
hyperparameter_hunter Documentation
Release 3.0.0

Hunter McGushion

Jan 20, 2021

CONTENTS

1 Why Use HyperparameterHunter? 1
1.1 TL;DR . 1
1.2 What is HyperparameterHunter? . 1
1.3 Features . 2

2 Installation 3
2.1 Dependencies . 3

3 Quick Start 5
3.1 Set Up an Environment . 5

4 HyperparameterHunter API Essentials 7
4.1 Environment . 7
4.2 Experimentation . 7
4.3 Hyperparameter Optimization . 7
4.4 Hyperparameter Space . 7
4.5 Feature Engineering . 12
4.6 Extras . 23
4.7 Indices and tables . 26

5 Complete HyperparameterHunter API 27

6 File Structure Overview 29
6.1 HyperparameterHunterAssets/ . 29

7 HyperparameterHunter Examples 33
7.1 Getting Started . 33
7.2 Different Libraries . 33
7.3 Advanced Features . 33

8 HyperparameterHunter Library Compatibility 35
8.1 Tested and Compatible . 35
8.2 Support On the Way . 35
8.3 Not Yet Compatible . 35
8.4 Notes . 36

9 Indices and tables 37

i

ii

CHAPTER

ONE

WHY USE HYPERPARAMETERHUNTER?

This section provides an overview of the mission and primary uses of HyperparameterHunter, as well as some of its
main features.

1.1 TL;DR

• HyperparameterHunter saves your Experiments to provide:

1) Enhanced, long-term hyperparameter optimization; and

2) Improved awareness of what you’ve done, what works, and what you should try next

1.2 What is HyperparameterHunter?

• Don’t think of HyperparameterHunter as a new machine learning tool; its a toolbox

– There are tons of excellent machine learning libraries. The problem is keeping track of them all

– Impractical to keep track of which libraries work, which hyperparameters are best for whichever algo-
rithms, and how your experiment was set up

– Let HyperparameterHunter organize your tools for you, while you focus on using the best tool for the job

– Stop wasting time debating between a screwdriver and a wrench, when you’re staring at a nail

• Not a new thing to try alongside other algorithms. Its a new way of doing the things you already do

– Keep using the libraries/algorithms you know and love, just tell HyperparameterHunter about them

• Provides a simple wrapper for executing machine learning algorithms

– Automatically saves the testing conditions/hyperparameters, results, predictions, and more

– Test and evaluate wide range of algorithms from many different libraries in a unified format

1

hyperparameter_hunter Documentation, Release 3.0.0

1.3 Features

• Stop worrying about keeping track of hyperparameters, scores, or re-running the same Experiments

• See records of all your Experiments: from birds-eye-view leaderboards, to individual result files

• Supercharge informed hyperparameter optimization by allowing it to use saved Experiments

– No need to hold HyperparameterHunter’s hand while it tries to find the Experiment you ran months ago

– It automatically reads your Experiment files to find the ones that fit, and it learns from them

• Eliminate boilerplate code for cross-validation loops, predicting, and scoring

• Have predictions ready to go when its time for ensembling, meta-learning, and finalizing your models

2 Chapter 1. Why Use HyperparameterHunter?

CHAPTER

TWO

INSTALLATION

This section explains how to install HyperparameterHunter.

For the latest stable release, execute:

pip install hyperparameter_hunter

For the bleeding-edge version, execute:

pip install git+https://github.com/HunterMcGushion/hyperparameter_hunter.git

2.1 Dependencies

• Dill

• NumPy

• Pandas

• SciPy

• Scikit-Learn

• Scikit-Optimize

• SimpleJSON

3

hyperparameter_hunter Documentation, Release 3.0.0

4 Chapter 2. Installation

CHAPTER

THREE

QUICK START

This section provides a jumping-off point for using HyperparameterHunter’s main features.

3.1 Set Up an Environment

from hyperparameter_hunter import Environment, CVExperiment
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import StratifiedKFold
from xgboost import XGBClassifier

data = load_breast_cancer()
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df["target"] = data.target

env = Environment(
train_dataset=df,
results_path="path/to/results/directory",
metrics=["roc_auc_score"],
cv_type=StratifiedKFold,
cv_params=dict(n_splits=5, shuffle=True, random_state=32)

)

5

hyperparameter_hunter Documentation, Release 3.0.0

3.1.1 Individual Experimentation

experiment = CVExperiment(
model_initializer=XGBClassifier,
model_init_params=dict(objective="reg:linear", max_depth=3, subsample=0.5)

)

3.1.2 Hyperparameter Optimization

from hyperparameter_hunter import BayesianOptPro, Real, Integer, Categorical

optimizer = BayesianOptPro(iterations=10, read_experiments=True)

optimizer.forge_experiment(
model_initializer=XGBClassifier,
model_init_params=dict(

n_estimators=200,
subsample=0.5,
max_depth=Integer(2, 20),
learning_rate=Real(0.0001, 0.5),
booster=Categorical(["gbtree", "gblinear", "dart"]),

)
)

optimizer.go()

Plenty of examples for different libraries, and algorithms, as well as more advanced HyperparameterHunter features
can be found in the examples directory.

6 Chapter 3. Quick Start

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples

CHAPTER

FOUR

HYPERPARAMETERHUNTER API ESSENTIALS

This section exposes the API for all the HyperparameterHunter functionality that will be necessary for most users.

4.1 Environment

4.2 Experimentation

4.3 Hyperparameter Optimization

4.4 Hyperparameter Space

class hyperparameter_hunter.space.dimensions.Real(low, high, prior='uniform', trans-
form='identity', name=None)

Search space dimension that can assume any real value in a given range

Parameters

low: Float Lower bound (inclusive)

high: Float Upper bound (inclusive)

prior: {“uniform”, “log-uniform”}, default=”uniform” Distribution to use when sampling
random points for this dimension. If “uniform”, points are sampled uniformly between
the lower and upper bounds. If “log-uniform”, points are sampled uniformly between
log10(lower) and log10(upper)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

7

hyperparameter_hunter Documentation, Release 3.0.0

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params() Get dict of parameters used to initialize the Real, or
their defaults

inverse_transform(data_t) Inverse transform samples from the warped space
back to the original space

rvs([n_samples, random_state]) Draw random samples.
transform(data) Transform samples from the original space into a

warped space

__init__(low, high, prior='uniform', transform='identity', name=None)
Search space dimension that can assume any real value in a given range

Parameters

low: Float Lower bound (inclusive)

high: Float Upper bound (inclusive)

prior: {“uniform”, “log-uniform”}, default=”uniform” Distribution to use when sam-
pling random points for this dimension. If “uniform”, points are sampled uniformly be-
tween the lower and upper bounds. If “log-uniform”, points are sampled uniformly be-
tween log10(lower) and log10(upper)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

class hyperparameter_hunter.space.dimensions.Integer(low, high, transform='identity',
name=None)

Search space dimension that can assume any integer value in a given range

Parameters

low: Int Lower bound (inclusive)

8 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

high: Int Upper bound (inclusive)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params() Get dict of parameters used to initialize the Integer,
or their defaults

inverse_transform(data_t) Inverse transform samples from the warped space
back to the original space

rvs([n_samples, random_state]) Draw random samples.
transform(data) Transform samples from the original space into a

warped space

__init__(low, high, transform='identity', name=None)
Search space dimension that can assume any integer value in a given range

Parameters

low: Int Lower bound (inclusive)

high: Int Upper bound (inclusive)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

4.4. Hyperparameter Space 9

hyperparameter_hunter Documentation, Release 3.0.0

class hyperparameter_hunter.space.dimensions.Categorical(categories: list, prior:
Optional[list] = None,
transform='onehot',
optional=False,
name=None)

Search space dimension that can assume any categorical value in a given list

Parameters

categories: List Sequence of possible categories of shape (n_categories,)

prior: List, or None, default=None If list, prior probabilities for each category of shape (cat-
egories,). By default all categories are equally likely

transform: {“onehot”, “identity”}, default=”onehot” Transformation to apply to the original
space. If “identity”, the transformed space is the same as the original space. If “onehot”, the
transformed space is a one-hot encoded representation of the original space

optional: Boolean, default=False Intended for use by FeatureEngineer when optimiz-
ing an EngineerStep. Specifically, this enables searching through a space in which an
EngineerStep either may or may not be used. This is contrary to Categorical’s usual func-
tion of creating a space comprising multiple categories. When optional = True, the space
created will represent any of the values in categories either being included in the entire Fea-
tureEngineer process, or being skipped entirely. Internally, a value excluded by optional is
represented by a sentinel value that signals it should be removed from the containing list, so
optional will not work for choosing between a single value and None, for example

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

categories: Tuple Original value passed through the categories kwarg, cast to a tuple. If op-
tional is True, then an instance of RejectedOptional will be appended to categories

distribution: rv_generic See documentation of _make_distribution() or
distribution()

optional: Boolean Original value passed through the optional kwarg

prior: List, or None Original value passed through the prior kwarg

prior_actual: List Calculated prior value, initially equivalent to prior, but then set to a de-
fault array if None

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params() Get dict of parameters used to initialize the Categor-
ical, or their defaults

inverse_transform(data_t) Inverse transform samples from the warped space
back to the original space

rvs([n_samples, random_state]) Draw random samples.
continues on next page

10 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Table 3 – continued from previous page
transform(data) Transform samples from the original space into a

warped space

__init__(categories: list, prior: Optional[list] = None, transform='onehot', optional=False,
name=None)

Search space dimension that can assume any categorical value in a given list

Parameters

categories: List Sequence of possible categories of shape (n_categories,)

prior: List, or None, default=None If list, prior probabilities for each category of shape
(categories,). By default all categories are equally likely

transform: {“onehot”, “identity”}, default=”onehot” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“onehot”, the transformed space is a one-hot encoded representation of the original space

optional: Boolean, default=False Intended for use by FeatureEngineer when opti-
mizing an EngineerStep. Specifically, this enables searching through a space in which
an EngineerStep either may or may not be used. This is contrary to Categorical’s usual
function of creating a space comprising multiple categories. When optional = True, the
space created will represent any of the values in categories either being included in the
entire FeatureEngineer process, or being skipped entirely. Internally, a value excluded
by optional is represented by a sentinel value that signals it should be removed from the
containing list, so optional will not work for choosing between a single value and None,
for example

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

categories: Tuple Original value passed through the categories kwarg, cast to a tuple. If op-
tional is True, then an instance of RejectedOptional will be appended to categories

distribution: rv_generic See documentation of _make_distribution() or
distribution()

optional: Boolean Original value passed through the optional kwarg

prior: List, or None Original value passed through the prior kwarg

prior_actual: List Calculated prior value, initially equivalent to prior, but then set to a
default array if None

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

4.4. Hyperparameter Space 11

hyperparameter_hunter Documentation, Release 3.0.0

4.5 Feature Engineering

class hyperparameter_hunter.feature_engineering.FeatureEngineer(steps=None,
do_validate=False,
**datasets:
Dict[str, pan-
das.core.frame.DataFrame])

Class to organize feature engineering step callables steps (EngineerStep instances) and the datasets that the
steps request and return.

Parameters

steps: List, or None, default=None List of arbitrary length, containing any of the following
values:

1. EngineerStep instance,

2. Function to provide as input to EngineerStep, or

3. Categorical, with categories comprising a selection of the previous two steps values
(optimization only)

The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain the first two values. To search a space
optionally including an EngineerStep, use the optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep functions. Ad-
ditional engineering steps may be added via add_step()

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies are
found, rather than logging a message. If do_validate = False, no validation will be per-
formed

**datasets: DFDict This is not expected to be provided on initialization and is offered primar-
ily for debugging/testing. Mapping of datasets necessary to perform feature engineering
steps

See also:

EngineerStep For proper formatting of non-Categorical values of steps

Notes

If steps does include any instances of hyperparameter_hunter.space.dimensions.
Categorical, this FeatureEngineer instance will not be usable by Experiments. It can only be used
by Optimization Protocols. Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up
using will not pass identity checks against the original FeatureEngineer that contained Categorical steps

12 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler,
→˓QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
... s = MinMaxScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_targets.
→˓values)
... return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs

FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the `EngineerStep` is
using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> # ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])

`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical` can also han-
dle either `EngineerStep` categories or raw functions. Use the `optional` kwarg of `Categorical` to test some
questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_
→˓transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_
→˓transform])
>>> fe_5 = FeatureEngineer([
... Categorical([sqr_sum], optional=True),
... Categorical([EngineerStep(s_scale), mm_scale]),
... q_transform
...])

__init__(steps=None, do_validate=False, **datasets: Dict[str, pandas.core.frame.DataFrame])
Class to organize feature engineering step callables steps (EngineerStep instances) and the datasets

4.5. Feature Engineering 13

hyperparameter_hunter Documentation, Release 3.0.0

that the steps request and return.

Parameters

steps: List, or None, default=None List of arbitrary length, containing any of the following
values:

1. EngineerStep instance,

2. Function to provide as input to EngineerStep, or

3. Categorical, with categories comprising a selection of the previous two steps val-
ues (optimization only)

The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain the first two values. To search a space
optionally including an EngineerStep, use the optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep functions. Ad-
ditional engineering steps may be added via add_step()

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies
are found, rather than logging a message. If do_validate = False, no validation will be
performed

**datasets: DFDict This is not expected to be provided on initialization and is offered pri-
marily for debugging/testing. Mapping of datasets necessary to perform feature engineer-
ing steps

See also:

EngineerStep For proper formatting of non-Categorical values of steps

Notes

If steps does include any instances of hyperparameter_hunter.space.dimensions.
Categorical, this FeatureEngineer instance will not be usable by Experiments. It can only be used by
Optimization Protocols. Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up
using will not pass identity checks against the original FeatureEngineer that contained Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler,
→˓QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
... s = MinMaxScaler()

(continues on next page)

14 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_
→˓targets.values)
... return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs

FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the `EngineerStep`
is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> # ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])

`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical` can also
handle either `EngineerStep` categories or raw functions. Use the `optional` kwarg of `Categorical` to
test some questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_
→˓transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_
→˓transform])
>>> fe_5 = FeatureEngineer([
... Categorical([sqr_sum], optional=True),
... Categorical([EngineerStep(s_scale), mm_scale]),
... q_transform
...])

class hyperparameter_hunter.feature_engineering.EngineerStep(f: Callable,
stage=None,
name=None,
params=None,
do_validate=False)

Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization than a raw engineer
step function

Parameters

4.5. Feature Engineering 15

hyperparameter_hunter Documentation, Release 3.0.0

f: Callable Feature engineering step function that requests, modifies, and returns datasets
params

Step functions should follow these guidelines:

1. Request as input a subset of the 11 data strings listed in params

2. Do whatever you want to the DataFrames given as input

3. Return new DataFrame values of the input parameters in same order as requested

If performing a task like target transformation, causing predictions to be transformed, it
is often desirable to inverse-transform the predictions to be of the expected form. This
can easily be done by returning an extra value from f (after the datasets) that is either a
callable, or a transformer class that was fitted during the execution of f and implements
an inverse_transform method. This is the only instance in which it is acceptable for f to
return values that don’t mimic its input parameters. See the engineer function definition
using SKLearn’s QuantileTransformer in the Examples section below for an actual inverse-
transformation-compatible implementation

stage: String in {“pre_cv”, “intra_cv”}, or None, default=None Feature engineering stage
during which the callable f will be given the datasets params to modify and return. If
None, will be inferred based on params.

• “pre_cv” functions are applied only once in the experiment: when it starts

• “intra_cv” functions are reapplied for each fold in the cross-validation splits

If stage is left to be inferred, “pre_cv” will usually be selected. However, if any params (or
parameters in the signature of f) are prefixed with “validation. . . ” or “non_train. . . ”, then
stage will inferred as “intra_cv”. See the Notes section below for suggestions on the stage
to use for different functions

name: String, or None, default=None Identifier for the transformation applied by this engi-
neering step. If None, f.__name__ will be used

params: Tuple[str], or None, default=None Dataset names requested by feature engineering
step callable f. If None, will be inferred by parsing the signature of f. Must be a subset of
the following 11 strings:

Input Data

1. “train_inputs”

2. “validation_inputs”

3. “holdout_inputs”

4. “test_inputs”

5. “all_inputs” ("train_inputs" + ["validation_inputs"] +
"holdout_inputs" + "test_inputs")

6. “non_train_inputs” (["validation_inputs"] + "holdout_inputs" +
"test_inputs")

Target Data

7. “train_targets”

8. “validation_targets”

9. “holdout_targets”

16 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

10. “all_targets” ("train_targets" + ["validation_targets"] +
"holdout_targets")

11. “non_train_targets” (["validation_targets"] + "holdout_targets")

As an alternative to the above list, just remember that the first half of all parameter names
should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”}, and the
second half should be either “inputs” or “targets”. The only exception to this rule is
“test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage, the val-
idation dataset has not yet been created and is still a part of the train dataset. During the
“intra_cv” stage, the validation dataset is created by removing a portion of the train dataset,
and their values passed to f reflect this fact. This also means that the values of the merged
(“all”/”non_train”-prefixed) datasets may or may not contain “validation” data depending
on the stage; however, this is all handled internally, so you probably don’t need to worry
about it.

params may not include multiple references to the same dataset, either directly or indi-
rectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate direct ref-
erences. Less obviously, (“train_inputs”, “all_inputs”) is invalid because “all_inputs” in-
cludes “train_inputs”

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies are
found, rather than logging a message. If do_validate = False, no validation will be per-
formed

See also:

FeatureEngineer The container for EngineerStep instances - EngineerStep`s should always be provided
to HyperparameterHunter through a `FeatureEngineer

Categorical Can be used during optimization to search through a group of EngineerStep`s given as `cat-
egories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the
EngineerStep`s in `categories, or may be omitted entirely

get_engineering_step_stage() More information on stage inference and situations where overriding
it may be prudent

Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each sample/row as inde-
pendent entities. For example, steps like converting a string day of the week to one-hot encoded columns, or
imputing missing values by replacement with -1 might be conducted “pre_cv”, since they are unlikely to intro-
duce an information leakage. Conversely, steps like scaling/normalization, whose results for the data in one row
are affected by the data in other rows should be performed “intra_cv” in order to recalculate the final values of
the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the “. . . _targets” counterpart
accompanying the other datasets. The “targets” suffix is missing because test data targets are never given. Note
that although “test_inputs” is still included in both “all_inputs” and “non_train_inputs”, its lack of a target
column means that “all_targets” and “non_train_targets” may have different lengths than their “inputs”-suffixed
counterparts

4.5. Feature Engineering 17

hyperparameter_hunter Documentation, Release 3.0.0

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy
→˓person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'

Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):

File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by
→˓way of:

- ('all_inputs', 'train_inputs')
- ('train_inputs',)

Each dataset may only be requested by a single param for each function

Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)

Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)

(continues on next page)

18 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

... non_train_targets[train_targets.columns] = t.transform(non_train_targets.
→˓values)
... return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in
→˓order,
>>> # but they are followed by `t`, an instance of `QuantileTransformer` we
→˓just fitted,
>>> # whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested
→˓as input

__init__(f: Callable, stage=None, name=None, params=None, do_validate=False)
Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization than a raw
engineer step function

Parameters

f: Callable Feature engineering step function that requests, modifies, and returns datasets
params

Step functions should follow these guidelines:

1. Request as input a subset of the 11 data strings listed in params

2. Do whatever you want to the DataFrames given as input

3. Return new DataFrame values of the input parameters in same order as requested

If performing a task like target transformation, causing predictions to be transformed, it
is often desirable to inverse-transform the predictions to be of the expected form. This
can easily be done by returning an extra value from f (after the datasets) that is either a
callable, or a transformer class that was fitted during the execution of f and implements
an inverse_transform method. This is the only instance in which it is acceptable for f
to return values that don’t mimic its input parameters. See the engineer function defini-
tion using SKLearn’s QuantileTransformer in the Examples section below for an actual
inverse-transformation-compatible implementation

stage: String in {“pre_cv”, “intra_cv”}, or None, default=None Feature engineering
stage during which the callable f will be given the datasets params to modify and return.
If None, will be inferred based on params.

• “pre_cv” functions are applied only once in the experiment: when it starts

• “intra_cv” functions are reapplied for each fold in the cross-validation splits

If stage is left to be inferred, “pre_cv” will usually be selected. However, if any params
(or parameters in the signature of f) are prefixed with “validation. . . ” or “non_train. . . ”,
then stage will inferred as “intra_cv”. See the Notes section below for suggestions on the
stage to use for different functions

name: String, or None, default=None Identifier for the transformation applied by this en-
gineering step. If None, f.__name__ will be used

4.5. Feature Engineering 19

hyperparameter_hunter Documentation, Release 3.0.0

params: Tuple[str], or None, default=None Dataset names requested by feature engineer-
ing step callable f. If None, will be inferred by parsing the signature of f. Must be a subset
of the following 11 strings:

Input Data

1. “train_inputs”

2. “validation_inputs”

3. “holdout_inputs”

4. “test_inputs”

5. “all_inputs” ("train_inputs" + ["validation_inputs"] +
"holdout_inputs" + "test_inputs")

6. “non_train_inputs” (["validation_inputs"] + "holdout_inputs" +
"test_inputs")

Target Data

7. “train_targets”

8. “validation_targets”

9. “holdout_targets”

10. “all_targets” ("train_targets" + ["validation_targets"] +
"holdout_targets")

11. “non_train_targets” (["validation_targets"] + "holdout_targets")

As an alternative to the above list, just remember that the first half of all parameter names
should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”}, and the
second half should be either “inputs” or “targets”. The only exception to this rule is
“test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage, the
validation dataset has not yet been created and is still a part of the train dataset. During
the “intra_cv” stage, the validation dataset is created by removing a portion of the train
dataset, and their values passed to f reflect this fact. This also means that the values of
the merged (“all”/”non_train”-prefixed) datasets may or may not contain “validation” data
depending on the stage; however, this is all handled internally, so you probably don’t need
to worry about it.

params may not include multiple references to the same dataset, either directly or in-
directly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate direct
references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because “all_inputs”
includes “train_inputs”

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies
are found, rather than logging a message. If do_validate = False, no validation will be
performed

See also:

FeatureEngineer The container for EngineerStep instances - EngineerStep`s should always be pro-
vided to HyperparameterHunter through a `FeatureEngineer

20 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Categorical Can be used during optimization to search through a group of EngineerStep`s given as
`categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one
of the EngineerStep`s in `categories, or may be omitted entirely

get_engineering_step_stage() More information on stage inference and situations where
overriding it may be prudent

Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each sample/row as
independent entities. For example, steps like converting a string day of the week to one-hot encoded
columns, or imputing missing values by replacement with -1 might be conducted “pre_cv”, since they are
unlikely to introduce an information leakage. Conversely, steps like scaling/normalization, whose results
for the data in one row are affected by the data in other rows should be performed “intra_cv” in order to
recalculate the final values of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the “. . . _targets” coun-
terpart accompanying the other datasets. The “targets” suffix is missing because test data targets are never
given. Note that although “test_inputs” is still included in both “all_inputs” and “non_train_inputs”, its
lack of a target column means that “all_targets” and “non_train_targets” may have different lengths than
their “inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a
→˓crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'

Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):

File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs`
→˓by way of:

- ('all_inputs', 'train_inputs')

(continues on next page)

4.5. Feature Engineering 21

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

- ('train_inputs',)
Each dataset may only be requested by a single param for each function

Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)

Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_
→˓targets.values)
... return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be
→˓returned in order,
>>> # but they are followed by `t`, an instance of `QuantileTransformer` we
→˓just fitted,
>>> # whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data
→˓requested as input

22 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

4.6 Extras

hyperparameter_hunter.callbacks.bases.lambda_callback(on_exp_start=None,
on_exp_end=None,
on_rep_start=None,
on_rep_end=None,
on_fold_start=None,
on_fold_end=None,
on_run_start=None,
on_run_end=None,
agg_name=None,
do_reshape_aggs=True,
method_agg_keys=False,
on_experiment_start=<object
object>,
on_experiment_end=<object
object>,
on_repetition_start=<object
object>,
on_repetition_end=<object
object>)

Utility for creating custom callbacks to be declared by Environment and used by Experiments. The callable
“on_<. . . >_<start/end>” parameters provided will receive as input whichever attributes of the Experiment are
included in the signature of the given callable. If **kwargs is given in the callable’s signature, a dict of all of
the Experiment’s attributes will be provided. This can be helpful for trying to figure out how to build a custom
callback, but should not be used unless absolutely necessary. If the Experiment does not have an attribute
specified in the callable’s signature, the following placeholder will be given: “INVALID KWARG”

Parameters

on_exp_start: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at Experiment start

on_exp_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at Experiment end

on_rep_start: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at repetition start

on_rep_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at repetition end

on_fold_start: Callable, or None, default=None Callable that receives Experiment’s val-
ues for parameters in the signature at fold start

on_fold_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at fold end

on_run_start: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at run start

on_run_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at run end

agg_name: Str, default=uuid.uuid4 This parameter is only used if the callables are be-
having like AggregatorCallbacks by returning values (see the “Notes” section below
for details on this). If the callables do return values, they will be stored under a key
named (“_” + agg_name) in a dict in hyperparameter_hunter.experiments.
BaseExperiment.stat_aggregates. The purpose of this parameter is to make

4.6. Extras 23

hyperparameter_hunter Documentation, Release 3.0.0

it easier to understand an Experiment’s description file, as agg_name will default to a
UUID if it is not given

do_reshape_aggs: Boolean, default=True Whether to reshape the aggregated values to re-
flect the nested repetitions/folds/runs structure used for other aggregated values. If False,
lists of aggregated values are left in their original shapes. This parameter is only used if
the callables are behaving like AggregatorCallbacks (see the “Notes” section below and
agg_name for details on this)

method_agg_keys: Boolean, default=False If True, the aggregate keys for the items added
to the dict at agg_name are equivalent to the names of the “on_<. . . >_<start/end>”
pseudo-methods whose values are being aggregated. In other words, the pool of all pos-
sible aggregate keys goes from [“runs”, “folds”, “reps”, “final”] to the names of the eight
“on_<. . . >_<start/end>” kwargs of lambda_callback(). See the “Notes” section
below for further details and a rough outline

on_experiment_start: . . . Deprecated since version 3.0.0: Renamed to on_exp_start. Will
be removed in 3.2.0

on_experiment_end: . . . Deprecated since version 3.0.0: Renamed to on_exp_end. Will be
removed in 3.2.0

on_repetition_start: . . . Deprecated since version 3.0.0: Renamed to on_rep_start. Will be
removed in 3.2.0

on_repetition_end: . . . Deprecated since version 3.0.0: Renamed to on_rep_end. Will be
removed in 3.2.0

Returns

LambdaCallback: LambdaCallback Uninitialized class, whose methods are the
callables of the corresponding “on. . . ” kwarg

Notes

For all of the “on_<. . . >_<start/end>” callables provided as input to lambda_callback, consider the following
guidelines (for example function “f”, which can represent any of the callables):

• All input parameters in the signature of “f” are attributes of the Experiment being executed

– If “**kwargs” is a parameter, a dict of all the Experiment’s attributes will be provided

• “f” will be treated as a method of a parent class of the Experiment

– Take care when modifying attributes, as changes are reflected in the Experiment itself

• If “f” returns something, it will automatically behave like an AggregatorCallback (see
hyperparameter_hunter.callbacks.aggregators). Specifically, the following will
occur:

– A new key (named by agg_name if given, else a UUID) with a dict value is added to
hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates

* This new dict can have up to four keys: “runs” (list), “folds” (list), “reps” (list), and “final”
(object)

– If “f” is an “on_run. . . ” function, the returned value is appended to the “runs” list in the new dict

– Similarly, if “f” is an “on_fold. . . ” or “on_rep. . . ” function, the returned value is appended to the
“folds”, or “reps” list, respectively

– If “f” is an “on_exp. . . ” function, the “final” key in the new dict is set to the returned value

24 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

– If values were aggregated in the aforementioned manner, the lists of collected values will be reshaped
according to runs/folds/reps on Experiment end

– The aggregated values will be saved in the Experiment’s description file

* This is because hyperparameter_hunter.experiments.BaseExperiment.
stat_aggregates is saved in its entirety

What follows is a rough outline of the structure produced when using an aggregator-like callback that auto-
matically populates experiments.BaseExperiment.stat_aggregates with results of the functions
used as arguments to lambda_callback():

BaseExperiment.stat_aggregates = dict(
...,
<`agg_name`>=dict(

<agg_key "runs"> = [...],
<agg_key "folds"> = [...],
<agg_key "reps"> = [...],
<agg_key "final"> = object(),
...

),
...

)

In the above outline, the actual agg_key`s included in the dict at `agg_name depend on which
“on_<. . . >_<start/end>” callables are behaving like aggregators. For example, if neither on_run_start nor
on_run_end explicitly returns something, then the “runs” agg_key is not included in the agg_name dict. Simi-
larly, if, for example, neither on_exp_start nor on_exp_end is provided, then the “final” agg_key is not included.
If method_agg_keys=True, then the agg keys used in the dict are modified to be named after the method called.
For example, if method_agg_keys=True and on_fold_start and on_fold_end are both callables returning values
to be aggregated, then the agg_key`s used for each will be “on_fold_start” and “on_fold_end”, respectively. In
this example, if `method_agg_keys=False (default) and do_reshape_aggs=False, then the single “folds” agg_key
would contain the combined contents returned by both methods in the order in which they were returned

For examples using lambda_callback to create custom callbacks, see hyperparameter_hunter.
callbacks.recipes

Examples

>>> from hyperparameter_hunter.environment import Environment
>>> def printer_helper(_rep, _fold, _run, last_evaluation_results):
... print(f"{_rep}.{_fold}.{_run} {last_evaluation_results}")
>>> my_lambda_callback = lambda_callback(
... on_exp_end=printer_helper,
... on_rep_end=printer_helper,
... on_fold_end=printer_helper,
... on_run_end=printer_helper,
...)
... # env = Environment(
... # train_dataset="i am a dataset",
... # results_path="path/to/HyperparameterHunterAssets",
... # metrics=["roc_auc_score"],
... # experiment_callbacks=[my_lambda_callback]
... #)
... # ... Now execute an Experiment, or an Optimization Protocol...

See hyperparameter_hunter.examples.lambda_callback_example for more information

4.6. Extras 25

hyperparameter_hunter Documentation, Release 3.0.0

4.7 Indices and tables

• genindex

• modindex

• search

26 Chapter 4. HyperparameterHunter API Essentials

CHAPTER

FIVE

COMPLETE HYPERPARAMETERHUNTER API

This section exposes the complete HyperparameterHunter API.

• genindex

• modindex

• search

27

hyperparameter_hunter Documentation, Release 3.0.0

28 Chapter 5. Complete HyperparameterHunter API

CHAPTER

SIX

FILE STRUCTURE OVERVIEW

This section is an overview of the result file structure created and updated when Experiments are completed.

6.1 HyperparameterHunterAssets/

• Contains one file (‘Heartbeat.log’), and four subdirectories (‘Experiments/’, ‘KeyAttributeLookup/’,
‘Leaderboards/’, and ‘TestedKeys/’).

• ‘Heartbeat.log’ is the log file for the current/most recently executed Experiment. It will look very much
like the printed output of CVExperiment, with some additional debug messages thrown in. When the
Experiment is completed, a copy of this file is saved as the Experiment’s own Heartbeat file, which
will be discussed below.

6.1.1 /Experiments/

Contains up to six different subdirectories. The files contained in each of the subdirectories all follow the same naming
convention: they are named after the Experiment’s randomly-generated UUID. The subdirectories are as follows:

1) /Descriptions/

Contains a .json file for each completed Experiment, describing all critical (and some extra) information about the
Experiment’s results. Such information includes, but is certainly not limited to: keys, algorithm/library name, final
scores, model_initializer hash, hyperparameters, cross experiment parameters, breakdown of times elapsed, start/end
datetimes, breakdown of evaluations over runs/folds/reps, source script name, platform, and additional notes. This file
is meant to give you all the details you need regarding an Experiment’s results and the conditions that led to those
results.

2) /Heartbeats/

Contains a .log file for each completed Experiment that is created by copying the aforementioned ‘Hyperparam-
eterHunterAssets/Heartbeat.log’ file. This file is meant to give you a record of what exactly the Experiment was
experiencing along the course of its existence. This can be useful if you need to verify questionable results, or check
for error/warning/debug messages that might not have been noticed before.

29

hyperparameter_hunter Documentation, Release 3.0.0

3) /PredictionsOOF/

Contains a .csv file for each completed Experiment, containing out-of-fold predictions for the train_dataset
provided to Environment. If Environment is given a runs value > 1, or if a repeated cross-validation scheme
is provided (like sklearn’s RepeatedKFold or RepeatedStratifiedKFold), then OOF predictions will be
averaged according to the number of runs and repetitions. An extended discussion of this file’s uses probably isn’t
necessary, but just some of the things you might want it for include: testing the performance of ensembled models via
their prediction files, or calculating other metric values, if, for example, we wanted an F1 score, or simple accuracy
after the Experiment had finished, instead of the ROC-AUC score we told the Environment we wanted. Note
that if we knew ahead of time we wanted all three of these metrics, we could have easily given the Environment all
three (or any other number of metrics) at its initialization. See the ‘custom_metrics_example.py’ example script for
more details on advanced metrics specifications.

4) /PredictionsHoldout/

This subdirectory’s file structure is pretty much identical to ‘PredictionsOOF/’ and is populated when we use
Environment’s holdout_dataset kwarg to provide a holdout DataFrame, a filepath to one, or a callable to
extract a holdout_dataset from our train_dataset. Additionally, if a holdout_dataset is provided,
the provided metrics will be calculated for it as well (unless you tell it otherwise).

5) /PredictionsTest/

This subdirectory is much like ‘PredictionsOOF/’ and ‘PredictionsHoldout/’. It is populated when we use
Environment’s test_dataset kwarg to provide a test DataFrame, or a filepath to one. It may be
worth noting that the major difference between test_dataset and its counterparts (train_dataset, and
holdout_dataset) is that test predictions are not evaluated because it is the nature of the test_dataset to
have unknown targets.

6) /ScriptBackups/

Contains a .py file for each completed Experiment that is an exact copy of the script executed that led to the
instantiation of the Experiment. These files exist primarily to assist in “oh shit” moments where you have no
idea how to recreate an Experiment. ‘script_backup’ is blacklisted by default when executing a hyperparameter
OptimizationProtocol, as all experiments would be created by the same file.

6.1.2 /KeyAttributeLookup/

• This directory stores any complex-typed Environment parameters and hyperparameters, as well as the hashes
with which those complex objects are associated.

• Specifically, this directory is concerned with any python classes, or callables, or DataFrames you may provide,
and will create a the appropriate file or directory to properly store the object.

– If a class is provided (as is the case with cv_type, and model_initializer), the Shelve and Dill
libraries are used to pickle a copy of the class, linked to the class’s hash as its key.

– If a defined function, or a lambda is provided (as is the case with prediction_formatter, which is
an optional Environment kwarg), a .json file entry is created linking the callable’s hash to its source
code saved as a string, which can be recreated using Python’s exec function.

30 Chapter 6. File Structure Overview

hyperparameter_hunter Documentation, Release 3.0.0

– If a Pandas DataFrame is provided (as is the case with train_dataset, and its holdout and test coun-
terparts), the process is slightly different. Rather than naming a file after the complex-typed attribute (as
in the first two types), a directory is named after the attribute, hence the ‘HyperparameterHunterAs-
sets/KeyAttributeLookup/train_dataset/’ directory. Then, .csv files are added to the corresponding
directory, which are named after the DataFrame’s hash, and which contain the DataFrame itself.

• Entries in the ‘KeyAttributeLookup/’ directory are created on an as-needed basis.

– This means that you may see entries named after attributes other than those shown in this example along
the course of your own project.

– They are created whenever Environments or Experiments are provided arguments too complex to
neatly display in the Experiment’s ‘Descriptions/’ entry file.

– Some other complex attributes you may come across that are given ‘KeyAttributeLookup/’ entries in-
clude: custom metrics provided via Environment’s metrics and metrics_params kwargs, and
Keras Neural Network callbacks and build_fns.

6.1.3 /Leaderboards/

• At the time of this documentation’s writing, this directory contains only one file: ‘GlobalLeaderboard.csv’;
although, more are on the way to assist you in comparing the performance of different Experiments, and they
should be similar in structure to this one.

• ‘GlobalLeaderboard.csv’ is a DataFrame containing one row for every completed Experiment

• It has a column for every final metric evaluation performed, as well as the following columns: ‘experiment_id’,
‘hyperparameter_key’, ‘cross_experiment_key’, and ‘algorithm_name’

• Rows are sorted in descending order according to the first metric provided, and will prioritize OOF evaluations
before holdout evaluations if both are given.

• If an Experiment does not have a particular evaluation, the Experiment row’s value for that column will
be null.

– This can happen if new metrics are specified, which were not recorded for earlier experiments, or if a
holdout_dataset is provided to later Experiments that earlier ones did not have.

6.1.4 /TestedKeys/

• This directory contains a .json file named for every unique cross_experiment_key encountered.

• Each .json file contains a dictionary, whose keys are the hyperparameter_keys that have been tested in
conjunction with the cross_experiment_key for which the containing file is named.

• The value of each of these keys is a list of strings, in which each string is an experiment_id, denot-
ing an Experiment that was conducted with the hyperparameters symbolized by that list’s key, and an
Environment, whose cross-experiment parameters are symbolized by the name of the containing file.

– The values are lists in order to accommodate Experiments that are intentionally duplicated.

6.1. HyperparameterHunterAssets/ 31

hyperparameter_hunter Documentation, Release 3.0.0

32 Chapter 6. File Structure Overview

CHAPTER

SEVEN

HYPERPARAMETERHUNTER EXAMPLES

This section provides links to example scripts that may be helpful to better understand how HyperparameterHunter
works with some libraries, as well as some of HyperparameterHunter’s more advanced features.

7.1 Getting Started

• Simple Experiment

• Simple Hyperparameter Optimization

7.2 Different Libraries

• CatBoost

• Keras

• LightGBM

• Scikit-Learn

• XGBoost

• rgf_python

7.3 Advanced Features

• Holdout/Test Datasets

• do_full_save

• environment_params_path

• lambda_callback

33

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_experiment_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_optimization_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/holdout_test_datasets_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/do_full_save_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/environment_params_path_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lambda_callback_example.py

hyperparameter_hunter Documentation, Release 3.0.0

34 Chapter 7. HyperparameterHunter Examples

CHAPTER

EIGHT

HYPERPARAMETERHUNTER LIBRARY COMPATIBILITY

This section lists libraries that have been tested with HyperparameterHunter and briefly outlines some works in
progress.

8.1 Tested and Compatible

• CatBoost

• Keras

• LightGBM

• Scikit-Learn

• XGBoost

• rgf_python

8.2 Support On the Way

• PyTorch/Skorch

• TensorFlow

• Boruta

• Imbalanced-Learn

8.3 Not Yet Compatible

• TPOT

– After admittedly minimal testing, problems arose due to the fact that TPOT implements its own cross-
validation scheme

– This resulted in (probably unexpected) nested cross validation, and extremely long execution times

35

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples

hyperparameter_hunter Documentation, Release 3.0.0

8.4 Notes

• If you don’t see the one of your favorite libraries listed above, and you want to do something about that, let us
know!

• See HyperparameterHunter’s ‘examples/’ directory for help on getting started with compatible libraries

• Improved support for hyperparameter tuning with Keras is on the way!

36 Chapter 8. HyperparameterHunter Library Compatibility

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

37

	Why Use HyperparameterHunter?
	TL;DR
	What is HyperparameterHunter?
	Features

	Installation
	Dependencies

	Quick Start
	Set Up an Environment

	HyperparameterHunter API Essentials
	Environment
	Experimentation
	Hyperparameter Optimization
	Hyperparameter Space
	Feature Engineering
	Extras
	Indices and tables

	Complete HyperparameterHunter API
	File Structure Overview
	HyperparameterHunterAssets/

	HyperparameterHunter Examples
	Getting Started
	Different Libraries
	Advanced Features

	HyperparameterHunter Library Compatibility
	Tested and Compatible
	Support On the Way
	Not Yet Compatible
	Notes

	Indices and tables

