
hyperSMURF Documentation
Release

Max Schubach

Jun 12, 2017

Installation Getting Started

1 API Documentation 1

2 Indices and tables 33

Bibliography 35

i

ii

CHAPTER 1

API Documentation

The friendly people at javadoc.io host our API documentation:

hyperSMURF https://javadoc.io/doc/de.charite.compbio/hyperSMURF/0.3/

Quickstart

This short How-To guides you from downloading the hyperSMURF weka plugin and load it into weka.

1. Download the current stable 0.3 release from our GitHub project by clicking 0.30.3.

2. Download the latest 3.9 development version of Weka here and install it.

3. Open Weka and navigate to the Package Manager (Tools -> Package manager).

4. Install the 0.3 file (Unofficial File/URL -> Browse -> OK).

5. Restart Weka. If you open the package explorer again you will see the hyperSMURF classifier under the Installed
tab.

6. Download example data quickstart_example.arff.gz

7. Open the Weka Explorer. In the Preprocess tab click Open file... then navigate to the dowloaded quick-
start_example.arff.gz and select it. Choose as filetype *.arff.gz and open the data.

8. Now you should be able to switch to the Classify tab and choose the hyperSMURF classifier under weka ->
classifiers -> trees. After that you can start the classification and the classifier output should display results
without errors. The end of the output should look like:

Time taken to build model: 7.6 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 8744 87.44 %
Incorrectly Classified Instances 1256 12.56 %
Kappa statistic 0.7322

1

https://www.javadoc.io
https://javadoc.io/doc/de.charite.compbio/hyperSMURF/0.3/
https://github.com/charite/hyperSMURF
http://www.cs.waikato.ac.nz/~ml/weka/downloading.html
https://github.com/charite/hyperSMURF/tree/master/data/quickstart_example.arff.gz

hyperSMURF Documentation, Release

Mean absolute error 0.2089
Root mean squared error 0.2881
Relative absolute error 49.7147 %
Root relative squared error 62.8514 %
Total Number of Instances 10000

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
→˓ ROC Area PRC Area Class

0,823 0,006 0,997 0,823 0,902 0,
→˓758 0,993 0,997 c0

0,994 0,177 0,707 0,994 0,826 0,
→˓758 0,993 0,985 c1

Weighted Avg. 0,874 0,057 0,910 0,874
→˓ 0,879 0,758 0,993 0,993

=== Confusion Matrix ===

a b <-- classified as
5759 1239 | a = c0
17 2985 | b = c1

Installation

Pre-built Binaries

Note: This is the recommended way of installing for normal users.

Pre-built binaries are available from Maven Central. Download hyperSMURF-0.3 .jar from here.

Install from Source

Note: You only need to install from source if you want to develop hyperSMURF in Java yourself.

There are two options of installing hyperSMURF. The recommended way for most users is to download a prebuilt
binary and is well-described in the Quickstart section. This section describes how to build hyperSMURF from scratch.

Prequisites

For building hyperSMURF, you will need

1. Java JDK 8 or higher for compiling hyperSMURF,

2. Maven 3 for building hyperSMURF, and

3. Git for getting the sources.

2 Chapter 1. API Documentation

https://search.maven.org
http://search.maven.org/#search%7Cga%7C1%7ChyperSMURF
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
http://git-scm.com/

hyperSMURF Documentation, Release

Git Checkout

In this tutorial, we will download the hyperSMURF sources and build them in ~/hyperSMURF.

~ # mkdir -p ~/hyperSMURF
~ # cd ~/hyperSMURF
hyperSMURF # git clone https://github.com/charite/hyperSMURF.git hyperSMURF
hyperSMURF # cd hyperSMURF

Maven Proxy Settings

If you are behind a proxy, you will get problems with Maven downloading dependencies. If you run into problems,
make sure to also delete ~/.m2/repository. Then, execute the following commands to fill ~/.m2/settings.
xml.

hyperSMURF # mkdir -p ~/.m2
hyperSMURF # test -f ~/.m2/settings.xml || cat >~/.m2/settings.xml <<END
<settings>

<proxies>
<proxy>

<active>true</active>
<protocol>http</protocol>
<host>proxy.example.com</host>
<port>8080</port>
<nonProxyHosts>*.example.com</nonProxyHosts>

</proxy>
</proxies>

</settings>
END

Building

You can build hyperSMURF using mvn package. This will automatically download all dependencies, build hyper-
SMURF, and run all tests.

hyperSMURF # mvn package

In case that you have non-compiling test, you can use the -DskipTests=true parameter for skipping them.

hyperSMURF # mvn install -DskipTests=true

Creating Eclipse Projects

Maven can be used to generate Eclipse projects that can be imported by the Eclipse IDE. This can be done calling mvn
eclipse:eclipse command after calling mvn install:

hyperSMURF # mvn install
hyperSMURF # mvn eclipse:eclipse

1.2. Installation 3

hyperSMURF Documentation, Release

Examples using the Java package

In this section we will create a new Maven project, called hyperSMURF-tutorial, and using hyperSMURF together
with Weka to train some tasks. Therefore we first have to set up an Maven project which will handle all libraries for
us. Then we will start with a synthetic example. Afterwards we are using real genetic data for training. All files of this
tutorial are available here

Requirements

First we have to build a maven project and include the hyperSMURF library into the pom.xml file. Therefore we
generate a new folder (hyperSMURF-tutorial) with a new pom.xml file.

mkdir hyperSMURF-tutorial
cd hyperSMURF-tutorial
touch pom.xml

Then we open the pom.xml file in an editor and put in the following lines:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
→˓XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
→˓maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>de.charite.compbio.hypersmurf</groupId>
<artifactId>hyperSMURF-tutorial</artifactId>
<packaging>jar</packaging>
<version>0.2</version>
<name>hyperSMURF-tutorial</name>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>

<dependency>
<groupId>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-dev</artifactId>
<version>3.9.0</version>

</dependency>
<dependency>

<groupId>de.charite.compbio</groupId>
<artifactId>hyperSMURF</artifactId>
<version>0.2</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>single</goal>
</goals>

</execution>
</executions>
<configuration>

4 Chapter 1. API Documentation

https://www.github.com/charite/hyperSMURF-tutorial

hyperSMURF Documentation, Release

<descriptorRefs>
<descriptorRef>jar-with-dependencies</

→˓descriptorRef>
</descriptorRefs>

</configuration>
</plugin>

</plugins>
</build>

</project>

Now it we can generate Java files under the the folder src/main/java and to generate a final runnable jar-file we simply
use the command mvn clean package to generate a jar fine into the target folder. Then we can run the hyperSMURF-
tutorial-0.2-jar-with-dependencies.jar jar in target folder by specifying our main class (here SyntheticExample from
the next section):

java -cp target/hyperSMURF-tutorial-0.2-jar-with-dependencies.jar de.charite.compbio.
→˓hypersmurf.SyntheticExample

If you use Eclipse for developing a useful maven command might be mvn eclipse:eclipse to generate a project that can
be imported into eclipse.

Simple usage examples using synthetic data

In this section we will add a new class SyntheticExample.java under the folder
src/main/java/de/charite/compbio/hypersmurf to our maven project. This class has a main function to run it
and two other main functions: (1) generateSyntheticData to generate synthetic imbalanced data and (2) classify to
classify instances with a classifier using k-fold cross-validation.

The outline of the Java class SyntheticExample.java looks like this:

package de.charite.compbio.hypersmurf;

public class SyntheticExample {

/**
* We need a seed to make consistent predictions.

*/
private static int SEED = 42;

public static void main(String[] args) throws Exception {

}
}

So the class only defines a seed to make predictions consistent. Then we use the RDG1 data generator from Weka to
generate synthetic data. For example we will generate 10000 instances, each with 20 numeric attributes and set the
index to the last attribute which contains class c0 and c1 by default. Then we randomize the data using our predefined
seed:

RDG1 dataGenerator = new RDG1();
dataGenerator.setRelationName("SyntheticData");
dataGenerator.setNumExamples(10000);
dataGenerator.setNumAttributes(20);
dataGenerator.setNumNumeric(20);
dataGenerator.setSeed(SEED);
dataGenerator.defineDataFormat();

1.3. Examples using the Java package 5

hyperSMURF Documentation, Release

Instances instances = dataGenerator.generateExamples();

// set the index to last attribute
instances.setClassIndex(instances.numAttributes() - 1);

// randomize the data
Random random = new Random(SEED);
instances.randomize(random);

The problem is, that this data is not imbalanced. We can check this writing a short helper function.

private static int[] countClasses(Instances instances) {
int[] counts = new int[instances.numClasses()];
for (Instance instance : instances) {

if (instance.classIsMissing() == false) {
counts[(int) instance.classValue()]++;

}
}
return counts;

}

Now if we add int[] counts = countClasses(instances); to our instance generation and print it using
System.out.println("Before imbalancing: " + Arrays.toString(counts)); we will see
that c0 has 2599 and c1 has 7401 instances.

To imbalance the data we will write some own code. For example we want to use only 50 instances of c0. So we have
to generate a new Instances object and assign all c1 class instances and only 50 c0 class instances to it.

// imbalance data
int numberOfClassOne = 50;
Instances imbalancedInstances = new Instances(instances, counts[1] +
→˓numberOfClassOne);
for (int i = 0; i < instances.numInstances(); i++) {

if (instances.get(i).classValue() == 0.0) {
if (numberOfClassOne != 0) {

imbalancedInstances.add(instances.get(i));
numberOfClassOne--;

}
} else {

imbalancedInstances.add(instances.get(i));
}

}
imbalancedInstances.randomize(random);
counts = countClasses(imbalancedInstances);
System.out.println("After imbalancing: " + Arrays.toString(counts));

The last line prints out the new imbalance. Now c0 has only 50 instances.

Now we have to set up our classifier. We will use hyperSMURF with 10 partitions, oversampling factor of 2 (200%),
no undersampling and each forest should have a size on 10.

// setup the hyperSMURF classifier
HyperSMURF clsHyperSMURF = new HyperSMURF();
clsHyperSMURF.setNumIterations(10);
clsHyperSMURF.setNumTrees(10);
clsHyperSMURF.setDistributionSpread(0);
clsHyperSMURF.setPercentage(200.0);
clsHyperSMURF.setSeed(SEED);

6 Chapter 1. API Documentation

hyperSMURF Documentation, Release

The next step will be the performance testing of hyperSMURF on the new generated imbalanced dataset. Therefore
we will use a 5-fold cross-validation. To rerun this performance test using other classifiers we write everything into
a new function classify(AbstractClassifier cls, Instances instances, int folds). The
classify function will collect the predictions over all 5 folds in the Evaluation object which then can be used to print
out the performance results. Here is the complete classify function:

private static void classify(AbstractClassifier cls, Instances instances, int folds)
→˓throws Exception {

// perform cross-validation and add predictions
Instances predictedData = null;
Evaluation eval = new Evaluation(instances);
for (int n = 0; n < folds; n++) {

System.out.println("Training fold " + n + " from " + folds + "...");
Instances train = instances.trainCV(folds, n);
Instances test = instances.testCV(folds, n);

// build and evaluate classifier
Classifier clsCopy = AbstractClassifier.makeCopy(cls);
clsCopy.buildClassifier(train);
eval.evaluateModel(clsCopy, test);

// add predictions
AddClassification filter = new AddClassification();
filter.setClassifier(cls);
filter.setOutputClassification(true);
filter.setOutputDistribution(true);
filter.setOutputErrorFlag(true);
filter.setInputFormat(train);
Filter.useFilter(train, filter); // trains the classifier
// perform predictions on test set
Instances pred = Filter.useFilter(test, filter);
if (predictedData == null)

predictedData = new Instances(pred, 0);
for (int j = 0; j < pred.numInstances(); j++)

predictedData.add(pred.instance(j));
}

// output evaluation
System.out.println();
System.out.println("=== Setup ===");
System.out.println("Classifier: " + cls.getClass().getName() + " " + Utils.

→˓joinOptions(cls.getOptions()));
System.out.println("Dataset: " + instances.relationName());
System.out.println("Folds: " + folds);
System.out.println("Seed: " + SEED);
System.out.println();
System.out.println(eval.toSummaryString("=== " + folds + "-fold Cross-

→˓validation ===", false));
System.out.println();
System.out.println(eval.toClassDetailsString("=== Details ==="));

}

Finally we can test hyperSMURF by running classify(clsHyperSMURF, imbalancedInstances, 5);.
The output of the performance should be similar to the next text:

=== 5-fold Cross-validation ===
Correctly Classified Instances 7406 99.3961 %

1.3. Examples using the Java package 7

hyperSMURF Documentation, Release

Incorrectly Classified Instances 45 0.6039 %
Kappa statistic 0.3809
Mean absolute error 0.0858
Root mean squared error 0.1278
Relative absolute error 637.5943 %
Root relative squared error 156.5741 %
Total Number of Instances 7451

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

→˓PRC Area Class
0.280 0.001 0.609 0.280 0.384 0.410 0.895

→˓0.337 c0
0.999 0.720 0.995 0.999 0.997 0.410 0.895

→˓0.999 c1
Weighted Avg. 0.994 0.715 0.993 0.994 0.993 0.410 0.895
→˓0.995

So we will get an AUROC of 0.895 and an AUPRC of 0.337 for our minority class c0. We can also use a Random
Forest classifier using the same number of random trees to see the differences:

// setup a RF classifier
RandomForest clsRF = new RandomForest();
clsRF.setNumIterations(10);
clsRF.setSeed(SEED);

// classify RF
classify(clsRF, imbalancedInstances, 5);

Now we see that the RandomForest is only able to get an AUROC of 0.706 and an AUPRC of 0.109.

Usage examples with genetic data

HyperSMURF was designed to predict rare genomic variants, when the available examples of such variants are sub-
stantially less than background examples. This is a typical situation with genetic variants. For instance, we have only a
small set of available variants known to be associated with Mendelian diseases in non-coding regions (positive exam-
ples) against the sea of background variants, i.e. a ratio of about 1 : 36, 000 between positive and negative examples
[Smedley2016].

Here we show how to use hyperSMURF to detect these rare features using data sets obtained from the original large set
of Mendelian data [Smedley2016]. To provide usage examples that do not require more than 1 minute of computation
time on a modern desktop computer, we considered data sets downsampled from the original Mendelian data. In
particular we constructed Mendelian data sets with a progressive larger imbalance between Mendelian associated
mutations and background genetic variants. We start with an artificially balanced data set and then we consider
progressively imbalanced data sets with ratio positive:negative varying from 1 : 10, 1 : 100 and 1 : 1000. These
data sets are downloadable as compressed .arff files, easily usable by Weka, from https://www.github.com/charite/
hyperSMURF-tutorial/data.

The Mendelian.balanced.arff.gz file include 26 features, a column class howing the belonging class (1=positive,
0=negative) and a column fold. This is a numeric attribute with the number of the fold in which each example will
be included according to the 10-fold cytogenetic band-aware CV procedure (0 to 9). In total the file contains 406
positives and 400 negatives.

Now we have to write the following code in our new Java file MendelianExample.java in folder
src/main/java/de/charite/compbio/hypersmurf :

8 Chapter 1. API Documentation

https://www.github.com/charite/hyperSMURF-tutorial/data
https://www.github.com/charite/hyperSMURF-tutorial/data

hyperSMURF Documentation, Release

• Loader of the Instances.

• Cross-validation strategy that takes the the column fold into account when partitioning and removing the column
fold for training.

• Setting up our hyperSMURF classifier.

So this will be the blank MendelianExample.java class:

package de.charite.compbio.hypersmurf;

public class MendelianExample {
/**
* We need a seed to make consistent predictions.

*/
private static int SEED = 42;
/**
* The number of folds are predefined in the dataset

*/
private static int FOLDS = 10;

public static void main(String[] args) throws Exception {

}
}

To read the data we simply can use the ArffLoader from Weka. We will use the first argument of the command-line
arguments as our input file.

// read the file from the first argument of the command line input
ArffLoader reader = new ArffLoader();
reader.setFile(new File(args[0]));
Instances instances = reader.getDataSet();

Then we have to set the class attribute. This is the last attribute of our instances. So we write instances.
setClassIndex(instances.numAttributes() - 1);. Because we have a balanced dataset of the
Mendelian data we do not need to do over- or undersampling. So we simply run hyperSMURF with two partitions and
a forest size of ten. Over- and undersampling settings have to be set to 0.

// setup the hyperSMURF classifier
HyperSMURF clsHyperSMURF = new HyperSMURF();
clsHyperSMURF.setNumIterations(2);
clsHyperSMURF.setNumTrees(10);
clsHyperSMURF.setDistributionSpread(0);
clsHyperSMURF.setPercentage(0.0);
clsHyperSMURF.setSeed(SEED);

Now we arrived at the special cytogenetic band-aware cross-validation. The folds are predefined as attribute fold in the
instances object. So we have to select the instances on that fold but have to remove the fold attribute before training
or testing a classifier. So we will write a small helper method that gives us a given fold for testing or the inverse for
training. The blank method can be written like this:

We will use the filter SubsetbyExpression to get the instances with the fold and we can simply use the Instances
method deteleAttributeAt(int index) to remove the fold attribute. For SubsetbyExpression filter we write a regular
expression like Attribute = n or !(Attribute = n) to get the n‘th fold (or all other folds). Attribute will be written by
like ‘ATT with the index (one based) of the attribute. This we can get using int indexFold = instances.
attribute("fold").index(); (zero based) and we have to increment it by one for our filter method. So the

1.3. Examples using the Java package 9

hyperSMURF Documentation, Release

content of our getFold method can look like:

// filter on fold variable
int indexFold = instances.attribute("fold").index();
SubsetByExpression filterFold = new SubsetByExpression();
if (invert)

filterFold.setExpression("!(ATT" + (indexFold + 1) + " = " + fold + ")");
else

filterFold.setExpression("ATT" + (indexFold + 1) + " = " + fold);
filterFold.setInputFormat(instances);
Instances filtered = Filter.useFilter(instances, filterFold);

// remove fold attribute
filtered.deleteAttributeAt(indexFold);

return filtered;

Now it is time for the cross-validation this is similar to the Synthetic Example but we will use the getFold method to
make the train/test partitioning.

// perform cross-validation and add predictions
Instances predictedData = null;
Evaluation eval = new Evaluation(instances);
for (int n = 0; n < FOLDS; n++) {

System.out.println("Training fold " + (n+1) + " from " + FOLDS + "...");
Instances train = getFold(instances, n, true);
Instances test = getFold(instances, n, false);

// build and evaluate classifier
Classifier clsCopy = AbstractClassifier.makeCopy(cls);
clsCopy.buildClassifier(train);
eval.evaluateModel(clsCopy, test);

// add predictions
AddClassification filter = new AddClassification();
filter.setClassifier(cls);
filter.setOutputClassification(true);
filter.setOutputDistribution(true);
filter.setOutputErrorFlag(true);
filter.setInputFormat(train);
Filter.useFilter(train, filter); // trains the classifier
// perform predictions on test set
Instances pred = Filter.useFilter(test, filter);
if (predictedData == null)

predictedData = new Instances(pred, 0);
for (int j = 0; j < pred.numInstances(); j++)

predictedData.add(pred.instance(j));
}

// output evaluation
System.out.println();
System.out.println("=== Setup ===");
System.out.println("Classifier: " + cls.getClass().getName() + " " + Utils.
→˓joinOptions(cls.getOptions()));
System.out.println("Dataset: " + instances.relationName());
System.out.println("Folds: " + FOLDS);
System.out.println("Seed: " + SEED);
System.out.println();
System.out.println(eval.toSummaryString("=== " + FOLDS + "-fold Cross-validation ===",
→˓ false));

10 Chapter 1. API Documentation

hyperSMURF Documentation, Release

System.out.println();
System.out.println(eval.toClassDetailsString("=== Details ==="));

If we run hyperSMURF with the settings above the command-line output will show an AUPRC 0.989 of and an
AUROC of 0.989 of our class 1 which are the Mendelian regulatory mutations. This is the complete output:

=== 10-fold Cross-validation ===
Correctly Classified Instances 770 95.5335 %
Incorrectly Classified Instances 36 4.4665 %
Kappa statistic 0.9107
Mean absolute error 0.0898
Root mean squared error 0.1925
Relative absolute error 17.9538 %
Root relative squared error 38.4915 %
Total Number of Instances 806

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

→˓PRC Area Class
0.985 0.074 0.929 0.985 0.956 0.912 0.989

→˓0.983 0
0.926 0.015 0.984 0.926 0.954 0.912 0.989

→˓0.989 1
Weighted Avg. 0.955 0.044 0.957 0.955 0.955 0.912 0.989
→˓0.986

Then we can perform the same computation using the progressively imbalanced data sets: Mendelian.1_10.arff.gz,
Mendelian.1_100.arff.gz, and Mendelian.1_1000.arff.gz. Of course every time we have to adapt the settings of hyper-
SMURF.

Using Mendelian.1_10.arff.gz, hyperSUMRF and the output can look like:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF();
clsHyperSMURF.setNumIterations(5);
clsHyperSMURF.setNumTrees(10);
clsHyperSMURF.setDistributionSpread(0);
clsHyperSMURF.setPercentage(100.0);
clsHyperSMURF.setSeed(SEED);

=== 10-fold Cross-validation ===
Correctly Classified Instances 4310 97.8212 %
Incorrectly Classified Instances 96 2.1788 %
Kappa statistic 0.8779
Mean absolute error 0.0577
Root mean squared error 0.1427
Relative absolute error 34.4437 %
Root relative squared error 49.3333 %
Total Number of Instances 4406

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

→˓PRC Area Class
0.981 0.044 0.995 0.981 0.988 0.880 0.990

→˓0.999 0
0.956 0.020 0.833 0.956 0.890 0.880 0.990

→˓0.950 1

1.3. Examples using the Java package 11

hyperSMURF Documentation, Release

Weighted Avg. 0.978 0.042 0.980 0.978 0.979 0.880 0.990
→˓0.994

Increasing the imbalance with Mendelian.1_100.arff.gz:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF();
clsHyperSMURF.setNumIterations(5);
clsHyperSMURF.setNumTrees(10);
clsHyperSMURF.setDistributionSpread(0);
clsHyperSMURF.setPercentage(100.0);
clsHyperSMURF.setSeed(SEED);

=== 10-fold Cross-validation ===
Correctly Classified Instances 39987 99.1348 %
Incorrectly Classified Instances 349 0.8652 %
Kappa statistic 0.6795
Mean absolute error 0.0249
Root mean squared error 0.0851
Relative absolute error 124.7001 %
Root relative squared error 85.3023 %
Total Number of Instances 40336

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

→˓PRC Area Class
0.992 0.071 0.999 0.992 0.996 0.705 0.991

→˓1.000 0
0.929 0.008 0.541 0.929 0.684 0.705 0.991

→˓0.900 1
Weighted Avg. 0.991 0.071 0.995 0.991 0.992 0.705 0.991
→˓0.999

Again increasing the imbalance with Mendelian.1_1000.arff.gz:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF();
clsHyperSMURF.setNumIterations(10);
clsHyperSMURF.setNumTrees(10);
clsHyperSMURF.setDistributionSpread(3);
clsHyperSMURF.setPercentage(200.0);
clsHyperSMURF.setSeed(SEED);

=== 10-fold Cross-validation ===
Correctly Classified Instances 392436 99.2597 %
Incorrectly Classified Instances 2927 0.7403 %
Kappa statistic 0.2021
Mean absolute error 0.0233
Root mean squared error 0.0805
Relative absolute error 1135.2254 %
Root relative squared error 251.4735 %
Total Number of Instances 395363

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

→˓PRC Area Class

12 Chapter 1. API Documentation

hyperSMURF Documentation, Release

0.993 0.079 1.000 0.993 0.996 0.323 0.989
→˓1.000 0

0.921 0.007 0.114 0.921 0.204 0.323 0.989
→˓0.773 1
Weighted Avg. 0.993 0.079 0.999 0.993 0.995 0.323 0.989
→˓1.000

As we can see, we have a certain decrement of the performances when the imbalance increases. Indeed when we
have perfectly balanced data the AUPRC is very close to 1, while by increasing the imbalance we have a progressive
decrement of the AUPRC to 0.950, 0.900, till to 0.773 when we have a 1 : 1000 imbalance ratio. Nevertheless this
decline in performance is relatively small compared to other machine-learning methods.

We can perform the same task using parallel computation. For instance, by using 4 cores with an Intel i7-2670QM
CPU, 2.20GHz, we perform a full 10-fold cytogenic band-aware cross-validation using 406 genetic variants known to
be associated with Mendelian diseases and 400000 background variants in less than 5 minutes. The best performance
boost from the implementation is if we do the training of the partitioning in parallel. So we can set the number of
execution slots to 4 using clsHyperSMURF.setNumExecutionSlots(4);.

Of course the training and cross-validation functions allow to set also the parameters of the Random Forest en-
sembles, that constitute the base learners of the hyperSMURF hyper-ensemble, such as the number of decision
trees to be used for each Random Forest (setNumTrees(int num)) or the number of features to be randomly se-
lected from the set of available input features at each step of the inductive learning of the decision tree (setNum-
Features(int num)). The full description of the hyperSMURF class can be found in the HyperSMURF Java API
https://javadoc.io/doc/de.charite.compbio/hyperSMURF/.

References

Examples using the R package

Simple usage examples using synthetic data

Here we introduce some simple usage examples using the generator of synthetic imbalanced data included in the R
package. At first we load the library:

library(hyperSMURF)

Then we construct two imbalanced data sets (training and test set) having both 20 positive and 2000 negative examples
with 10 features (dimension of input data equal to 10 - see the Reference manual on CRAN for details about the
synthetic data generator):

train <- imbalanced.data.generator(n.pos=20, n.neg=2000, n.features=10, n.inf.
→˓features=3, sd=0.1, seed=1);
test <- imbalanced.data.generator(n.pos=20, n.neg=2000, n.features=10, n.inf.
→˓features=3, sd=0.1, seed=2);

Then we can train and test the model with the following code:

HSmodel <- hyperSMURF.train(train$data, train$label, n.part = 10, fp = 2, ratio = 3);
res <- hyperSMURF.test(test$data, HSmodel);

Note that we used 10 partitions of the training data (parameter n.part that corresponds to the parameter n in the pseudo-
code of the algorithm in Supplementary Note 1), a SMOTE oversampling equal to 2 (parameter fp corresponding to the
f parameter in the pseudo-code), and undersampling ratio equal to 3 (parameter ratio corresponding to the parameter
m of the modified second line of the Hy~algorithm in Supplementary Note~1). In other words the negative examples

1.4. Examples using the R package 13

https://javadoc.io/doc/de.charite.compbio/hyperSMURF
https://CRAN.R-project.org/package=hyperSMURF

hyperSMURF Documentation, Release

were partitioned in 10 sets of equal size (200 examples). Then a different RF was trained using: a) the available 20
positive examples, plus the “augmented” 40 synthetic positive examples obtained by SMOTE convex combination of
close positive examples, and b) a set of 3 × 60 = 180 negative examples randomly extracted from the partition (see
Supplementary Note 1). The obtained hyperSMURF model (HSModel), that includes 10 different RF (one for each
partition), is finally tested on the test set.

We can easily obtain the confusion matrix:

y <- ifelse(test$labels==1,1,0);
pred <- ifelse(res>0.5,1,0);
table(pred,y);
y

pred 0 1
0 1979 1
1 21 19

The accuracy is 0.9891 and the F-score (more informative in this unbalanced context) is 0.6333. Note that with a RF
that does not adopt unbalance-aware learning strategies on the same data we obtain significantly worse results in terms
of the F-score:

library(randomForest);
RF <- randomForest(train$data, train$label);
res <- predict(RF, test$data);
y <- ifelse(test$labels==1,1,0);
pred <- ifelse(res==1,1,0);
table(pred,y);
y

pred 0 1
0 2000 16
1 0 4

The accuracy of the RF is high (0.9930), but the F-score is 0.3333, only about half that of hyperSMURF1.

To perform a 5 fold CV on a given data set we need only 1 line of R code:

res <- hyperSMURF.cv(train$data, train$labels, kk = 5, n.part = 10, fp = 1, ratio =
→˓1);

To compute the AUROC and the AUPRC (respectively the area under the ROC curve and
→˓the area under the precision/recall curve) we can use the `precrec` package:

library(precrec);
labels <- ifelse(train$labels==1,1,0);
digits=4;
sscurves <- evalmod(scores = res, labels = labels);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9972
AUPRC = 0.8540

We can also apply the version of hyperSMURF that embeds a feature selection step on the training data to select the
features most correlated with the labels:

1 Note that the results may vary slightly due to the randomization in the algorithm.

14 Chapter 1. API Documentation

hyperSMURF Documentation, Release

res <-hyperSMURF.corr.cv.parallel(train$data, train$labels, kk = 5, n.part = 10, fp =
→˓1, ratio = 1, mtry=3, n.feature = 6);
sscurves <- evalmod(scores = res, labels = labels);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9982
AUPRC = 0.9190

Usage examples with genetic data

HyperSMURF was designed to predict rare genomic variants, when the available examples of such variants are sub-
stantially less than background examples. This is a typical situation with genetic variants. For instance, we have only a
small set of available variants known to be associated with Mendelian diseases in non-coding regions (positive exam-
ples) against the sea of background variants, i.e. a ratio of about 1 : 36, 000 between positive and negative examples
[Smedley2016].

Here we show how to use hyperSMURF to detect these rare features using data sets obtained from the original large set
of Mendelian data [Smedley2016]. To provide usage examples that do not require more than 1 minute of computation
time on a modern desktop computer, we considered data sets downsampled from the original Mendelian data set
described in the mendelian data section of the main manuscript (this data set includes more than 14 millions of
genetic variants). In particular we constructed Mendelian data sets with a progressive larger imbalance between
Mendelian associated mutations and background genetic variants. We start with an artificially balanced data set, and
then we consider progressively imbalanced data sets with ratio positive:negative varying from 1 : 10, to 1 : 100 and
1 : 1000. These data sets are downloadable as compressed .rda R objects from http://homes.di.unimi.it/valentini/
DATA/Mendelian.

The Mendelian_balanced.rda file include 3 objects: m.subset, that includes the input features of the balanced examples
(406 positives and 400 negatives), labels.subset, i.e. the corresponding labels, and folds.subset a vector with the
number of the fold in which each example will be included according to the 10-fold cytoband-aware CV procedure
(see Supplementary Note~2). The following lines of code load the data and perform a 10-fold cytoband-aware CV and
compute the AUROC and AUPRC:

load("Mendelian_balanced.rda");
res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part
→˓= 2, fp = 0, ratio = 1, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition =
→˓folds.subset);

sscurves <- evalmod(scores = res, labels = labels.subset);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9903
AUPRC = 0.9893

Then we can perform the same computation using the progressively imbalanced data sets:

Imbalance 1:10. about 400 positives and 4000 negative variants
load("Mendelian_1:10.rda");

res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part
→˓= 5,
fp = 1, ratio = 1, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.
→˓subset);

1.4. Examples using the R package 15

http://homes.di.unimi.it/valentini/DATA/Mendelian
http://homes.di.unimi.it/valentini/DATA/Mendelian

hyperSMURF Documentation, Release

sscurves <- evalmod(scores = res, labels = labels.subset);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9915
AUPRC = 0.9583

Imbalance 1:100. about 400 positives and 40000 negative variants
load("Mendelian_1:100.rda");
res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part
→˓= 10, fp = 2, ratio = 3, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition =
→˓folds.subset);

sscurves <- evalmod(scores = res, labels = labels.subset);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9922
AUPRC = 0.9

Imbalance 1:1000. about 400 positives and 400000 negative variants
load("Mendelian_1:1000.rda");

res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part
→˓= 10,
fp = 2, ratio = 3, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.
→˓subset);

sscurves <- evalmod(scores = res, labels = labels.subset);
m<-attr(sscurves,"auc",exact=FALSE);
AUROC <- round(m[1,"aucs"],digits);
AUPRC <- round(m[2,"aucs"],digits);
cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9901
AUPRC = 0.7737

As we can see, we have a certain decrement of the performances when the imbalance increases. Indeed when we
have perfectly balanced data the AUPRC is very close to 1, while by increasing the imbalance we have a progressive
decrement of the AUPRC to 0.9583, 0.9000, till to 0.7737 when we have a 1 : 1000 imbalance ratio. Nevertheless this
decline in performance is relatively small compared to that of state-of-the-art imbalance-unaware learning methods
(see Fig. 5 in the main manuscript).

We can perform the same task using parallel computation. For instance, by using 4 cores with an Intel i7-2670QM
CPU, 2.20GHz, less than 1 minute is necessary to perform a full 10-fold cytoband-aware CV using 406 genetic variants
known to be associated with Mendelian diseases and 400,000 background variants:

res <- hyperSMURF.cv.parallel(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10,
→˓ n.part = 10, fp = 2, ratio = 3, k = 5, ntree = 10, mtry = 6, seed = 1, fold.
→˓partition = folds.subset, ncores=4);

Of course the training and CV functions allow to set also the parameters of the RF ensembles, that constitute the base
learners of the hyperSMURF hyper-ensemble, such as the number of decision trees to be used for each RF (parameter
ntree) or the number of features to be randomly selected from the set of available input features at each step of the
inductive learning of the decision tree (parameter mtry). The full description of all the parameters and the output of

16 Chapter 1. API Documentation

hyperSMURF Documentation, Release

each function is available in the PDF and HTML documentation included in the hyperSMURF R package.

References

Frequently Asked Questions

Where are the questions?

Right now, there are no frequently asked questions.

Cite hyperSMURF

If you use this algorithm please cite our Scientific Reports article:

M. Schubach, M. Re, P. N. Robinson, and G. Valentini. (2017).
Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated
→˓Non-Coding Variants.
Scientific Reports, 7.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/charite/hyperSMURF/issues

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the Github issues for bugs. If you want to start working on a bug then please write short message on the
issue tracker to prevent duplicate work.

Implement Features

Look through the Github issues for features. If you want to start working on an issue then please write short message
on the issue tracker to prevent duplicate work.

1.5. Frequently Asked Questions 17

https://doi.org/10.1038/s41598-017-03011-5
https://github.com/charite/hyperSMURF/issues

hyperSMURF Documentation, Release

Write Documentation

hyperSMURF could always use more documentation, whether as part of the official vcfpy docs, in docstrings, or even
on the web in blog posts, articles, and such.

hyperSMURF uses Sphinx for the user manual (that you are currently reading). See doc_guidelines on how the
documentation reStructuredText is used. See doc_setup on creating a local setup for building the documentation.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/charite/hyperSMURF/issues

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Documentation Guidelines

For the documentation, please adhere to the following guidelines:

• Put each sentence on its own line, this makes tracking changes through Git SCM easier.

• Provide hyperlink targets, at least for the first two section levels.

• Use the section structure from below.

.. heading_1:

=========
Heading 1
=========

.. heading_2:

Heading 2

.. heading_3:

Heading 3
=========

.. heading_4:

Heading 4

.. heading_5:

Heading 5

18 Chapter 1. API Documentation

https://sphinx-doc.org
https://github.com/charite/hyperSMURF/issues

hyperSMURF Documentation, Release

~~~~~~~~~

.. heading_6:

Heading 6
:::::::::

Documentation Setup

For building the documentation, you have to install the Python program Sphinx. This is best done in a virtual environ-
ment. The following assumes you have a working Python 3 setup.

Use the following steps for installing Sphinx and the dependencies for building the SIMdrom documentation:

$ cd hyperSMURF/manual
$ virtualenv -p python3 .venv
$ source .venv/bin/activate
$ pip install --upgrade -r requirements.txt

Use the following for building the documentation. The first two lines is only required for loading the virtualenv.
Afterwards, you can always use make html for building.

$ cd hyperSMURF/manual
$ source .venv/bin/activate
$ make html # rebuild for changed files only
$ make clean && make html # force rebuild

Get Started!

Ready to contribute? First, create your Java/Documentation development setup as described in in-
stall_from_source/doc_setup.

1. Fork the hyperSMURF repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/hyperSMURF.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making your changes, make sure that the build runs through. For Java:

$ mvn package

For documentation:

$ cd manual && make clean && make html

6. Commit your changes and push your branch to GitHub:

1.7. Contributing 19



hyperSMURF Documentation, Release

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated.

3. Describe your changes in the CHANGELOG.md file.

Authors

in alphabetical order

• Max Schubach

History

# hyperSMURF Changelog

## development

## v0.3

* Documentation release

* move java api to javadoc.io

* Upgrading Weka from 3.9. to 3.9.1

### manual

* creating readthedocs manual

* adding examples

## v0.2

* Publication release

hyperSMURF License

hyperSMURF is licensed under the GNU GPLv3 license:

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

20 Chapter 1. API Documentation



hyperSMURF Documentation, Release

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of

1.10. hyperSMURF License 21



hyperSMURF Documentation, Release

software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that

22 Chapter 1. API Documentation



hyperSMURF Documentation, Release

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

1.10. hyperSMURF License 23



hyperSMURF Documentation, Release

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,

24 Chapter 1. API Documentation



hyperSMURF Documentation, Release

and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be

1.10. hyperSMURF License 25



hyperSMURF Documentation, Release

included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

26 Chapter 1. API Documentation



hyperSMURF Documentation, Release

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or

1.10. hyperSMURF License 27



hyperSMURF Documentation, Release

modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for

28 Chapter 1. API Documentation



hyperSMURF Documentation, Release

sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment

1.10. hyperSMURF License 29



hyperSMURF Documentation, Release

to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

30 Chapter 1. API Documentation



hyperSMURF Documentation, Release

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,

1.10. hyperSMURF License 31



hyperSMURF Documentation, Release

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

32 Chapter 1. API Documentation



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

33



hyperSMURF Documentation, Release

34 Chapter 2. Indices and tables



Bibliography

[Smedley2016] Smedley, Damian, et al. “A whole-genome analysis framework for effective identification of
pathogenic regulatory variants in Mendelian disease.” The American Journal of Human Genetics 99.3 (2016):
595-606.

[Smedley2016] Smedley, Damian, et al. “A whole-genome analysis framework for effective identification of
pathogenic regulatory variants in Mendelian disease.” The American Journal of Human Genetics 99.3 (2016):
595-606.

35


	API Documentation
	Indices and tables
	Bibliography

