JSX” which makes these structures easier to write. The
 syntax is transformed at build time to React.createElement(’div’). The example above is equivalent to:

return React.createElement(’div’, {className: ‘shopping-list’},
React.createElement(’h1’, /* … h1 children … /),
React.createElement(’ul’, / … ul children … */)
);
See full expanded version.

If you’re curious, createElement() is described in more detail in the API reference, but we won’t be using it in this tutorial. Instead, we will keep using JSX.

JSX comes with the full power of JavaScript. You can put any JavaScript expressions within braces inside JSX. Each React element is a JavaScript object that you can store in a variable or pass around in your program.

The ShoppingList component above only renders built-in DOM components like
 and 	
. But you can compose and render custom React components too. For example, we can now refer to the whole shopping list by writing . Each React component is encapsulated and can operate independently; this allows you to build complex UIs from simple components.

Inspecting the Starter Code
If you’re going to work on the tutorial in your browser, open this code in a new tab: Starter Code. If you’re going to work on the tutorial locally, instead open src/index.js in your project folder (you have already touched this file during the setup).

This Starter Code is the base of what we’re building. We’ve provided the CSS styling so that you only need to focus on learning React and programming the tic-tac-toe game.

By inspecting the code, you’ll notice that we have three React components:

Square
Board
Game
The Square component renders a single and the Board renders 9 squares. The Game component renders a board with placeholder values which we’ll modify later. There are currently no interactive components.

 TodoMVC Tutorial Part II

TodoMVC Tutorial Part II

Prerequisites

{ Familarity with the TodoMVC tutorial Part I [https://docs.hyperstack.org/tutorial/todo] }

The Goals of this Tutorial

In this tutorial, will investigate the advanced concepts of

	prerendering,

	the while_loading method and

	optimizing ActiveRecord scopes to run on the client.

None of the techniques are necessary to build large complex applications, but they are useful to know to build the possible user experience.

Skills required

Basic knowledge of Rails is helpful, and ability to follow the basic TodoMVC example on which this is based.

Chapter 1: Setting Things Up

You can just read this tutorial, or if you want to follow along clone the working Todo application from this directory … (or do we want to use the rail’s template mechanism)

Once setup you should be able to start the rails app and hot reloader by running:

	bundle exec foreman start

	visit localhost:5000

Add about 4-6 random Todo’s and mark about half as completed.

Chapter 2: Prerendering

When you first load the Todo app you will see a brief flash between the first load, and complete display of the list of Todos.

What is going on?

When you first load a Hyperstack application, you get all the code compiled in to Javascript, along with instructions to React on how to mount your top level component.

In our case the Todo App is mounted, which will then render the list of the Todo’s. The list of Todo’s are still on the server, so once the App is mounted and rendered we then have to wait a few 100 milliseconds for the actual data to arrive from the server.

These steps - starting Hyperstack, rendering the application, waiting for data, and re-rendering takes enough time and is visually noticeable as a brief flicker. On larger apps the download time of the Hyperstack will also be noticable.

The solution is called pre-rerendering. Prerendering runs all the steps before the page is delivered on the server. The result is that the page comes down already rendered in its final state. After page is loaded all the event handlers are then attached so that the page’s components can continue to be updated reactively.

To turn on prerendering you change the Hyperstack configuration in the initializer from prerendering = :off to :on

config/initializers/hyperstack.rb
Hyperstack.configuration do |config|
 config.transport = :action_cable
 config.prerendering = :off # switch to on to turn on prerendering
 ...
end

Restart the server and prerendering is enabled.

Hypestack comes configured with prerendering off, because javsacript errors during prerendering occur on the server within the headless javscript environment and are thus much harder to debug. Once the application is working properly its easy to turn prerendering on.

A Rails ActiveRecord Model is a Ruby class that is backed by a database table. In this example we will have one model class called Todo. When manipulating models, Rails automatically generates the necessary SQL code for you. So when Todo.all is evaluated Rails generates the appropriate SQL and turns the result of the query into appropriate Ruby data structures.

Hyperstack Models are extensions of ActiveRecord Models that synchronize the data between the client and server automatically for you. So now Todo.all can be evaluated on the server or the client.

Okay lets see it in action:

	Add the Todo Model:

In your second terminal window run on a single line:

 bundle exec rails g model Todo title:string completed:boolean priority:integer

This runs a Rails generator which will create the skeleton Todo model class, and create a migration which will add the necessary tables and columns to the database.

VERY IMPORTANT! Now look in the db/migrate/ directory, and edit the migration file you have just created. The file will be titled with a long string of numbers then “create_todos” at the end. Change the line creating the completed boolean field so that it looks like this:

 ...
 t.boolean :completed, null: false, default: false
 ...

For details on ‘why’ see this blog post. [https://robots.thoughtbot.com/avoid-the-threestate-boolean-problem] Basically this insures completed is treated as a true boolean, and will avoid having to check between false and null later on.

Now run

 bundle exec rails db:migrate

which will create the table.

	Make Your Model Public:

Move models/todo.rb to hyperstack/models

This will make the model accessible on the clients and the server, subject to any data access policies.

Note: The hyperstack installer adds a policy that gives full permission to all clients but only in development and test modes. Have a look at app/policies/application_policy if you are interested.

	Try It

Now change your App component’s render method to:

class App < HyperComponent
 include Hyperstack::Router
 render do
 H1 { "Number of Todos: #{Todo.count}" }
 end
end

You will now see Number of Todos: 0 displayed.

Now start a rails console

 bundle exec rails c

and type:

 Todo.create(title: 'my first todo')

This will create a new Todo in the server’s database, which will cause your Hyperstack application to be updated and you will see the count change to 1!

Try it again:

 Todo.create(title: 'my second todo')

and you will see the count change to 2!

Are we having fun yet? I hope so! As you can see Hyperstack is synchronizing the Todo model between the client and server. As the state of the database changes, Hyperstack buzzes around updating whatever parts of the DOM were dependent on that data (in this case the count of Todos).

Notice that we did not create any APIs to achieve this. Data on the server is synchronized with data on the client for you.

Chapter 3: Creating the Top Level App Structure

Now that we have all of our pieces in place, lets build our application.

Replace the entire contents of app.rb with:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render(SECTION) do
 Header()
 Index()
 Footer()
 end
end

After saving you will see the following error displayed:

Uncaught error: Header: undefined method `Header’ for #in App (created by Hyperstack::Internal::Component::TopLevelRailsComponent)in Hyperstack::Internal::Component::TopLevelRailsComponent

because have not defined the three subcomponents. Lets define them now:

Add three new ruby files to the app/hyperstack/components folder:

app/hyperstack/components/header.rb
class Header < HyperComponent
 render(HEADER) do
 'Header will go here'
 end
end

app/hyperstack/components/index.rb
class Index < HyperComponent
 render(SECTION) do
 'List of Todos will go here'
 end
end

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 render(DIV) do
 'Footer will go here'
 end
end

Once you add the Footer component you should see:

Header will go here List of Todos will go here Footer will go here </div>If you don’t, restart the server, and reload the browser.

Notice how the usual HTML tags such as DIV, SECTION, and HEADER are all available as well as all the other HTML and SVG tags.

Hyperstack uses the following conventions to easily distinguish between HTML tags, application defined components and other helper methods:

	HTML tags are in all caps

	Application components are CamelCased

	other helper methods are snake_cased

Chapter 4: Listing the Todos, Hyperstack Params, and Prerendering

To display each Todo we will create a TodoItem component that takes a parameter:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 @Todo.title
 end
end

We can use this component in our Index component:

app/hyperstack/components/index.rb
class Index < HyperComponent
 render(SECTION) do
 UL do
 Todo.each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

Now you will see something like

Header will go hereFooter will go here </div>

As you can see components can take parameters (or props in react.js terminology.)

Rails uses the terminology params (short for parameters) which have a similar purpose to React props, so to make the transition more natural for Rails programmers Hyperstack uses params, rather than props.

Params are declared using the param macro and are accessed via Ruby instance variables. Notice that the instance variable name is CamelCased so that it is easily distinguished from other instance variables.

Our Index component mounts a new TodoItem with each Todo record and passes the Todo to the TodoItem component as the parameter.

Now go back to Rails console and type

 Todo.last.update(title: 'updated todo')

and you will see the last Todo in the list changing.

Try adding another Todo using create like you did before. You will see the new Todo is added to the list.

Chapter 5: Adding Inputs to Components

So far we have seen how our components are synchronized to the data that they display. Next let’s add the ability for the component to change the underlying data.

First add an INPUT html tag to your TodoItem component like this:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: @Todo.completed)
 @Todo.title
 end
end

You will notice that while it does display the checkboxes, you can not change them by clicking on them.

For now we can change them via the console like we did before. Try executing

 Todo.last.update(completed: true)

and you should see the last Todo’s completed checkbox changing state.

To make our checkbox input change its own state, we will add an event handler for the change event:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: @Todo.completed)
 .on(:change) { @Todo.update(completed: !@Todo.completed) }
 @Todo.title
 end
end

It reads like a good novel doesn’t it? On the change event update the todo, setting the completed attribute to the opposite of its current value. The rest of coordination between the database and the display is taken care of for you by the Hyperstack.

After saving your changes you should be able change the completed state of each Todo, and check on the rails console (say by checking Todo.last.completed) and you will see that the value has been persisted to the database. You can also demonstrate this by refreshing the page.

We will finish up by adding a delete link at the end of the Todo item:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: @Todo.completed)
 .on(:change) { @Todo.update(completed: !@Todo.completed) }
 SPAN { @Todo.title } # See note below...
 A { ' -X-' }.on(:click) { @Todo.destroy }
 end
end

Note: If a component or tag block returns a string it is automatically wrapped in a SPAN, to insert a string in the middle you have to wrap it a SPAN like we did above.

I hope you are starting to see a pattern here. Hyperstack components determine what to display based on the state of some objects. External events, such as mouse clicks, the arrival of new data from the server, and even timers update the state. Hyperstack recomputes whatever portion of the display depends on the state so that the display is always in sync with the state. In our case the objects are the Todo model and its associated records, which have a number of associated internal states.

By the way, you don’t have to use Models to have states. We will see later that states can be as simple as boolean instance variables.

Chapter 6: Routing

Now that Todos can be completed or active, we would like our user to be able display either “all” Todos, only “completed” Todos, or “active” (or incomplete) Todos. We want our URL to reflect which filter is currently being displayed. So /all will display all todos, /completed will display the completed Todos, and of course /active will display only active (or incomplete) Todos. We would also like the root url / to be treated as /all

To achieve this we first need to be able to scope (or filter) the Todo Model. So let’s edit the Todo model file so it looks like this:

app/hyperstack/models/todo.rb
class Todo < ApplicationRecord
 scope :completed, -> () { where(completed: true) }
 scope :active, -> () { where(completed: false) }
end

Now we can say Todo.all, Todo.completed, and Todo.active, and get the desired subset of Todos. You might want to try it now in the rails console. Note: you will have to do a reload! to load the changes to the Model.

We would like the URL of our App to reflect which of these filters is being displayed. So if we load

	/all we want the Todo.all scope to be run;

	/completed we want the Todo.completed scope to be run;

	/active we want the Todo.active scope to be run;

	/ (by itself) then we should redirect to /all.

Having the application display different data (or whole different components) based on the URL is called routing.

Lets change App to look like this:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render do
 SECTION do
 Header()
 Route('/', exact: true) { Redirect('/all') }
 Route('/:scope', mounts: Index)
 Footer()
 end
 end
end

and the Index component to look like this:

app/hyperstack/components/index.rb
class Index < HyperComponent
 include Hyperstack::Router::Helpers
 render(SECTION) do
 UL do
 Todo.send(match.params[:scope]).each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

Lets walk through the changes:

	We mount the Header components as before.

	We then check to see if the current route exactly matches / and if it does, redirect to /all.

	Then instead of directly mounting the Index component, we route to it based on the URL. In this case if the url must look like /xxx.

	Index now includes (mixes-in) the Hyperstack::Router::Helpers module which has methods like match.

	Instead of simply enumerating all the Todos, we decide which scope to filter using the URL fragment matched by :scope.

Notice the relationship between Route('/:scope', mounts: Index) and match.params[:scope]:

During routing each Route is checked. If it matches then the indicated component is mounted, and the match parameters are saved for that component to use.

You should now be able to change the url from /all, to /completed, to /active, and see a different set of Todos. For example if you are displaying the /active Todos, you will only see the Todos that are not complete. If you check one of these it will disappear from the list.

Rails also has the concept of routing, so how do the Rails and Hyperstack routers interact? Have a look at the config/routes.rb file. You will see a line like this:get '/(*other)', to: 'hyperstack#app'This is telling Rails to accept all requests and to process them using the Hyperstack controller, which will attempt to mount a component named App in response to the request. The mounted App component is then responsible for further processing the URL.

For more complex scenarios Hyperstack provides Rails helper methods that can be used to mount components from your controllers, layouts, and views.

Chapter 7: Helper Methods, Inline Styling, Active Support and Router Nav Links

Of course we will want to add navigation to move between these routes. We will put the navigation in the footer:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 def link_item(path)
 A(href: "/#{path}", style: { marginRight: 10 }) { path.camelize }
 end
 render(DIV) do
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
end

Save the file, and you will now have 3 links, that you will change the path between the three options.

Here is how the changes work:

	Hyperstack is just Ruby, so you are free to use all of Ruby’s rich feature set to structure your code. For example the link_item method is just a helper method to save us some typing.

	The link_item method uses the path argument to construct an HTML Anchor tag.

	Hyperstack comes with a large portion of the Rails active-support library. For the text of the anchor tag we use the active-support method camelize.

	Later we will add proper css classes, but for now we use an inline style. Notice that the css margin-right is written marginRight, and that 10px can be expressed as the integer 10.

Notice that as you click each link the page reloads. However what we really want is for the links to simply change the route, without reloading the page.

To make this happen we will mixin some router helpers by including HyperRouter::ComponentMethods inside of class.

Then we can replace the anchor tag with the Router’s NavLink component:

Change

 A(href: "/#{path}", style: { marginRight: 10 }) { path.camelize }

to

 NavLink("/#{path}", style: { marginRight: 10 }) { path.camelize }
 # note that there is no href key in NavLink

Our component should now look like this:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 include Hyperstack::Router::Helpers
 def link_item(path)
 NavLink("/#{path}", style: { marginRight: 10 }) { path.camelize }
 end
 render(DIV) do
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
end

After this change you will notice that changing routes does not reload the page, and after clicking to different routes, you can use the browsers forward and back buttons.

How does it work? The NavLink component reacts to a click just like an anchor tag, but instead of changing the window’s URL directly, it updates the HTML5 history object. Associated with this history is (hope you guessed it) state. So when the history changes it causes any components depending on the state of the URL to be re-rendered.

Chapter 8: Create a Basic EditItem Component

So far we can mark Todos as completed, delete them, and filter them. Now we create an EditItem component so we can change the Todo title.

Add a new component like this:

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 render do
 INPUT(defaultValue: @Todo.title)
 .on(:enter) do |evt|
 @Todo.update(title: evt.target.value)
 end
 end
end

Before we use this component let’s understand how it works.

	It receives a todo param which will be edited by the user;

	The title of the todo is displayed as the initial value of the input;

	When the user types the enter key updated.

Now update the TodoItem component replacing

 SPAN { @Todo.title }

with

 EditItem(todo: @Todo)

Try it out by changing the text of some our your Todos followed by the enter key. Then refresh the page to see that the Todos have changed.

Chapter 9: Adding State to a Component, Defining Custom Events, and a Lifecycle Callback.

This all works, but its hard to use. There is no feed back indicating that a Todo has been saved, and there is no way to cancel after starting to edit. We can make the user interface much nicer by adding state (there is that word again) to the TodoItem. We will call our state editing. If editing is true, then we will display the title in a EditItem component, otherwise we will display it in a LABEL tag. The user will change the state to editing by double clicking on the label. When the user saves the Todo, we will change the state of editing back to false. Finally we will let the user cancel the edit by moving the focus away (the blur event) from the EditItem. To summarize:

	User double clicks on any Todo title: editing changes to true.

	User saves the Todo being edited: editing changes to false.

	User changes focus away (blur) from the Todo being edited: editing changes to false.

In order to accomplish this our EditItem component is going to communicate to its parent via two application defined events - save and cancel .Add the following 5 lines to the EditItem component like this:

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 triggers :save # add
 triggers :cancel # add
 after_mount { DOM[dom_node].focus } # add

 render do
 INPUT(defaultValue: @Todo.title)
 .on(:enter) do |evt|
 @Todo.update(title: evt.target.value)
 save! # add
 end
 .on(:blur) { cancel! } # add
 end
end

The first two new lines add our custom events.

The next new line uses one of several Lifecycle Callbacks. In this case we need to move the focus to the EditItem component after is mounted. The DOM class is Hyperstack’s jQuery wrapper, and dom_node is the method that returns the actual dom node where this instance of the component is mounted.

The save! line will trigger the save event in the parent component. Notice that the method to trigger a custom event is the name of the event followed by a bang (!).

Finally we add the blur event handler and trigger our cancel event.

Now we can update our TodoItem component to be a little state machine, which will react to three events: double_click, save and cancel.

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 if @editing
 EditItem(todo: @Todo)
 .on(:save, :cancel) { mutate @editing = false }
 else
 INPUT(type: :checkbox, checked: @Todo.completed)
 .on(:change) { @Todo.update(completed: !@Todo.completed) }
 LABEL { @Todo.title }
 .on(:double_click) { mutate @editing = true }
 A { ' -X-' }
 .on(:click) { @Todo.destroy }
 end
 end
end

All states in Hyperstack are simply Ruby instance variables (ivars). Here we use the @editing ivar.

We have already used a lot of states that are built into the HyperModel and HyperRouter. The state machines in these complex objects are built out collections of instance variables like @editing.

In the TodoItem component the value of @editing ... controls whether to render the EditItem or the INPUT, LABEL, and Anchor tags.

Because @editing (like all ivars) starts off as nil, when the TodoItem first mounts, it renders the INPUT, LABEL, and Anchor tags. Attached to the label tag is a double_click handler which does one thing: mutates the component’s state setting @editing to true. This then causes the component to re-render, and now instead of the three tags, we will render the EditItem component.

Attached to the EditItem component is the save and cancel handler (which is shared between the two events) that mutates the component’s state, setting @editing back to false.

Using and changing state in a component is a simple as reading or changing the value of some instance variables. The only caveat is that whenever you want to change a state variable whether its a simple assignment or changing the internal value of a complex structure like a hash or array you use the mutate method to signal Hyperstack that that state is changing.

Chapter 10: Using EditItem to create new Todos

Our EditItem component has a good robust interface. It takes a Todo, and lets the user edit the title, and then either save or cancel, using two custom events to communicate back outwards.

Because of this we can easily reuse EditItem to create new Todos. Not only does this save us time, but it also insures that the user interface acts consistently.

Update the Header component to use EditItem like this:

app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER) do
 EditItem(todo: @new_todo)
 .on(:save) { mutate @new_todo = Todo.new }
 end
end

What we have done is initialize an instance variable @new_todo to a new unsaved Todo item in the before_mount lifecycle method.

Then we pass the value @new_todo to EditItem, and when it is saved, we generate another new Todo and save it in the new_todo state variable.

When Header’s state is mutated, it will cause a re-render of the Header, which will then pass the new value of @new_todo, to EditItem, causing that component to also re-render.

We don’t care if the user cancels the edit, so we simply don’t provide a :cancel event handler.

Once the code is added a new input box will appear at the top of the window, and when you type enter a new Todo will be added to the list.

However you will notice that the value of new Todo input box does not clear. This is subtle problem but it’s easy to fix.

React treats the INPUT tag’s defaultValue specially. It is only read when the INPUT is first mounted, so it does not react to changes like normal parameters. Our Header component does pass in new Todo records, but even though they are changing React does not update the INPUT.

React has a special param called key. React uses this to uniquely identify mounted components. It is used to keep track of lists of components, it can also used in this case to indicate that the component needs to be remounted by changing the value of key.

All objects in Hyperstack respond to the to_key method which will return a suitable unique key id, so all we have to pass @Todo as the key param it this will insure that as @Todo changes, we will re-initialize the INPUT tag.

 ...
 INPUT(defaultValue: @Todo.title, key: @Todo) # add the special key param
 ...

Chapter 11: Adding Styling

We are just going to steal the style sheet from the benchmark Todo app, and add it to our assets.

Go grab the file in this repo here: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/tutorial/assets/todo.css and copy it to a new file called todo.css in the app/assets/stylesheets/ directory.

You will have to refresh the page after changing the style sheet.

Now its a matter of updating the css classes which are passed to components via the class parameter.

Let’s start with the App component. With styling it will look like this:

app/hyperstack/components/app.rb
class App < Hyperstack::Router
 history :browser
 route do
 SECTION(class: 'todo-app') do # add the class param
 Header()
 Route('/:scope', mounts: Index)
 Footer()
 end
 end
end

The Footer components needs have a UL added to hold the links nicely, and we can also use the NavLinks active_class param to highlight the link that is currently active:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 include Hyperstack::Router::Helpers
 def link_item(path)
 # wrap the NavLink in a LI and
 # tell the NavLink to change the class to :selected when
 # the current (active) path equals the NavLink's path.
 LI { NavLink("/#{path}", active_class: :selected) { path.camelize } }
 end
 render(DIV, class: :footer) do # add class
 UL(class: :filters) do # wrap links in a UL
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
 end
end

For the Index component just add the main and todo-list classes.

app/hyperstack/components/index.rb
class Index < HyperComponent
 include Hyperstack::Router::Helpers
 render(SECTION, class: :main) do # add class main
 UL(class: 'todo-list') do # add class todo-list
 Todo.send(match.params[:scope]).each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

For the EditItem component we want the parent to pass any html parameters such as class along to the INPUT tag. We do this by adding the special others param that will collect any extra params, we then pass it along in to the INPUT tag. Hyperstack will take care of merging all the params together sensibly.

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 triggers :save
 triggers :cancel
 others :etc # can be named anything you want
 after_mount { DOM[dom_node].focus }
 render do
 INPUT(@Etc, defaultValue: @Todo.title, key: @Todo)
 .on(:enter) do |evt|
 @Todo.update(title: evt.target.value)
 save!
 end
 .on(:blur) { cancel! }
 end
end

Now we can add classes to the TodoItem’s list-item, input, anchor tags, and to the EditItem component:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI, class: 'todo-item') do # add the todo-item class
 if @editing
 EditItem(class: :edit, todo: @Todo) # add the edit class
 .on(:save, :cancel) { mutate @editing = false }
 else
 INPUT(type: :checkbox, class: :toggle, checked: @Todo.completed) # add the toggle class
 .on(:change) { @Todo.update(completed: !@Todo.completed) }
 LABEL { @Todo.title }
 .on(:double_click) { mutate @editing = true }
 A(class: :destroy) # add the destroy class and remove the -X- placeholder
 .on(:click) { @Todo.destroy }
 end
 end
end

In the Header we can send a different class to the EditItem component. While we are at it we will add the H1 { 'todos' } hero unit.

app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER, class: :header) do # add the 'header' class
 H1 { 'todos' } # Add the hero unit.
 EditItem(class: 'new-todo', todo: @new_todo) # add 'new-todo' class
 .on(:save) { mutate @new_todo = Todo.new }
 end
end
app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER) do
 EditItem(todo: @new_todo)
 .on(:save) { mutate @new_todo = Todo.new }
 end
end

At this point your Todo App should be properly styled.

Chapter 12: Other Features

	Show How Many Items Left In FooterThis is just a span that we add before the link tags list in the Footer component:

...
render(DIV, class: :footer) do
 SPAN(class: 'todo-count') do
 "#{Todo.active.count} item#{'s' if Todo.active.count != 1} left"
 end
 UL(class: :filters) do
 ...

	Add ‘placeholder’ Text To Edit ItemEditItem should display a meaningful placeholder hint if the title is blank:

 ...
 INPUT(@Etc, placeholder: 'What is left to do today?',
 defaultValue: @Todo.title, key: @Todo)
 .on(:enter) do |evt| ...
 ...

	Don’t Show the Footer If There are No TodosIn the App component add a guard so that we won’t show the Footer if there are no Todos:

...
 Footer() unless Todo.count.zero?
...

Congratulations! you have completed the tutorial.

Summary

You have built a small but feature rich full stack Todo application in less than 100 lines of code:

SLOC

App: 11
Header: 8
Index: 10
TodoItem: 16
EditItem: 16
Footer: 16
Todo Model: 4
Rails Route: 2

Total: 83

The complete application is shown here:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render do
 SECTION(class: 'todo-app') do
 Header()
 Route('/', exact: true) { Redirect('/all') }
 Route('/:scope', mounts: Index)
 Footer() unless Todo.count.zero?
 end
 end
end

app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER, class: :header) do
 H1 { 'todos' }
 EditItem(class: 'new-todo', todo: @new_todo)
 .on(:save) { mutate @new_todo = Todo.new }
 end
end

app/hyperstack/components/index.rb
class Index < HyperComponent
 include Hyperstack::Router::Helpers
 render(SECTION, class: :main) do
 UL(class: 'todo-list') do
 Todo.send(match.params[:scope]).each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 include Hyperstack::Router::Helpers
 def link_item(path)
 LI { NavLink("/#{path}", active_class: :selected) { path.camelize } }
 end
 render(DIV, class: :footer) do
 SPAN(class: 'todo-count') do
 "#{Todo.active.count} item#{'s' if Todo.active.count != 1} left"
 end
 UL(class: :filters) do
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
 end
end

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI, class: 'todo-item') do
 if @editing
 EditItem(class: :edit, todo: @Todo) # add the edit class
 .on(:save, :cancel) { mutate @editing = false }
 else
 INPUT(type: :checkbox, class: :toggle, checked: @Todo.completed) # add the toggle class
 .on(:change) { @Todo.update(completed: !@Todo.completed) }
 LABEL { @Todo.title }
 .on(:double_click) { mutate @editing = true }
 A(class: :destroy) # add the destroy class and remove the -X- placeholder
 .on(:click) { @Todo.destroy }
 end
 end
end

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 triggers :save
 triggers :cancel
 others :etc
 after_mount { DOM[dom_node].focus }
 render do
 INPUT(@Etc, placeholder: 'What is left to do today?',
 defaultValue: @Todo.title, key: @Todo)
 .on(:enter) do |evt|
 @Todo.update(title: evt.target.value)
 save!
 end
 .on(:blur) { cancel! }
 end
end

app/hyperstack/models/todo.rb
class Todo < ApplicationRecord
 scope :completed, -> () { where(completed: true) }
 scope :active, -> () { where(completed: false) }
end

config/routes.rb
Rails.application.routes.draw do
 mount Hyperstack::Engine => '/hyperstack'
 get '/(*other)', to: 'hyperstack#app'
end

General troubleshooting

1: Wait. On initial boot it can take several minutes to pre-compile all the system assets.

2: Make sure to save (or better yet do a git commit) after every instruction so that you can backtrack

3: Its possible to get things so messed up the hot-reloader will not work. Restart the server and reload the browser.

4: Reach out to us on Gitter, we are always happy to help get you onboarded!

 TodoMVC Tutorial Part I

TodoMVC Tutorial Part I

Prerequisites

	Linux or Mac system

(Android, ChromeOS and Windows are not supported)

	Ruby on Rails must be installed: https://rubyonrails.org/

	NodeJS must be installed: https://nodejs.org

	Yarn must be installed: https://yarnpkg.com/en/docs/install

The goals of this tutorial

In this tutorial, you will build the classic TodoMVC [http://todomvc.com] application using Hyperstack. This tutorial will demonstrate several key Hyperstack concepts - client side Components and Isomorphic Models.

The finished application will

	have the ability to add and edit todos;

	be able change the complete/incomplete state;

	filter the list of displayed todos to show all, complete, or incomplete (active) todos;

	have html5 history so that as the filter changes so does the URL;

	have server side persistence;

	and synchronization across multiple browser windows.

You will write less than 100 lines of code, and the tutorial should take about 1-2 hours to complete.

Skills required

Basic knowledge of Ruby is needed, knowledge of Ruby on Rails is helpful.

Chapter 1: Setting Things Up

First you need to create a new project for this tutorial.

rails new todo-demo --skip-test

This command will create a new Rails project.

Caution: you can name the app anything you want, we recommend todo-demo, but whatever you do DON’T call it todo, as this name will be needed later!

Now

cd todo-demo

which will change the working directory to your new todo rails project.

Now run

bundle add 'rails-hyperstack' --version "~> 1.0.alpha1.0"

which will install the rails-hyperstack ‘gem’ into the system.

Once the gem is installed run

bundle exec rails hyperstack:install

to complete the hyperstack installation.

Finally find the config/initializers/hyperstack.rb file, and make sure that this line is not commented out:

Hyperstack.import 'hyperstack/component/jquery', client_only: true

Ignore any comments saying that it should be commented out, this is a typo in the current installer

Start the Rails app

In the console run the following command to start the Rails server and Hotloader.

bundle exec foreman start

For the rest of the tutorial you will want to keep foreman running in the background and have a second console window open in the todo-demo directory to execute various commands.

Navigate to http://localhost:5000/ in your browser and you should see the word Hello world from Hyperstack! displayed on the page. Hyperstack will need a moment to start and pre-compile with the first request.

Note: you will be using port 5000 not the more typical 3000, this is because of the way the Hotloader is configured.

Make a Simple Change

Bring up your favorite editor on the todo-demo directory. You will see folders like app, bin, config and db. These have all been preinitialized by Rails and Hyperstack gems.

Now find the app/hyperstack/components/app.rb file. It looks like this:

app/hyperstack/component/app.rb

This is your top level component, the rails router will
direct all requests to mount this component. You may
then use the Route psuedo component to mount specific
subcomponents depending on the URL.

class App < HyperComponent
 include Hyperstack::Router

 # define routes using the Route psuedo component. Examples:
 # Route('/foo', mounts: Foo) : match the path beginning with /foo and mount component Foo here
 # Route('/foo') { Foo(...) } : display the contents of the block
 # Route('/', exact: true, mounts: Home) : match the exact path / and mount the Home component
 # Route('/user/:id/name', mounts: UserName) : path segments beginning with a colon will be captured in the match param
 # see the hyper-router gem documentation for more details

 render do
 H1 { "Hello world from Hyperstack!" }
 end
end

Change the string displayed to something like: "Todo App Coming Soon". You will see the display instantly change when you save the file.

You can also delete the comments as we will go over details of routing later.

The Hyperstack UI is built from components. Each component is defined by a subclass of HyperComponent. In some cases there will only be one instance of the class displayed, and as we will see at other times the class is reused to display multiple components. If you are familiar with Rails or the MVC structure then you can think of Components as views that continuously update as the state of the application changes.

Chapter 2: Hyperstack Models are Rails Models

We are going to add our Todo Model, and discover that Hyperstack models are in fact Rails ActiveRecord models.

	You can access your rails models on the client using the same syntax you use on the server.

	Changes on the client are mirrored on the server.

	Changes to models on the server are synchronized with all participating browsers.

	Data access is protected by a robust policy mechanism.

A Rails ActiveRecord Model is a Ruby class that is backed by a database table. In this example we will have one model class called Todo. When manipulating models, Rails automatically generates the necessary SQL code for you. So when Todo.all is evaluated Rails generates the appropriate SQL and turns the result of the query into appropriate Ruby data structures.

Hyperstack Models are extensions of ActiveRecord Models that synchronize the data between the client and server automatically for you. So now Todo.all can be evaluated on the server or the client.

Okay lets see it in action:

	Add the Todo Model:

As stated earlier we keep foreman running in the first console and open a second console. In this second console window run on a single line:

bundle exec rails g model Todo title:string completed:boolean priority:integer

This runs a Rails generator which will create the skeleton Todo model class, and create a migration which will add the necessary tables and columns to the database.

Now look in the db/migrate/ directory, and edit the migration file you have just created. The file will be titled with a long string of numbers then “create_todos” at the end. Change the line creating the completed boolean field so that it looks like this:

...
t.boolean :completed, null: false, default: false
...

For details on ‘why’ see this blog post. [https://robots.thoughtbot.com/avoid-the-threestate-boolean-problem] Basically this insures completed is treated as a real boolean, and will avoid having to check between false and null later on.

Now run:

bundle exec rails db:migrate

which will create the table.

	Make Your Model Public:

Move models/todo.rb to hyperstack/models

This will make the model accessible on the clients and the server, subject to any data access policies.

Note: The hyperstack installer adds a policy that gives full permission to all clients but only in development and test modes. Have a look at app/policies/application_policy if you are interested.

	Try It:

Now change your App component’s render method to:

class App < HyperComponent
 include Hyperstack::Router
 render do
 H1 { "Number of Todos: #{Todo.count}" }
 end
end

You will now see Number of Todos: 0 displayed.

Now start a rails console

bundle exec rails c

and type:

Todo.create(title: 'my first todo')

This will create a new Todo in the server’s database, which will cause your Hyperstack application to be updated and you will see the count change to 1!

Try it again:

Todo.create(title: 'my second todo')

and you will see the count change to 2!

Are we having fun yet? I hope so! As you can see Hyperstack is synchronizing the Todo model between the client and server. As the state of the database changes, Hyperstack buzzes around updating whatever parts of the DOM were dependent on that data (in this case the count of Todos).

Notice that we did not create any APIs to achieve this. Data on the server is synchronized with data on the client for you.

Chapter 3: Creating the Top Level App Structure

Now that we have all of our pieces in place, lets build our application.

Replace the entire contents of app.rb with:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render(SECTION) do
 Header()
 Index()
 Footer()
 end
end

After saving you will see the following error displayed:

Uncaught error: Header: undefined method `Header’ for #\ in App (created by Hyperstack::Internal::Component::TopLevelRailsComponent) in Hyperstack::Internal::Component::TopLevelRailsComponent

because we have not defined the three subcomponents. Lets define them now:

Add three new ruby files to the app/hyperstack/components folder:

app/hyperstack/components/header.rb
class Header < HyperComponent
 render(HEADER) do
 'Header will go here'
 end
end

app/hyperstack/components/index.rb
class Index < HyperComponent
 render(SECTION) do
 'List of Todos will go here'
 end
end

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 render(DIV) do
 'Footer will go here'
 end
end

Once you add the Footer component you should see:

Header will go here List of Todos will go here Footer will go here </div>

If you don’t, restart the server (foreman in the first console), and reload the browser.

Notice how the usual HTML tags such as DIV, SECTION, and HEADER are all available as well as all the other HTML and SVG tags.

Hyperstack uses the following conventions to easily distinguish between HTML tags, application defined components and other helper methods:

	HTML tags are in all caps

	Application components are CamelCased

	other helper methods are snake_cased

Chapter 4: Listing the Todos, Hyperstack Params, and Prerendering

To display each Todo we will create a TodoItem component that takes a parameter:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 todo.title
 end
end

We can use this component in our Index component:

app/hyperstack/components/index.rb
class Index < HyperComponent
 render(SECTION) do
 UL do
 Todo.each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

Now you will see something like

Header will go here Footer will go here </div>

As you can see components can take parameters (or props in react.js terminology.)

Rails uses the terminology params (short for parameters) which have a similar purpose to React props, so to make the transition more natural for Rails programmers Hyperstack uses params, rather than props.

Params are declared using the param macro which creates an accessor method of the same name within the component.

Our Index component mounts a new TodoItem with each Todo record and passes the Todo to the TodoItem component as the parameter.

Now go back to Rails console and type

Todo.last.update(title: 'updated todo')

and you will see the last Todo in the list changing.

Try adding another Todo using create like you did before. You will see the new Todo is added to the list.

Chapter 5: Adding Inputs to Components

So far we have seen how our components are synchronized to the data that they display. Next let’s add the ability for the component to change the underlying data.

First add an INPUT html tag to your TodoItem component like this:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: todo.completed)
 todo.title
 end
end

You will notice that while it does display the checkboxes, you can not change them by clicking on them.

For now we can change them via the console like we did before. Try executing

Todo.last.update(completed: true)

and you should see the last Todo’s completed checkbox changing state.

To make our checkbox input change its own state, we will add an event handler for the change event:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: todo.completed)
 .on(:change) { todo.update(completed: !todo.completed) }
 todo.title
 end
end

It reads like a good novel doesn’t it? On the change event update the todo, setting the completed attribute to the opposite of its current value. The rest of coordination between the database and the display is taken care of for you by the Hyperstack.

After saving your changes you should be able change the completed state of each Todo, and check on the rails console (say by checking Todo.last.completed) and you will see that the value has been persisted to the database. You can also demonstrate this by refreshing the page.

We will finish up by adding a delete link at the end of the Todo item:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 INPUT(type: :checkbox, checked: todo.completed)
 .on(:change) { todo.update(completed: !todo.completed) }
 SPAN { todo.title } # See note below...
 A { ' -X-' }.on(:click) { todo.destroy }
 end
end

Note: If a component or tag block returns a string it is automatically wrapped in a SPAN, to insert a string in the middle you have to wrap it a SPAN like we did above.

I hope you are starting to see a pattern here. Hyperstack components determine what to display based on the state of some objects. External events, such as mouse clicks, the arrival of new data from the server, and even timers update the state. Hyperstack recomputes whatever portion of the display depends on the state so that the display is always in sync with the state. In our case the objects are the Todo model and its associated records, which have a number of associated internal states.

By the way, you don’t have to use Models to have states. We will see later that states can be as simple as boolean instance variables.

Chapter 6: Routing

Now that Todos can be completed or active, we would like our user to be able display either “all” Todos, only “completed” Todos, or “active” (or incomplete) Todos. We want our URL to reflect which filter is currently being displayed. So /all will display all todos, /completed will display the completed Todos, and of course /active will display only active (or incomplete) Todos. We would also like the root url / to be treated as /all

To achieve this we first need to be able to scope (or filter) the Todo Model. So let’s edit the Todo model file so it looks like this:

app/hyperstack/models/todo.rb
class Todo < ApplicationRecord
 scope :completed, -> { where(completed: true) }
 scope :active, -> { where(completed: false) }
end

Now we can say Todo.all, Todo.completed, and Todo.active, and get the desired subset of Todos. You might want to try it now in the rails console.Note: you will have to do a reload! to load the changes to the Model.

We would like the URL of our App to reflect which of these filters is being displayed. So if we load

	/all we want the Todo.all scope to be run;

	/completed we want the Todo.completed scope to be run;

	/active we want the Todo.active scope to be run;

	/ (by itself) then we should redirect to /all.

Having the application display different data (or whole different components) based on the URL is called routing.

Lets change App to look like this:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render(SECTION) do
 Header()
 Route('/', exact: true) { Redirect('/all') }
 Route('/:scope', mounts: Index)
 Footer()
 end
end

and the Index component to look like this:

app/hyperstack/components/index.rb
class Index < HyperComponent
 include Hyperstack::Router::Helpers
 render(SECTION) do
 UL do
 Todo.send(match.params[:scope]).each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

Lets walk through the changes:

	We mount the Header components as before.

	We then check to see if the current route exactly matches / and if it does, redirect to /all.

	Then instead of directly mounting the Index component, we route to it based on the URL. In this case if the url must look like /xxx.

	Index now includes (mixes-in) the Hyperstack::Router::Helpers module which has methods like match.

	Instead of simply enumerating all the Todos, we decide which scope to filter using the URL fragment matched by :scope.

Notice the relationship between Route('/:scope', mounts: Index) and match.params[:scope]:

During routing each Route is checked. If it matches then the indicated component is mounted, and the match parameters are saved for that component to use.

You should now be able to change the url from /all, to /completed, to /active, and see a different set of Todos. For example if you are displaying the /active Todos, you will only see the Todos that are not complete. If you check one of these it will disappear from the list.

Rails also has the concept of routing, so how do the Rails and Hyperstack routers interact? Have a look at the config/routes.rb file. You will see a line like this: get '/(*other)', to: 'hyperstack#app' This is telling Rails to accept all requests and to process them using the Hyperstack controller, which will attempt to mount a component named App in response to the request. The mounted App component is then responsible for further processing the URL.

For more complex scenarios Hyperstack provides Rails helper methods that can be used to mount components from your controllers, layouts, and views.

Chapter 7: Helper Methods, Inline Styling, Active Support and Router Nav Links

Of course we will want to add navigation to move between these routes. We will put the navigation in the footer:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 def link_item(path)
 A(href: "/#{path}", style: { marginRight: 10 }) { path.camelize }
 end
 render(DIV) do
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
end

Save the file, and you will now have 3 links, that you will change the path between the three options.

Here is how the changes work:

	Hyperstack is just Ruby, so you are free to use all of Ruby’s rich feature set to structure your code.

For example the link_item method is just a helper method to save us some typing.

	The link_item method uses the path argument to construct an HTML Anchor tag.

	Hyperstack comes with a large portion of the Rails active-support library.

For the text of the anchor tag we use the active-support method camelize.

	Later we will add proper css classes, but for now we use an inline style.

Notice that the css margin-right is written marginRight, and that 10px can be expressed as the integer 10.

Notice that as you click each link the page reloads. However what we really want is for the links to simply change the route, without reloading the page.

To make this happen we will mixin some router helpers by including HyperRouter::ComponentMethods inside of class.

Then we can replace the anchor tag with the Router’s NavLink component:

Change

A(href: "/#{path}", style: { marginRight: 10 }) { path.camelize }

to

NavLink("/#{path}", style: { marginRight: 10 }) { path.camelize }
note that there is no href key in NavLink

Our component should now look like this:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 include Hyperstack::Router::Helpers
 def link_item(path)
 NavLink("/#{path}", style: { marginRight: 10 }) { path.camelize }
 end
 render(DIV) do
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
end

After this change you will notice that changing routes does not reload the page, and after clicking to different routes, you can use the browsers forward and back buttons.

How does it work? The NavLink component reacts to a click just like an anchor tag, but instead of changing the window’s URL directly, it updates the HTML5 history object. Associated with this history is (hope you guessed it) state. So when the history changes it causes any components depending on the state of the URL to be re-rendered.

Chapter 8: Create a Basic EditItem Component

So far we can mark Todos as completed, delete them, and filter them. Now we create an EditItem component so we can change the Todo title.

Add a new component like this:

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 render do
 INPUT(defaultValue: todo.title)
 .on(:enter) do |evt|
 todo.update(title: evt.target.value)
 end
 end
end

Before we use this component let’s understand how it works.

	It receives a todo param which will be edited by the user;

	The title of the todo is displayed as the initial value of the input;

	When the user types the enter key the todo is updated.

Now update the TodoItem component replacing

SPAN { todo.title }

with

EditItem(todo: todo)

Try it out by changing the text of some our your Todos followed by the enter key. Then refresh the page to see that the Todos have changed.

Chapter 9: Adding State to a Component, Defining Custom Events, and a Lifecycle Callback.

This all works, but it’s hard to use. There is no feedback indicating that a Todo has been saved, and there is no way to cancel after starting to edit. We can make the user interface much nicer by adding state (there is that word again) to the TodoItem. We will call our state editing. If editing is true, then we will display the title in a EditItem component, otherwise we will display it in a LABEL tag. The user will change the state to editing by double clicking on the label. When the user saves the Todo, we will change the state of editing back to false. Finally we will let the user cancel the edit by moving the focus away (the blur event) from the EditItem. To summarize:

	User double clicks on any Todo title: editing changes to true.

	User saves the Todo being edited: editing changes to false.

	User changes focus away (blur) from the Todo being edited: editing changes to false.

In order to accomplish this our EditItem component is going to communicate to its parent via two application defined events - saved and cancel.

Add the following 5 lines to the EditItem component like this:

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 fires :saved # add
 fires :cancel # add
 after_mount { jQ[dom_node].focus } # add

 render do
 INPUT(defaultValue: todo.title)
 .on(:enter) do |evt|
 todo.update(title: evt.target.value)
 saved! # add
 end
 .on(:blur) { cancel! } # add
 end
end

The first two new lines add our custom events which will be fired by the component.

The next new line uses one of several Lifecycle Callbacks. In this case we need to move the focus to the EditItem component after it is mounted. The jQ method is Hyperstack’s jQuery wrapper, and dom_node is the method that returns the actual dom node where this instance of the component is mounted. This is the INPUT html element as defined in the render method.

The saved! line will fire the saved event in the parent component. Notice that the method to fire a custom event is the name of the event followed by a bang (!).

Finally we add the blur event handler and fire our cancel event.

Now we can update our TodoItem component to react to three events: double_click, saved and cancel.

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI) do
 if @editing
 EditItem(todo: todo)
 .on(:saved, :cancel) { mutate @editing = false }
 else
 INPUT(type: :checkbox, checked: todo.completed)
 .on(:change) { todo.update(completed: !todo.completed) }
 LABEL { todo.title }
 .on(:double_click) { mutate @editing = true }
 A { ' -X-' }
 .on(:click) { todo.destroy }
 end
 end
end

All states in Hyperstack are simply Ruby instance variables (ivars for short which are variables with a leading @). Here we use the @editing ivar.

We have already used a lot of states that are built into the HyperModel and HyperRouter. The states of these components are built out of collections of instance variables like @editing.

In the TodoItem component the value of @editing controls whether to render the EditItem or the INPUT, LABEL, and Anchor tags.

Because @editing (like all ivars) starts off as nil, when the TodoItem first mounts, it renders the INPUT, LABEL, and Anchor tags. Attached to the label tag is a double_click handler which does one thing: mutates the component’s state setting @editing to true. This then causes the component to re-render, and now instead of the three tags, we will render the EditItem component.

Attached to the EditItem component is the saved and cancel handler (which is shared between the two events) that mutates the component’s state, setting @editing back to false.

Using and changing state in a component is as simple as reading or changing the value of some instance variables. The only caveat is that whenever you want to change a state variable whether it’s a simple assignment or changing the internal value of a complex structure like a hash or array you use the mutate method to signal Hyperstack that that state is changing.

Chapter 10: Using EditItem to create new Todos

Our EditItem component has a good robust interface. It takes a Todo, and lets the user edit the title, and then either save or cancel, using two custom events to communicate back outwards.

Because of this we can easily reuse EditItem to create new Todos. Not only does this save us time, but it also insures that the user interface acts consistently.

Update the Header component to use EditItem like this:

app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER) do
 EditItem(todo: @new_todo)
 .on(:saved) { mutate @new_todo = Todo.new }
 end
end

What we have done is initialize an instance variable @new_todo to a new unsaved Todo item in the before_mount lifecycle method.

Then we pass the value @new_todo to EditItem, and when it is saved, we generate another new Todo and save it in the new_todo state variable.

When Header’s state is mutated, it will cause a re-render of the Header, which will then pass the new value of @new_todo, to EditItem, causing that component to also re-render.

We don’t care if the user cancels the edit, so we simply don’t provide a :cancel event handler.

Once the code is added a new input box will appear at the top of the window, and when you type enter a new Todo will be added to the list.

However you will notice that the value of new Todo input box does not clear. This is subtle problem but it’s easy to fix.

React treats the INPUT tag’s defaultValue specially. It is only read when the INPUT is first mounted, so it does not react to changes like normal parameters. Our Header component does pass in new Todo records, but even though they are changing React does not update the INPUT.

React has a special param called key. React uses this to uniquely identify mounted components. It’s used to keep track of lists of components, in this case it can also be used to indicate that the component needs to be remounted when the value of key is changed.

All objects in Hyperstack respond to the to_key method which will return a suitable unique key id, so all we have to do is pass todo as the key param, this will insure that as todo changes, we will re-initialize the INPUT tag.

...
INPUT(defaultValue: todo.title, key: todo) # add the special key param
...

Chapter 11: Adding Styling

We are just going to steal the style sheet from the benchmark Todo app, and add it to our assets.

Go grab the file in this repo here: https://github.com/hyperstack-org/hyperstack/blob/edge/docs/tutorial/assets/todo.css and copy it to a new file called todo.css in the app/assets/stylesheets/ directory.

You will have to refresh the page after changing the style sheet.

Now its a matter of updating the css classes which are passed to components via the class parameter.

Let’s start with the App component. With styling it will look like this:

app/hyperstack/components/app.rb
class App < HyperComponent
 include Hyperstack::Router
 render(SECTION, class: 'todo-app') do # add class todo-app
 Header()
 Route('/', exact: true) { Redirect('/all') }
 Route('/:scope', mounts: Index)
 Footer()
 end
end

The Footer component needs to have a UL added to hold the links nicely, and we can also use the NavLinks active_class param to highlight the link that is currently active:

app/hyperstack/components/footer.rb
class Footer < HyperComponent
 include Hyperstack::Router::Helpers
 def link_item(path)
 # wrap the NavLink in a LI and
 # tell the NavLink to change the class to :selected when
 # the current (active) path equals the NavLink's path.
 LI { NavLink("/#{path}", active_class: :selected) { path.camelize } }
 end
 render(DIV, class: :footer) do # add class footer
 UL(class: :filters) do # wrap links in a UL element with class filters
 link_item(:all)
 link_item(:active)
 link_item(:completed)
 end
 end
end

For the Index component just add the main and todo-list classes.

app/hyperstack/components/index.rb
class Index < HyperComponent
 include Hyperstack::Router::Helpers
 render(SECTION, class: :main) do # add class main
 UL(class: 'todo-list') do # add class todo-list
 Todo.send(match.params[:scope]).each do |todo|
 TodoItem(todo: todo)
 end
 end
 end
end

For the EditItem component we want the parent to pass any html parameters such as class along to the INPUT tag. We do this by adding the special other param that will collect any extra params, we then pass it along in to the INPUT tag. Hyperstack will take care of merging all the params together sensibly.

app/hyperstack/components/edit_item.rb
class EditItem < HyperComponent
 param :todo
 fires :saved
 fires :cancel
 other :etc # can be named anything you want
 after_mount { jQ[dom_node].focus }
 render do
 INPUT(etc, defaultValue: todo.title, key: todo)
 .on(:enter) do |evt|
 todo.update(title: evt.target.value)
 saved!
 end
 .on(:blur) { cancel! }
 end
end

Now we can add classes to the TodoItem’s list-item, input, anchor tags, and to the EditItem component:

app/hyperstack/components/todo_item.rb
class TodoItem < HyperComponent
 param :todo
 render(LI, class: 'todo-item') do # add the todo-item class
 if @editing
 EditItem(class: :edit, todo: todo) # add the edit class
 .on(:saved, :cancel) { mutate @editing = false }
 else
 INPUT(type: :checkbox, class: :toggle, checked: todo.completed) # add the toggle class
 .on(:change) { todo.update(completed: !todo.completed) }
 LABEL { todo.title }
 .on(:double_click) { mutate @editing = true }
 A(class: :destroy) # add the destroy class and remove the -X- placeholder
 .on(:click) { todo.destroy }
 end
 end
end

In the Header we can send a different class to the EditItem component. While we are at it we will add the H1 { 'todos' } hero unit.

app/hyperstack/components/header.
class Header < HyperComponent
 before_mount { @new_todo = Todo.new }
 render(HEADER, class: :header) do # add the 'header' class
 H1 { 'todos' } # add the hero unit.
 EditItem(class: 'new-todo', todo: @new_todo) # add 'new-todo' class
 .on(:saved) { mutate @new_todo = Todo.new }
 end
end

At this point your Todo App should be properly styled.

Chapter 12: Other Features

	Show How Many Items Left In Footer

This is just a span that we add before the link tags list in the Footer component:

...
render(DIV, class: :footer) do
 SPAN(class: 'todo-count') do
 # pluralize returns the second param (item) properly
 # pluralized depending on the first param's value.
 "#{pluralize(Todo.active.count, 'item')} left"
 end
 UL(class: :filters) do
...

	Add ‘placeholder’ Text To Edit Item

EditItem should display a meaningful placeholder hint if the title is blank:

...
INPUT(etc, placeholder: 'What is left to do today?',
 defaultValue: todo.title, key: todo)
.on(:enter) do |evt|
...

	Don’t Show the Footer If There are No Todos

In the App component add a guard so that we won’t show the Footer if there are no Todos:

...
Footer() unless Todo.count.zero?
...

Congratulations! you have completed the tutorial.

Summary

You have built a small but f