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Why Use HyperparameterHunter?

This section provides an overview of the mission and primary uses of HyperparameterHunter, as well as some of its main features.


TL;DR


	HyperparameterHunter saves your Experiments to provide:



	Enhanced, long-term hyperparameter optimization; and


	Improved awareness of what you’ve done, what works, and what you should try next














What is HyperparameterHunter?


	Don’t think of HyperparameterHunter as a new machine learning tool; its a toolbox



	There are tons of excellent machine learning libraries. The problem is keeping track of them all


	Impractical to keep track of which libraries work, which hyperparameters are best for whichever algorithms, and how your
experiment was set up


	Let HyperparameterHunter organize your tools for you, while you focus on using the best tool for the job


	Stop wasting time debating between a screwdriver and a wrench, when you’re staring at a nail









	Not a new thing to try alongside other algorithms. Its a new way of doing the things you already do



	Keep using the libraries/algorithms you know and love, just tell HyperparameterHunter about them









	Provides a simple wrapper for executing machine learning algorithms



	Automatically saves the testing conditions/hyperparameters, results, predictions, and more


	Test and evaluate wide range of algorithms from many different libraries in a unified format














Features


	Stop worrying about keeping track of hyperparameters, scores, or re-running the same Experiments


	See records of all your Experiments: from birds-eye-view leaderboards, to individual result files


	Supercharge informed hyperparameter optimization by allowing it to use saved Experiments



	No need to hold HyperparameterHunter’s hand while it tries to find the Experiment you ran months ago


	It automatically reads your Experiment files to find the ones that fit, and it learns from them









	Eliminate boilerplate code for cross-validation loops, predicting, and scoring


	Have predictions ready to go when its time for ensembling, meta-learning, and finalizing your models










          

      

      

    

  

    
      
          
            
  
Installation

This section explains how to install HyperparameterHunter.

For the latest stable release, execute:

pip install hyperparameter_hunter





For the bleeding-edge version, execute:

pip install git+https://github.com/HunterMcGushion/hyperparameter_hunter.git






Dependencies


	Dill


	NumPy


	Pandas


	SciPy


	Scikit-Learn


	Scikit-Optimize


	SimpleJSON










          

      

      

    

  

    
      
          
            
  
Quick Start

This section provides a jumping-off point for using HyperparameterHunter’s main features.


Set Up an Environment

from hyperparameter_hunter import Environment, CVExperiment
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import StratifiedKFold
from xgboost import XGBClassifier

data = load_breast_cancer
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df["target"] = data.target

env = Environment(
        train_dataset=df,
        results_path="path/to/results/directory",
        metrics=["roc_auc_score"],
        cv_type=StratifiedKFold,
        cv_params=dict(n_splits=5, shuffle=2, random_state=32)
)






Individual Experimentation

experiment = CVExperiment(
    model_initializer=XGBClassifier,
    model_init_params=dict(objective="reg:linear", max_depth=3, subsample=0.5)
)








Hyperparameter Optimization

from hyperparameter_hunter import BayesianOptPro, Real, Integer, Categorical

optimizer = BayesianOptPro(iterations=10, read_experiments=True)

optimizer.forge_experiment(
    model_initializer=XGBClassifier,
    model_init_params=dict(
        n_estimators=200,
        subsample=0.5,
        max_depth=Integer(2, 20),
        learning_rate=Real(0.0001, 0.5),
        booster=Categorical(["gbtree", "gblinear", "dart"]),
    )
)

optimizer.go()





Plenty of examples for different libraries, and algorithms, as well as more advanced HyperparameterHunter features can be found
in the examples [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples] directory.









          

      

      

    

  

    
      
          
            
  
HyperparameterHunter API Essentials

This section exposes the API for all the HyperparameterHunter functionality that will be necessary for most users.


Environment


	
class hyperparameter_hunter.environment.Environment(train_dataset, environment_params_path=None, *, results_path=None, metrics=None, holdout_dataset=None, test_dataset=None, target_column=None, id_column=None, do_predict_proba=None, prediction_formatter=None, metrics_params=None, cv_type=None, runs=None, global_random_seed=None, random_seeds=None, random_seed_bounds=None, cv_params=None, verbose=None, file_blacklist=None, reporting_params=None, to_csv_params=None, do_full_save=None, experiment_callbacks=None, experiment_recorders=None, save_transformed_metrics=None)

	Bases: object

Class to organize the parameters that allow Experiments/OptPros to be fairly compared

Environment is the collective starting point for all of HyperparameterHunter’s biggest
and best toys: Experiments and OptimizationProtocols. Without an Environment, neither of
these will work.

The Environment is where we declare all the parameters that transcend traditional
“hyperparameters”. It houses the stuff without which machine learning can’t even really
start. Specifically, Environment cares about 1) The data used for fitting/predicting,
2) The cross-validation scheme used to split the data and fit models; and 3) How to evaluate
the predictions made on that data. There are plenty of other goodies documented below, but
the absolutely mission-critical parameters concerned with the above tasks are
train_dataset, cv_type, cv_params, and metrics. Additionally, it’s important to
provide results_path, so Experiment/OptPro results can be saved, which is kind of what
HyperparameterHunter is all about


	Parameters

	
	train_dataset: Pandas.DataFrame, or str path
	The training data for the experiment. Will be split into train/holdout data, if
applicable, and train/validation data if cross-validation is to be performed. If str,
will attempt to read file at path via pandas.read_csv(). For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	environment_params_path: String path, or None, default=None
	If not None and is valid .json filepath containing an object (dict), the file’s contents
are treated as the default values for all keys that match any of the below kwargs used
to initialize Environment



	results_path: String path, or None, default=None
	If valid directory path and the results directory has not yet been created, it will be
created here. If this does not end with <ASSETS_DIRNAME>, it will be appended. If
<ASSETS_DIRNAME> already exists at this path, new results will also be stored here. If
None or invalid, results will not be stored



	metrics: Dict, List, or None, default=None
	Iterable describing the metrics to be recorded, along with a means to compute the value
of each metric. Should be of one of the two following forms:

List Form:


	[“<metric name>”, “<metric name>”, …]:
Where each value is a string that names an attribute in sklearn.metrics


	[Metric, Metric, …]:
Where each value of the list is an instance of metrics.Metric


	[(<name>, <metric_function>, [<direction>]), (<*args>), …]:
Where each value of the list is a tuple of arguments that will be used to instantiate
a metrics.Metric. Arguments given in tuples must be in order expected by
metrics.Metric: (name, metric_function, direction)




Dict Form:


	{“<metric name>”: <metric_function>, …}:
Where each key is a name for the corresponding metric callable, which is used to
compute the value of the metric


	{“<metric name>”: (<metric_function>, <direction>), …}:
Where each key is a name for the corresponding metric callable and direction, all of
which are used to instantiate a metrics.Metric


	{“<metric name>”: “<sklearn metric name>”, …}:
Where each key is a name for the metric, and each value is the name of the attribute
in sklearn.metrics for which the corresponding key is an alias


	{“<metric name>”: None, …}:
Where each key is the name of the attribute in sklearn.metrics


	{“<metric name>”: Metric, …}:
Where each key names an instance of metrics.Metric. This is the
internally-used format to which all other formats will be converted




Metric callable functions should expect inputs of form (target, prediction), and should
return floats. See the documentation of metrics.Metric for information
regarding expected parameters and types



	holdout_dataset: Pandas.DataFrame, callable, str path, or None, default=None
	If pd.DataFrame, this is the holdout dataset. If callable, expects a function that takes
(self.train: DataFrame, self.target_column: str) as input and returns the new
(self.train: DataFrame, self.holdout: DataFrame). If str, will attempt to read file at
path via pandas.read_csv(). Else, there is no holdout set. For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	test_dataset: Pandas.DataFrame, str path, or None, default=None
	The testing data for the experiment. Structure should be identical to that of
train_dataset, except its target_column column can be empty or non-existent, because
test_dataset predictions will never be evaluated. If str, will attempt to read file at
path via pandas.read_csv(). For more information on which columns will be used
during fitting/predicting, see the “Dataset columns” note in the “Notes” section below



	target_column: Str, or list, default=’target’
	If str, denotes the column name in all provided datasets (except test) that contains the
target output. If list, should be a list of strs designating multiple target columns.
For example, in a multi-class classification dataset like UCI’s hand-written digits,
target_column would be a list containing ten strings. In this example, the
target_column data would be sparse, with a 1 to signify that a sample is a written
example of a digit (0-9). For a working example, see
‘hyperparameter_hunter/examples/lib_keras_multi_classification_example.py’



	id_column: Str, or None, default=None
	If not None, str denoting the column name in all provided datasets containing sample IDs



	do_predict_proba: Boolean, or int, default=False
	
	If False, models.Model.fit() will call models.Model.model.predict()


	If True, it will call models.Model.model.predict_proba(), and the values in all
columns will be used as the actual prediction values


	If do_predict_proba is an int, models.Model.fit() will call
models.Model.model.predict_proba(), as is the case when do_predict_proba is
True, but the int supplied as do_predict_proba declares the column index to use as
the actual prediction values


	For example, for a model to call the predict method, do_predict_proba=False
(default). For a model to call the predict_proba method, and use all of the class
probabilities, do_predict_proba=True. To call the predict_proba method, and use
the class probabilities in the first column, do_predict_proba=0. To use the second
column (index 1) of the result, do_predict_proba=1 - This often corresponds to the
positive class’s probabilities in binary classification problems. To use the third
column do_predict_proba=2, and so on






	prediction_formatter: Callable, or None, default=None
	If callable, expected to have same signature as
utils.result_utils.format_predictions(). That is, the callable will receive
(raw_predictions: np.array, dataset_df: pd.DataFrame, target_column: str,
id_column: str or None) as input and should return a properly formatted prediction
DataFrame. The callable uses raw_predictions as the content, dataset_df to provide any
id column, and target_column to identify the column in which to place raw_predictions



	metrics_params: Dict, or None, default=dict()
	Dictionary of extra parameters to provide to metrics.ScoringMixIn.__init__().
metrics must be provided either 1) as an input kwarg to
Environment.__init__() (see metrics), or 2) as a key in metrics_params,
but not both. An Exception will be raised if both are given, or if neither is given



	cv_type: Class or str, default=’KFold’
	The class to define cross-validation splits. If str, it must be an attribute of
sklearn.model_selection._split, and it must be a cross-validation class that inherits
one of the following sklearn classes: BaseCrossValidator, or _RepeatedSplits.
Valid str values include ‘KFold’, and ‘RepeatedKFold’, although there are many more. It
must implement the following methods: [__init__, split]. If using a custom class,
see the following tested sklearn classes for proper implementations:
[KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold]. The arguments
provided to cv_type.__init__() will be Environment.cv_params, which should
include the following: [‘n_splits’ <int>, ‘n_repeats’ <int> (if applicable)].
cv_type.split() will receive the following arguments:
[BaseExperiment.train_input_data, BaseExperiment.train_target_data]



	runs: Int, default=1
	The number of times to fit a model within each fold to perform multiple-run-averaging
with different random seeds



	global_random_seed: Int, default=32
	The initial random seed used just before generating an Experiment’s random_seeds. This
ensures consistency for random_seeds between Experiments, without having to explicitly
provide it here



	random_seeds: None, or List, default=None
	If None, random_seeds of the appropriate shape will be created automatically. Else,
must be a list of ints of shape (cv_params[‘n_repeats’], cv_params[‘n_splits’],
runs). If cv_params does not have the key n_repeats (because standard
cross-validation is being used), the value will default to 1. See
experiments.BaseExperiment._random_seed_initializer() for info on expected shape



	random_seed_bounds: List, default=[0, 100000]
	A list containing two integers: the lower and upper bounds, respectively, for generating
an Experiment’s random seeds in
experiments.BaseExperiment._random_seed_initializer(). Generally, leave this
kwarg alone



	cv_params: dict, or None, default=dict()
	Parameters provided upon initialization of cv_type. Keys may be any args accepted by
cv_type.__init__(). Number of fold splits must be provided via “n_splits”, and
number of repeats (if applicable for cv_type) must be provided via “n_repeats”



	verbose: Int, boolean, default=3
	Verbosity of printing for any experiments performed while this Environment is active

Higher values indicate more frequent logging. Logs are still recorded in the heartbeat
file regardless of verbosity level. verbose only dictates which logs are visible in
the console. The following table illustrates which types of logging messages will be
visible with each verbosity level:

| Verbosity | Keys/IDs | Final Score | Repetitions* | Folds | Runs* | Run Starts* | Result Files | Other |
|:---------:|:--------:|:-----------:|:------------:|:-----:|:-----:|:-----------:|:------------:|:-----:|
|     0     |          |             |              |       |       |             |              |       |
|     1     |    Yes   |     Yes     |              |       |       |             |              |       |
|     2     |    Yes   |     Yes     |      Yes     |  Yes  |       |             |              |       |
|     3     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |             |              |       |
|     4     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |     Yes     |      Yes     |  Yes  |





*: If such logging is deemed appropriate with the given cross-validation parameters. In
other words, repetition/run logging will only be verbose if Environment was given more
than one repetition/run, respectively



	file_blacklist: List of str, or None, or ‘ALL’, default=None
	If list of str, the result files named within are not saved to their respective
directory in “<ASSETS_DIRNAME>/Experiments”. If None, all result files are saved.
If ‘ALL’, nothing at all will be saved for the Experiments. If the path of the file that
initializes an Experiment does not end with a “.py” extension, the Experiment proceeds
as if “script_backup” had been added to file_blacklist. This means that backup files
will not be created for Jupyter notebooks (or any other non-“.py” files). For info on
acceptable values, see validate_file_blacklist()



	reporting_params: Dict, default=dict()
	Parameters passed to initialize reporting.ReportingHandler



	to_csv_params: Dict, default=dict()
	Parameters passed to the calls to pandas.frame.DataFrame.to_csv() in
recorders. In particular, this is where an Experiment’s final prediction files
are saved, so the values here will affect the format of the .csv prediction files.
Warning: If to_csv_params contains the key “path_or_buf”, it will be removed.
Otherwise, all items are supplied directly to to_csv(), including kwargs it might
not be expecting if they are given



	do_full_save: None, or callable, default=:func:`utils.result_utils.default_do_full_save`
	If callable, expected to take an Experiment’s result description dict as input and
return a boolean. If None, treated as a callable that returns True. This parameter is
used by recorders.DescriptionRecorder to determine whether the Experiment
result files following the description should also be created. If do_full_save returns
False, result file-saving is stopped early, and only the description is saved. If
do_full_save returns True, all files not in file_blacklist are saved normally. This
allows you to skip creation of an Experiment’s predictions, logs, and heartbeats if its
score does not meet some threshold you set, for example. do_full_save receives the
Experiment description dict as input, so for help setting do_full_save, just look into
one of your Experiment descriptions



	experiment_callbacks: `LambdaCallback`, or list of `LambdaCallback` (optional)
	Callbacks injected directly into Experiments, adding new functionality, or customizing
existing processes. Should be a LambdaCallback or a list of such classes.
LambdaCallback can be created using callbacks.bases.lambda_callback(), which
documents the options for creating callbacks. experiment_callbacks will be added to
the MRO of the executed Experiment class by experiment_core.ExperimentMeta at
__call__ time, making experiment_callbacks new base classes of the Experiment. See
callbacks.bases.lambda_callback() for more information. Note that the Experiments
conducted by OptPros will still benefit from experiment_callbacks. The presence of
LambdaCallbacks will affect neither Environment keys, nor Experiment keys. In other
words, for the purposes of Experiment matching/recording, all other factors being equal,
an Experiment with experiment_callbacks is considered identical to an Experiment
without, despite whatever custom functionality was added by the LambdaCallbacks



	experiment_recorders: List, None, default=None
	If not None, may be a list whose values are tuples of
(<recorders.BaseRecorder descendant>, <str result_path>). The result_path str
should be a path relative to results_path that specifies the directory/file in
which the product of the custom recorder should be saved. The contents of
experiment_recorders will be provided to recorders.RecorderList upon completion of
an Experiment, and, if the subclassing documentation in recorders is followed
properly, will create or update a result file for the just-executed Experiment



	save_transformed_metrics: Boolean (optional)
	Declares manner in which a model’s predictions should be evaluated through the provided
metrics, with regard to target data transformations. This setting can be ignored if
no transformation of the target variable takes place (either through
FeatureEngineer,
EngineerStep, or otherwise).

The default value of save_transformed_metrics depends on the dtype of the target data
in train_dataset. If all target columns are numeric, save_transformed_metrics`=False,
meaning metric evaluation should use the original/inverted targets and predictions. Else
if any target column is non-numeric, `save_transformed_metrics`=True, meaning evaluation
should use the transformed targets and predictions because most metrics require numeric
inputs. This is described further in :attr:`save_transformed_metrics. A more
descriptive name for this may be “calculate_metrics_using_transformed_predictions”,
but that’s a bit verbose–even by my standards







	Other Parameters

	
	cross_validation_type: …
	
	Alias for cv_type *






	cross_validation_params: …
	
	Alias for cv_params *






	metrics_map: …
	
	Alias for metrics *






	reporting_handler_params: …
	
	Alias for reporting_params *






	root_results_path: …
	
	Alias for results_path *












Notes

Dataset columns: In order to specify the columns to be used by the three dataset kwargs
(train_dataset, holdout_dataset, test_dataset) during fitting and predicting, a few
attributes can be used. On Environment initialization, the columns specified by the
following kwargs will be separated from the rest of the dataset during training/predicting:
1) target_column, which names the column containing the target output labels for the input
data; and 2) id_column, which (if given) represents the name of the column that contains
identifying information for each data sample, and should otherwise have no relation to the
actual data. Additionally, the feature_selector kwarg of the descendants of
hyperparameter_hunter.experiments.BaseExperiment (like
hyperparameter_hunter.experiments.CVExperiment) is used to filter out
columns of the given datasets prior to fitting. See its documentation for more information,
but it can effectively be used to remove any columns from the datasets

Overriding default kwargs at environment_params_path: If you have any of the above kwargs
specified in the .json file at environment_params_path (except environment_params_path,
which will be ignored), you can override its value by passing it as a kwarg when
initializing Environment. The contents at environment_params_path are only used
when the matching kwarg supplied at initialization is None. See
“/examples/environment_params_path_example.py” for details

The order of precedence for determining the value of each parameter is as follows, with
items at the top having the highest priority, and deferring only to the items below if
their own value is None:


	1)kwargs passed directly to Environment.__init__() on initialization,


	2)keys of the file at environment_params_path (if valid .json object),


	3)keys of hyperparameter_hunter.environment.Environment.DEFAULT_PARAMS




do_predict_proba: Because this parameter can be either a boolean or an integer, it is
important to explicitly pass booleans rather than truthy or falsey values. Similarly, only
pass integers if you intend for the value to be used as a column index. Do not pass 0 to
mean False, or 1 to mean True


	Attributes

	
	train_input: DatasetSentinel
	Sentinel replaced with current train input data during Model fitting/predicting.
Commonly given in the model_extra_params kwargs of
hyperparameter_hunter.experiments.BaseExperiment or
hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment() for
eval_set-like hyperparameters. Importantly, the actual value of this Sentinel is
determined after performing cross-validation data splitting, and after executing
FeatureEngineer



	train_target: DatasetSentinel
	Like train_input, except for current train target data



	validation_input: DatasetSentinel
	Like train_input, except for current validation input data



	validation_target: DatasetSentinel
	Like train_input, except for current validation target data



	holdout_input: DatasetSentinel
	Like train_input, except for current holdout input data



	holdout_target: DatasetSentinel
	Like train_input, except for current holdout target data









Methods







	environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments



	format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results



	generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters



	initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime



	update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS



	validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted







	
property save_transformed_metrics

	If save_transformed_metrics is True, and target transformation does occur, then
experiment metrics are calculated using the transformed targets and predictions, which is
the form returned directly by a fitted model’s predict method. For example, if target data
is label-encoded, and an feature_engineering.EngineerStep is used to one-hot encode
the target, then metrics functions will receive the following as input:
(one-hot-encoded targets, one-hot-encoded predictions).

Conversely, if save_transformed_metrics is False, and target transformation does occur,
then experiment metrics are calculated using the inverse of the transformed targets and
predictions, which is same form as the original target data. Continuing the example of
label-encoded target data, and an feature_engineering.EngineerStep to one-hot
encode the target, in this case, metrics functions will receive the following as input:
(label-encoded targets, label-encoded predictions)






	
environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments






	
validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted






	
format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results






	
update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS






	
generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters






	
initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime






	
property train_input

	Get a DatasetSentinel representing an Experiment’s fold_train_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_input upon
Model initialization














	
property train_target

	Get a DatasetSentinel representing an Experiment’s fold_train_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_target upon
Model initialization














	
property validation_input

	Get a DatasetSentinel representing an Experiment’s fold_validation_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_input
upon Model initialization














	
property validation_target

	Get a DatasetSentinel representing an Experiment’s fold_validation_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_target
upon Model initialization














	
property holdout_input

	Get a DatasetSentinel representing an Experiment’s holdout_input_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_input_data
upon Model initialization














	
property holdout_target

	Get a DatasetSentinel representing an Experiment’s holdout_target_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_target_data
upon Model initialization




















Experimentation


	
class hyperparameter_hunter.experiments.CVExperiment(model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None, callbacks=None)

	Bases: hyperparameter_hunter.experiments.BaseCVExperiment


	
__init__(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None, callbacks=None)

	One-off Experimentation base class

Bare-bones Description: Runs the cross-validation scheme defined by Environment,
during which 1) Datasets are processed according to feature_engineer; 2) Models are built
by instantiating model_initializer with model_init_params; 3) Models are trained on
processed data, optionally using parameters from model_extra_params; 4) Results are
logged and recorded for each fitting period; 5) Descriptions, predictions, results (both
averages and individual periods), etc. are saved.

What’s the Big Deal? The most important takeaway from the above description is that
descriptions/results are THOROUGH and REUSABLE. By thorough, I mean that all of a model’s
hyperparameters are saved, not just the ones given in model_init_params. This may sound
odd, but it’s important because it makes results reusable during optimization, when you may
be using a different set of hyperparameters. It helps with other things like preventing
duplicate experiments and ensembling, as well. But the big part is that this transforms
hyperparameter optimization from an isolated, throwaway process we can only afford when an
ML project is sufficiently “mature” to a process that covers the entire lifespan of a
project. No Experiment is forgotten or wasted. Optimization is automatically given the data
it needs to succeed by drawing on all your past Experiments and optimization rounds.

The Experiment has three primary missions:
1. Act as scaffold for organizing ML Experimentation and optimization
2. Record Experiment descriptions and results
3. Eliminate lots of repetitive/error-prone boilerplate code

Providing a scaffold for the entire ML process is critical because without a standardized
format, everything we do looks different. Without a unified scaffold, development is slower,
more confusing, and less adaptable. One of the benefits of standardizing the format of ML
Experimentation is that it enables us to exhaustively record all the important
characteristics of Experiment, as well as an assortment of customizable result files – all
in a way that allows them to be reused in the future.

What About Data/Metrics? Experiments require an active
Environment in order to function, from which
the Experiment collects important cross-experiment parameters, such as datasets, metrics,
cross-validation schemes, and even callbacks to inherit, among many other properties
documented in Environment


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its “extra” methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.
OptPros can perform hyperparameter optimization of feature_engineer steps. This
capability adds a third allowed value to the above list and is documented in
forge_experiment()



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged



	auto_start: Boolean, default=True
	If True, after the Experiment is initialized, it will automatically call
BaseExperiment.preparation_workflow(), followed by
BaseExperiment.experiment_workflow(), effectively completing all essential tasks
without requiring additional method calls



	target_metric: Tuple, str, default=(‘oof’, <:attr:`environment.Environment.metrics`[0]>)
	Path denoting the metric to be used to compare completed Experiments or to use for
certain early stopping procedures in some model classes. The first value should be one
of [‘oof’, ‘holdout’, ‘in_fold’]. The second value should be the name of a metric being
recorded according to the values supplied in
hyperparameter_hunter.environment.Environment.metrics_params. See the
documentation for hyperparameter_hunter.metrics.get_formatted_target_metric() for
more info. Any values returned by, or used as the target_metric input to this function
are acceptable values for target_metric



	callbacks: `LambdaCallback`, or list of `LambdaCallback` (optional)
	Callbacks injected directly into concrete Experiment (CVExperiment), adding new
functionality, or customizing existing processes. Should be a LambdaCallback or
a list of such classes. LambdaCallback can be created using
callbacks.bases.lambda_callback(), which documents the options for creating
callbacks. callbacks will be added to the MRO of the Experiment by
experiment_core.ExperimentMeta at __call__ time, making callbacks new
base classes of the Experiment. See callbacks.bases.lambda_callback() for more
information. The presence of LambdaCallbacks will not affect Experiment keys. In other
words, for the purposes of Experiment matching/recording, all other factors being equal,
an Experiment with callbacks is considered identical to an Experiment without, despite
whatever custom functionality was added by the LambdaCallbacks










See also


	hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment()
	OptPro method to define hyperparameter search scaffold for building Experiments during optimization. This method follows the same format as Experiment initialization, but it adds the ability to provide hyperparameter values as ranges to search over, via subclasses of Dimension. The other notable difference is that forge_experiment removes the auto_start and target_metric kwargs, which is described in the forge_experiment docstring Notes



	Environment
	Provides critical information on how Experiments should be conducted, as well as the data to be used by Experiments. An Environment must be active before executing any Experiment or OptPro



	lambda_callback()
	Enables customization of the Experimentation process and access to all Experiment internals through a collection of methods that are invoked at all the important periods over an Experiment’s lifespan. These can be provided via the experiment_callbacks kwarg of Environment, and the callback classes literally get thrown in to the parent classes of the Experiment, so they’re kind of a big deal


















Hyperparameter Optimization


	
class hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Bayesian optimization with Gaussian Processes


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.

Methods







	forge_experiment

	Define constraints on Experiments conducted by OptPro (like hyperparameter search space)



	go

	Start optimization











	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked




















	
class hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GBRT', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with gradient boosted regression trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GBRT', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.

Methods







	forge_experiment

	Define constraints on Experiments conducted by OptPro (like hyperparameter search space)



	go

	Start optimization











	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked




















	
class hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='RF', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with random forest regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='RF', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.

Methods







	forge_experiment

	Define constraints on Experiments conducted by OptPro (like hyperparameter search space)



	go

	Start optimization











	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked




















	
class hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='ET', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with extra trees regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='ET', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.

Methods







	forge_experiment

	Define constraints on Experiments conducted by OptPro (like hyperparameter search space)



	go

	Start optimization











	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked




















	
class hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='DUMMY', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Random search by uniform sampling


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='DUMMY', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.

Methods







	forge_experiment

	Define constraints on Experiments conducted by OptPro (like hyperparameter search space)



	go

	Start optimization











	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked




















Hyperparameter Space


	
class hyperparameter_hunter.space.dimensions.Real(low, high, prior='uniform', transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any real value in a given range


	Parameters

	
	low: Float
	Lower bound (inclusive)



	high: Float
	Upper bound (inclusive)



	prior: {“uniform”, “log-uniform”}, default=”uniform”
	Distribution to use when sampling random points for this dimension. If “uniform”, points
are sampled uniformly between the lower and upper bounds. If “log-uniform”, points are
sampled uniformly between log10(lower) and log10(upper)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Real, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
__init__(self, low, high, prior='uniform', transform='identity', name=None)

	Search space dimension that can assume any real value in a given range


	Parameters

	
	low: Float
	Lower bound (inclusive)



	high: Float
	Upper bound (inclusive)



	prior: {“uniform”, “log-uniform”}, default=”uniform”
	Distribution to use when sampling random points for this dimension. If “uniform”, points
are sampled uniformly between the lower and upper bounds. If “log-uniform”, points are
sampled uniformly between log10(lower) and log10(upper)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()




















	
class hyperparameter_hunter.space.dimensions.Integer(low, high, transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any integer value in a given range


	Parameters

	
	low: Int
	Lower bound (inclusive)



	high: Int
	Upper bound (inclusive)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Integer, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
__init__(self, low, high, transform='identity', name=None)

	Search space dimension that can assume any integer value in a given range


	Parameters

	
	low: Int
	Lower bound (inclusive)



	high: Int
	Upper bound (inclusive)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()




















	
class hyperparameter_hunter.space.dimensions.Categorical(categories: list, prior: list = None, transform='onehot', optional=False, name=None)

	Bases: hyperparameter_hunter.space.dimensions.Dimension

Search space dimension that can assume any categorical value in a given list


	Parameters

	
	categories: List
	Sequence of possible categories of shape (n_categories,)



	prior: List, or None, default=None
	If list, prior probabilities for each category of shape (categories,). By default all
categories are equally likely



	transform: {“onehot”, “identity”}, default=”onehot”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “onehot”, the transformed space is a one-hot encoded
representation of the original space



	optional: Boolean, default=False
	Intended for use by FeatureEngineer
when optimizing an EngineerStep.
Specifically, this enables searching through a space in which an EngineerStep either
may or may not be used. This is contrary to Categorical’s usual function of creating
a space comprising multiple categories. When optional = True, the space created will
represent any of the values in categories either being included in the entire
FeatureEngineer process, or being skipped entirely. Internally, a value excluded by
optional is represented by a sentinel value that signals it should be removed from the
containing list, so optional will not work for choosing between a single value and
None, for example



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	categories: Tuple
	Original value passed through the categories kwarg, cast to a tuple. If optional is
True, then an instance of RejectedOptional will be appended to categories



	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	optional: Boolean
	Original value passed through the optional kwarg



	prior: List, or None
	Original value passed through the prior kwarg



	prior_actual: List
	Calculated prior value, initially equivalent to prior, but then set to a default
array if None



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Categorical, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
__init__(self, categories:list, prior:list=None, transform='onehot', optional=False, name=None)

	Search space dimension that can assume any categorical value in a given list


	Parameters

	
	categories: List
	Sequence of possible categories of shape (n_categories,)



	prior: List, or None, default=None
	If list, prior probabilities for each category of shape (categories,). By default all
categories are equally likely



	transform: {“onehot”, “identity”}, default=”onehot”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “onehot”, the transformed space is a one-hot encoded
representation of the original space



	optional: Boolean, default=False
	Intended for use by FeatureEngineer
when optimizing an EngineerStep.
Specifically, this enables searching through a space in which an EngineerStep either
may or may not be used. This is contrary to Categorical’s usual function of creating
a space comprising multiple categories. When optional = True, the space created will
represent any of the values in categories either being included in the entire
FeatureEngineer process, or being skipped entirely. Internally, a value excluded by
optional is represented by a sentinel value that signals it should be removed from the
containing list, so optional will not work for choosing between a single value and
None, for example



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	categories: Tuple
	Original value passed through the categories kwarg, cast to a tuple. If optional is
True, then an instance of RejectedOptional will be appended to categories



	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	optional: Boolean
	Original value passed through the optional kwarg



	prior: List, or None
	Original value passed through the prior kwarg



	prior_actual: List
	Calculated prior value, initially equivalent to prior, but then set to a default
array if None



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()




















Feature Engineering


	
class hyperparameter_hunter.feature_engineering.FeatureEngineer(steps=None, do_validate=False, **datasets)

	Bases: object

Class to organize feature engineering step callables steps (EngineerStep
instances) and the datasets that the steps request and return.


	Parameters

	
	steps: List, or None, default=None
	List of arbitrary length, containing any of the following values:



	EngineerStep instance,


	Function to provide as input to EngineerStep, or


	Categorical, with categories
comprising a selection of the previous two steps values (optimization only)







The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain
the first two values. To search a space optionally including an EngineerStep, use the
optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep
functions. Additional engineering steps may be added via add_step()



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed



	**datasets: DFDict
	This is not expected to be provided on initialization and is offered primarily for
debugging/testing. Mapping of datasets necessary to perform feature engineering steps










See also


	EngineerStep
	For proper formatting of non-Categorical values of steps







Notes

If steps does include any instances of
hyperparameter_hunter.space.dimensions.Categorical, this FeatureEngineer instance
will not be usable by Experiments. It can only be used by Optimization Protocols.
Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up using
will not pass identity checks against the original FeatureEngineer that contained
Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
...     s = MinMaxScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs





FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the
`EngineerStep` is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> #   ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])





`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical`
can also handle either `EngineerStep` categories or raw functions. Use the `optional` kwarg
of `Categorical` to test some questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_transform])
>>> fe_5 = FeatureEngineer([
...     Categorical([sqr_sum], optional=True),
...     Categorical([EngineerStep(s_scale), mm_scale]),
...     q_transform
... ])






	
__init__(self, steps=None, do_validate=False, **datasets:Dict[str, pandas.core.frame.DataFrame])

	Class to organize feature engineering step callables steps (EngineerStep
instances) and the datasets that the steps request and return.


	Parameters

	
	steps: List, or None, default=None
	List of arbitrary length, containing any of the following values:



	EngineerStep instance,


	Function to provide as input to EngineerStep, or


	Categorical, with categories
comprising a selection of the previous two steps values (optimization only)







The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain
the first two values. To search a space optionally including an EngineerStep, use the
optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep
functions. Additional engineering steps may be added via add_step()



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed



	**datasets: DFDict
	This is not expected to be provided on initialization and is offered primarily for
debugging/testing. Mapping of datasets necessary to perform feature engineering steps










See also


	EngineerStep
	For proper formatting of non-Categorical values of steps







Notes

If steps does include any instances of
hyperparameter_hunter.space.dimensions.Categorical, this FeatureEngineer instance
will not be usable by Experiments. It can only be used by Optimization Protocols.
Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up using
will not pass identity checks against the original FeatureEngineer that contained
Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
...     s = MinMaxScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs





FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the
`EngineerStep` is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> #   ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])





`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical`
can also handle either `EngineerStep` categories or raw functions. Use the `optional` kwarg
of `Categorical` to test some questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_transform])
>>> fe_5 = FeatureEngineer([
...     Categorical([sqr_sum], optional=True),
...     Categorical([EngineerStep(s_scale), mm_scale]),
...     q_transform
... ])
















	
class hyperparameter_hunter.feature_engineering.EngineerStep(f: Callable, stage=None, name=None, params=None, do_validate=False)

	Bases: object

Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization
than a raw engineer step function


	Parameters

	
	f: Callable
	Feature engineering step function that requests, modifies, and returns datasets params

Step functions should follow these guidelines:



	Request as input a subset of the 11 data strings listed in params


	Do whatever you want to the DataFrames given as input


	Return new DataFrame values of the input parameters in same order as requested







If performing a task like target transformation, causing predictions to be transformed,
it is often desirable to inverse-transform the predictions to be of the expected form.
This can easily be done by returning an extra value from f (after the datasets) that
is either a callable, or a transformer class that was fitted during the execution of f
and implements an inverse_transform method. This is the only instance in which it is
acceptable for f to return values that don’t mimic its input parameters. See the
engineer function definition using SKLearn’s QuantileTransformer in the Examples
section below for an actual inverse-transformation-compatible implementation



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable f will be given the datasets
params to modify and return. If None, will be inferred based on params.



	“pre_cv” functions are applied only once in the experiment: when it starts


	“intra_cv” functions are reapplied for each fold in the cross-validation splits







If stage is left to be inferred, “pre_cv” will usually be selected. However, if
any params (or parameters in the signature of f) are prefixed with “validation…”
or “non_train…”, then stage will inferred as “intra_cv”. See the Notes section
below for suggestions on the stage to use for different functions



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None,
f.__name__ will be used



	params: Tuple[str], or None, default=None
	Dataset names requested by feature engineering step callable f. If None, will be
inferred by parsing the signature of f. Must be a subset of the following 11 strings:

Input Data


	“train_inputs”


	“validation_inputs”


	“holdout_inputs”


	“test_inputs”


	
	“all_inputs”
	("train_inputs" + ["validation_inputs"] + "holdout_inputs" + "test_inputs")







	
	“non_train_inputs”
	(["validation_inputs"] + "holdout_inputs" + "test_inputs")









Target Data


	“train_targets”


	“validation_targets”


	“holdout_targets”


	“all_targets”
("train_targets" + ["validation_targets"] + "holdout_targets")


	“non_train_targets”
(["validation_targets"] + "holdout_targets")




As an alternative to the above list, just remember that the first half of all parameter
names should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”},
and the second half should be either “inputs” or “targets”. The only exception to this
rule is “test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage,
the validation dataset has not yet been created and is still a part of the train
dataset. During the “intra_cv” stage, the validation dataset is created by removing a
portion of the train dataset, and their values passed to f reflect this fact. This
also means that the values of the merged (“all”/”non_train”-prefixed) datasets may or
may not contain “validation” data depending on the stage; however, this is all handled
internally, so you probably don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed










See also


	FeatureEngineer
	The container for EngineerStep instances - EngineerStep`s should always be provided to HyperparameterHunter through a `FeatureEngineer



	Categorical
	Can be used during optimization to search through a group of EngineerStep`s given as `categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the EngineerStep`s in `categories, or may be omitted entirely



	get_engineering_step_stage()
	More information on stage inference and situations where overriding it may be prudent







Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each
sample/row as independent entities. For example, steps like converting a string day of the
week to one-hot encoded columns, or imputing missing values by replacement with -1 might be
conducted “pre_cv”, since they are unlikely to introduce an information leakage. Conversely,
steps like scaling/normalization, whose results for the data in one row are affected by the
data in other rows should be performed “intra_cv” in order to recalculate the final values
of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the
“…_targets” counterpart accompanying the other datasets. The “targets” suffix is missing
because test data targets are never given. Note that although “test_inputs” is still
included in both “all_inputs” and “non_train_inputs”, its lack of a target column means that
“all_targets” and “non_train_targets” may have different lengths than their
“inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'





Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):
    File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by way of:
   - ('all_inputs', 'train_inputs')
   - ('train_inputs',)
Each dataset may only be requested by a single param for each function





Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)





Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in order,
>>> #   but they are followed by `t`, an instance of `QuantileTransformer` we just fitted,
>>> #   whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested as input






	
__init__(self, f:Callable, stage=None, name=None, params=None, do_validate=False)

	Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization
than a raw engineer step function


	Parameters

	
	f: Callable
	Feature engineering step function that requests, modifies, and returns datasets params

Step functions should follow these guidelines:



	Request as input a subset of the 11 data strings listed in params


	Do whatever you want to the DataFrames given as input


	Return new DataFrame values of the input parameters in same order as requested







If performing a task like target transformation, causing predictions to be transformed,
it is often desirable to inverse-transform the predictions to be of the expected form.
This can easily be done by returning an extra value from f (after the datasets) that
is either a callable, or a transformer class that was fitted during the execution of f
and implements an inverse_transform method. This is the only instance in which it is
acceptable for f to return values that don’t mimic its input parameters. See the
engineer function definition using SKLearn’s QuantileTransformer in the Examples
section below for an actual inverse-transformation-compatible implementation



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable f will be given the datasets
params to modify and return. If None, will be inferred based on params.



	“pre_cv” functions are applied only once in the experiment: when it starts


	“intra_cv” functions are reapplied for each fold in the cross-validation splits







If stage is left to be inferred, “pre_cv” will usually be selected. However, if
any params (or parameters in the signature of f) are prefixed with “validation…”
or “non_train…”, then stage will inferred as “intra_cv”. See the Notes section
below for suggestions on the stage to use for different functions



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None,
f.__name__ will be used



	params: Tuple[str], or None, default=None
	Dataset names requested by feature engineering step callable f. If None, will be
inferred by parsing the signature of f. Must be a subset of the following 11 strings:

Input Data


	“train_inputs”


	“validation_inputs”


	“holdout_inputs”


	“test_inputs”


	
	“all_inputs”
	("train_inputs" + ["validation_inputs"] + "holdout_inputs" + "test_inputs")







	
	“non_train_inputs”
	(["validation_inputs"] + "holdout_inputs" + "test_inputs")









Target Data


	“train_targets”


	“validation_targets”


	“holdout_targets”


	“all_targets”
("train_targets" + ["validation_targets"] + "holdout_targets")


	“non_train_targets”
(["validation_targets"] + "holdout_targets")




As an alternative to the above list, just remember that the first half of all parameter
names should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”},
and the second half should be either “inputs” or “targets”. The only exception to this
rule is “test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage,
the validation dataset has not yet been created and is still a part of the train
dataset. During the “intra_cv” stage, the validation dataset is created by removing a
portion of the train dataset, and their values passed to f reflect this fact. This
also means that the values of the merged (“all”/”non_train”-prefixed) datasets may or
may not contain “validation” data depending on the stage; however, this is all handled
internally, so you probably don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed










See also


	FeatureEngineer
	The container for EngineerStep instances - EngineerStep`s should always be provided to HyperparameterHunter through a `FeatureEngineer



	Categorical
	Can be used during optimization to search through a group of EngineerStep`s given as `categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the EngineerStep`s in `categories, or may be omitted entirely



	get_engineering_step_stage()
	More information on stage inference and situations where overriding it may be prudent







Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each
sample/row as independent entities. For example, steps like converting a string day of the
week to one-hot encoded columns, or imputing missing values by replacement with -1 might be
conducted “pre_cv”, since they are unlikely to introduce an information leakage. Conversely,
steps like scaling/normalization, whose results for the data in one row are affected by the
data in other rows should be performed “intra_cv” in order to recalculate the final values
of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the
“…_targets” counterpart accompanying the other datasets. The “targets” suffix is missing
because test data targets are never given. Note that although “test_inputs” is still
included in both “all_inputs” and “non_train_inputs”, its lack of a target column means that
“all_targets” and “non_train_targets” may have different lengths than their
“inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'





Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):
    File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by way of:
   - ('all_inputs', 'train_inputs')
   - ('train_inputs',)
Each dataset may only be requested by a single param for each function





Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)





Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in order,
>>> #   but they are followed by `t`, an instance of `QuantileTransformer` we just fitted,
>>> #   whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested as input
















Extras


	
hyperparameter_hunter.callbacks.bases.lambda_callback(on_exp_start=None, on_exp_end=None, on_rep_start=None, on_rep_end=None, on_fold_start=None, on_fold_end=None, on_run_start=None, on_run_end=None, agg_name=None, do_reshape_aggs=True, method_agg_keys=False, on_experiment_start=<object object at 0x7f4f6d239bf0>, on_experiment_end=<object object at 0x7f4f6d239bf0>, on_repetition_start=<object object at 0x7f4f6d239bf0>, on_repetition_end=<object object at 0x7f4f6d239bf0>)

	Utility for creating custom callbacks to be declared by Environment and used by
Experiments. The callable “on_<…>_<start/end>” parameters provided will receive as input
whichever attributes of the Experiment are included in the signature of the given callable. If
**kwargs is given in the callable’s signature, a dict of all of the Experiment’s attributes
will be provided. This can be helpful for trying to figure out how to build a custom callback,
but should not be used unless absolutely necessary. If the Experiment does not have an attribute
specified in the callable’s signature, the following placeholder will be given: “INVALID KWARG”


	Parameters

	
	on_exp_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment start



	on_exp_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment end



	on_rep_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition start



	on_rep_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition end



	on_fold_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold start



	on_fold_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold end



	on_run_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run start



	on_run_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run end



	agg_name: Str, default=uuid.uuid4
	This parameter is only used if the callables are behaving like AggregatorCallbacks by
returning values (see the “Notes” section below for details on this). If the callables do
return values, they will be stored under a key named (“_” + agg_name) in a dict in
hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates. The purpose of
this parameter is to make it easier to understand an Experiment’s description file, as
agg_name will default to a UUID if it is not given



	do_reshape_aggs: Boolean, default=True
	Whether to reshape the aggregated values to reflect the nested repetitions/folds/runs
structure used for other aggregated values. If False, lists of aggregated values are left in
their original shapes. This parameter is only used if the callables are behaving like
AggregatorCallbacks (see the “Notes” section below and agg_name for details on this)



	method_agg_keys: Boolean, default=False
	If True, the aggregate keys for the items added to the dict at agg_name are equivalent to
the names of the “on_<…>_<start/end>” pseudo-methods whose values are being aggregated. In
other words, the pool of all possible aggregate keys goes from [“runs”, “folds”, “reps”,
“final”] to the names of the eight “on_<…>_<start/end>” kwargs of lambda_callback().
See the “Notes” section below for further details and a rough outline



	on_experiment_start: …
	
Deprecated since version 3.0.0: Renamed to on_exp_start. Will be removed in 3.2.0





	on_experiment_end: …
	
Deprecated since version 3.0.0: Renamed to on_exp_end. Will be removed in 3.2.0





	on_repetition_start: …
	
Deprecated since version 3.0.0: Renamed to on_rep_start. Will be removed in 3.2.0





	on_repetition_end: …
	
Deprecated since version 3.0.0: Renamed to on_rep_end. Will be removed in 3.2.0









	Returns

	
	LambdaCallback: LambdaCallback
	Uninitialized class, whose methods are the callables of the corresponding “on…” kwarg









Notes

For all of the “on_<…>_<start/end>” callables provided as input to lambda_callback, consider
the following guidelines (for example function “f”, which can represent any of the callables):


	All input parameters in the signature of “f” are attributes of the Experiment being executed



	If “**kwargs” is a parameter, a dict of all the Experiment’s attributes will be provided









	“f” will be treated as a method of a parent class of the Experiment



	Take care when modifying attributes, as changes are reflected in the Experiment itself









	If “f” returns something, it will automatically behave like an AggregatorCallback (see hyperparameter_hunter.callbacks.aggregators). Specifically, the following will occur:



	A new key (named by agg_name if given, else a UUID) with a dict value is added to hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates



	This new dict can have up to four keys: “runs” (list), “folds” (list), “reps” (list), and “final” (object)









	If “f” is an “on_run…” function, the returned value is appended to the “runs” list in the new dict


	Similarly, if “f” is an “on_fold…” or “on_rep…” function, the returned value is appended to the “folds”, or “reps” list, respectively


	If “f” is an “on_exp…” function, the “final” key in the new dict is set to the returned value


	If values were aggregated in the aforementioned manner, the lists of collected values will be reshaped according to runs/folds/reps on Experiment end


	The aggregated values will be saved in the Experiment’s description file



	This is because hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates is saved in its entirety


















What follows is a rough outline of the structure produced when using an aggregator-like callback
that automatically populates experiments.BaseExperiment.stat_aggregates with results of
the functions used as arguments to lambda_callback():

BaseExperiment.stat_aggregates = dict(
    ...,
    <`agg_name`>=dict(
        <agg_key "runs">  = [...],
        <agg_key "folds"> = [...],
        <agg_key "reps">  = [...],
        <agg_key "final"> = object(),
        ...
    ),
    ...
)





In the above outline, the actual agg_key`s included in the dict at `agg_name depend on which
“on_<…>_<start/end>” callables are behaving like aggregators. For example, if neither
on_run_start nor on_run_end explicitly returns something, then the “runs” agg_key is not
included in the agg_name dict. Similarly, if, for example, neither on_exp_start nor
on_exp_end is provided, then the “final” agg_key is not included. If method_agg_keys=True,
then the agg keys used in the dict are modified to be named after the method called. For
example, if method_agg_keys=True and on_fold_start and on_fold_end are both callables
returning values to be aggregated, then the agg_key`s used for each will be “on_fold_start”
and “on_fold_end”, respectively. In this example, if `method_agg_keys=False (default) and
do_reshape_aggs=False, then the single “folds” agg_key would contain the combined contents
returned by both methods in the order in which they were returned

For examples using lambda_callback to create custom callbacks, see
hyperparameter_hunter.callbacks.recipes

Examples

>>> from hyperparameter_hunter.environment import Environment
>>> def printer_helper(_rep, _fold, _run, last_evaluation_results):
...     print(f"{_rep}.{_fold}.{_run}   {last_evaluation_results}")
>>> my_lambda_callback = lambda_callback(
...     on_exp_end=printer_helper,
...     on_rep_end=printer_helper,
...     on_fold_end=printer_helper,
...     on_run_end=printer_helper,
... )
... # env = Environment(
... #     train_dataset="i am a dataset",
... #     results_path="path/to/HyperparameterHunterAssets",
... #     metrics=["roc_auc_score"],
... #     experiment_callbacks=[my_lambda_callback]
... # )
... # ... Now execute an Experiment, or an Optimization Protocol...





See hyperparameter_hunter.examples.lambda_callback_example for more information
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Complete HyperparameterHunter API

This section exposes the complete HyperparameterHunter API.
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File Structure Overview

This section is an overview of the result file structure created and updated when Experiments are completed.


HyperparameterHunterAssets/


	Contains one file (‘Heartbeat.log’), and four subdirectories (‘Experiments/’, ‘KeyAttributeLookup/’,
‘Leaderboards/’, and ‘TestedKeys/’).


	‘Heartbeat.log’ is the log file for the current/most recently executed Experiment. It will look very much like the
printed output of CVExperiment, with some additional debug messages thrown in. When the Experiment is
completed, a copy of this file is saved as the Experiment’s own Heartbeat file, which will be discussed below.





/Experiments/

Contains up to six different subdirectories. The files contained in each of the subdirectories all follow the same naming
convention: they are named after the Experiment’s randomly-generated UUID. The subdirectories are as follows:




1) /Descriptions/

Contains a .json file for each completed Experiment, describing all critical (and some extra) information about the
Experiment’s results. Such information includes, but is certainly not limited to: keys, algorithm/library name, final scores,
model_initializer hash, hyperparameters, cross experiment parameters, breakdown of times elapsed, start/end datetimes,
breakdown of evaluations over runs/folds/reps, source script name, platform, and additional notes. This file is meant to give you
all the details you need regarding an Experiment’s results and the conditions that led to those results.




2) /Heartbeats/

Contains a .log file for each completed Experiment that is created by copying the aforementioned
‘HyperparameterHunterAssets/Heartbeat.log’ file. This file is meant to give you a record of what exactly the Experiment
was experiencing along the course of its existence. This can be useful if you need to verify questionable results, or check for
error/warning/debug messages that might not have been noticed before.




3) /PredictionsOOF/

Contains a .csv file for each completed Experiment, containing out-of-fold predictions for the train_dataset provided to
Environment. If Environment is given a runs value > 1, or if a repeated cross-validation scheme is provided (like
sklearn’s RepeatedKFold or RepeatedStratifiedKFold), then OOF predictions will be averaged according to the number of
runs and repetitions. An extended discussion of this file’s uses probably isn’t necessary, but just some of the things you might
want it for include: testing the performance of ensembled models via their prediction files, or calculating other metric values,
if, for example, we wanted an F1 score, or simple accuracy after the Experiment had finished, instead of the ROC-AUC score we
told the Environment we wanted. Note that if we knew ahead of time we wanted all three of these metrics, we could have easily
given the Environment all three (or any other number of metrics) at its initialization. See the ‘custom_metrics_example.py’
example script for more details on advanced metrics specifications.




4) /PredictionsHoldout/

This subdirectory’s file structure is pretty much identical to ‘PredictionsOOF/’ and is populated when we use
Environment’s holdout_dataset kwarg to provide a holdout DataFrame, a filepath to one, or a callable to extract a
holdout_dataset from our train_dataset. Additionally, if a holdout_dataset is provided, the provided metrics will be
calculated for it as well (unless you tell it otherwise).




5) /PredictionsTest/

This subdirectory is much like ‘PredictionsOOF/’ and ‘PredictionsHoldout/’. It is populated when we use Environment’s
test_dataset kwarg to provide a test DataFrame, or a filepath to one. It may be worth noting that the major difference
between test_dataset and its counterparts (train_dataset, and holdout_dataset) is that test predictions are not
evaluated because it is the nature of the test_dataset to have unknown targets.




6) /ScriptBackups/

Contains a .py file for each completed Experiment that is an exact copy of the script executed that led to the instantiation
of the Experiment. These files exist primarily to assist in “oh shit” moments where you have no idea how to recreate an
Experiment. ‘script_backup’ is blacklisted by default when executing a hyperparameter OptimizationProtocol, as all
experiments would be created by the same file.








/KeyAttributeLookup/


	This directory stores any complex-typed Environment parameters and hyperparameters, as well as the hashes with which those
complex objects are associated.


	Specifically, this directory is concerned with any python classes, or callables, or DataFrames you may provide, and will create
a the appropriate file or directory to properly store the object.



	If a class is provided (as is the case with cv_type, and model_initializer), the Shelve and Dill
libraries are used to pickle a copy of the class, linked to the class’s hash as its key.


	If a defined function, or a lambda is provided (as is the case with prediction_formatter, which is an optional
Environment kwarg), a .json file entry is created linking the callable’s hash to its source code saved as a string,
which can be recreated using Python’s exec function.


	If a Pandas DataFrame is provided (as is the case with train_dataset, and its holdout and test counterparts), the
process is slightly different. Rather than naming a file after the complex-typed attribute (as in the first two types), a
directory is named after the attribute, hence the ‘HyperparameterHunterAssets/KeyAttributeLookup/train_dataset/’
directory. Then, .csv files are added to the corresponding directory, which are named after the DataFrame’s hash, and
which contain the DataFrame itself.









	Entries in the ‘KeyAttributeLookup/’ directory are created on an as-needed basis.



	This means that you may see entries named after attributes other than those shown in this example along the course of your
own project.


	They are created whenever Environments or Experiments are provided arguments too complex to neatly display in the
Experiment’s ‘Descriptions/’ entry file.


	Some other complex attributes you may come across that are given ‘KeyAttributeLookup/’ entries include: custom metrics
provided via Environment’s metrics and metrics_params kwargs, and Keras Neural Network callbacks and
build_fns.














/Leaderboards/


	At the time of this documentation’s writing, this directory contains only one file: ‘GlobalLeaderboard.csv’; although, more
are on the way to assist you in comparing the performance of different Experiments, and they should be similar in structure
to this one.


	‘GlobalLeaderboard.csv’ is a DataFrame containing one row for every completed Experiment


	It has a column for every final metric evaluation performed, as well as the following columns: ‘experiment_id’,
‘hyperparameter_key’, ‘cross_experiment_key’, and ‘algorithm_name’


	Rows are sorted in descending order according to the first metric provided, and will prioritize OOF evaluations before holdout
evaluations if both are given.


	If an Experiment does not have a particular evaluation, the Experiment row’s value for that column will be null.



	This can happen if new metrics are specified, which were not recorded for earlier experiments, or if a holdout_dataset
is provided to later Experiments that earlier ones did not have.














/TestedKeys/


	This directory contains a .json file named for every unique cross_experiment_key encountered.


	Each .json file contains a dictionary, whose keys are the hyperparameter_keys that have been tested in conjunction with
the cross_experiment_key for which the containing file is named.


	The value of each of these keys is a list of strings, in which each string is an experiment_id, denoting an Experiment
that was conducted with the hyperparameters symbolized by that list’s key, and an Environment, whose cross-experiment
parameters are symbolized by the name of the containing file.



	The values are lists in order to accommodate Experiments that are intentionally duplicated.



















          

      

      

    

  

    
      
          
            
  
HyperparameterHunter Examples

This section provides links to example scripts that may be helpful to better understand how HyperparameterHunter works with some
libraries, as well as some of HyperparameterHunter’s more advanced features.


Getting Started


	Simple Experiment [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_experiment_example.py]


	Simple Hyperparameter Optimization [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_optimization_example.py]







Different Libraries


	CatBoost [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples]


	Keras [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples]


	LightGBM [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples]


	Scikit-Learn [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples]


	XGBoost [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples]


	rgf_python [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples]







Advanced Features


	Holdout/Test Datasets [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/holdout_test_datasets_example.py]


	do_full_save [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/do_full_save_example.py]


	environment_params_path [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/environment_params_path_example.py]


	lambda_callback [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lambda_callback_example.py]










          

      

      

    

  

    
      
          
            
  
HyperparameterHunter Library Compatibility

This section lists libraries that have been tested with HyperparameterHunter and briefly outlines some works in progress.


Tested and Compatible


	CatBoost [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples]


	Keras [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples]


	LightGBM [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples]


	Scikit-Learn [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples]


	XGBoost [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples]


	rgf_python [https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples]







Support On the Way


	PyTorch/Skorch


	TensorFlow


	Boruta


	Imbalanced-Learn







Not Yet Compatible


	TPOT



	After admittedly minimal testing, problems arose due to the fact that TPOT implements its own cross-validation scheme


	This resulted in (probably unexpected) nested cross validation, and extremely long execution times














Notes


	If you don’t see the one of your favorite libraries listed above, and you want to do something about that, let us know!


	See HyperparameterHunter’s ‘examples/’ directory for help on getting started with compatible libraries


	Improved support for hyperparameter tuning with Keras is on the way!
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      	visit_ImportFrom() (hyperparameter_hunter.utils.parsing_utils.ImportParser method)


      	visit_Return() (hyperparameter_hunter.feature_engineering.ParameterParser method)


  





W


  	
      	warn() (hyperparameter_hunter.reporting.ReportingHandler method)

      
        	(hyperparameter_hunter.settings.G static method)


      


      	warn_() (hyperparameter_hunter.settings.G method)


      	WranglerInputHoldout (class in hyperparameter_hunter.callbacks.wranglers.input_wranglers)


      	WranglerInputOOF (class in hyperparameter_hunter.callbacks.wranglers.input_wranglers)


      	WranglerInputTest (class in hyperparameter_hunter.callbacks.wranglers.input_wranglers)


  

  	
      	WranglerInputTrain (class in hyperparameter_hunter.callbacks.wranglers.input_wranglers)


      	WranglerTargetHoldout (class in hyperparameter_hunter.callbacks.wranglers.target_wranglers)


      	WranglerTargetOOF (class in hyperparameter_hunter.callbacks.wranglers.target_wranglers)


      	WranglerTargetTrain (class in hyperparameter_hunter.callbacks.wranglers.target_wranglers)


      	wrap_xgboost_metric() (in module hyperparameter_hunter.metrics)


      	write_json() (in module hyperparameter_hunter.utils.file_utils)


      	write_python() (in module hyperparameter_hunter.utils.parsing_utils)


  





X


  	
      	XGBoostModel (class in hyperparameter_hunter.models)


  





Y


  	
      	YAMLDescriptionRecorder (class in hyperparameter_hunter.recorders)


  







          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.callbacks.wranglers package


Submodules




hyperparameter_hunter.callbacks.wranglers.input_wranglers module

This module defines callbacks that descend from
BaseInputWranglerCallback. Input wrangler callbacks
are concerned with managing the input data chunks of an experiment’s datasets. This module acts as a
liaison between :class:~hyperparameter_hunter.experiments.BaseCVExperiment` and the input chunk
classes defined in hyperparameter_hunter.data.data_chunks.input_chunks. Each callback defined
herein is responsible for ensuring the proper execution of precisely one descendant of
BaseInputChunk, defined in
input_chunks.

Input wranglers are quite a bit less interesting than the other wranglers because they kinda
“stop caring” after a while. Input data exists entirely for the purposes of fitting a model and
making predictions - between on_run_start and on_run_end. For essential operations, we don’t
need input data once we hit on_run_end, so none of the “…end” methods of input wranglers do
anything.


Related


	hyperparameter_hunter.data.data_chunks.input_chunks
	Defines the input data chunk classes, each of which has one counterpart/handler defined in
input_wranglers






	
class hyperparameter_hunter.callbacks.wranglers.input_wranglers.WranglerInputTrain

	Bases: hyperparameter_hunter.callbacks.bases.BaseInputWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme










	
class hyperparameter_hunter.callbacks.wranglers.input_wranglers.WranglerInputOOF

	Bases: hyperparameter_hunter.callbacks.bases.BaseInputWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme










	
class hyperparameter_hunter.callbacks.wranglers.input_wranglers.WranglerInputHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BaseInputWranglerCallback

Input wrangler callback responsible for properly invoking callback methods defined by
HoldoutInputChunk by way of
data_holdout.input

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme










	
class hyperparameter_hunter.callbacks.wranglers.input_wranglers.WranglerInputTest

	Bases: hyperparameter_hunter.callbacks.bases.BaseInputWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme














hyperparameter_hunter.callbacks.wranglers.predictors module

This module defines callbacks that descend from
BasePredictorCallback. Predictor wrangler callbacks
are concerned with managing the prediction chunks of an experiment’s datasets. This module acts as a
liaison between :class:~hyperparameter_hunter.experiments.BaseCVExperiment` and the prediction chunk
classes defined in hyperparameter_hunter.data.data_chunks.prediction_chunks. Each callback
defined herein is responsible for ensuring the proper execution of precisely one descendant of
BasePredictorChunk, defined in
prediction_chunks.

Predictors are the busiest of all three wrangler callbacks. While we only actually get predictions
when we first hit on_run_end, we need to keep track of them across runs, folds and reps, so
predictions need to be cleared out during the “…start” callback methods. There are two
mission-critical tasks for which we need predictions: 1) Evaluation against targets, and
2) Recording - not only to ensure our model is behaving as expected, but also for ensembling.
Ensembling is a real pain if you’re trying to do it, using only evaluation metrics as a guide, and
re-running selected experiments so you can save the predictions this time, just to figure out if
the ensemble actually performs in the end.

Once again, feature engineering throws a monkey-wrench into our expectations for the predictor
callbacks. If we’re performing any kind of target transformation (which is often the case), then
evaluations need to be made using transformed predictions and targets. Calculating f1-score would
not go well if we tried to give the metric function the stringified iris dataset labels of
“setosa”, “versicolor”, or “virginica”. It’s gonna want the transformed, numerical representation
of the targets. Similarly, averaging predictions across divisions uses transformed predictions
because it requires values that can actually be averaged. For the purposes of recording, we may
want either transformed or inverted (original form) prediction - or both. Lots of weird things
start misbehaving in lots of confusing ways if our predictor wranglers aren’t carefully managing
predictions across all the experiment’s divisions, and in both forms: transformed, and
inverted (original form).


Related


	hyperparameter_hunter.data.data_chunks.prediction_chunks
	Defines the prediction data chunk classes, each of which has one counterpart/handler defined in
predictors






	
class hyperparameter_hunter.callbacks.wranglers.predictors.PredictorOOF

	Bases: hyperparameter_hunter.callbacks.bases.BasePredictorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.wranglers.predictors.PredictorHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BasePredictorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.wranglers.predictors.PredictorTest

	Bases: hyperparameter_hunter.callbacks.bases.BasePredictorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends














hyperparameter_hunter.callbacks.wranglers.target_wranglers module

This module defines callbacks that descend from
BaseTargetWranglerCallback. Target wrangler
callbacks are concerned with managing the target chunks of an experiment’s datasets. This module
acts as a liaison between :class:~hyperparameter_hunter.experiments.BaseCVExperiment` and the
target chunk classes defined in hyperparameter_hunter.data.data_chunks.target_chunks. Each
callback defined herein is responsible for ensuring the proper execution of precisely one descendant
of BaseTargetChunk, defined in
target_chunks.

Target wranglers are a stark contrast to the relatively boring input wranglers. We need target data
for fitting models and for evaluating predictions (which takes place during every “…end” method).
Therefore, target wranglers have some mission-critical task to perform on every callback method,
especially when feature engineering gets thrown in.


Related


	hyperparameter_hunter.data.data_chunks.target_chunks
	Defines the target data chunk classes, each of which has one counterpart/handler defined in
target_wranglers






	
class hyperparameter_hunter.callbacks.wranglers.target_wranglers.WranglerTargetTrain

	Bases: hyperparameter_hunter.callbacks.bases.BaseTargetWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.wranglers.target_wranglers.WranglerTargetOOF

	Bases: hyperparameter_hunter.callbacks.bases.BaseTargetWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.wranglers.target_wranglers.WranglerTargetHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BaseTargetWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends














Module contents

This module contains the final implementations of the three types of
BaseWranglerCallback descendants. The callbacks
defined herein act as liaisons between the experiment and its datasets (the datasets’ data chunks).
Each callback in the module is expected to be responsible for a specific descendant of
hyperparameter_hunter.data.data_core.BaseDataChunk, which can be seen from the type
annotation at the forefront of each callback class for its “data”-prefixed attribute

Each callback in the module is actually pulling its dataset (and the appropriate data chunk) from
the experiment via its four dataset attributes:


	data_train: TrainDataset


	data_oof: OOFDataset


	data_holdout: HoldoutDataset


	data_test: TestDataset




Specifically, each callback herein is responsible for the data chunk denoted by the name of that
callback’s immediate parent callback, which is one of the following:


	BaseInputWranglerCallback


	BaseTargetWranglerCallback


	BasePredictorCallback





Related


	hyperparameter_hunter.data
	This module defines the data chunks (attributes of datasets), for which each callback defined in
wranglers is responsible. This responsibility is usually
satisfied by simply invoking the correct callback method. However, occasionally a data chunk’s
callback method will require additional inputs. In these cases, the wrangler callbacks must
ensure the proper arguments are provided













          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.callbacks package


Subpackages



	hyperparameter_hunter.callbacks.wranglers package
	Submodules

	hyperparameter_hunter.callbacks.wranglers.input_wranglers module
	Related





	hyperparameter_hunter.callbacks.wranglers.predictors module
	Related





	hyperparameter_hunter.callbacks.wranglers.target_wranglers module
	Related





	Module contents
	Related
















Submodules




hyperparameter_hunter.callbacks.aggregators module


	
class hyperparameter_hunter.callbacks.aggregators.AggregatorTimes

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.aggregators.AggregatorEvaluations

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.aggregators.AggregatorOOF

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.aggregators.AggregatorHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.aggregators.AggregatorTest

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.aggregators.AggregatorLosses

	Bases: hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase













hyperparameter_hunter.callbacks.bases module

This module defines the base callback classes, from which all other callback classes in
hyperparameter_hunter.callbacks are descendants. Importantly, the specific base callback
classes contained herein are all descendants of
hyperparameter_hunter.callbacks.bases.BaseCallback, ensuring all callbacks descend from the
same base class. This module also defines
hyperparameter_hunter.callbacks.bases.lambda_callback(), which can be used to define custom
callbacks to be executed during Experiments when passed to
hyperparameter_hunter.environment.Environment.__init__() via the experiment_callbacks
argument


Related


	hyperparameter_hunter.callbacks
	The rest of the submodules within this module should define classes which all descend from the
base callback classes defined in hyperparameter_hunter.callbacks.bases



	hyperparameter_hunter.experiment_core
	This is where callback classes are added as bases inherited by
hyperparameter_hunter.experiments.BaseExperiment. This module is the path that links
hyperparameter_hunter.callbacks to hyperparameter_hunter.experiments



	hyperparameter_hunter.environment
	This module provides the means to use custom callbacks made by
hyperparameter_hunter.callbacks.bases.lambda_callback() through the experiment_callbacks
argument of hyperparameter_hunter.environment.Environment.__init__()






	
class hyperparameter_hunter.callbacks.bases.BaseCallback

	Bases: object

The base class from which all callbacks and all intermediate base callbacks are descendants.
Callback classes’ __init__() will not be called, so any tasks that must be performed at
the onset of an experiment should be placed in on_exp_start()

Notes

__init__(): Some classes that inherit BaseCallback may implement __init__();
however, callback classes are NEVER INITIALIZED. Callback classes should be regarded as
extensions to the Experiment class that is inheriting them. Because they are inherited, callback
classes have access to all attributes of the inheriting Experiment class. If any callback class
does implement __init__(), it is simply a convention to clearly declare the attributes
required by the other methods of that callback class. Again, __init__() of classes that
inherit BaseCallback will not be called

The methods below each call settings.G.debug() to signal that the dynamic callback
inheritance organized in experiment_core.ExperimentMeta has proceeded at least
partially successfully. If all callback methods end by executing the method of the same name in
their parent classes, then the below debug messages should be visible in the “Heartbeat.log”
file. Conversely, if any of the below debug messages are not printed to “Heartbeat.log”, it is
likely that a callback class’s implementation of the corresponding method does not end with
“super().<method_name>()”. Such cases should be remedied immediately, as the callback stream
could be skipping any number of other callbacks

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_exp_end(self)

	Perform tasks when an Experiment ends






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase










	
hyperparameter_hunter.callbacks.bases.lambda_callback(on_exp_start=None, on_exp_end=None, on_rep_start=None, on_rep_end=None, on_fold_start=None, on_fold_end=None, on_run_start=None, on_run_end=None, agg_name=None, do_reshape_aggs=True, method_agg_keys=False, on_experiment_start=<object object at 0x7f4f6d239bf0>, on_experiment_end=<object object at 0x7f4f6d239bf0>, on_repetition_start=<object object at 0x7f4f6d239bf0>, on_repetition_end=<object object at 0x7f4f6d239bf0>)

	Utility for creating custom callbacks to be declared by Environment and used by
Experiments. The callable “on_<…>_<start/end>” parameters provided will receive as input
whichever attributes of the Experiment are included in the signature of the given callable. If
**kwargs is given in the callable’s signature, a dict of all of the Experiment’s attributes
will be provided. This can be helpful for trying to figure out how to build a custom callback,
but should not be used unless absolutely necessary. If the Experiment does not have an attribute
specified in the callable’s signature, the following placeholder will be given: “INVALID KWARG”


	Parameters

	
	on_exp_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment start



	on_exp_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment end



	on_rep_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition start



	on_rep_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition end



	on_fold_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold start



	on_fold_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold end



	on_run_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run start



	on_run_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run end



	agg_name: Str, default=uuid.uuid4
	This parameter is only used if the callables are behaving like AggregatorCallbacks by
returning values (see the “Notes” section below for details on this). If the callables do
return values, they will be stored under a key named (“_” + agg_name) in a dict in
hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates. The purpose of
this parameter is to make it easier to understand an Experiment’s description file, as
agg_name will default to a UUID if it is not given



	do_reshape_aggs: Boolean, default=True
	Whether to reshape the aggregated values to reflect the nested repetitions/folds/runs
structure used for other aggregated values. If False, lists of aggregated values are left in
their original shapes. This parameter is only used if the callables are behaving like
AggregatorCallbacks (see the “Notes” section below and agg_name for details on this)



	method_agg_keys: Boolean, default=False
	If True, the aggregate keys for the items added to the dict at agg_name are equivalent to
the names of the “on_<…>_<start/end>” pseudo-methods whose values are being aggregated. In
other words, the pool of all possible aggregate keys goes from [“runs”, “folds”, “reps”,
“final”] to the names of the eight “on_<…>_<start/end>” kwargs of lambda_callback().
See the “Notes” section below for further details and a rough outline



	on_experiment_start: …
	
Deprecated since version 3.0.0: Renamed to on_exp_start. Will be removed in 3.2.0





	on_experiment_end: …
	
Deprecated since version 3.0.0: Renamed to on_exp_end. Will be removed in 3.2.0





	on_repetition_start: …
	
Deprecated since version 3.0.0: Renamed to on_rep_start. Will be removed in 3.2.0





	on_repetition_end: …
	
Deprecated since version 3.0.0: Renamed to on_rep_end. Will be removed in 3.2.0









	Returns

	
	LambdaCallback: LambdaCallback
	Uninitialized class, whose methods are the callables of the corresponding “on…” kwarg









Notes

For all of the “on_<…>_<start/end>” callables provided as input to lambda_callback, consider
the following guidelines (for example function “f”, which can represent any of the callables):


	All input parameters in the signature of “f” are attributes of the Experiment being executed



	If “**kwargs” is a parameter, a dict of all the Experiment’s attributes will be provided









	“f” will be treated as a method of a parent class of the Experiment



	Take care when modifying attributes, as changes are reflected in the Experiment itself









	If “f” returns something, it will automatically behave like an AggregatorCallback (see hyperparameter_hunter.callbacks.aggregators). Specifically, the following will occur:



	A new key (named by agg_name if given, else a UUID) with a dict value is added to hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates



	This new dict can have up to four keys: “runs” (list), “folds” (list), “reps” (list), and “final” (object)









	If “f” is an “on_run…” function, the returned value is appended to the “runs” list in the new dict


	Similarly, if “f” is an “on_fold…” or “on_rep…” function, the returned value is appended to the “folds”, or “reps” list, respectively


	If “f” is an “on_exp…” function, the “final” key in the new dict is set to the returned value


	If values were aggregated in the aforementioned manner, the lists of collected values will be reshaped according to runs/folds/reps on Experiment end


	The aggregated values will be saved in the Experiment’s description file



	This is because hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates is saved in its entirety


















What follows is a rough outline of the structure produced when using an aggregator-like callback
that automatically populates experiments.BaseExperiment.stat_aggregates with results of
the functions used as arguments to lambda_callback():

BaseExperiment.stat_aggregates = dict(
    ...,
    <`agg_name`>=dict(
        <agg_key "runs">  = [...],
        <agg_key "folds"> = [...],
        <agg_key "reps">  = [...],
        <agg_key "final"> = object(),
        ...
    ),
    ...
)





In the above outline, the actual agg_key`s included in the dict at `agg_name depend on which
“on_<…>_<start/end>” callables are behaving like aggregators. For example, if neither
on_run_start nor on_run_end explicitly returns something, then the “runs” agg_key is not
included in the agg_name dict. Similarly, if, for example, neither on_exp_start nor
on_exp_end is provided, then the “final” agg_key is not included. If method_agg_keys=True,
then the agg keys used in the dict are modified to be named after the method called. For
example, if method_agg_keys=True and on_fold_start and on_fold_end are both callables
returning values to be aggregated, then the agg_key`s used for each will be “on_fold_start”
and “on_fold_end”, respectively. In this example, if `method_agg_keys=False (default) and
do_reshape_aggs=False, then the single “folds” agg_key would contain the combined contents
returned by both methods in the order in which they were returned

For examples using lambda_callback to create custom callbacks, see
hyperparameter_hunter.callbacks.recipes

Examples

>>> from hyperparameter_hunter.environment import Environment
>>> def printer_helper(_rep, _fold, _run, last_evaluation_results):
...     print(f"{_rep}.{_fold}.{_run}   {last_evaluation_results}")
>>> my_lambda_callback = lambda_callback(
...     on_exp_end=printer_helper,
...     on_rep_end=printer_helper,
...     on_fold_end=printer_helper,
...     on_run_end=printer_helper,
... )
... # env = Environment(
... #     train_dataset="i am a dataset",
... #     results_path="path/to/HyperparameterHunterAssets",
... #     metrics=["roc_auc_score"],
... #     experiment_callbacks=[my_lambda_callback]
... # )
... # ... Now execute an Experiment, or an Optimization Protocol...





See hyperparameter_hunter.examples.lambda_callback_example for more information






	
class hyperparameter_hunter.callbacks.bases.BaseWranglerCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseCallback

Base class from which all callbacks in hyperparameter_hunter.callbacks.wranglers are descendants

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BaseInputWranglerCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BaseTargetWranglerCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BasePredictorCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseWranglerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseCallback

Base class from which all callbacks in hyperparameter_hunter.callbacks.loggers are descendants

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BaseAggregatorCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseCallback

Base class from which all callbacks in hyperparameter_hunter.callbacks.aggregators are descendants

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.bases.BaseEvaluatorCallback

	Bases: hyperparameter_hunter.callbacks.bases.BaseCallback

Base class from which all callbacks in hyperparameter_hunter.callbacks.evaluators are descendants

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase















hyperparameter_hunter.callbacks.evaluators module

This module defines Evaluator callbacks to score predictions generated during the different time
divisions of the BaseExperiment by invoking
hyperparameter_hunter.metrics.ScoringMixIn.evaluate()


Related


	hyperparameter_hunter.metrics
	Defines ScoringMixIn, which is inherited by
BaseExperiment, and provides the evaluate method
that is called by the classes in evaluators








Notes

Regarding evaluation when G.Env.save_transformed_metrics is False, target data will be either
fold (for on_run_end/on_fold_end) or d (for on_rep_end/on_exp_end). Prediction data used
for evaluation in this case does not follow this abnormal pattern. Target data is limited to either
the fold or d data_chunks when G.Env.save_transformed_metrics is False because targets for
run and rep are identical to the targets for fold and d, respectively. This is still the
case even if performing inverse target transformation via
EngineerStep. Because the target values do not
change between these two pairs of divisions, their values may be unset, so the targets for the
division immediately above are used instead. As noted in
hyperparameter_hunter.data.data_chunks.target_chunks, both itself and
hyperparameter_hunter.callback.wranglers.target_wranglers are concerned only with transformed
targets–not with original targets (or inverted targets). That is because original targets and
inverted targets should be identical. Original targets are updated only in
hyperparameter_hunter.experiments.BaseExperiment.on_exp_start() (through
hyperparameter_hunter.data.data_core.BaseDataset initialization) and in
hyperparameter_hunter.experiments.BaseCVExperiment.on_fold_start()


	
class hyperparameter_hunter.callbacks.evaluators.EvaluatorOOF

	Bases: hyperparameter_hunter.callbacks.bases.BaseEvaluatorCallback

Methods







	on_exp_end(self)

	Evaluate final (run/repetition-averaged) out-of-fold predictions



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Evaluate (run-averaged) out-of-fold predictions for the fold



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Evaluate (run-averaged) out-of-fold predictions for the repetition



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Evaluate out-of-fold predictions for the run



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_run_end(self)

	Evaluate out-of-fold predictions for the run






	
on_fold_end(self)

	Evaluate (run-averaged) out-of-fold predictions for the fold






	
on_rep_end(self)

	Evaluate (run-averaged) out-of-fold predictions for the repetition






	
on_exp_end(self)

	Evaluate final (run/repetition-averaged) out-of-fold predictions










	
class hyperparameter_hunter.callbacks.evaluators.EvaluatorHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BaseEvaluatorCallback

Methods







	on_exp_end(self)

	Evaluate final (run/repetition-averaged) holdout predictions



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Evaluate (run-averaged) holdout predictions for the fold



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Evaluate (run-averaged) holdout predictions for the repetition



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Evaluate holdout predictions for the run



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
on_run_end(self)

	Evaluate holdout predictions for the run






	
on_fold_end(self)

	Evaluate (run-averaged) holdout predictions for the fold






	
on_rep_end(self)

	Evaluate (run-averaged) holdout predictions for the repetition






	
on_exp_end(self)

	Evaluate final (run/repetition-averaged) holdout predictions














hyperparameter_hunter.callbacks.loggers module


	
class hyperparameter_hunter.callbacks.loggers.LoggerFitStatus

	Bases: hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase







	
float_format = '{:.5f}'

	




	
log_separator = '  |  '

	




	
on_exp_start(self)

	Perform tasks when an Experiment is started






	
on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme






	
on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme






	
on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase






	
on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase






	
on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme






	
on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme






	
on_exp_end(self)

	Perform tasks when an Experiment ends










	
class hyperparameter_hunter.callbacks.loggers.LoggerOOF

	Bases: hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.loggers.LoggerHoldout

	Bases: hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.loggers.LoggerTest

	Bases: hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase











	
class hyperparameter_hunter.callbacks.loggers.LoggerEvaluation

	Bases: hyperparameter_hunter.callbacks.bases.BaseLoggerCallback

Methods







	on_exp_end(self)

	Perform tasks when an Experiment ends



	on_exp_start(self)

	Perform tasks when an Experiment is started



	on_fold_end(self)

	Perform tasks on fold end in an Experiment’s cross-validation scheme



	on_fold_start(self)

	Perform tasks on fold start in an Experiment’s cross-validation scheme



	on_rep_end(self)

	Perform tasks on repetition end in an Experiment’s repeated cross-validation scheme



	on_rep_start(self)

	Perform tasks on repetition start in an Experiment’s repeated cross-validation scheme



	on_run_end(self)

	Perform tasks on run end in an Experiment’s multiple-run-averaging phase



	on_run_start(self)

	Perform tasks on run start in an Experiment’s multiple-run-averaging phase













hyperparameter_hunter.callbacks.recipes module

This module contains extra callbacks that can add commonly-used functionality to Experiments.
This module also serves as an example for how users can properly construct their own custom
callbacks using hyperparameter_hunter.callbacks.bases.lambda_callback()


Related


	hyperparameter_hunter.callbacks.bases
	This module defines hyperparameter_hunter.callbacks.bases.lambda_callback(), which is how
all extra callbacks created in hyperparameter_hunter.callbacks.recipes are created



	hyperparameter_hunter.environment
	This module provides the means to use custom callbacks made by
hyperparameter_hunter.callbacks.bases.lambda_callback() through the experiment_callbacks
argument of hyperparameter_hunter.environment.Environment.__init__()








Notes

For the purposes of aggregating additional Experiment information, this module describes two methods
outlined in hyperparameter_hunter.callbacks.recipes.confusion_matrix_oof(), and
hyperparameter_hunter.callbacks.recipes.confusion_matrix_holdout(). The first automatically
handles aggregating new values; whereas, the second provides an example for manually aggregating new
values, which offers greater customization at the cost of slightly more overhead


	
hyperparameter_hunter.callbacks.recipes.confusion_matrix_oof(on_run=True, on_fold=True, on_rep=True, on_exp=True)

	Callback function to produce confusion matrices for out-of-fold predictions at each stage of
the Experiment


	Parameters

	
	on_run: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment runs



	on_fold: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment folds



	on_rep: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment repetitions



	on_exp: Boolean, default=True
	If False, skip making final confusion matrix for the Experiment







	Returns

	
	LambdaCallback
	An uninitialized LambdaCallback to generate confusion matrices, produced by
hyperparameter_hunter.callbacks.bases.lambda_callback()









Notes

Unlike hyperparameter_hunter.callbacks.recipes.confusion_matrix_holdout(), this callback
function allows lambda_callback to automatically aggregate the stats returned by each of the
“on…” functions given to lambda_callback

If the size of this lambda_callback implementation is daunting, minimize the helper functions’
docstrings. It’s surprisingly simple






	
hyperparameter_hunter.callbacks.recipes.confusion_matrix_holdout(on_run=True, on_fold=True, on_rep=True, on_exp=True)

	Callback function to produce confusion matrices for holdout predictions at each stage of
the Experiment


	Parameters

	
	on_run: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment runs



	on_fold: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment folds



	on_rep: Boolean, default=True
	If False, skip making confusion matrices for individual Experiment repetitions



	on_exp: Boolean, default=True
	If False, skip making final confusion matrix for the Experiment







	Returns

	
	LambdaCallback
	An uninitialized LambdaCallback to generate confusion matrices, produced by
hyperparameter_hunter.callbacks.bases.lambda_callback()









Notes

Unlike hyperparameter_hunter.callbacks.recipes.confusion_matrix_oof(), this callback
bypasses lambda_callback’s ability to automatically aggregate stats returned by the “on…”
functions. It does this simply by not returning values in the “on…” functions, and manually
aggregating the stats in hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates.
This offers greater control over how your values are collected, but also requires additional
overhead, namely, instantiating a dict to collect the values via _on_exp_start().
Note also that each of the “on…” functions must append their values to an explicitly named
container in hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates when using
this method as opposed to hyperparameter_hunter.callbacks.recipes.confusion_matrix_oof()’s

If the size of this lambda_callback implementation is daunting, minimize the helper functions’
docstrings. It’s surprisingly simple






	
hyperparameter_hunter.callbacks.recipes.dataset_recorder()

	Build a LambdaCallback that records the current state of all datasets on_fold_start in
order to validate modifications made by
feature_engineering.FeatureEngineer/feature_engineering.EngineerStep


	Returns

	
	LambdaCallback
	Aggregator-like LambdaCallback whose values are aggregated under the name “_datasets” and
whose keys are named after the corresponding callback methods














	
hyperparameter_hunter.callbacks.recipes.lambda_check_train_targets(on_exp_start:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_rep_start:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_fold_start:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_run_start:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_run_end:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_fold_end:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_rep_end:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None, on_exp_end:Union[List[hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk], NoneType]=None)

	LambdaCallback to check the values of an experiment’s data_train.target attribute

The list of TrainTargetChunk
instances given to each parameter represents the expected value of
hyperparameter_hunter.experiments.CVExperiment.data_train.target for each call of that
particular callback method. In other words, the number of items in each parameter’s list should
correspond to the number of times that callback method is expected to be invoked.

This means that on_exp_start and on_exp_end should both contain only a single
TrainTargetChunk (because they are only ever invoked once by an experiment), and their values
should be the expected states of data_train.target on experiment start and end, respectively.


	Parameters

	
	on_exp_start: List[TrainTargetChunk], or None, default=None
	Expected value of train targets when on_exp_start is invoked. Should contain only a single
TrainTargetChunk instance



	on_rep_start: List[TrainTargetChunk], or None, default=None
	Expected value of train targets on each invocation of on_rep_start. Should contain as many
TrainTargetChunk instances as repetitions will be conducted during the experiment. Should
contain only a single value if the number or repetitions is one, or if
hyperparameter_hunter.environment.Environment.cv_type is not a repeated CV scheme



	on_fold_start: List[TrainTargetChunk], or None, default=None
	Expected value of train targets on each invocation of on_fold_start. The values to
provide are not as straight-forward, as they depend on the number of repetitions as well.
If only a single repetition will be conducted, then on_fold_start should simply contain
as many TrainTargetChunk instances as folds will be conducted. However, if multiple
repetitions will be conducted, then the length of on_fold_start should be
(<# of reps> * <# of folds>). For example, if performing RepeatedKFold cross validation
with 2 repetitions, and 3 folds/splits, then on_fold_start should contain 6 values



	on_run_start: List[TrainTargetChunk], or None, default=None
	Expected value of train targets on each invocation of on_run_start. Similarly to
on_fold_start, the length/values of on_run_start depends on the number of repetitions,
as well as the number of folds that will be conducted. The length of on_run_start should
be (<# of reps> * <# of folds> * <# of runs>). If performing standard, non-repeated
KFold-like cross validation, with 3 folds, and only a single run, then on_run_start
should contain 3 values. Just as in the on_fold_start description example, if performing
RepeatedKFold CV with 2 repetitions, and 3 folds, and 1 run, then on_run_start should
contain 6 values. On the extreme end, if performing RepeatedKFold CV with 2 repetitions,
and 3 folds, and 4 runs, then on_run_start should contain 24 values



	on_run_end: List[TrainTargetChunk], or None, default=None
	See `on_run_start` description



	on_fold_end: List[TrainTargetChunk], or None, default=None
	See `on_fold_start` description



	on_rep_end: List[TrainTargetChunk], or None, default=None
	See `on_rep_start` description



	on_exp_end: List[TrainTargetChunk], or None, default=None
	See `on_exp_start` description









Notes

As is always the case, on_run_start and on_run_end will still be invoked even if
hyperparameter_hunter.environment.Environment.runs is 1. In this case, they will be
invoked as many times as on_fold_start and on_fold_end are invoked; however, this does not
mean that the values of data_train.target are identical between fold and run divisions






	
hyperparameter_hunter.callbacks.recipes.aggregator_epochs_elapsed(on_run=True, on_fold=True, on_rep=True, on_exp=True)

	Callback function to aggregate and average the number of epochs elapsed during model training
at each stage of the Experiment


	Parameters

	
	on_run: Boolean, default=True
	If False, skip recording epochs elapsed for individual Experiment runs



	on_fold: Boolean, default=True
	If False, skip making epochs-elapsed averages for individual Experiment folds



	on_rep: Boolean, default=True
	If False, skip making epochs-elapsed averages for individual Experiment repetitions



	on_exp: Boolean, default=True
	If False, skip making epochs-elapsed average for the Experiment







	Returns

	
	LambdaCallback
	An uninitialized LambdaCallback to aggregate the number of epochs elapsed during
training, produced by hyperparameter_hunter.callbacks.bases.lambda_callback()
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hyperparameter_hunter.data.data_chunks package


Submodules




hyperparameter_hunter.data.data_chunks.input_chunks module


	
class hyperparameter_hunter.data.data_chunks.input_chunks.BaseInputChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_core.BaseDataChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.input_chunks.TrainInputChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.input_chunks.BaseInputChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.input_chunks.OOFInputChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.input_chunks.BaseInputChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.input_chunks.HoldoutInputChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.input_chunks.BaseInputChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.input_chunks.TestInputChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.input_chunks.BaseInputChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	












hyperparameter_hunter.data.data_chunks.prediction_chunks module


	
class hyperparameter_hunter.data.data_chunks.prediction_chunks.BasePredictionChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_core.BaseDataChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	



	on_run_end(self, prediction, …)

	…














	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	






	
on_exp_start(self, *args, **kwargs)

	




	
on_rep_start(self, *args, **kwargs)

	




	
on_fold_start(self, *args, **kwargs)

	




	
on_run_end(self, prediction, feature_engineer, target_column, *args, **kwargs)

	…


	Parameters

	
	prediction: Array-like
	

	feature_engineer: FeatureEngineer
	

	target_column: List[str]
	

	*args: Tuple
	

	**kwargs: Dict
	












	
on_fold_end(self, runs:int, *args, **kwargs)

	




	
on_rep_end(self, n_splits:int, *args, **kwargs)

	




	
on_exp_end(self, n_repeats:int)

	








	
class hyperparameter_hunter.data.data_chunks.prediction_chunks.OOFPredictionChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.prediction_chunks.BasePredictionChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, zero_predictions, \*args, …)

	



	on_fold_end(self, validation_index, runs, …)

	



	on_run_end(self, prediction, …)

	…














	on_exp_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	






	
on_exp_start(self, zero_predictions, *args, **kwargs)

	




	
on_rep_start(self, zero_predictions, *args, **kwargs)

	




	
on_fold_end(self, validation_index, runs:int, *args, **kwargs)

	




	
on_rep_end(self, *args, **kwargs)

	








	
class hyperparameter_hunter.data.data_chunks.prediction_chunks.HoldoutPredictionChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.prediction_chunks.BasePredictionChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	



	on_run_end(self, prediction, …)

	…














	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.prediction_chunks.TestPredictionChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.prediction_chunks.BasePredictionChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	



	on_run_end(self, prediction, …)

	…














	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	












hyperparameter_hunter.data.data_chunks.target_chunks module


	
class hyperparameter_hunter.data.data_chunks.target_chunks.BaseTargetChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_core.BaseDataChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.target_chunks.TrainTargetChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.target_chunks.BaseTargetChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_chunks.target_chunks.OOFTargetChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.target_chunks.BaseTargetChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, empty_output_frame, …)

	



	on_run_end(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	






	
on_exp_start(self, empty_output_frame, *args, **kwargs)

	




	
on_rep_start(self, empty_output_frame, *args, **kwargs)

	




	
on_fold_start(self, *args, **kwargs)

	




	
on_run_start(self, *args, **kwargs)

	




	
on_run_end(self, *args, **kwargs)

	




	
on_fold_end(self, validation_index, *args, **kwargs)

	




	
on_rep_end(self, n_splits:int, *args, **kwargs)

	




	
on_exp_end(self, n_repeats:int, *args, **kwargs)

	








	
class hyperparameter_hunter.data.data_chunks.target_chunks.HoldoutTargetChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_chunks.target_chunks.BaseTargetChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, empty_output_frame, …)

	



	on_run_end(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_start

	






	
on_exp_start(self, empty_output_frame, *args, **kwargs)

	




	
on_rep_start(self, empty_output_frame, *args, **kwargs)

	




	
on_fold_start(self, *args, **kwargs)

	




	
on_run_start(self, *args, **kwargs)

	




	
on_run_end(self, *args, **kwargs)

	




	
on_fold_end(self, *args, **kwargs)

	




	
on_rep_end(self, n_splits:int, *args, **kwargs)

	




	
on_exp_end(self, n_repeats:int, *args, **kwargs)
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hyperparameter_hunter.data package


Subpackages



	hyperparameter_hunter.data.data_chunks package
	Submodules

	hyperparameter_hunter.data.data_chunks.input_chunks module

	hyperparameter_hunter.data.data_chunks.prediction_chunks module

	hyperparameter_hunter.data.data_chunks.target_chunks module

	Module contents












Submodules




hyperparameter_hunter.data.data_core module

This module defines mechanisms for managing an experiment’s various datasets, and each datasets’s
inputs, targets, and predictions.

Important Contents

In order to maintain the states of different datasets across all divisions of an experiment and
amid transformations that may be applied to the data via
feature_engineering, two main classes are defined herein:


	BaseDataChunk:



	Logical separations between “columns” of data for a given BaseDataset


	Held and maintained by BaseDataset and its descendants


	Three primary descendants of BaseDataChunk:



	InputChunk: Maintains a dataset’s input data (and transformations)


	TargetChunk: Maintains a dataset’s target data (and transformations)


	PredictionChunk: Maintains a dataset’s predictions (and transformations)









	Descendants of BaseDataChunk should implement the eight “on_<division>_<point>”
callback methods defined by BaseCallback



	Because BaseDataChunk subclasses are isolated from the experiment, these methods
need not invoke their super methods, although they are allowed to if necessary









	NullDataChunk does nothing but mimic the normal BaseDataChunk child structure



	Used for BaseDataset subclasses lacking a particular data chunk, such as:



	TestDataset’s TargetChunk, because the targets for a test dataset are unknown, or


	TrainDataset’s PredictionChunk, because predictions are not made on training data























	BaseDataset:


# TODO: …








Dataset Attribute Syntax

The intricate subclass network bolstering the module’s predominant BaseDataset subclasses
may be intimidating at first, but don’t worry; there’s a shortcut. Follow these steps to ensure
proper syntax and a valid result when accessing data from a
CVExperiment:


	{data_train, data_oof, data_holdout, data_test} - Dataset attribute


	{input, target, prediction} - Data chunk


	[T] - Optional transformation


	{d, run, fold, rep, final} - Division, initial (d) or final data




By stacking three values (four if following optional step “3”) from the above formula, you can
access all of the interesting stuff stored in the datasets from the comfort of your experiment or
lambda_callback().


Related


	hyperparameter_hunter.callbacks.bases
	This module defines the core callback method structure mirrored by BaseDataCore.
Despite the strong logical connection to this module, it is important to remember that the only
actual connection between the two modules is in hyperparameter_hunter.callbacks.wranglers



	hyperparameter_hunter.callbacks.wranglers
	# TODO: … Handlers for the Dataset`s to invoke callback methods with required parameters
This module defines the callback classes that act as handlers for the descendants of
:class:`BaseDataset



	hyperparameter_hunter.experiments
	# TODO: …






	
class hyperparameter_hunter.data.data_core.BaseDataCore

	Bases: object

Basic building block class for both BaseDataChunk and BaseDataset

Notes


	Defines core callback method scaffolding, characterized by the following default behaviors:
	
	Eight core callback methods call BaseDataCore._on_call_default()


	BaseDataCore._on_call_default() does nothing


	BaseDataCore._do_something() calls the appropriate core callback method








Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	






	
on_exp_start(self, *args, **kwargs)

	




	
on_rep_start(self, *args, **kwargs)

	




	
on_fold_start(self, *args, **kwargs)

	




	
on_run_start(self, *args, **kwargs)

	




	
on_run_end(self, *args, **kwargs)

	




	
on_fold_end(self, *args, **kwargs)

	




	
on_rep_end(self, *args, **kwargs)

	




	
on_exp_end(self, *args, **kwargs)

	








	
class hyperparameter_hunter.data.data_core.BaseDataChunk(d: Optional[pandas.core.frame.DataFrame])

	Bases: hyperparameter_hunter.data.data_core._BaseDataChunk

Create logical separations between “columns” of data for a BaseDataset


	Parameters

	
	d: pd.DataFrame, or None
	Raw data representing the initial state of the data to be handled by this chunk, and its
transformed self (BaseDataChunk.T)







	Attributes

	
	T: _BaseDataChunk
	Extra data chunk tracking transformations/inversions applied to _BaseDataChunk
attributes via FeatureEngineer. If
no feature engineering is performed, T can be ignored









Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_core.NullDataChunk(*args, **kwargs)

	Bases: hyperparameter_hunter.data.data_core.BaseDataChunk

I’m useless. I don’t do anything - ever

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.data_core.BaseDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataCore

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	














hyperparameter_hunter.data.datasets module


	
class hyperparameter_hunter.data.datasets.TrainDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.datasets.OOFDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.datasets.HoldoutDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.datasets.TestDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	












Module contents


	
class hyperparameter_hunter.data.TrainDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.OOFDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.HoldoutDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	










	
class hyperparameter_hunter.data.TestDataset(data: Optional[pandas.core.frame.DataFrame] = None, feature_selector: List[str] = None, target_column: List[str] = None, require_data: bool = False)

	Bases: hyperparameter_hunter.data.data_core.BaseDataset

Base class for organizing entire datasets into three BaseDataChunk subclasses


	Parameters

	
	data: pd.DataFrame, or None, default=None
	Initial whole dataset, comprising both input and target data



	feature_selector: List, or None, default=None
	Column names to include as input data for the dataset



	target_column: List, or None, default=None
	Column name(s) in the dataset that contain the target output data



	require_data: Boolean, default=False
	If True, data must be provided as a pandas DataFrame









Notes

Subclasses of BaseDataset should override the three chunk initializer attributes
(_input_type, _target_type, _prediction_type) to a BaseDataChunk subclass
in order to establish callback method behavior for the data chunk attributes. Note that
NullDataChunk is also an acceptable value for any of the chunk initializers

Methods







	on_exp_start(self, \*args, \*\*kwargs)

	












	on_exp_end

	


	on_fold_end

	


	on_fold_start

	


	on_rep_end

	


	on_rep_start

	


	on_run_end

	


	on_run_start

	















          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.keys package


Submodules




hyperparameter_hunter.keys.hashing module


	
hyperparameter_hunter.keys.hashing.make_hash_sha256(obj, **kwargs)

	Create an sha256 hash of the input obj


	Parameters

	
	obj: Object
	Object for which a hash will be created



	**kwargs: Dict
	Extra kwargs to supply to key_handler.hash_callable()







	Returns

	
	Stringified sha256 hash
	












	
hyperparameter_hunter.keys.hashing.to_hashable(obj, **kwargs)

	Format the input obj to be hashable


	Parameters

	
	obj: Object
	Object to convert to a hashable format



	**kwargs: Dict
	Extra kwargs to supply to key_handler.hash_callable()







	Returns

	
	obj: object
	Hashable object














	
hyperparameter_hunter.keys.hashing.hash_callable(obj, ignore_line_comments=True, ignore_first_line=False, ignore_module=False, ignore_name=False, ignore_keywords=False, ignore_source_lines=False)

	Prepare callable object for hashing by selecting important characterization properties


	Parameters

	
	obj: Callable
	Callable to convert to a hashable format. Supports: function, class, functools.partial



	ignore_line_comments: Boolean, default=True
	If True, any line comments will be stripped from the source code of obj, specifically any
lines that start with zero or more whitespaces, followed by an octothorpe (#). This does not
apply to comments on the same line as code



	ignore_first_line: Boolean, default=False
	If True, strip the first line from the callable’s source code, specifically its name and
signature. If ignore_name=True, this will be treated as True



	ignore_module: Boolean, default=False
	If True, ignore the name of the module containing the source code (obj.__module__)



	ignore_name: Boolean, default=False
	If True, ignore obj.__name__. Note the difference from ignore_first_line, which
strips the entire callable signature from the source code. ignore_name does not alter the
source code. To ensure thorough ignorance, ignore_first_line=True is recommended



	ignore_keywords: Boolean, default=False
	If True and obj is a functools.partial, ignore obj.keywords



	ignore_source_lines: Boolean, default=False
	If True, all source code will be ignored by the hashing function. Ignoring all other kwargs,
this means that only obj.__module__, and obj.__name__,
(and obj.keywords if obj is partial) will be used for hashing







	Returns

	
	Tuple
	Hashable properties of the callable object input














	
hyperparameter_hunter.keys.hashing.is_line_comment(string)

	Return True if the given string is a line comment, else False


	Parameters

	
	string: Str
	The str in which to check for a line comment







	Returns

	
	Boolean
	














hyperparameter_hunter.keys.makers module

This module handles the creation of cross_experiment_key s and hyperparameter_key s for
hyperparameter_hunter.environment.Environment, and
hyperparameter_hunter.experiments.BaseExperiment, respectively. It also handles the
treatment of complex-typed inputs and their storage in the ‘KeyAttributeLookup’ subdirectory. The
descendants of hyperparameter_hunter.keys.makers.KeyMaker defined herein are each
responsible for the generation and saving of their keys, as well as determining whether such a key
already exists


Related


	hyperparameter_hunter.environment
	This module uses hyperparameter_hunter.keys.makers.CrossExperimentKeyMaker to set
hyperparameter_hunter.environment.Environment.cross_experiment_key



	hyperparameter_hunter.experiments
	This module uses hyperparameter_hunter.keys.makers.HyperparameterKeyMaker to set
hyperparameter_hunter.experiments.BaseExperiment.hyperparameter_key






	
class hyperparameter_hunter.keys.makers.KeyMaker(parameters, **kwargs)

	Bases: object

Base class to handle making key hashes and checking for their existence. Additionally,
this class handles saving entries for complex-typed parameters, along with their hashes to
ensure experiments are reproducible


	Parameters

	
	parameters: Dict
	All the parameters to be included when creating the key hash. Keys should correspond to
parameter names, and values should be the values of the corresponding keys



	**kwargs: Dict
	Additional arguments







	Attributes

	
	parameters: Dict
	A deep copy of the given parameters input



	key: Str, or None
	If a key has been generated for parameters, it is saved here. Else, None



	exists: Boolean
	True if key is not None, and already exists in tested_keys_dir. Else, False



	lookup_dir: Str
	The directory in which complex-typed parameter entries will be saved



	tested_keys_dir: Str, or None
	The directory is which key will be saved if it does not already contain key









Methods







	add_complex_type_lookup_entry(self, path, …)

	Add lookup entry in lookup_dir for a complex-typed parameter, linking the parameter key, its value, and its hashed_value



	does_key_exist(self)

	Check if key hash exists among saved keys in the contents of tested_keys_dir



	handle_complex_types(self)

	Locate complex types in parameters, create hashes for them, add lookup entries linking their original values to their hashes, then update their values in parameters to their hashes to facilitate Description saving



	make_key(self)

	Set key to an sha256 hash for parameters



	save_key(self)

	Save the key hash and the parameters used to make it to tested_keys_dir



	validate_environment(self)

	Check that the currently active Environment is suitable







	
validate_environment(self)

	Check that the currently active Environment is suitable






	
handle_complex_types(self)

	Locate complex types in parameters, create hashes for them, add lookup entries
linking their original values to their hashes, then update their values in
parameters to their hashes to facilitate Description saving






	
add_complex_type_lookup_entry(self, path, key, value, hashed_value)

	Add lookup entry in lookup_dir for a complex-typed parameter, linking
the parameter key, its value, and its hashed_value


	Parameters

	
	path: Tuple
	The path of keys that leads to key



	key: Str
	The parameter name



	value: *
	The value of the parameter key



	hashed_value: Str
	The hash produced for value














	
make_key(self)

	Set key to an sha256 hash for parameters






	
abstract property key_type

	Str in [“hyperparameter”, “cross_experiment”], denoting the key type being processed






	
abstract does_key_exist(self) → bool

	Check if key hash exists among saved keys in the contents of tested_keys_dir






	
abstract save_key(self)

	Save the key hash and the parameters used to make it to tested_keys_dir










	
class hyperparameter_hunter.keys.makers.CrossExperimentKeyMaker(parameters, **kwargs)

	Bases: hyperparameter_hunter.keys.makers.KeyMaker

A KeyMaker class dedicated to creating cross-experiment keys, which determine when
experiments were executed under sufficiently similar conditions to permit proper comparison.
Two separate instances of environment.Environment should produce identical
cross_experiment_key s if their arguments are the same (or close enough)


	Parameters

	
	parameters: Dict
	All the parameters to be included when creating the key hash. Keys should correspond to
parameter names, and values should be the values of the corresponding keys



	**kwargs: Dict
	Additional arguments supplied to keys.makers.KeyMaker.__init__()









Methods







	add_complex_type_lookup_entry(self, path, …)

	Add lookup entry in lookup_dir for a complex-typed parameter, linking the parameter key, its value, and its hashed_value



	does_key_exist(self)

	Check if a file corresponding to this cross_experiment_key already exists



	handle_complex_types(self)

	Locate complex types in parameters, create hashes for them, add lookup entries linking their original values to their hashes, then update their values in parameters to their hashes to facilitate Description saving



	make_key(self)

	Set key to an sha256 hash for parameters



	save_key(self)

	Create a new file for this cross_experiment_key if exists is False



	validate_environment(self)

	Check that the currently active Environment is suitable







	
key_type = 'cross_experiment'

	




	
does_key_exist(self)

	Check if a file corresponding to this cross_experiment_key already exists


	Returns

	
	Boolean
	












	
save_key(self)

	Create a new file for this cross_experiment_key if exists is False










	
class hyperparameter_hunter.keys.makers.HyperparameterKeyMaker(parameters, cross_experiment_key, **kwargs)

	Bases: hyperparameter_hunter.keys.makers.KeyMaker

A KeyMaker class dedicated to creating hyperparameter keys, which determine when
experiments were executed using identical hyperparameters. Two separate instances of
experiments.CVExperiment should produce identical hyperparameter_key s if their
hyperparameters are the same (or close enough)


	Parameters

	
	parameters: Dict
	All the parameters to be included when creating the key hash. Keys should correspond to
parameter names, and values should be the values of the corresponding keys



	cross_experiment_key: Str
	The key produced by the active Environment via
keys.makers.CrossExperimentKeyMaker, used for determining when a
hyperparameter key has already been tested under the same cross-experiment parameters



	**kwargs: Dict
	Additional arguments supplied to keys.makers.KeyMaker.__init__()









Methods







	add_complex_type_lookup_entry(self, path, …)

	Add lookup entry in lookup_dir for a complex-typed parameter, linking the parameter key, its value, and its hashed_value



	does_key_exist(self)

	Check that 1) there is a file for cross_experiment_key.key, 2) the aforementioned file contains the key key, and 3) the value at key is a non-empty list



	handle_complex_types(self)

	Locate complex types in parameters, create hashes for them, add lookup entries linking their original values to their hashes, then update their values in parameters to their hashes to facilitate Description saving



	make_key(self)

	Set key to an sha256 hash for parameters



	save_key(self)

	Create an entry in the dict contained in the file at cross_experiment_key.key, whose key is key, and whose value is an empty list if exists is False



	validate_environment(self)

	Check that the currently active Environment is suitable







	
key_type = 'hyperparameter'

	




	
does_key_exist(self)

	Check that 1) there is a file for cross_experiment_key.key, 2) the aforementioned
file contains the key key, and 3) the value at key is a non-empty list


	Returns

	
	Boolean
	












	
save_key(self)

	Create an entry in the dict contained in the file at cross_experiment_key.key,
whose key is key, and whose value is an empty list if exists is False














Module contents







          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.library_helpers package


Submodules




hyperparameter_hunter.library_helpers.keras_helper module

This module defines utilities for assisting in processing Keras Experiments


	
hyperparameter_hunter.library_helpers.keras_helper.keras_callback_to_key(callback)

	
	Convert a Keras callback instance to a string that identifies it, along with the parameters
	used to create it






	Parameters

	
	callback: Child instance of `keras.callbacks.Callback`
	A Keras callback for which a key string describing it will be created







	Returns

	
	callback_key: String
	A string identifying and describing callback














	
hyperparameter_hunter.library_helpers.keras_helper.keras_callback_to_dict(callback)

	Convert a Keras callback instance to a dict that identifies it, along with the parameters
used to create it


	Parameters

	
	callback: Child instance of `keras.callbacks.Callback`
	A Keras callback for which a dict describing it will be created







	Returns

	
	callback_dict: Dict
	A dict identifying and describing callback














	
hyperparameter_hunter.library_helpers.keras_helper.reinitialize_callbacks(callbacks)

	Ensures the contents of callbacks are valid Keras callbacks


	Parameters

	
	callbacks: List
	Expected to contain Keras callbacks, or dicts describing callbacks







	Returns

	
	callbacks: List
	A validated list of Keras callbacks














	
hyperparameter_hunter.library_helpers.keras_helper.keras_initializer_to_dict(initializer)

	




	
hyperparameter_hunter.library_helpers.keras_helper.get_concise_params_dict(params, split_args=False)

	




	
hyperparameter_hunter.library_helpers.keras_helper.parameters_by_signature(instance, signature_filter=None)

	Get a dict of the parameters used to create an instance of a class. This is only suited for
classes whose attributes are named according to their input parameters


	Parameters

	
	instance: Class instance
	Instance of a class that has attributes named for the class’s input parameters



	signature_filter: Callable, or None, default=None
	If not None, should be callable that expects as input (<arg_name>, <arg_val>), which are
signature parameter names, and values, respectively. The callable should return a boolean:
True if the pair should be added to params, or False if it should be ignored. If
signature_filter is None, all signature parameters will be added to params







	Returns

	
	params: Dict
	Mapping of input parameters in class’s __init__ signature to instance attribute values














	
hyperparameter_hunter.library_helpers.keras_helper.get_keras_attr(model, attr, max_depth=3, default=<object object at 0x7f4f5e1675d0>)

	Retrieve specific Keras model attributes safely across different versions of Keras


	Parameters

	
	model: Instance of :class:`keras.wrappers.scikit_learn.<KerasClassifier; KerasRegressor>`
	A compiled instance of a Keras model, made using the Keras wrappers.scikit_learn module



	attr: String
	Name of the attribute to retrieve from model



	max_depth: Integer, default=3
	Maximum number of times to check the “model” attribute of model for the target attr if
attr itself is not in model before returning default or raising AttributeError



	default: Object, default=object()
	If given, default will be returned once max_depth attempts have been made to find attr
in model. If not given and total attempts exceed max_depth, AttributeError is raised







	Returns

	
	Object
	Value of attr for model (or a nested model if necessary), or None














	
hyperparameter_hunter.library_helpers.keras_helper.parameterize_compiled_keras_model(model)

	Traverse a compiled Keras model to gather critical information about the layers used to
construct its architecture, and the parameters used to compile it


	Parameters

	
	model: Instance of :class:`keras.wrappers.scikit_learn.<KerasClassifier; KerasRegressor>`
	A compiled instance of a Keras model, made using the Keras wrappers.scikit_learn module.
This must be a completely valid Keras model, which means that it often must be the result
of library_helpers.keras_optimization_helper.initialize_dummy_model(). Using the
resulting dummy model ensures the model will pass Keras checks that would otherwise reject
instances of space.Space descendants used to provide hyperparameter choices







	Returns

	
	layers: List
	A list containing a dict for each layer found in the architecture of model. A layer dict
should contain the following keys: [‘class_name’, ‘__hh_default_args’,
‘__hh_default_kwargs’, ‘__hh_used_args’, ‘__hh_used_kwargs’]



	compile_params: Dict
	The parameters used on the call to model.compile(). If a value for a certain parameter
was not explicitly provided, its default value will be included in compile_params
















hyperparameter_hunter.library_helpers.keras_optimization_helper module

This module performs additional processing necessary when optimizing hyperparameters in the
Keras library. Its purpose is twofold: 1) to enable the construction of Keras models while
requiring minimal syntactic changes on the user’s end when defining hyperparameter space choices;
and 2) to enable thorough collection of all hyperparameters used to define a Keras model - not only
those being optimized - in order to ensure the continued usefulness of an Experiment’s result files
even under different hyperparameter search constraints


Related


	hyperparameter_hunter.importer
	Performs interception of Keras import to inject the hyperparameter-recording attributes



	hyperparameter_hunter.tracers
	Defines the new metaclass used by hyperparameter_hunter.importer to apply to key Keras
classes (like Layer)



	hyperparameter_hunter.utils.parsing_utils
	Defines utilities to assist in parsing source code provided by users to declare Keras
model-building functions



	hyperparameter_hunter.library_helpers.keras_helper
	Defines utilities to assist in characterizing Keras models






	
hyperparameter_hunter.library_helpers.keras_optimization_helper.keras_prep_workflow(model_initializer, build_fn, extra_params, source_script)

	Conduct preparation steps necessary before hyperparameter optimization on a Keras model.
Such steps include parsing and modifying build_fn to be of the form used by
hyperparameter_hunter.optimization.protocol_core.BaseOptPro, compiling a dummy model to
identify universal locations of given hyperparameter choices, and creating a simplified
characterization of the models to be built during optimization in order to enable similar
Experiment collection


	Parameters

	
	model_initializer: :class:`keras.wrappers.scikit_learn.<KerasClassifier; KerasRegressor>`
	A descendant of keras.wrappers.scikit_learn.BaseWrapper used to build a Keras model



	build_fn: Callable
	The build_fn value provided to keras.wrappers.scikit_learn.BaseWrapper.__init__().
Expected to return a compiled Keras model. May contain hyperparameter space choices



	extra_params: Dict
	The parameters expected to be passed to the extra methods of the compiled Keras model. Such
methods include (but are not limited to) fit, predict, and predict_proba. Some of the
common parameters given here include epochs, batch_size, and callbacks



	source_script: Str
	Absolute path to a Python file. Should end with one of following extensions: “.py”, “.ipynb”







	Returns

	
	reusable_build_fn: Callable
	Modified build_fn in which hyperparameter space choices are replaced by dict lookups, and
the signature is given a standard name, and additional input parameters necessary for reuse



	reusable_wrapper_params: Dict
	The parameters expected to be passed to the extra methods of the compiled Keras model. Such
methods include (but are not limited to) fit, predict, and predict_proba. Some of the
common parameters given here include epochs, batch_size, and callbacks



	dummy_layers: List
	The layers of a compiled dummy Keras model constructed according to the given
hyperparameters, in which each layer is a dict containing at least the following: the name
of the layer class, allowed and used args, and default and used kwargs



	dummy_compile_params: Dict
	The parameters used on the compile call for the dummy model. If a parameter is accepted
by the compile method, but is not explicitly given, its default value is included in
dummy_compile_params














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.consolidate_layers(layers, class_name_key=True, split_args=False)

	For each of the layer dicts in layers, merge the dict’s keys to reflect the end value of
the key, rather than its default value, and whether a value was explicitly given


	Parameters

	
	layers: List
	A list of dicts, wherein each dict represents a layer in a Keras model, and contains
information about its arguments



	class_name_key: Boolean, default=True
	If True, “class_name” is added as a key to the dict describing each layer. Else, it will be
used as a key to create an outer dict containing the rest of the keys describing each layer



	split_args: Boolean, default=False
	If True, each layer dict will be given two keys: “arg_vals”, and “kwarg_vals”, which are
both dicts containing their respective values. Else, each layer dict will directly contain
all the keys of “arg_vals”, and “kwarg_vals”, removing any indication of whether the
parameter was a positional or keyword argument, aside from order







	Returns

	
	consolidated_layers: List
	A list of the same length as layers, except each element has fewer keys than it did in
layers. The new keys are as follows: [“class_name”, “arg_vals”, “kwarg_vals”]














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.merge_compile_params(compile_params, dummified_params)

	Update compile_params to reflect those values that were given hyperparameter space choices,
as specified by dummified_params


	Parameters

	
	compile_params: Dict
	All the compile parameters provided to a dummy model’s compile method, or their default
values if they were not explicitly given. If the original value of one of the keys in
compile_params was a hyperparameter space choice, its current value will be the dummy
chosen for it, and this change will be reflected by the contents of dummified_params



	dummified_params: Dict
	A mapping of keys in compile_params (possibly nested keys) to a tuple pair of
(<original hyperparameter space choice>, <tuple path to key>)







	Returns

	
	merged_params: Dict
	A dictionary that mirrors compile_params, except where an element of dummified_params
has the same path/key, in which case the hyperparameter space choice value in
dummified_params is used














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.check_dummy_params(params)

	Locate and dummify hyperparameter space choices in params, if the hyperparameter is used
for model compilation


	Parameters

	
	params: Dict
	A dictionary of hyperparameters, in which values may be hyperparameter space choices







	Returns

	
	checked_params: Dict
	A replica of params, in which instances of hyperparameter space choices are replaced with
dummy values



	dummified_params: Dict
	A record of keys that were found whose values were hyperparameter space choices, mapped to
tuple pairs of (<original value>, <path to key>)














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.link_choice_ids(layers, compile_params, extra_params, dimensions)

	Update extra_params to include a “location” attribute on any descendants of
space.Dimension, specifying its position among all hyperparameters


	Parameters

	
	layers: List
	A list of dicts, in which each dict describes a network layer



	compile_params: Dict
	A dict containing the hyperparameters supplied to the model’s compile call



	extra_params: Dict
	A dict containing the hyperparameters for the model’s extra methods, such as fit,
predict, and predict_proba



	dimensions: List
	A list containing descendants of space.Dimension, representing the entire
hyperparameter search space







	Returns

	
	extra_params: Dict
	Mirrors the given extra_params, except any descendants of space.Dimension now
have a “location” attribute














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.initialize_dummy_model(model_initializer, build_fn, wrapper_params)

	Creates a dummy model with placeholder values wherever hyperparameter options are provided
via hyperparameter_hunter.space classes in order to produce a valid Keras model, albeit one
with semi-useless values, which also contains attributes injected by
hyperparameter_hunter.importer, and hyperparameter_hunter.tracers in order to
keep a record of given hyperparameter choices


	Parameters

	
	model_initializer: :class:`keras.wrappers.scikit_learn.<KerasClassifier; KerasRegressor>`
	A descendant of keras.wrappers.scikit_learn.BaseWrapper used to build a Keras model



	build_fn: Callable
	The build_fn value provided to keras.wrappers.scikit_learn.BaseWrapper.__init__()



	wrapper_params: Dict
	Additional parameters given to keras.wrappers.scikit_learn.BaseWrapper.__init__(), as
sk_params. Some acceptable values include arguments of build_fn; and arguments for the
fit, predict, predict_proba, and score methods. For further information on
acceptable values see the Keras documentation







	Returns

	
	dummy: Instance of keras.wrappers.scikit_learn.
	An initialized, compiled descendant of keras.wrappers.scikit_learn.BaseWrapper














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.rewrite_model_builder(build_fn_source)

	Convert the build function used to construct a Keras model to a reusable format by replacing
usages of hyperparameter_hunter.space classes (Real, Integer, Categorical) with key
lookups to a new build_fn input dict containing keys for each of the hyperparameter search
space choices found in the original source code


	Parameters

	
	build_fn_source: String
	The stringified source code of a callable (assumed to be Keras build_fn)







	Returns

	
	reusable_build_fn: String
	The given build_fn_source, in which any usages of hyperparameter_hunter.space classes
(Real, Integer, Categorical) are replaced with key lookups to a new build_fn input
dict containing keys for each of the hyperparameter search space choices found in the
original build_fn_source,



	expected_params: collections.OrderedDict instance
	A mapping of the names of the located hyperparameter choices to their given ranges
(as described by hyperparameter_hunter.space classes)














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.find_space_fragments(string)

	Locate and name all hyperparameter choice declaration fragments in string


	Parameters

	
	string: String
	A string assumed to be the source code of a Keras model-building function, in which
hyperparameter choice declaration strings may be found







	Returns

	
	clipped_choices: List
	All hyperparameter choice declaration strings found in string - in order of appearance



	names: List
	The names of all hyperparameter choice declarations in string - in order of appearance



	start_indexes: List
	The indexes at which each hyperparameter choice declaration string was found in string -
in order of appearance









Examples

>>> find_space_fragments("foo")
([], [], [])










	
hyperparameter_hunter.library_helpers.keras_optimization_helper.is_space_match(string)

	Determine whether string consists of a hyperparameter space declaration


	Parameters

	
	string: String
	Str assumed to be source code fragment, which may contain a hyperparameter space declaration







	Returns

	
	Boolean
	True if string begins with a valid hyperparameter space declaration. Else, False














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.iter_fragments(string, is_match=None)

	Yield fragments of string that are of a desired form as dictated by is_match


	Parameters

	
	string: String
	A string containing fragments, which, when passed to is_match return True



	is_match: Callable, or None, default=lambda _: False
	Callable given a single string input that is a fragment of string, starting at any index.
Expected to return boolean, which is truthy when the given fragment is of the desired form







	Yields

	
	String
	Fragment of string starting at an index and continuing to the end, for which is_match
returned a truthy value



	Int
	The index at which the aforementioned string fragment begins














	
hyperparameter_hunter.library_helpers.keras_optimization_helper.clean_parenthesized_string(string)

	Produce a clipped substring of string comprising all characters from the beginning of
string through the closing paren that matches the first opening paren in string


	Parameters

	
	string: String
	A string that contains a parenthesized statement in its entirety, along with extra content
to be removed. The target parenthesized statement may contain additional parentheses







	Returns

	
	clean_string: String
	A substring of string, extending from the beginning of string, through the closing paren
that matches the first opening paren found, producing a valid parenthesized statement
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hyperparameter_hunter.optimization.backends.skopt package


Submodules




hyperparameter_hunter.optimization.backends.skopt.engine module

This module contains various modified SKOpt assets that are used to support the other
hyperparameter_hunter.optimization.backends.skopt modules


Related

…




Notes

Many of the tools defined herein (although substantially modified) are based on those provided by
the excellent [Scikit-Optimize](https://github.com/scikit-optimize/scikit-optimize) library. See
hyperparameter_hunter.optimization.backends.skopt for a copy of SKOpt’s license.

What follows is a record of the first few commits to this file in order to clearly define what code
was taken from the original Scikit-Optimize source, and how it was modified thereafter.


	81a70ddfa0270495f0ed39127adbac4eb1f4fa59:
The content of this module (less module docstring) is identical to SKOpt’s module
skopt.optimizer.optimizer at the time of SKOpt commit 6740876a6f9ad92c732d394e8534a5236a8d3f84


	744043d09f11cf90609cbef6ca8ab43515958feb:
Add SKOpt’s skopt.utils.cook_estimator at the time of the above SKOpt commit, as well as the
original import statements required by the function


	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
[Diverging from SKOpt] Fix broken imports, and (substantially) refactor code and documentation to
follow HH conventions or for readability - Changes on and after this point are originally authored
by the contributors of HyperparameterHunter and are, therefore, subject to the
HyperparameterHunter license





	
class hyperparameter_hunter.optimization.backends.skopt.engine.Optimizer(dimensions, base_estimator='gp', n_initial_points=10, acq_func='gp_hedge', acq_optimizer='auto', random_state=None, acq_func_kwargs=None, acq_optimizer_kwargs=None, warn_on_re_ask=False)

	Bases: object

Run bayesian optimisation loop

An Optimizer represents the steps of a bayesian optimisation loop. To use it you need to
provide your own loop mechanism. The various optimisers provided by skopt use this class
under the hood. Use this class directly if you want to control the iterations of your bayesian
optimisation loop


	Parameters

	
	dimensions: List
	List of shape (n_dims,) containing search space dimensions. Each search dimension can be
defined as any of the following:


	Instance of a Dimension object (Real, Integer or Categorical)


	(<lower_bound>, <upper_bound>) tuple (for Real or Integer dimensions)


	(<lower_bound>, <upper_bound>, <prior>) tuple (for Real dimensions)


	List of categories (for Categorical dimensions)






	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the predict
method should have an optional return_std argument, which returns std(Y | x),
along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate model
corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of evaluations of func with initialization points before approximating it with
base_estimator. Points provided as x0 count as initialization points.
If len(x0) < n_initial_points, additional points are sampled at random



	acq_func: {“LCB”, “EI”, “PI”, “gp_hedge”, “EIps”, “PIps”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate point
X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are updated
such that g_i -= mu(X_i)
















	“EIps”: Negated expected improvement per second to take into account the function compute
time. Then, the objective function is assumed to return two values, the first being the
objective value and the second being the time taken in seconds


	“PIps”: Negated probability of improvement per second. The return type of the objective
function is identical to that of “EIps”






	acq_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the search
space. If the space is Categorical or if the provided estimator is based on tree-models,
then this is set to “sampling”






	random_state: Int, or RandomState instance (optional)
	Set random state to something other than None for reproducible results



	acq_func_kwargs: Dict (optional)
	Additional arguments to be passed to the acquisition function.



	acq_optimizer_kwargs: Dict (optional)
	Additional arguments to be passed to the acquisition optimizer



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Attributes

	
	Xi: List
	Points at which objective has been evaluated



	yi: List
	Values of objective at corresponding points in Xi



	models: List
	Regression models used to fit observations and compute acquisition function



	space: `hyperparameter_hunter.space.space_core.Space`
	Stores parameter search space used to sample points, bounds, and type of parameters



	n_initial_points_: Int
	Original value passed through the n_initial_points kwarg. The value of this attribute
remains unchanged along the lifespan of Optimizer, unlike _n_initial_points



	_n_initial_points: Int
	Number of remaining points that must be evaluated before fitting a surrogate estimator and
using it to recommend incumbent search points. Initially, _n_initial_points is set
to the value of the n_initial_points kwarg, like n_initial_points_. However,
_n_initial_points is decremented for each point tell-ed to Optimizer









Methods







	ask(self[, n_points, strategy])

	Request point (or points) at which objective should be evaluated next



	copy(self[, random_state])

	Create a shallow copy of an instance of the optimizer



	run(self, func[, n_iter])

	Execute ask() + tell() loop for n_iter iterations



	tell(self, x, y[, fit])

	Record an observation (or several) of the objective function







	
property base_estimator

	




	
property acq_optimizer

	Method to minimize the acquisition function. See documentation for the acq_optimizer
kwarg in Optimizer.__init__() for additional information


	Returns

	
	{“lbfgs”, “sampling”}
	String in {“lbfgs”, “sampling”}. If originally “auto”, one of the two aforementioned
strings is selected based on base_estimator














	
ask(self, n_points=None, strategy='cl_min')

	Request point (or points) at which objective should be evaluated next


	Parameters

	
	n_points: Int (optional)
	Number of points returned by the ask method. If n_points not given, a single point
to evaluate is returned. Otherwise, a list of points to evaluate is returned of size
n_points. This is useful if you can evaluate your objective in parallel, and thus
obtain more objective function evaluations per unit of time



	strategy: {“cl_min”, “cl_mean”, “cl_max”}, default=”cl_min”
	Method used to sample multiple points if n_points is an integer. If n_points is not
given, strategy is ignored.

If set to “cl_min”, then “Constant Liar” strategy (see reference) is used with lie
objective value being minimum of observed objective values. “cl_mean” and “cl_max”
correspond to the mean and max of values, respectively.

With this strategy, a copy of optimizer is created, which is then asked for a point,
and the point is told to the copy of optimizer with some fake objective (lie), the
next point is asked from copy, it is also told to the copy with fake objective and so
on. The type of lie defines different flavours of “cl…” strategies







	Returns

	
	List
	Point (or points) recommended to be evaluated next









References


	1

	Chevalier, C.; Ginsbourger, D.: “Fast Computation of the Multi-points Expected
Improvement with Applications in Batch Selection”.
https://hal.archives-ouvertes.fr/hal-00732512/document










	
tell(self, x, y, fit=True)

	Record an observation (or several) of the objective function

Provide values of the objective function at points suggested by ask(), or arbitrary
points. By default, a new model will be fit to all observations. The new model is used to
suggest the next point at which to evaluate the objective. This point can be retrieved by
calling ask().

To add multiple observations in a batch, pass a list-of-lists for x, and a list of
scalars for y


	Parameters

	
	x: List, or list-of-lists
	Point(s) at which objective was evaluated



	y: Scalar, or list
	Value(s) of objective at x



	fit: Boolean, default=True
	Whether to fit a model to observed evaluations of the objective. A model will only be
fitted after n_initial_points points have been tell-ed to the optimizer,
irrespective of the value of fit. To add observations without fitting a new model,
set fit to False














	
copy(self, random_state=None)

	Create a shallow copy of an instance of the optimizer


	Parameters

	
	random_state: Int, or RandomState instance (optional)
	Set random state of the copy







	Returns

	
	Optimizer
	Shallow copy of self














	
run(self, func, n_iter=1)

	Execute ask() + tell() loop for n_iter iterations


	Parameters

	
	func: Callable
	Function that returns the objective value y, when given a search point x



	n_iter: Int, default=1
	Number of ask/tell sequences to execute







	Returns

	
	OptimizeResult
	scipy.optimize.OptimizeResult instance


















	
hyperparameter_hunter.optimization.backends.skopt.engine.is_list_like(x)

	Determine whether a point is list-like


	Parameters

	
	x: List
	Some point to check for list-likeness







	Returns

	
	Boolean
	True if x is list-like. Else False














	
hyperparameter_hunter.optimization.backends.skopt.engine.is_2d_list_like(x)

	Determine whether a point is 2-dimensional list-like


	Parameters

	
	x: List
	Some point to check for 2D list-likeness







	Returns

	
	Boolean
	True if x is 2D list-like. Else False














	
hyperparameter_hunter.optimization.backends.skopt.engine.check_x_in_space(x, space)

	Check that an arbitrary point, or list of points, fits within the bounds of space


	Parameters

	
	x: List
	Some point (or list of points), whose compatibility with space will be checked. If x is
a collection of multiple points, it should be a list of lists



	space: Space
	Instance of hyperparameter_hunter.space.space_core.Space that defines the
dimensions and bounds within which x should fit







	Raises

	
	ValueError
	If x is incompatible with space for any reason














	
hyperparameter_hunter.optimization.backends.skopt.engine.cook_estimator(base_estimator, space=None, **kwargs)

	Cook a default estimator

For the special base_estimator called “DUMMY”, the return value is None. This corresponds to
sampling points at random, hence there is no need for an estimator


	Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the predict
method should have an optional return_std argument, which returns std(Y | x),
along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate model
corresponding to the relevant X_minimize function is created



	space: `hyperparameter_hunter.space.space_core.Space`
	Required only if the base_estimator is a Gaussian Process. Ignored otherwise



	**kwargs: Dict
	Extra parameters provided to the base_estimator at initialization time







	Returns

	
	SKLearn Regressor
	Regressor instance cooked up according to base_estimator and kwargs


















hyperparameter_hunter.optimization.backends.skopt.protocols module

This module defines the OptPro (Optimization Protocol) classes that are intended for direct use.
All classes defined herein should be descendants of one of the base classes defined in
hyperparameter_hunter.optimization.protocol_core


Related


	hyperparameter_hunter.optimization.protocol_core
	Defines the base Optimization Protocol classes from which the classes in
hyperparameter_hunter.optimization.backends.skopt.protocols are descendants






	
class hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Bayesian optimization with Gaussian Processes


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GBRT', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with gradient boosted regression trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='RF', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with random forest regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='ET', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with extra trees regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='DUMMY', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Random search by uniform sampling


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.optimization.backends.skopt.protocols.GBRT

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro






	
hyperparameter_hunter.optimization.backends.skopt.protocols.RF

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro






	
hyperparameter_hunter.optimization.backends.skopt.protocols.ET

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro






	
class hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to BayesianOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to GradientBoostedRegressionTreeOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to RandomForestOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to ExtraTreesOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.backends.skopt.protocols.DummySearch(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to DummyOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None
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Submodules




hyperparameter_hunter.optimization.protocol_core module

This module defines the base Optimization Protocol classes. The classes defined herein are not
intended for direct use, but are rather parent classes to those defined in
hyperparameter_hunter.optimization.backends.skopt.protocols


Related


	hyperparameter_hunter.optimization.backends.skopt.protocols
	Defines the optimization classes that are intended for direct use. All classes defined in
hyperparameter_hunter.optimization.backends.skopt.protocols should be descendants of
BaseOptPro



	hyperparameter_hunter.result_reader
	Used to locate result files for Experiments that are similar to the current optimization
constraints, and produce data to learn from in the case of SKOptPro



	hyperparameter_hunter.space
	Defines the child classes of hyperparameter_hunter.space.Dimension, which are used to define
the hyperparameters to optimize



	hyperparameter_hunter.utils.optimization_utils:
	Provides utility functions for locating saved Experiments that fit within the constraints
currently being optimized






	
class hyperparameter_hunter.optimization.protocol_core.OptProMeta

	Bases: type

Metaclass to accurately set source_script for its descendants even if the original
call was the product of scripts calling other scripts that eventually instantiated an
optimization protocol

Methods







	__call__(cls, \*args, \*\*kwargs)

	Set the instance’s source_script to the absolute path of the file that instantiated the OptimizationProtocol



	mro()

	return a type’s method resolution order











	
class hyperparameter_hunter.optimization.protocol_core.MergedOptProMeta

	Bases: hyperparameter_hunter.optimization.protocol_core.OptProMeta, abc.ABCMeta

Metaclass to combine OptProMeta, and ABCMeta

Methods







	__call__(cls, \*args, \*\*kwargs)

	Set the instance’s source_script to the absolute path of the file that instantiated the OptimizationProtocol



	mro()

	return a type’s method resolution order



	register(cls, subclass)

	Register a virtual subclass of an ABC.











	
class hyperparameter_hunter.optimization.protocol_core.BaseOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False)

	Bases: object

Base class for intermediate base optimization protocol classes

There are two important methods for all BaseOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default={}
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria









Notes

By default, ‘script_backup’ for Experiments is blacklisted when executed within
BaseOptPro since it would just repeatedly create copies of the same, unchanged
file. So don’t expect any script_backup files for Experiments executed by OptPros


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration







	
source_script = None

	




	
forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=True)

	Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it
accepts hyperparameters not only as concrete values, but also as space choices – using
Real,
Integer, and
Categorical. This functionality applies to
the model_init_params, model_extra_params and feature_engineer kwargs. Any Dimensions
provided to forge_experiment are detected by the OptPro and used to define the
hyperparameter search space to be optimized


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as choices
(dimensions to optimize) by using instances of
Real,
Integer, or
Categorical. Furthermore,
hyperparameter choices and concrete values can be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params kwarg of
CVExperiment is limited to using concrete
values, such as dict(max_depth=10, learning_rate=0.1, booster="gbtree"). This is
still valid for forge_experiment(). However, forge_experiment() also
allows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.001, 0.5),
booster=Categorical(["gbtree", "dart"])), or as any combination of concrete values
and choices, for instance, dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params, meaning
that in addition to concrete values, extra parameters can be given as instances of
Real,
Integer, or
Categorical. To optimize over a space
in which early_stopping_rounds is between 3 and 9, use
model_extra_params`=`dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`


	Categorical, with categories
comprising a selection of the previous two values (optimization only)







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is
illustrated in FeatureEngineer. If
using a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged










See also


	hyperparameter_hunter.experiments.BaseExperiment
	One-off experimentation counterpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed arguments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place in _execute_experiment()







Notes

The auto_start kwarg is not available here because _execute_experiment() sets it
to False in order to check for duplicated keys before running the whole Experiment. This
and target_metric being moved to __init__() are the most notable differences
between calling forge_experiment() and instantiating
CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However,
forge_experiment sounds cooler and much less clunky






	
set_experiment_guidelines(self, *args, **kwargs)

	
Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to forge_experiment








	
set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to
dimensions






	
get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar
Experiments. This method is automatically invoked when go() is called if necessary






	
go(self, force_ready=True)

	Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines
experiment guidelines and search dimensions. go performs a few important tasks: 1)
Formally setting the hyperparameter space; 2) Locating similar experiments to be used as
learning material (for OptPros that suggest incumbent search points by estimating utilities
using surrogate models); and 3) Actually setting off the optimization process, via
_optimization_loop()


	Parameters

	
	force_ready: Boolean, default=False
	If True, get_ready() will be invoked even if it has already been called. This will
re-initialize the hyperparameter space and similar_experiments. Standard behavior is
for go() to invoke get_ready(), so force_ready is ignored unless
get_ready() has been manually invoked














	
abstract property search_space_size

	The number of different hyperparameter permutations possible given the current
hyperparameter search space










	
class hyperparameter_hunter.optimization.protocol_core.SKOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.BaseOptPro

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be
invoked after initialization:


	forge_experiment()


	go()





	Parameters

	
	target_metric: Tuple, default=(“oof”, <:attr:`environment.Environment.metrics`[0]>)
	Rarely necessary to explicitly provide this, as the default is usually sufficient. Path
denoting the metric to be used to compare Experiment performance. The first value
should be one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of
a metric being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric() for more info.
Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable
values for BaseOptPro.target_metric



	iterations: Int, default=1
	Number of Experiments to conduct during optimization upon invoking BaseOptPro.go()



	verbose: {0, 1, 2}, default=1
	Verbosity mode for console logging. 0: Silent. 1: Show only logs from the Optimization
Protocol. 2: In addition to logs shown when verbose=1, also show the logs from
individual Experiments



	read_experiments: Boolean, default=True
	If True, all Experiment records that fit in the current space and guidelines,
and match algorithm_name, will be read in and used to fit any optimizers



	reporter_parameters: Dict, or None, default=None
	Additional parameters passed to reporting.OptimizationReporter.__init__(). Note:
Unless provided explicitly, the key “do_maximize” will be added by default to
reporter_params, with a value inferred from the direction of target_metric
in G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored,
as there are very few reasons to explicitly include it



	warn_on_re_ask: Boolean, default=False
	If True, and the internal optimizer recommends a point that has already been evaluated
on invocation of ask, a warning is logged before recommending a random point. Either
way, a random point is used instead of already-evaluated recommendations. However,
logging the fact that this has taken place can be useful to indicate that the optimizer
may be stalling, especially if it repeatedly recommends the same point. In these cases,
if the suggested point is not optimal, it can be helpful to switch a different OptPro
(especially DummyOptPro), which will suggest points using different criteria







	Other Parameters

	
	base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
	If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns
std(Y | x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created



	n_initial_points: Int, default=10
	Number of complete evaluation points necessary before allowing Experiments to be
approximated with base_estimator. Any valid Experiment records found will count as
initialization points. If enough Experiment records are not found, additional points
will be randomly sampled



	acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
	Function to minimize over the posterior distribution. Can be any of the following:


	“LCB”: Lower confidence bound


	“EI”: Negative expected improvement


	“PI”: Negative probability of improvement


	“gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration



	The gains g_i are initialized to zero


	At every iteration,



	Each acquisition function is optimised independently to propose a candidate
point X_i


	Out of all these candidate points, the next point X_best is chosen by
softmax(eta g_i)


	After fitting the surrogate model with (X_best, y_best), the gains are
updated such that g_i -= mu(X_i)




















	acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto”
	Method to minimize the acquisition function. The fit model is updated with the optimal
value obtained by optimizing acq_func with acq_optimizer


	“sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.


	“lbfgs”: acq_func is optimized by



	Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points


	“lbfgs” is run for 20 iterations with these initial points to find local minima


	The optimal of these local minima is used to update the prior









	“auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based on
tree-models, then this is set to “sampling”






	random_state: Int, `RandomState` instance, or None, default=None
	Set to something other than None for reproducible results



	acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
	Additional arguments passed to the acquisition function



	acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
	Additional arguments passed to the acquisition optimizer



	n_random_starts: …
	
Deprecated since version 3.0.0: Use n_initial_points, instead. Will be removed in 3.2.0





	callbacks: Callable, list of callables, or None, default=[]
	If callable, then callbacks(self.optimizer_result) is called after each update to
optimizer. If list, then each callable is called



	base_estimator_kwargs: Dict, or None, default={}
	Additional arguments passed to base_estimator when it is initialized









Notes

To provide initial input points for evaluation, individual Experiments can be executed prior
to instantiating an Optimization Protocol. The results of these Experiments will
automatically be detected and cherished by the optimizer.

SKOptPro and its children in optimization rely heavily
on the utilities provided by the Scikit-Optimize library, so thank you to the creators and
contributors for their excellent work.


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration







	
property search_space_size

	The number of different hyperparameter permutations possible given the current
hyperparameter search dimensions


	Returns

	
	_search_space_size: Int, or numpy.inf
	Infinity returned if any of the following constraints are met: 1) the hyperparameter
dimensions include any real-valued boundaries, 2) the boundaries include values that are
neither categorical nor integer, or 3) search space size is otherwise incalculable














	
source_script = None

	












Module contents


	
class hyperparameter_hunter.optimization.BayesianOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Bayesian optimization with Gaussian Processes


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.GradientBoostedRegressionTreeOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GBRT', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with gradient boosted regression trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.optimization.GBRT

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro






	
class hyperparameter_hunter.optimization.RandomForestOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='RF', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with random forest regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.optimization.RF

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro






	
class hyperparameter_hunter.optimization.ExtraTreesOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='ET', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with extra trees regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.optimization.ET

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro






	
class hyperparameter_hunter.optimization.DummyOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='DUMMY', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Random search by uniform sampling


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.BayesianOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to BayesianOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.GradientBoostedRegressionTreeOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to GradientBoostedRegressionTreeOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.RandomForestOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to RandomForestOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.ExtraTreesOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to ExtraTreesOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.optimization.DummySearch(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to DummyOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	













          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.space package


Submodules




hyperparameter_hunter.space.dimensions module

Defines Dimension classes used for defining hyperparameter search spaces. Rather than
hyperparameter_hunter.space.space_core.Space, the subclasses of
hyperparameter_hunter.space.dimensions.Dimension are the only tools necessary for a user
to define a hyperparameter search space, when used as intended, in conjunction with a concrete
descendant of hyperparameter_hunter.optimization.protocol_core.BaseOptPro.


Related


	hyperparameter_hunter.space.space_core
	Defines hyperparameter_hunter.space.space_core.Space, which is used by
hyperparameter_hunter.optimization.protocol_core.SKOptPro to combine search Dimensions
into a Space to be sampled and searched








Notes

Many of the tools defined herein (although substantially modified) are based on those provided by
the excellent [Scikit-Optimize](https://github.com/scikit-optimize/scikit-optimize) library. See
hyperparameter_hunter.optimization.backends.skopt for a copy of SKOpt’s license


	
class hyperparameter_hunter.space.dimensions.Singleton

	Bases: type

Methods







	__call__(cls, \*args, \*\*kwargs)

	Call self as a function.



	mro()

	return a type’s method resolution order











	
class hyperparameter_hunter.space.dimensions.RejectedOptional

	Bases: object

Singleton class to symbolize the rejection of an optional Categorical value

This is used as a sentinel, when the value in Categorical.categories is not used, to be
inserted into a FeatureEngineer. If
hyperparameter_hunter.feature_engineering.FeatureEngineer.steps contains an instance
of RejectedOptional, it is removed from steps






	
class hyperparameter_hunter.space.dimensions.Dimension(**kwargs)

	Bases: abc.ABC

Abstract base class for hyperparameter search space dimensions


	Attributes

	
	id: String
	A stringified UUID used to link space dimensions to their locations in a model’s overall
hyperparameter structure



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Dimension, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
prior = None

	




	
rvs(self, n_samples=1, random_state=None)

	Draw random samples. Samples are in the original (untransformed) space. They must be
transformed before being passed to a model or minimizer via transform()


	Parameters

	
	n_samples: Int, default=1
	Number of samples to be drawn



	random_state: Int, RandomState, or None, default=None
	Set random state to something other than None for reproducible results







	Returns

	
	List
	Randomly drawn samples from the original space














	
transform(self, data)

	Transform samples from the original space into a warped space


	Parameters

	
	data: List
	Samples to transform. Should be of shape (<# samples>, size)







	Returns

	
	List
	Samples transformed into a warped space. Will be of shape
(<# samples>, transformed_size)









Notes

Expected to be used to project samples into a suitable space for numerical optimization






	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape (<# samples>, transformed_size)







	Returns

	
	List
	Samples transformed back to original space. Will be shape (<# samples>, size)














	
property distribution

	Class used for random sampling of points within the space


	Returns

	
	rv_generic
	_distribution









Notes

“setter” work for this property is performed by _make_distribution(). The reason for
this unconventional behavior is noted in distribution.setter






	
property transformer

	Class used to transform and inverse-transform samples in the space


	Returns

	
	Transformer
	_transformer









Notes

“setter” work for this property is performed by _make_transformer(). The reason for
this unconventional behavior is noted in distribution.setter, which behaves similarly






	
property size

	Size of the original (untransformed) space for the dimension






	
property transformed_size

	Size of the transformed space for the dimension






	
abstract property bounds

	Dimension bounds in the original space






	
abstract property transformed_bounds

	Dimension bounds in the warped space






	
property name

	A name associated with the dimension


	Returns

	
	String, tuple, or None
	_name














	
abstract distance(self, a, b) → numbers.Number

	Calculate distance between two points in the dimension’s bounds






	
abstract get_params(self) → dict

	Get dict of parameters used to initialize the Dimension, or their defaults










	
class hyperparameter_hunter.space.dimensions.NumericalDimension(low, high, **kwargs)

	Bases: hyperparameter_hunter.space.dimensions.Dimension, abc.ABC

Abstract base class for strictly numerical Dimension subclasses


	Parameters

	
	low: Number
	Lower bound (inclusive)



	high: Number
	Upper bound (inclusive)



	**kwargs: Dict
	Additional kwargs passed through from the concrete class to Dimension







	Attributes

	
	bounds
	Dimension bounds in the original space



	distribution
	Class used for random sampling of points within the space



	name
	A name associated with the dimension



	prior
	

	size
	Size of the original (untransformed) space for the dimension



	transformed_bounds
	Dimension bounds in the warped space



	transformed_size
	Size of the transformed space for the dimension



	transformer
	Class used to transform and inverse-transform samples in the space









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Dimension, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
property bounds

	Dimension bounds in the original space


	Returns

	
	Tuple
	Tuple of (low, high). For Real dimensions, the values will be
floats. For Integer dimensions, the values will be ints














	
distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds


	Returns

	
	Number
	Absolute value of the difference between a and b


















	
class hyperparameter_hunter.space.dimensions.Real(low, high, prior='uniform', transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any real value in a given range


	Parameters

	
	low: Float
	Lower bound (inclusive)



	high: Float
	Upper bound (inclusive)



	prior: {“uniform”, “log-uniform”}, default=”uniform”
	Distribution to use when sampling random points for this dimension. If “uniform”, points
are sampled uniformly between the lower and upper bounds. If “log-uniform”, points are
sampled uniformly between log10(lower) and log10(upper)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Real, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape (<# samples>, transformed_size)







	Returns

	
	List
	Samples transformed back to original space. Will be shape (<# samples>, size)














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	low: Float
	0.0 if transform_`="normalize". If :attr:`transform_`="identity" and
:attr:`prior`="uniform", then :attr:`low. Else log10(low)



	high: Float
	1.0 if transform_`="normalize". If :attr:`transform_`="identity" and
:attr:`prior`="uniform", then :attr:`high. Else log10(high)














	
get_params(self) → dict

	Get dict of parameters used to initialize the Real, or their defaults










	
class hyperparameter_hunter.space.dimensions.Integer(low, high, transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any integer value in a given range


	Parameters

	
	low: Int
	Lower bound (inclusive)



	high: Int
	Upper bound (inclusive)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Integer, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape (<# samples>, transformed_size)







	Returns

	
	List
	Samples transformed back to original space. Will be shape (<# samples>, size)














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	low: Int
	0 if transform_`="normalize", else :attr:`low



	high: Int
	1 if transform_`="normalize", else :attr:`high














	
get_params(self) → dict

	Get dict of parameters used to initialize the Integer, or their defaults










	
class hyperparameter_hunter.space.dimensions.Categorical(categories: list, prior: list = None, transform='onehot', optional=False, name=None)

	Bases: hyperparameter_hunter.space.dimensions.Dimension

Search space dimension that can assume any categorical value in a given list


	Parameters

	
	categories: List
	Sequence of possible categories of shape (n_categories,)



	prior: List, or None, default=None
	If list, prior probabilities for each category of shape (categories,). By default all
categories are equally likely



	transform: {“onehot”, “identity”}, default=”onehot”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “onehot”, the transformed space is a one-hot encoded
representation of the original space



	optional: Boolean, default=False
	Intended for use by FeatureEngineer
when optimizing an EngineerStep.
Specifically, this enables searching through a space in which an EngineerStep either
may or may not be used. This is contrary to Categorical’s usual function of creating
a space comprising multiple categories. When optional = True, the space created will
represent any of the values in categories either being included in the entire
FeatureEngineer process, or being skipped entirely. Internally, a value excluded by
optional is represented by a sentinel value that signals it should be removed from the
containing list, so optional will not work for choosing between a single value and
None, for example



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	categories: Tuple
	Original value passed through the categories kwarg, cast to a tuple. If optional is
True, then an instance of RejectedOptional will be appended to categories



	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	optional: Boolean
	Original value passed through the optional kwarg



	prior: List, or None
	Original value passed through the prior kwarg



	prior_actual: List
	Calculated prior value, initially equivalent to prior, but then set to a default
array if None



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Categorical, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
rvs(self, n_samples=None, random_state=None)

	Draw random samples. Samples are in the original (untransformed) space. They must be
transformed before being passed to a model or minimizer via transform()


	Parameters

	
	n_samples: Int (optional)
	Number of samples to be drawn. If not given, a single sample will be returned



	random_state: Int, RandomState, or None, default=None
	Set random state to something other than None for reproducible results







	Returns

	
	List
	Randomly drawn samples from the original space














	
property transformed_size

	Size of the transformed space for the dimension


	Returns

	
	Int
	
	1 if transform_ == “identity”


	1 if transform_ == “onehot” and length of categories is 1 or 2


	Length of categories in all other cases

















	
property bounds

	Dimension bounds in the original space


	Returns

	
	Tuple
	categories














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	Tuple, or list
	If transformed_size == 1, then a tuple of (0.0, 1.0). Otherwise, returns a list
containing transformed_size-many tuples of (0.0, 1.0)









Notes

transformed_size == 1 when the length of categories == 2, so if there are
two items in categories, (0.0, 1.0) is returned. If there are three items in categories,
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)] is returned, and so on.

Because transformed_bounds uses transformed_size, it is affected by
transform_. Specifically, the returns described above are for transform_ ==
“onehot” (default).

Examples

>>> Categorical(["a", "b"]).transformed_bounds
(0.0, 1.0)
>>> Categorical(["a", "b", "c"]).transformed_bounds
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)]
>>> Categorical(["a", "b", "c", "d"]).transformed_bounds
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0)]










	
distance(self, a, b) → int

	Calculate distance between two points in the dimension’s bounds


	Parameters

	
	a
	First category



	b
	Second category







	Returns

	
	Int
	0 if a == b. Else 1 (because categories have no order)














	
get_params(self) → dict

	Get dict of parameters used to initialize the Categorical, or their defaults














hyperparameter_hunter.space.space_core module

Defines utilities intended for internal use only, most notably
hyperparameter_hunter.space.space_core.Space. These tools are used behind the scenes by
hyperparameter_hunter.optimization.protocol_core.BaseOptPro to combine instances of
dimensions defined in hyperparameter_hunter.space.dimensions into a usable hyperparameter
search Space


Related


	hyperparameter_hunter.space.dimensions
	Defines concrete descendants of hyperparameter_hunter.space.dimensions.Dimension, which
are intended for direct use. hyperparameter_hunter.space.space_core.Space is used
to combine these Dimension instances








Notes

Many of the tools defined herein (although substantially modified) are based on those provided by
the excellent [Scikit-Optimize](https://github.com/scikit-optimize/scikit-optimize) library. See
hyperparameter_hunter.optimization.backends.skopt for a copy of SKOpt’s license


	
hyperparameter_hunter.space.space_core.check_dimension(dimension, transform=None)

	Turn a provided dimension description into a dimension object. Checks that the provided
dimension falls into one of the supported types, listed below in the description of dimension


	Parameters

	
	dimension: Tuple, list, or Dimension
	Search space Dimension. May be any of the following:
* (lower_bound, upper_bound) tuple (Real or Integer)
* (lower_bound, upper_bound, prior) tuple (Real)
* List of categories (Categorical)
* Dimension instance (Real, Integer or Categorical)



	transform: {“identity”, “normalize”, “onehot”} (optional)
	
	Categorical dimensions support “onehot” or “identity”. See Categorical documentation
for more information


	Real and Integer dimensions support “identity” or “normalize”. See Real or Integer
documentation for more information










	Returns

	
	dimension: Dimension
	Dimension instance created from the provided dimension description. If dimension is
already an instance of Dimension, it is returned unchanged














	
class hyperparameter_hunter.space.space_core.Space(dimensions)

	Bases: object

Initialize a search space from given specifications


	Parameters

	
	dimensions: List
	List of search space Dimension instances or representatives. Each search dimension
may be any of the following:
* (lower_bound, upper_bound) tuple (Real or Integer)
* (lower_bound, upper_bound, prior) tuple (Real)
* List of categories (Categorical)
* Dimension instance (Real, Integer or Categorical)









Notes

The upper and lower bounds are inclusive for Integer dimensions


	Attributes

	
	bounds
	The dimension bounds, in the original space



	is_categorical
	Whether dimensions contains exclusively Categorical dimensions



	is_real
	Whether dimensions contains exclusively Real dimensions



	n_dims
	Dimensionality of the original space



	transformed_bounds
	The dimension bounds, in the warped space



	transformed_n_dims
	Dimensionality of the warped space









Methods







	distance(self, point_a, point_b)

	Compute distance between two points in this space.



	get_by_name(self, name[, use_location, default])

	Retrieve a single dimension by its name



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	names(self[, use_location])

	Retrieve the names, or locations of all dimensions in the hyperparameter search space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
rvs(self, n_samples=1, random_state=None)

	Draw random samples. Samples are in the original (untransformed) space. They must be
transformed before being passed to a model or minimizer via transform()


	Parameters

	
	n_samples: Int, default=1
	Number of samples to be drawn from the space



	random_state: Int, RandomState, or None, default=None
	Set random state to something other than None for reproducible results







	Returns

	
	List
	Randomly drawn samples from the original space. Will be a list of lists, of shape
(n_samples, n_dims)














	
transform(self, data)

	Transform samples from the original space into a warped space


	Parameters

	
	data: List
	Samples to transform. Should be of shape (<# samples>, n_dims)







	Returns

	
	data_t: List
	Samples transformed into a warped space. Will be of shape
(<# samples>, transformed_n_dims)









Notes

Expected to be used to project samples into a suitable space for numerical optimization






	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape
(<# samples>, transformed_n_dims)







	Returns

	
	List
	Samples transformed back to the original space. Will be of shape
(<# samples>, n_dims)














	
property n_dims

	Dimensionality of the original space


	Returns

	
	Int
	Length of dimensions














	
property transformed_n_dims

	Dimensionality of the warped space


	Returns

	
	Int
	Sum of the transformed_size of all dimensions in dimensions














	
property bounds

	The dimension bounds, in the original space


	Returns

	
	List
	Collection of the bounds of each dimension in dimensions














	
property transformed_bounds

	The dimension bounds, in the warped space


	Returns

	
	List
	Collection of the transformed_bounds of each dimension in dimensions














	
property is_real

	Whether dimensions contains exclusively Real dimensions


	Returns

	
	Boolean
	True if all dimensions in dimensions are Real. Else, False














	
property is_categorical

	Whether dimensions contains exclusively Categorical dimensions


	Returns

	
	Boolean
	True if all dimensions in dimensions are Categorical. Else, False














	
names(self, use_location=True)

	Retrieve the names, or locations of all dimensions in the hyperparameter search space


	Parameters

	
	use_location: Boolean, default=True
	If True and a dimension has a non-null attribute called ‘location’, its value will be
used instead of ‘name’







	Returns

	
	names: List
	A list of strings or tuples, in which each value is the name or location of the
dimension at that index














	
get_by_name(self, name, use_location=True, default=<object object at 0x7f4f495e0630>)

	Retrieve a single dimension by its name


	Parameters

	
	name: Tuple, or str
	Name of the dimension in dimensions to return



	use_location: Boolean, default=True
	If True and a dimension has a non-null attribute called “location”, its value will be
used instead of that dimension’s “name”



	default: Any (optional)
	If given and name is not found, default will be returned. Otherwise, KeyError will
be raised when name is not found







	Returns

	
	Dimension
	Dimension subclass in dimensions, whose “name” attribute is equal to name














	
distance(self, point_a, point_b)

	Compute distance between two points in this space. Both point_a and point_b are
expected to be of the same length as dimensions, with values corresponding to the
Dimension bounds of dimensions


	Parameters

	
	point_a: List
	First point



	point_b: List
	Second point







	Returns

	
	Number
	Distance between point_a and point_b


















	
hyperparameter_hunter.space.space_core.normalize_dimensions(dimensions)

	Create a Space where all dimensions are instructed to be normalized to unit range. Note
that this doesn’t really return normalized dimensions. It just returns the given
dimensions, with each one’s transform set to the appropriate value, so that when each
dimension’s transform() is called, the dimensions are actually normalized


	Parameters

	
	dimensions: List
	List of search space dimensions. Each search dimension can be defined as any of the
following: 1) a (lower_bound, upper_bound) tuple (for Real or Integer dimensions).
2) A (lower_bound, upper_bound, “prior”) tuple (for Real dimensions).
3) A list of categories (for Categorical dimensions).
4) An instance of a Dimension object (Real, Integer, or Categorical)







	Returns

	
	hyperparameter_hunter.space.Space
	Hyperparameter space class instance, in which dimensions have been instructed to be
normalized to unit range upon invocation of the transform method







	Raises

	
	RuntimeError
	If a processed element of dimensions is not one of: Real, Integer, Categorical









Notes

The upper and lower bounds are inclusive for Integer dimensions










Module contents

Defines tools for declaring individual Dimension ranges, as well as a collective Space for
managing groups of Dimension instances


Notes

Many of the tools defined herein (although substantially modified) are based on those provided by
the excellent [Scikit-Optimize](https://github.com/scikit-optimize/scikit-optimize) library. See
hyperparameter_hunter.optimization.backends.skopt for a copy of SKOpt’s license









          

      

      

    

  

    
      
          
            
  
hyperparameter_hunter.utils package


Submodules




hyperparameter_hunter.utils.boltons_utils module




hyperparameter_hunter.utils.file_utils module

This module defines utilities for reading, writing, and modifying different types of files


	
hyperparameter_hunter.utils.file_utils.default_json_write(obj)

	Convert values that are not JSON-friendly to a more acceptable type


	Parameters

	
	obj: Object
	The object that is expected to be of a type that is incompatible with JSON files







	Returns

	
	Object
	The value of obj after being cast to a type accepted by JSON







	Raises

	
	TypeError
	If the type of obj is unhandled









Examples

>>> assert default_json_write(np.array([1, 2, 3])) == [1, 2, 3]
>>> assert default_json_write(np.int8(32)) == 32
>>> assert np.isclose(default_json_write(np.float16(3.14)), 3.14, atol=0.001)
>>> assert default_json_write(pd.Index(["a", "b", "c"])) == ["a", "b", "c"]
>>> default_json_write(object())  # doctest: +ELLIPSIS
Traceback (most recent call last):
    File "file_utils.py", line ?, in default_json_write
TypeError: <object object at ...> is not JSON serializable










	
hyperparameter_hunter.utils.file_utils.write_json(file_path, data, do_clear=False)

	Write data to the JSON file specified by file_path, optionally clearing the file before
adding data


	Parameters

	
	file_path: String
	The target .json file path to which data will be written



	data: Object
	The content to save at the .json file given by file_path



	do_clear: Boolean, default=False
	If True, the contents of the file at file_path will be cleared before saving data














	
hyperparameter_hunter.utils.file_utils.read_json(file_path, np_arr=False)

	Get the contents of the .json file located at file_path


	Parameters

	
	file_path: String
	The path of the .json file to be read



	np_arr: Boolean, default=False
	If True, the contents read from file_path will be cast to a numpy array before returning







	Returns

	
	content: Object
	The contents of the .json file located at file_path














	
hyperparameter_hunter.utils.file_utils.add_to_json(file_path, data_to_add, key=None, condition=None, default=None, append_value=False)

	Append data_to_add to the contents of the .json file specified by file_path


	Parameters

	
	file_path: String
	The target .json file path to which data_to_add will be added and saved



	data_to_add: Object
	The data to add to the contents of the .json file given by file_path



	key: String, or None, default=None
	If None, the original contents of the file at file_path should not be of type dict. If
string, the original content at file_path is expected to be a dict, and data_to_add will
be added to the original dict under the key key. Therefore, key is expected to be a
unique key to the original dict contents of file_path, unless append_value is True



	condition: Callable, or None, default=None
	If callable, will be given the original contents of the .json file at file_path as input,
and should return a boolean value. If condition(original_data) is truthy, data_to_add
will be added to the contents of the file at file_path as usual. Otherwise, data_to_add
will not be added to the file, and the contents at file_path will remain unchanged. If
condition is None, it will be treated as having been truthy, and will proceed to append
data_to_add to the target file



	default: Object, or None, default=None
	If the attempt to read the original content at file_path raises a FileNotFoundError and
default is not None, default will be used as the original data for the file. Otherwise,
the error will be raised



	append_value: Boolean, default=False
	If True and the original data at file_path is a dict, then data_to_add will be appended
as a list to the value of the original data at key key














	
hyperparameter_hunter.utils.file_utils.make_dirs(name, mode=511, exist_ok=False)

	Permissive version of os.makedirs that gives full permissions by default


	Parameters

	
	name: Str
	Path/name of directory to create. Will make intermediate-level directories needed to contain
the leaf directory



	mode: Number, default=0o0777
	File permission bits for creating the leaf directory



	exist_ok: Boolean, default=False
	If False, an OSError is raised if the directory targeted by name already exists














	
hyperparameter_hunter.utils.file_utils.clear_file(file_path)

	Erase the contents of the file located at file_path


	Parameters

	
	file_path: String
	The path of the file whose contents should be cleared out














	
class hyperparameter_hunter.utils.file_utils.RetryMakeDirs

	Bases: object

Execute decorated callable, but if OSError is raised, call make_dirs() on the
directory specified by the exception, then recall the decorated callable again

Examples

>>> from tempfile import TemporaryDirectory
>>> with TemporaryDirectory(dir="") as d:  # doctest: +ELLIPSIS
...     def f_0():
...         os.mkdir(f"{d}/nonexistent_dir/subdir")
...     f_0()
Traceback (most recent call last):
    File "file_utils.py", line ?, in f_0
FileNotFoundError: [Errno 2] No such file or directory...
>>> with TemporaryDirectory(dir="") as d:
...     @RetryMakeDirs()
...     def f_1():
...         os.mkdir(f"{d}/nonexistent_dir/subdir")
...     f_1()





Methods







	__call__

	










	
class hyperparameter_hunter.utils.file_utils.ParametersFromFile(key: Union[str, int] = None, file: str = None, verbose: bool = False)

	Bases: object

Decorator to specify a .json file that defines default values for the decorated callable.
The location of the file can either be specified explicitly with file, or it can be
retrieved when the decorated callable is called through an argument key/index given by key


	Parameters

	
	key: String, or integer, default=None
	Used only if file is not also given. Determines a value for file based on the
parameters passed to the decorated callable. If string, represents a key in kwargs
passed to ParametersFromFile.__call__(). In other words, this names a keyword
argument passed to the decorated callable. If key is integer, it represents an index
in args passed to ParametersFromFile.__call__(), the value at which specifies a
filepath containing the default parameters dict to use



	file: String, default=None
	If not None, key will be ignored, and file will be used as the filepath from which
to read the dict of default parameters for the decorated callable



	verbose: Boolean, default=False
	If True, will log messages when invalid keys are found in the parameters file, and when
keys are set to the default values in the parameters file. Else, logging is silenced









Notes

The order of precedence for determining the value of each parameter is as follows, with
items at the top having the highest priority, and deferring only to the items below if
their own value is not given:


	1)parameters explicitly passed to the callable decorated by ParametersFromFile,


	2)parameters in the .json file denoted by key or file,


	3)parameter defaults defined in the signature of the decorated callable




Examples

>>> from tempfile import TemporaryDirectory
>>> with TemporaryDirectory(dir="") as d:
...     write_json(f"{d}/config.json", dict(b="I came from config.json", c="Me too!"))
...     @ParametersFromFile(file=f"{d}/config.json")
...     def f_0(a="first_a", b="first_b", c="first_c"):
...         print(f"{a}   ...   {b}   ...   {c}")
...     @ParametersFromFile(key="config_file")
...     def f_1(a="second_a", b="second_b", c="second_c", config_file=None):
...         print(f"{a}   ...   {b}   ...   {c}")
...     f_0(c="Hello, there")
...     f_0(b="General Kenobi")
...     f_1()
...     f_1(a="Generic prequel meme", config_file=f"{d}/config.json")
...     f_1(c="This is where the fun begins", config_file=None)
first_a   ...   I came from config.json   ...   Hello, there
first_a   ...   General Kenobi   ...   Me too!
second_a   ...   second_b   ...   second_c
Generic prequel meme   ...   I came from config.json   ...   Me too!
second_a   ...   second_b   ...   This is where the fun begins





Methods







	__call__

	










	
hyperparameter_hunter.utils.file_utils.real_name(path, root=None)

	




	
hyperparameter_hunter.utils.file_utils.print_tree(start_path, depth=-1, pretty=True)

	Print directory/file tree structure


	Parameters

	
	start_path: String
	Root directory path, whose children should be traversed and printed



	depth: Integer, default=-1
	Maximum number of subdirectories allowed to be between the root start_path and the current
element. -1 allows all child directories beneath start_path to be traversed



	pretty: Boolean, default=True
	If True, directory names will be bolded









Examples

>>> from tempfile import TemporaryDirectory
>>> with TemporaryDirectory(dir="") as d:
...     os.mkdir(f"{d}/root")
...     os.mkdir(f"{d}/root/sub_a")
...     os.mkdir(f"{d}/root/sub_a/sub_b")
...     _ = open(f"{d}/root/file_0.txt", "w+")
...     _ = open(f"{d}/root/file_1.py", "w+")
...     _ = open(f"{d}/root/sub_a/file_2.py", "w+")
...     _ = open(f"{d}/root/sub_a/sub_b/file_3.txt", "w+")
...     _ = open(f"{d}/root/sub_a/sub_b/file_4.py", "w+")
...     print_tree(f"{d}/root", pretty=False)
...     print("#" * 50)
...     print_tree(f"{d}/root", depth=2, pretty=False)
...     print("#" * 50)
...     print_tree(f"{d}/root/", pretty=False)
|-- root/
|   |-- file_0.txt
|   |-- file_1.py
|   |-- sub_a/
|   |   |-- file_2.py
|   |   |-- sub_b/
|   |   |   |-- file_3.txt
|   |   |   |-- file_4.py
##################################################
|-- root/
|   |-- file_0.txt
|   |-- file_1.py
|   |-- sub_a/
|   |   |-- file_2.py
##################################################
root/
|-- file_0.txt
|-- file_1.py
|-- sub_a/
|   |-- file_2.py
|   |-- sub_b/
|   |   |-- file_3.txt
|   |   |-- file_4.py












hyperparameter_hunter.utils.general_utils module

This module defines assorted general-use utilities used throughout the library. The contents are
primarily small functions that perform oft-repeated tasks


	
hyperparameter_hunter.utils.general_utils.deep_restricted_update(default_vals, new_vals, iter_attrs=None)

	Return an updated dictionary that mirrors default_vals, except where the key in new_vals
matches the path in default_vals, in which case the new_vals value is used


	Parameters

	
	default_vals: Dict
	Dict containing the values to return if an alternative is not found in new_vals



	new_vals: Dict
	Dict whose keys are expected to be tuples corresponding to key paths in default_vals



	iter_attrs: Callable, list of callables, or None, default=None
	If callable, must evaluate to True or False when given three inputs: (path, key, value).
Callable should return True if the current value should be entered by remap. If callable
returns False, default_enter will be called. If iter_attrs is a list of callables, the
value will be entered if any evaluates to True. If None, default_enter will be called







	Returns

	
	Dict, or None
	







Examples

>>> deep_restricted_update({'a': 1, 'b': 2}, {('b',): 'foo', ('c',): 'bar'})
{'a': 1, 'b': 'foo'}
>>> deep_restricted_update({'a': 1, 'b': {'b1': 2, 'b2': 3}}, {('b', 'b1'): 'foo', ('c', 'c1'): 'bar'})
{'a': 1, 'b': {'b1': 'foo', 'b2': 3}}










	
hyperparameter_hunter.utils.general_utils.extra_enter_attrs(iter_attrs:Union[Callable[[Tuple[str, ...], Union[str, tuple], Any], bool], List[Callable[[Tuple[str, ...], Union[str, tuple], Any], bool]]]) → Callable[[Tuple[str, ...], Union[str, tuple], Any], Tuple[Any, Iterable]]

	Build an enter function intended for use with boltons_utils.remap that enables entrance
into non-standard objects defined by iter_attrs and iteration over their attributes as dicts


	Parameters

	
	iter_attrs: Callable, list of callables, or None
	If callable, must evaluate to True or False when given three inputs: (path, key, value).
Callable should return True if the current value should be entered by remap. If callable
returns False, default_enter will be called. If iter_attrs is a list of callables, the
value will be entered if any evaluates to True. If None, default_enter will be called







	Returns

	
	_enter: Callable
	Function to enter non-standard objects according to iter_attrs (via remap)














	
hyperparameter_hunter.utils.general_utils.flatten(l)

	




	
hyperparameter_hunter.utils.general_utils.to_snake_case(s)

	Convert a string to snake-case format


	Parameters

	
	s: String
	String to convert to snake-case







	Returns

	
	String
	Snake-case formatted string









Notes

Adapted from https://gist.github.com/jaytaylor/3660565

Examples

>>> to_snake_case("snakesOnAPlane") == "snakes_on_a_plane"
True
>>> to_snake_case("SnakesOnAPlane") == "snakes_on_a_plane"
True
>>> to_snake_case("snakes_on_a_plane") == "snakes_on_a_plane"
True
>>> to_snake_case("IPhoneHysteria") == "i_phone_hysteria"
True
>>> to_snake_case("iPhoneHysteria") == "i_phone_hysteria"
True










	
hyperparameter_hunter.utils.general_utils.now_time()

	




	
hyperparameter_hunter.utils.general_utils.sec_to_hms(seconds, ms_places=5, as_str=False)

	Convert seconds to hours, minutes, and seconds


	Parameters

	
	seconds: Integer
	Number of total seconds to be converted to hours, minutes, seconds format



	ms_places: Integer, default=5
	Rounding precision for calculating number of seconds



	as_str: Boolean, default=False
	If True, return string “{hours} h, {minutes} m, {seconds} s”. Else, return a triple







	Returns

	
	String or tuple
	If as_str=True, return a formatted string containing the hours, minutes, and seconds.
Else, return a 3-item tuple of (hours, minutes, seconds)









Examples

>>> assert sec_to_hms(55, as_str=True) == '55 s'
>>> assert sec_to_hms(86400) == (24, 0, 0)
>>> assert sec_to_hms(86400, as_str=True) == '24 h'
>>> assert sec_to_hms(86370) == (23, 59, 30)
>>> assert sec_to_hms(86370, as_str=True) == '23 h, 59 m, 30 s'










	
hyperparameter_hunter.utils.general_utils.expand_mins_secs(mins, secs)

	Format string expansion of mins, secs to the appropriate units up to (days, hours)


	Parameters

	
	mins: Integer
	Number of minutes to be expanded to the appropriate string format



	secs: Integer
	Number of seconds to be expanded to the appropriate string format







	Returns

	
	String
	Formatted pair of one of the following: (minutes, seconds); (hours, minutes); or
(days, hours) depending on the appropriate units given mins









Examples

>>> assert expand_mins_secs(34, 57) == "34m57s"
>>> assert expand_mins_secs(72, 57) == "01h12m"
>>> assert expand_mins_secs(1501, 57) == "01d01h"
>>> assert expand_mins_secs(2880, 57) == "02d00h"










	
hyperparameter_hunter.utils.general_utils.to_standard_string(a_string)

	




	
hyperparameter_hunter.utils.general_utils.standard_equality(string_1, string_2)

	




	
class hyperparameter_hunter.utils.general_utils.Alias(primary_name, aliases)

	Bases: object

Convert uses of aliases to primary_name upon calling the decorated function/method


	Parameters

	
	primary_name: String
	Preferred name for the parameter, the value of which will be set to the value of the
used alias. If primary_name is already explicitly used on call in addition to any
aliases, the value of primary_name will remain unchanged. It only assumes the value of
an alias if the primary_name is not used



	aliases: List, string
	One or multiple string aliases for primary_name. If primary_name is not used on
call, its value will be set to that of a random alias in aliases. Before calling the
decorated callable, all aliases are removed from its kwargs









Examples

>>> class Foo():
...     @Alias("a", ["a2"])
...     def __init__(self, a, b=None):
...         print(a, b)
>>> @Alias("a", ["a2"])
... @Alias("b", ["b2"])
... def bar(a, b=None):
...    print(a, b)
>>> foo = Foo(a2="x", b="y")
x y
>>> bar(a2="x", b2="y")
x y





Methods







	__call__

	










	
hyperparameter_hunter.utils.general_utils.set_default_attr(obj, name, value)

	Set the name attribute of obj to value if the attribute does not already exist


	Parameters

	
	obj: Object
	Object whose name attribute will be returned (after setting it to value, if necessary)



	name: String
	Name of the attribute to set to value, or to return



	value: Object
	Default value to give to obj.name if the attribute does not already exist







	Returns

	
	Object
	obj.name if it exists. Else, value









Examples

>>> foo = type("Foo", tuple(), {"my_attr": 32})
>>> set_default_attr(foo, "my_attr", 99)
32
>>> set_default_attr(foo, "other_attr", 9000)
9000
>>> assert foo.my_attr == 32
>>> assert foo.other_attr == 9000










	
hyperparameter_hunter.utils.general_utils.short_repr(values:Union[tuple, NoneType], affix_size=3) → Union[tuple, NoneType]

	Make a shortened representation of an iterable, replacing the midsection with an ellipsis


	Parameters

	
	values: Tuple, list, or None
	Iterable to shorten if necessary. If None, None will be returned



	affix_size: Int, default=3
	Number of elements in values to include at the beginning and at the end of the shortened
representation. This is not the total number of values to include. An affix_size of 3
includes the first 3 elements in values, followed by an ellipsis, then the last 3 elements
in values. The length of the returned representation will be (2 * affix_size + 1). If
length of values is less than or equal to (2 * affix_size + 1), it is returned unchanged







	Returns

	
	Tuple, list, or None
	Shortened representation of values if necessary. Otherwise, unchanged values









Examples

>>> short_repr(list("abcdefghijklmnopqrstuvwxyz"))
['a', 'b', 'c', ..., 'x', 'y', 'z']
>>> short_repr(tuple("abcdefghijklmnopqrstuvwxyz"), affix_size=1)
('a', ..., 'z')
>>> short_repr(list("foo"))
['f', 'o', 'o']
>>> short_repr(list("foo"), affix_size=1)
['f', 'o', 'o']
>>> short_repr(list("foo2"), affix_size=1)
['f', ..., '2']
>>> assert short_repr(None) is None










	
hyperparameter_hunter.utils.general_utils.subdict(d, keep=None, drop=None, key=None, value=None)

	Compute the “subdictionary” of a dict, d


	Parameters

	
	d: Dict
	Dict whose keys will be filtered according to keep and drop



	keep: List, or callable, default=`d.keys()`
	Keys to retain in the returned subdict. If callable, return boolean given key input. keep
may contain keys not in d without raising errors. keep may be better described as the
keys allowed to be in the returned dict, whether or not they are in d. This means that if
keep consists solely of a key not in d, an empty dict will be returned



	drop: List, or callable, default=[]
	Keys to remove from the returned subdict. If callable, return boolean given key input.
drop may contain keys not in d, which will simply be ignored



	key: Callable, or None, default=None
	Transformation to apply to the keys included in the returned subdictionary



	value: Callable, or None, default=None
	Transformation to apply to the values included in the returned subdictionary







	Returns

	
	Dict
	New dict with any keys in drop removed and any keys in keep still present, provided they
were in d. Calling subdict with neither keep nor drop is equivalent to dict(d)









Examples

>>> subdict({"a": 1, "b": 2})
{'a': 1, 'b': 2}
>>> subdict({"a": 1, "b": 2, "c": 3}, drop=["b", "c"])
{'a': 1}
>>> subdict({"a": 1, "b": 2, "c": 3}, keep=["a", "c"])
{'a': 1, 'c': 3}
>>> subdict({"a": 1, "b": 2, "c": 3}, drop=["b", "c"], key=lambda _: _.upper())
{'A': 1}
>>> subdict({"a": 1, "b": 2, "c": 3}, keep=["a", "c"], value=lambda _: _ * 10)
{'a': 10, 'c': 30}
>>> subdict({("foo", "a"): 1, ("foo", "b"): 2, ("bar", "c"): 3}, drop=lambda _: _[0] == "foo")
{('bar', 'c'): 3}
>>> subdict({("foo", "a"): 1, ("foo", "b"): 2, ("bar", "c"): 3}, keep=lambda _: _[0] == "foo")
{('foo', 'a'): 1, ('foo', 'b'): 2}
>>> subdict({(6, "a"): 1, (6, "b"): 2, (7, "c"): 3}, lambda _: _[0] == 6, key=lambda _: _[1])
{'a': 1, 'b': 2}
>>> subdict({"a": 1, "b": 2, "c": 3}, drop=["d"])
{'a': 1, 'b': 2, 'c': 3}
>>> subdict({"a": 1, "b": 2, "c": 3}, keep=["d"])
{}
>>> subdict({"a": 1, "b": 2, "c": 3}, keep=["b", "d"])
{'b': 2}
>>> subdict({"a": 1, "b": 2, "c": 3}, drop=["b", "c"], key="foo")
Traceback (most recent call last):
    File "general_utils.py", line ?, in subdict
TypeError: Expected callable `key` function
>>> subdict({"a": 1, "b": 2, "c": 3}, drop=["b", "c"], value="foo")
Traceback (most recent call last):
    File "general_utils.py", line ?, in subdict
TypeError: Expected callable `value` function










	
hyperparameter_hunter.utils.general_utils.multi_visit(*visitors) → <built-in function callable>

	Build a remap-compatible visit function by chaining together multiple visit functions


	Parameters

	
	*visitors: Tuple[callable]
	Any number of visit functions of the form expected by
remap() that each accept three positional
arguments: “path”, “key”, and “value”. visitors need not explicitly return any of the
values usually expected of a visit function. If one of visitors does not return
anything (or explicitly returns None), the next function in visitors is invoked with the
same input values. visitors are invoked in order until one of them actually returns
something







	Returns

	
	visit: Callable
	visit function of form used by remap()
that accepts three positional arguments: “path”, “key”, and “value”. Behaves as if each
function in visitors had been invoked in sequence, returning the first non-null value
returned by one of the visitors
















hyperparameter_hunter.utils.learning_utils module

This module defines simple utilities for making toy datasets to be used in testing/examples


	
hyperparameter_hunter.utils.learning_utils.get_breast_cancer_data(target='diagnosis')

	Get the Wisconsin Breast Cancer classification dataset, formatted as a DataFrame


	Parameters

	
	target: String, default=”diagnosis”
	What to name the column in df that contains the target output values







	Returns

	
	df: pandas.DataFrame
	The breast cancer dataset, with friendly column names














	
hyperparameter_hunter.utils.learning_utils.get_pima_indians_data(target='class')

	Get the Pima Indians Diabetes binary classification dataset, formatted as a DataFrame


	Parameters

	
	target: String, default=”class”
	What to name the column in df that contains the target output values







	Returns

	
	df: pandas.DataFrame
	
	The Pima Indians dataset, of shape (768, 8 + 1), with column names of:
	“pregnancies”,
“glucose”,
“bp” (shortened from “blood_pressure”),
“skin_thickness”,
“insulin”,
“bmi”,
“dpf” (shortened from “diabetes_pedigree_function”),
“age”,
“class” (or given target column)













Notes

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney
Diseases. Thanks to Jason Brownlee (of MachineLearningMastery.com), who has generously made a
public repository to collect copies of all the datasets he uses in his tutorials

Examples

>>> get_pima_indians_data().head()
   pregnancies  glucose  bp  skin_thickness  insulin   bmi    dpf  age  class
0            6      148  72              35        0  33.6  0.627   50      1
1            1       85  66              29        0  26.6  0.351   31      0
2            8      183  64               0        0  23.3  0.672   32      1
3            1       89  66              23       94  28.1  0.167   21      0
4            0      137  40              35      168  43.1  2.288   33      1










	
hyperparameter_hunter.utils.learning_utils.get_boston_data()

	Get SKLearn’s Boston House Prices regression dataset


	Returns

	
	df: pandas.DataFrame
	The Boston House Prices dataset of shape (506, 13 + 1)









Notes

The intended target column in this dataset is “MEDV”; however, the weighted distances
column “DIS” can also be used as the target column

Examples

>>> pd.set_option("display.max_columns", 10000)  # Ensure all columns are printed below
>>> pd.set_option("display.width", 110)  # Ensure all columns are printed below
>>> get_boston_data().head()
      CRIM    ZN  INDUS  CHAS    NOX     RM   AGE     DIS  RAD    TAX  PTRATIO       B  LSTAT  MEDV
0  0.00632  18.0   2.31   0.0  0.538  6.575  65.2  4.0900  1.0  296.0     15.3  396.90   4.98  24.0
1  0.02731   0.0   7.07   0.0  0.469  6.421  78.9  4.9671  2.0  242.0     17.8  396.90   9.14  21.6
2  0.02729   0.0   7.07   0.0  0.469  7.185  61.1  4.9671  2.0  242.0     17.8  392.83   4.03  34.7
3  0.03237   0.0   2.18   0.0  0.458  6.998  45.8  6.0622  3.0  222.0     18.7  394.63   2.94  33.4
4  0.06905   0.0   2.18   0.0  0.458  7.147  54.2  6.0622  3.0  222.0     18.7  396.90   5.33  36.2










	
hyperparameter_hunter.utils.learning_utils.get_diabetes_data(target='progression')

	Get the SKLearn Diabetes regression dataset, formatted as a DataFrame


	Parameters

	
	target: String, default=”progression”
	What to name the column in df that contains the target output values







	Returns

	
	df: pandas.DataFrame
	The diabetes dataset, with friendly column names














	
hyperparameter_hunter.utils.learning_utils.get_iris_data(target='species', use_str_target=False)

	Get the Iris classification dataset, formatted as a DataFrame


	Parameters

	
	target: String, default=”species”
	What to name the column in df that contains the target output values



	use_str_target: Boolean, default=False
	If True, replace label-encoded target values with string labels







	Returns

	
	df: pandas.DataFrame
	This Iris dataset, with friendly column names









Examples

>>> get_iris_data(use_str_target=False).sample(n=5, random_state=32)
     sepal_length_(cm)  sepal_width_(cm)  petal_length_(cm)  petal_width_(cm)  species
55                 5.7               2.8                4.5               1.3        1
22                 4.6               3.6                1.0               0.2        0
26                 5.0               3.4                1.6               0.4        0
56                 6.3               3.3                4.7               1.6        1
134                6.1               2.6                5.6               1.4        2
>>> get_iris_data(use_str_target=True).sample(n=5, random_state=32)
     sepal_length_(cm)  sepal_width_(cm)  petal_length_(cm)  petal_width_(cm)     species
55                 5.7               2.8                4.5               1.3  versicolor
22                 4.6               3.6                1.0               0.2      setosa
26                 5.0               3.4                1.6               0.4      setosa
56                 6.3               3.3                4.7               1.6  versicolor
134                6.1               2.6                5.6               1.4   virginica










	
hyperparameter_hunter.utils.learning_utils.get_toy_classification_data(target='target', n_samples=300, n_classes=2, shuffle=True, random_state=32, **kwargs)

	Wrapper around sklearn.datasets.make_classification to produce a pandas.DataFrame








hyperparameter_hunter.utils.optimization_utils module

This module defines utility functions used to organize hyperparameter optimization, specifically
the gathering of saved Experiment files in order to identify similar Experiments that can be used as
learning material for the current OptimizationProtocol


Related


	hyperparameter_hunter.optimization.protocol_core
	The primary user of the utilities defined in
hyperparameter_hunter.utils.optimization_utils






	
hyperparameter_hunter.utils.optimization_utils.get_ids_by(leaderboard_path, algorithm_name=None, cross_experiment_key=None, hyperparameter_key=None, drop_duplicates=True)

	Get a list of experiment_ids that match the provided criteria


	Parameters

	
	leaderboard_path: String
	The path to a leaderboard .csv file, which has at least the following columns:
‘experiment_id’, ‘hyperparameter_key’, ‘cross_experiment_key’, ‘algorithm_name’



	algorithm_name: String, or None, default=None
	If string, expects the name of an algorithm that may exist on the leaderboard, such as the
following: ‘LGBMRegressor’, ‘XGBClassifier’, ‘KerasClassifier’, ‘KMeans’, ‘BayesianRidge’,
‘RGFClassifier’, etc.



	cross_experiment_key: String, or None, default=None
	If string, expects a cross-experiment key hash produced during initialization of
environment.Environment



	hyperparameter_key: String, or None, default=None
	If string, expects a hyperparameter key hash produced by a child of
experiments.BaseExperiment



	drop_duplicates: Boolean, default=True
	If True, only a single entry for every unique triple of (‘algorithm_name’,
‘cross_experiment_key’, ‘hyperparameter_key’) will be returned







	Returns

	
	matching_ids: List
	A list of experiment_id strings














	
hyperparameter_hunter.utils.optimization_utils.get_scored_params(experiment_description_path, target_metric, get_description=False)

	Retrieve the hyperparameters of a completed Experiment, along with its performance evaluation


	Parameters

	
	experiment_description_path: String
	The path to an Experiment’s description .json file



	target_metric: Tuple
	A path denoting the metric to be used. If tuple, the first value should be one of [‘oof’,
‘holdout’, ‘in_fold’], and the second value should be the name of a metric supplied in
environment.Environment.metrics_params



	get_description: Boolean, default=False
	If True, return a tuple of: ((all_hyperparameters, evaluation), description), in which
description is the original description dict for the experiment. Else, return a tuple of:
(all_hyperparameters, evaluation)







	Returns

	
	all_hyperparameters: Dict
	A dict of the hyperparameters used by the Experiment



	evaluation: Float
	Value of the Experiment’s target_metric














	
hyperparameter_hunter.utils.optimization_utils.filter_by_space(hyperparameters_and_scores, space)

	Reject any hyperparameters_and_scores tuples whose hyperparameters do not fit in space


	Parameters

	
	hyperparameters_and_scores: List of tuples
	Each tuple in list should be a pair of form (hyperparameters <dict>, evaluation <float>),
where the hyperparameter dict should contain at least the following keys:
[‘model_init_params’, ‘model_extra_params’, ‘feature_engineer’, ‘feature_selector’]



	space: `space.space_core.Space`
	The boundaries of the hyperparameters to be searched







	Returns

	
	hyperparameters_and_scores: List of tuples
	Filtered to include only those whose hyperparameters fit within space














	
hyperparameter_hunter.utils.optimization_utils.does_fit_in_space(root, space)

	Determine if the subset of root identified by space fits within dimensions of space


	Parameters

	
	root: Object
	Iterable, whose values at the locations specified in space will be checked. For each
dimension in space, the dimension’s location/name is looked up in root, and the
value is tested to see if it falls within the dimension’s range of allowed values



	space: `space.space_core.Space`
	Instance of space.space_core.Space that defines dimension choices for select
hyperparameters. Each dimension in space should have an appropriate name
(or location, if necessary) attribute to match root







	Returns

	
	Boolean
	True if root subset (at space locations) fits in space dimensions. Else, False














	
hyperparameter_hunter.utils.optimization_utils.visit_feature_engineer(path, key, value)

	Helper to be used within a visit function intended for a remap-like function


	Parameters

	
	path: Tuple
	The path of keys that leads to key



	key: String
	The parameter name



	value: Object
	The value of the parameter key







	Returns

	
	False if the value represents a dataset, or tuple of (key, <hash of value>). If neither of
	

	these are returned, a ContinueRemap exception is raised
	





	Raises

	
	ContinueRemap
	If a value is not returned by visit_function_engineer. For proper functioning, this raised
ContinueRemap is assumed to be handled by the calling visit function. Usually, the
except block for ContinueRemap will simply continue execution of visit









Examples

>>> visit_feature_engineer(("feature_engineer",), "datasets", dict())
False
>>> visit_feature_engineer(("feature_engineer", "steps"), "f", lambda _: _)  # pytest: +ELLIPSIS
('f', '...')
>>> visit_feature_engineer(("feature_engineer", "steps"), "foo", lambda _: _)
Traceback (most recent call last):
    File "optimization_utils.py", line ?, in visit_feature_engineer
hyperparameter_hunter.exceptions.ContinueRemap: Just keep doing what you were doing
>>> visit_feature_engineer(("feature_engineer",), "foo", dict())
Traceback (most recent call last):
    File "optimization_utils.py", line ?, in visit_feature_engineer
hyperparameter_hunter.exceptions.ContinueRemap: Just keep doing what you were doing
>>> visit_feature_engineer(("foo",), "bar", dict())
Traceback (most recent call last):
    File "optimization_utils.py", line ?, in visit_feature_engineer
hyperparameter_hunter.exceptions.ContinueRemap: Just keep doing what you were doing










	
hyperparameter_hunter.utils.optimization_utils.get_choice_dimensions(params, iter_attrs=None)

	List all elements in the nested structure params that are hyperparameter space choices


	Parameters

	
	params: Dict
	Parameters that may be nested and that may contain hyperparameter space choices to collect



	iter_attrs: Callable, list of callables, or None, default=None
	If callable, must evaluate to True or False when given three inputs: (path, key, value).
Callable should return True if the current value should be entered by remap. If callable
returns False, default_enter will be called. If iter_attrs is a list of callables, the
value will be entered if any evaluates to True. If None, default_enter will be called







	Returns

	
	choices: List
	A list of tuple pairs, in which choices[<index>][0] is a tuple path specifying the
location of the hyperparameter given a choice, and choices[<index>][1] is the space
choice instance for that hyperparameter














	
hyperparameter_hunter.utils.optimization_utils.dimension_subset(hyperparameters, dimensions)

	Return only the values of hyperparameters specified by dimensions, in the same order as
dimensions


	Parameters

	
	hyperparameters: Dict
	Dict of hyperparameters containing at least the following keys: [‘model_init_params’,
‘model_extra_params’, ‘feature_engineer’, ‘feature_selector’]



	dimensions: List of: (strings, or tuples)
	Locations and order of the values to return from hyperparameters. If a value is a string,
it is assumed to belong to model_init_params, and its path will be adjusted accordingly







	Returns

	
	List of hyperparameter values
	
















hyperparameter_hunter.utils.parsing_utils module

This module contains utilities for parsing Python source code. Its primary tasks include the
following: 1) stringifying Python source code; 2) traversing Abstract Syntax Trees, especially to
locate imports; and 3) preparing and cleaning source code for reuse


Related


	hyperparameter_hunter.library_helpers.keras_optimization_helper
	Uses hyperparameter_hunter.utils.parsing_utils to prepare for Keras optimization








Notes

Many of these utilities are modified versions of utilities originally from the Hyperas library.
Thank you to the Hyperas creators, and contributors for their excellent work and fascinating
approach to Keras hyperparameter optimization. Without them, Keras hyperparameter optimization in
hyperparameter_hunter would be far less pretty


	
hyperparameter_hunter.utils.parsing_utils.stringify_model_builder(build_fn)

	Get the stringified Python source code of build_fn


	Parameters

	
	build_fn: Callable
	A Keras model-building function







	Returns

	
	build_fn_str: Strings
	A stringified version of build_fn














	
hyperparameter_hunter.utils.parsing_utils.build_temp_model_file(build_fn_str, source_script)

	Construct a string containing extracted imports from both build_fn_str and source_script


	Parameters

	
	build_fn_str: Str
	The stringified source code of a callable



	source_script: Str
	Absolute path to a Python file. Expected to end with ‘.py’, or ‘.ipynb’







	Returns

	
	temp_file_Str: Str
	Combination of extracted imports, and clean build_fn_str in Python script format














	
hyperparameter_hunter.utils.parsing_utils.read_source_script(filepath)

	Read the contents of filepath


	Parameters

	
	filepath: Str
	Absolute path to a Python file. Expected to end with ‘.py’, or ‘.ipynb’







	Returns

	
	source: Str
	The contents of filepath














	
hyperparameter_hunter.utils.parsing_utils.write_python(source_str, filepath='temp_modified.py')

	Save source_str to the file located at filepath


	Parameters

	
	source_str: String
	The content to write to the file at filepath



	filepath: String
	The filepath of the file to which source_str should be written














	
class hyperparameter_hunter.utils.parsing_utils.ImportParser

	Bases: ast.NodeVisitor

Methods







	generic_visit(self, node)

	Called if no explicit visitor function exists for a node.



	visit(self, node)

	Visit a node.












	visit_Import

	


	visit_ImportFrom

	






	
visit_Import(self, node)

	




	
visit_ImportFrom(self, node)

	








	
hyperparameter_hunter.utils.parsing_utils.extract_imports(source)

	(Taken from hyperas.utils). Construct a string containing all imports from source


	Parameters

	
	source: String
	A stringified fragment of source code







	Returns

	
	imports_str: String
	The stringified imports from source














	
hyperparameter_hunter.utils.parsing_utils.remove_imports(source)

	(Taken from hyperas.utils). Remove all imports statements from source fragment


	Parameters

	
	source: String
	A stringified fragment of source code







	Returns

	
	non_import_lines: String
	source, less any lines containing imports














	
hyperparameter_hunter.utils.parsing_utils.remove_comments(source)

	(Taken from hyperas.utils). Remove all comments from source fragment


	Parameters

	
	source: String
	A stringified fragment of source code







	Returns

	
	string: String
	source, less any comments


















hyperparameter_hunter.utils.result_utils module

This module defines default helper functions used during an Experiment’s result-saving process


Related


	hyperparameter_hunter.environment
	Uses the contents of hyperparameter_hunter.utils.result_utils to set default values to
help process Experiments’ result files if they are not explicitly provided. These values are
then used by hyperparameter_hunter.recorders



	hyperparameter_hunter.recorders
	This module uses certain attributes set by hyperparameter_hunter.environment.Environment
(Environment.prediction_formatter, and Environment.do_full_save) for the purpose
of formatting and saving Experiment result files. Those attributes are, by default, the
utilities defined in hyperparameter_hunter.utils.result_utils








Notes

The utilities defined herein are weird for a couple reasons: 1) They don’t do much, and 2) Despite
the fact that they don’t do much, they are extremely sensitive. Because they are default values for
Environment attributes that are included when generating
Environment.cross_experiment_key, any seemingly insignificant change to them is likely to
result in an entirely different cross_experiment_key. This will, in turn, result in Experiments not
matching with other similar Experiments during hyperparameter optimization, despite the fact that
the changes may not have done anything at all. So be careful, here


	
hyperparameter_hunter.utils.result_utils.format_predictions(raw_predictions:<built-in function array>, dataset_df:pandas.core.frame.DataFrame, target_column:str, id_column:str=None)

	Organize components into a pandas.DataFrame that is properly formatted and ready to save


	Parameters

	
	raw_predictions: np.array
	The actual predictions that were made and that should inhabit the column named
target_column in the result



	dataset_df: pd.DataFrame
	The original data provided that yielded raw_predictions. If id_column is not None, it
must be in dataset_df. In practice, expect this value to be one of the following:
experiments.BaseExperiment.train_dataset,
experiments.BaseExperiment.holdout_dataset, or
experiments.BaseExperiment.test_dataset



	target_column: str
	The name for the result column containing raw_predictions



	id_column: str, or None, default=None
	If not None, must be the name of a column in dataset_df, the contents of which will be
included as a column in the result and are assumed to be sample identifiers of some kind







	Returns

	
	predictions: pd.DataFrame
	Dataframe containing the formatted predictions














	
hyperparameter_hunter.utils.result_utils.default_do_full_save(result_description:dict) → bool

	Determines whether an Experiment’s full result should be saved based on its Description dict


	Parameters

	
	result_description: dict
	The formatted description of the Experiment’s results









Notes

This function is useless. It is included as an example for proper implementation of custom
do_full_save functions










hyperparameter_hunter.utils.version_utils module

This module defines utilities for comparing versions of the library (HHVersion), as well
as deprecation utilities, namely Deprecated


Related


	hyperparameter_hunter.exceptions
	Defines the deprecation warnings issued by Deprecated






	
class hyperparameter_hunter.utils.version_utils.HHVersion(v_str: str)

	Bases: object

Parse and compare HyperparameterHunter version strings

Comparisons must be performed with a valid version string or another HHVersion instance.

HyperparameterHunter follows the “<major>.<minor>.<micro>” versioning scheme, with a few
other variants, but all start with a triplet of period-delimited numbers. Supported version
schemes are as follows (numbers given in examples may be greater than 9 in practice):


	Final Release Version: “1.0.2”, “2.2.0”, “3.0.0”, etc.


	Alpha: “3.0.0alpha0”, “3.0.0a1”, “3.0.0a2”, etc.


	Beta: “3.0.0beta0”, “3.0.0b1”, “3.0.0b2”, etc.


	Release Candidate: “3.0.0rc0”, “3.0.0rc1”, “3.0.0rc2”, etc.


	Development Version: “1.8.0.dev-f1234afa” (git commit hash appended)


	Development Version (Pre-Release): “1.8.0a1.dev-f1234afa”,
“1.8.0b2.dev-f1234afa”, “1.8.1rc1.dev-f1234afa”, etc.


	Development Version (no git hash available): “1.8.0.dev-Unknown”





	Parameters

	
	v_str: String
	HyperparameterHunter version string, such as hyperparameter_hunter.__version__









Notes

Thank you to the brilliant [Ralf Gommers](https://github.com/rgommers), author of SciPy’s
[NumpyVersion class](https://github.com/scipy/scipy/blob/master/scipy/_lib/_version.py).
He generously gave his permission to adapt his code for use here. Ralf Gommers: a gentleman
and a scholar, and a selfless contributor to NumPy, SciPy, and countless other libraries

Examples

>>> from hyperparameter_hunter import __version__
>>> HHVersion(__version__) > "1.0.2"
True
>>> HHVersion(__version__) > "3.0.0a1"
True
>>> HHVersion(__version__) <= "999.999.999"
True
>>> HHVersion("2.1")  # Missing "micro" number
Traceback (most recent call last):
    File "version_utils.py", line ?, in HHVersion
ValueError: Not a valid HyperparameterHunter version string






	Attributes

	
	v_str: String
	Original value provided as input on initialization



	version: String
	Main version segment string of “<major>.<minor>.<micro>”



	major: Integer
	Major version number



	minor: Integer
	Minor version number



	micro: Integer
	Micro version number



	pre_release: String
	Pre-release version segment of v_str, or “final” if there is no pre-release segment.
String starting with “a”/”alpha”, “b”/”beta”, or “rc” for pre-release segments of alpha,
beta, or release candidate, respectively. If v_str does not end with one of the
aforementioned pre-release segments but is a development version, then pre_release is
an empty string. “alpha” and “beta” will be shortened to “a” and “b”, respectively



	is_dev_version: Boolean
	True if the final segment of v_str starts with “.dev”, denoting a development version.
All development versions of the same release or pre-release are considered equal














	
class hyperparameter_hunter.utils.version_utils.Deprecated(v_deprecate=None, v_remove=None, v_current=None, details='')

	Bases: object

Decorator to mark a function or class as deprecated. Issue warning when the function is
called or the class is instantiated, and add a warning to the docstring. The optional
details argument will be appended to the deprecation message and the docstring


	Parameters

	
	v_deprecate: String, default=None
	Version in which the decorated callable is considered deprecated. This will usually
be the next version to be released when the decorator is added. If None, deprecation
will be immediate, and the v_remove and v_current arguments are ignored



	v_remove: String, default=None
	Version in which the decorated callable will be removed. If None, the callable is not
currently planned to be removed. Cannot be set if v_deprecate = None



	v_current: String, default=None
	Source of version information for currently running code. When v_current = None, the
ability to determine whether the wrapped callable is actually in a period of deprecation
or time for removal fails, raising a DeprecatedWarning in all cases



	details: String, default=””
	Extra details added to callable docstring/warning, such as a suggested replacement









Notes

Thank you to the ingenious [Brian Curtin](https://github.com/briancurtin), author of the
excellent [deprecation library](https://github.com/briancurtin/deprecation). He generously
gave his permission to adapt his code for use here. Brian Curtin: his magnanimity is
surpassed only by his intelligence and imitability

Methods







	__call__(self, obj)

	Call method on callable obj to deprecate
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hyperparameter_hunter.algorithm_handlers module


	
hyperparameter_hunter.algorithm_handlers.identify_algorithm(model_initializer)

	Determine the name, and module of the algorithm provided by model_initializer


	Parameters

	
	model_initializer: functools.partial, or class, or class instance
	The algorithm class being used to initialize a model







	Returns

	
	algorithm_name: str
	The name of the algorithm provided by model_initializer



	module_name: str
	The name of the module housing the algorithm provided by model_initializer









Examples

>>> from sklearn.cluster import DBSCAN, SpectralClustering
>>> from functools import partial
>>> identify_algorithm(DBSCAN)
('DBSCAN', 'sklearn')
>>> identify_algorithm(DBSCAN())
('DBSCAN', 'sklearn')
>>> identify_algorithm(partial(SpectralClustering))
('SpectralClustering', 'sklearn')










	
hyperparameter_hunter.algorithm_handlers.identify_algorithm_hyperparameters(model_initializer)

	Determine keyword-arguments accepted by model_initializer, along with their default values


	Parameters

	
	model_initializer: functools.partial, or class, or class instance
	The algorithm class being used to initialize a model







	Returns

	
	hyperparameter_defaults: dict
	The dict of kwargs accepted by model_initializer and their default values
















hyperparameter_hunter.environment module

This module is central to the proper functioning of the entire library. It defines
Environment, which (when activated) is used by the vast majority of the other
operation-critical modules in the library. Environment can be viewed as a simple storage
container that defines settings that characterize the Experiments/OptimizationProtocols to be
conducted, and influence how those processes are carried out


Related


	hyperparameter_hunter.settings
	This module is the doorway for other modules to access the settings defined by
environment.Environment, which sets hyperparameter_hunter.settings.G.Env to
itself as its first action. This allows other modules to access any information they need from
the active environment.Environment via hyperparameter_hunter.settings.G.Env.
hyperparameter_hunter.settings.G also provides other modules with access to the
logging methods that are initialized by hyperparameter_hunter.environment.Environment








Notes

Despite the fact that hyperparameter_hunter.settings is the only module listed as being
“related”, pretty much all the other modules in the library are related to
hyperparameter_hunter.environment.Environment by way of this relation


	
class hyperparameter_hunter.environment.Environment(train_dataset, environment_params_path=None, *, results_path=None, metrics=None, holdout_dataset=None, test_dataset=None, target_column=None, id_column=None, do_predict_proba=None, prediction_formatter=None, metrics_params=None, cv_type=None, runs=None, global_random_seed=None, random_seeds=None, random_seed_bounds=None, cv_params=None, verbose=None, file_blacklist=None, reporting_params=None, to_csv_params=None, do_full_save=None, experiment_callbacks=None, experiment_recorders=None, save_transformed_metrics=None)

	Bases: object

Class to organize the parameters that allow Experiments/OptPros to be fairly compared

Environment is the collective starting point for all of HyperparameterHunter’s biggest
and best toys: Experiments and OptimizationProtocols. Without an Environment, neither of
these will work.

The Environment is where we declare all the parameters that transcend traditional
“hyperparameters”. It houses the stuff without which machine learning can’t even really
start. Specifically, Environment cares about 1) The data used for fitting/predicting,
2) The cross-validation scheme used to split the data and fit models; and 3) How to evaluate
the predictions made on that data. There are plenty of other goodies documented below, but
the absolutely mission-critical parameters concerned with the above tasks are
train_dataset, cv_type, cv_params, and metrics. Additionally, it’s important to
provide results_path, so Experiment/OptPro results can be saved, which is kind of what
HyperparameterHunter is all about


	Parameters

	
	train_dataset: Pandas.DataFrame, or str path
	The training data for the experiment. Will be split into train/holdout data, if
applicable, and train/validation data if cross-validation is to be performed. If str,
will attempt to read file at path via pandas.read_csv(). For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	environment_params_path: String path, or None, default=None
	If not None and is valid .json filepath containing an object (dict), the file’s contents
are treated as the default values for all keys that match any of the below kwargs used
to initialize Environment



	results_path: String path, or None, default=None
	If valid directory path and the results directory has not yet been created, it will be
created here. If this does not end with <ASSETS_DIRNAME>, it will be appended. If
<ASSETS_DIRNAME> already exists at this path, new results will also be stored here. If
None or invalid, results will not be stored



	metrics: Dict, List, or None, default=None
	Iterable describing the metrics to be recorded, along with a means to compute the value
of each metric. Should be of one of the two following forms:

List Form:


	[“<metric name>”, “<metric name>”, …]:
Where each value is a string that names an attribute in sklearn.metrics


	[Metric, Metric, …]:
Where each value of the list is an instance of metrics.Metric


	[(<name>, <metric_function>, [<direction>]), (<*args>), …]:
Where each value of the list is a tuple of arguments that will be used to instantiate
a metrics.Metric. Arguments given in tuples must be in order expected by
metrics.Metric: (name, metric_function, direction)




Dict Form:


	{“<metric name>”: <metric_function>, …}:
Where each key is a name for the corresponding metric callable, which is used to
compute the value of the metric


	{“<metric name>”: (<metric_function>, <direction>), …}:
Where each key is a name for the corresponding metric callable and direction, all of
which are used to instantiate a metrics.Metric


	{“<metric name>”: “<sklearn metric name>”, …}:
Where each key is a name for the metric, and each value is the name of the attribute
in sklearn.metrics for which the corresponding key is an alias


	{“<metric name>”: None, …}:
Where each key is the name of the attribute in sklearn.metrics


	{“<metric name>”: Metric, …}:
Where each key names an instance of metrics.Metric. This is the
internally-used format to which all other formats will be converted




Metric callable functions should expect inputs of form (target, prediction), and should
return floats. See the documentation of metrics.Metric for information
regarding expected parameters and types



	holdout_dataset: Pandas.DataFrame, callable, str path, or None, default=None
	If pd.DataFrame, this is the holdout dataset. If callable, expects a function that takes
(self.train: DataFrame, self.target_column: str) as input and returns the new
(self.train: DataFrame, self.holdout: DataFrame). If str, will attempt to read file at
path via pandas.read_csv(). Else, there is no holdout set. For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	test_dataset: Pandas.DataFrame, str path, or None, default=None
	The testing data for the experiment. Structure should be identical to that of
train_dataset, except its target_column column can be empty or non-existent, because
test_dataset predictions will never be evaluated. If str, will attempt to read file at
path via pandas.read_csv(). For more information on which columns will be used
during fitting/predicting, see the “Dataset columns” note in the “Notes” section below



	target_column: Str, or list, default=’target’
	If str, denotes the column name in all provided datasets (except test) that contains the
target output. If list, should be a list of strs designating multiple target columns.
For example, in a multi-class classification dataset like UCI’s hand-written digits,
target_column would be a list containing ten strings. In this example, the
target_column data would be sparse, with a 1 to signify that a sample is a written
example of a digit (0-9). For a working example, see
‘hyperparameter_hunter/examples/lib_keras_multi_classification_example.py’



	id_column: Str, or None, default=None
	If not None, str denoting the column name in all provided datasets containing sample IDs



	do_predict_proba: Boolean, or int, default=False
	
	If False, models.Model.fit() will call models.Model.model.predict()


	If True, it will call models.Model.model.predict_proba(), and the values in all
columns will be used as the actual prediction values


	If do_predict_proba is an int, models.Model.fit() will call
models.Model.model.predict_proba(), as is the case when do_predict_proba is
True, but the int supplied as do_predict_proba declares the column index to use as
the actual prediction values


	For example, for a model to call the predict method, do_predict_proba=False
(default). For a model to call the predict_proba method, and use all of the class
probabilities, do_predict_proba=True. To call the predict_proba method, and use
the class probabilities in the first column, do_predict_proba=0. To use the second
column (index 1) of the result, do_predict_proba=1 - This often corresponds to the
positive class’s probabilities in binary classification problems. To use the third
column do_predict_proba=2, and so on






	prediction_formatter: Callable, or None, default=None
	If callable, expected to have same signature as
utils.result_utils.format_predictions(). That is, the callable will receive
(raw_predictions: np.array, dataset_df: pd.DataFrame, target_column: str,
id_column: str or None) as input and should return a properly formatted prediction
DataFrame. The callable uses raw_predictions as the content, dataset_df to provide any
id column, and target_column to identify the column in which to place raw_predictions



	metrics_params: Dict, or None, default=dict()
	Dictionary of extra parameters to provide to metrics.ScoringMixIn.__init__().
metrics must be provided either 1) as an input kwarg to
Environment.__init__() (see metrics), or 2) as a key in metrics_params,
but not both. An Exception will be raised if both are given, or if neither is given



	cv_type: Class or str, default=’KFold’
	The class to define cross-validation splits. If str, it must be an attribute of
sklearn.model_selection._split, and it must be a cross-validation class that inherits
one of the following sklearn classes: BaseCrossValidator, or _RepeatedSplits.
Valid str values include ‘KFold’, and ‘RepeatedKFold’, although there are many more. It
must implement the following methods: [__init__, split]. If using a custom class,
see the following tested sklearn classes for proper implementations:
[KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold]. The arguments
provided to cv_type.__init__() will be Environment.cv_params, which should
include the following: [‘n_splits’ <int>, ‘n_repeats’ <int> (if applicable)].
cv_type.split() will receive the following arguments:
[BaseExperiment.train_input_data, BaseExperiment.train_target_data]



	runs: Int, default=1
	The number of times to fit a model within each fold to perform multiple-run-averaging
with different random seeds



	global_random_seed: Int, default=32
	The initial random seed used just before generating an Experiment’s random_seeds. This
ensures consistency for random_seeds between Experiments, without having to explicitly
provide it here



	random_seeds: None, or List, default=None
	If None, random_seeds of the appropriate shape will be created automatically. Else,
must be a list of ints of shape (cv_params[‘n_repeats’], cv_params[‘n_splits’],
runs). If cv_params does not have the key n_repeats (because standard
cross-validation is being used), the value will default to 1. See
experiments.BaseExperiment._random_seed_initializer() for info on expected shape



	random_seed_bounds: List, default=[0, 100000]
	A list containing two integers: the lower and upper bounds, respectively, for generating
an Experiment’s random seeds in
experiments.BaseExperiment._random_seed_initializer(). Generally, leave this
kwarg alone



	cv_params: dict, or None, default=dict()
	Parameters provided upon initialization of cv_type. Keys may be any args accepted by
cv_type.__init__(). Number of fold splits must be provided via “n_splits”, and
number of repeats (if applicable for cv_type) must be provided via “n_repeats”



	verbose: Int, boolean, default=3
	Verbosity of printing for any experiments performed while this Environment is active

Higher values indicate more frequent logging. Logs are still recorded in the heartbeat
file regardless of verbosity level. verbose only dictates which logs are visible in
the console. The following table illustrates which types of logging messages will be
visible with each verbosity level:

| Verbosity | Keys/IDs | Final Score | Repetitions* | Folds | Runs* | Run Starts* | Result Files | Other |
|:---------:|:--------:|:-----------:|:------------:|:-----:|:-----:|:-----------:|:------------:|:-----:|
|     0     |          |             |              |       |       |             |              |       |
|     1     |    Yes   |     Yes     |              |       |       |             |              |       |
|     2     |    Yes   |     Yes     |      Yes     |  Yes  |       |             |              |       |
|     3     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |             |              |       |
|     4     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |     Yes     |      Yes     |  Yes  |





*: If such logging is deemed appropriate with the given cross-validation parameters. In
other words, repetition/run logging will only be verbose if Environment was given more
than one repetition/run, respectively



	file_blacklist: List of str, or None, or ‘ALL’, default=None
	If list of str, the result files named within are not saved to their respective
directory in “<ASSETS_DIRNAME>/Experiments”. If None, all result files are saved.
If ‘ALL’, nothing at all will be saved for the Experiments. If the path of the file that
initializes an Experiment does not end with a “.py” extension, the Experiment proceeds
as if “script_backup” had been added to file_blacklist. This means that backup files
will not be created for Jupyter notebooks (or any other non-“.py” files). For info on
acceptable values, see validate_file_blacklist()



	reporting_params: Dict, default=dict()
	Parameters passed to initialize reporting.ReportingHandler



	to_csv_params: Dict, default=dict()
	Parameters passed to the calls to pandas.frame.DataFrame.to_csv() in
recorders. In particular, this is where an Experiment’s final prediction files
are saved, so the values here will affect the format of the .csv prediction files.
Warning: If to_csv_params contains the key “path_or_buf”, it will be removed.
Otherwise, all items are supplied directly to to_csv(), including kwargs it might
not be expecting if they are given



	do_full_save: None, or callable, default=:func:`utils.result_utils.default_do_full_save`
	If callable, expected to take an Experiment’s result description dict as input and
return a boolean. If None, treated as a callable that returns True. This parameter is
used by recorders.DescriptionRecorder to determine whether the Experiment
result files following the description should also be created. If do_full_save returns
False, result file-saving is stopped early, and only the description is saved. If
do_full_save returns True, all files not in file_blacklist are saved normally. This
allows you to skip creation of an Experiment’s predictions, logs, and heartbeats if its
score does not meet some threshold you set, for example. do_full_save receives the
Experiment description dict as input, so for help setting do_full_save, just look into
one of your Experiment descriptions



	experiment_callbacks: `LambdaCallback`, or list of `LambdaCallback` (optional)
	Callbacks injected directly into Experiments, adding new functionality, or customizing
existing processes. Should be a LambdaCallback or a list of such classes.
LambdaCallback can be created using callbacks.bases.lambda_callback(), which
documents the options for creating callbacks. experiment_callbacks will be added to
the MRO of the executed Experiment class by experiment_core.ExperimentMeta at
__call__ time, making experiment_callbacks new base classes of the Experiment. See
callbacks.bases.lambda_callback() for more information. Note that the Experiments
conducted by OptPros will still benefit from experiment_callbacks. The presence of
LambdaCallbacks will affect neither Environment keys, nor Experiment keys. In other
words, for the purposes of Experiment matching/recording, all other factors being equal,
an Experiment with experiment_callbacks is considered identical to an Experiment
without, despite whatever custom functionality was added by the LambdaCallbacks



	experiment_recorders: List, None, default=None
	If not None, may be a list whose values are tuples of
(<recorders.BaseRecorder descendant>, <str result_path>). The result_path str
should be a path relative to results_path that specifies the directory/file in
which the product of the custom recorder should be saved. The contents of
experiment_recorders will be provided to recorders.RecorderList upon completion of
an Experiment, and, if the subclassing documentation in recorders is followed
properly, will create or update a result file for the just-executed Experiment



	save_transformed_metrics: Boolean (optional)
	Declares manner in which a model’s predictions should be evaluated through the provided
metrics, with regard to target data transformations. This setting can be ignored if
no transformation of the target variable takes place (either through
FeatureEngineer,
EngineerStep, or otherwise).

The default value of save_transformed_metrics depends on the dtype of the target data
in train_dataset. If all target columns are numeric, save_transformed_metrics`=False,
meaning metric evaluation should use the original/inverted targets and predictions. Else
if any target column is non-numeric, `save_transformed_metrics`=True, meaning evaluation
should use the transformed targets and predictions because most metrics require numeric
inputs. This is described further in :attr:`save_transformed_metrics. A more
descriptive name for this may be “calculate_metrics_using_transformed_predictions”,
but that’s a bit verbose–even by my standards







	Other Parameters

	
	cross_validation_type: …
	
	Alias for cv_type *






	cross_validation_params: …
	
	Alias for cv_params *






	metrics_map: …
	
	Alias for metrics *






	reporting_handler_params: …
	
	Alias for reporting_params *






	root_results_path: …
	
	Alias for results_path *












Notes

Dataset columns: In order to specify the columns to be used by the three dataset kwargs
(train_dataset, holdout_dataset, test_dataset) during fitting and predicting, a few
attributes can be used. On Environment initialization, the columns specified by the
following kwargs will be separated from the rest of the dataset during training/predicting:
1) target_column, which names the column containing the target output labels for the input
data; and 2) id_column, which (if given) represents the name of the column that contains
identifying information for each data sample, and should otherwise have no relation to the
actual data. Additionally, the feature_selector kwarg of the descendants of
hyperparameter_hunter.experiments.BaseExperiment (like
hyperparameter_hunter.experiments.CVExperiment) is used to filter out
columns of the given datasets prior to fitting. See its documentation for more information,
but it can effectively be used to remove any columns from the datasets

Overriding default kwargs at environment_params_path: If you have any of the above kwargs
specified in the .json file at environment_params_path (except environment_params_path,
which will be ignored), you can override its value by passing it as a kwarg when
initializing Environment. The contents at environment_params_path are only used
when the matching kwarg supplied at initialization is None. See
“/examples/environment_params_path_example.py” for details

The order of precedence for determining the value of each parameter is as follows, with
items at the top having the highest priority, and deferring only to the items below if
their own value is None:


	1)kwargs passed directly to Environment.__init__() on initialization,


	2)keys of the file at environment_params_path (if valid .json object),


	3)keys of hyperparameter_hunter.environment.Environment.DEFAULT_PARAMS




do_predict_proba: Because this parameter can be either a boolean or an integer, it is
important to explicitly pass booleans rather than truthy or falsey values. Similarly, only
pass integers if you intend for the value to be used as a column index. Do not pass 0 to
mean False, or 1 to mean True


	Attributes

	
	train_input: DatasetSentinel
	Sentinel replaced with current train input data during Model fitting/predicting.
Commonly given in the model_extra_params kwargs of
hyperparameter_hunter.experiments.BaseExperiment or
hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment() for
eval_set-like hyperparameters. Importantly, the actual value of this Sentinel is
determined after performing cross-validation data splitting, and after executing
FeatureEngineer



	train_target: DatasetSentinel
	Like train_input, except for current train target data



	validation_input: DatasetSentinel
	Like train_input, except for current validation input data



	validation_target: DatasetSentinel
	Like train_input, except for current validation target data



	holdout_input: DatasetSentinel
	Like train_input, except for current holdout input data



	holdout_target: DatasetSentinel
	Like train_input, except for current holdout target data









Methods







	environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments



	format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results



	generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters



	initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime



	update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS



	validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted







	
DEFAULT_PARAMS = {'cv_params': {}, 'cv_type': 'KFold', 'do_full_save': <function default_do_full_save>, 'do_predict_proba': False, 'environment_params_path': None, 'file_blacklist': None, 'global_random_seed': 32, 'id_column': None, 'metrics': None, 'metrics_params': {}, 'prediction_formatter': <function format_predictions>, 'random_seed_bounds': [0, 100000], 'random_seeds': None, 'reporting_params': {'console_params': None, 'float_format': '{:.5f}', 'heartbeat_params': None, 'heartbeat_path': None}, 'results_path': None, 'runs': 1, 'save_transformed_metrics': None, 'target_column': 'target', 'to_csv_params': {}, 'verbose': 3}

	




	
property results_path

	




	
property target_column

	




	
property train_dataset

	




	
property test_dataset

	




	
property holdout_dataset

	




	
property file_blacklist

	




	
property cv_type

	




	
property to_csv_params

	




	
property cross_experiment_params

	




	
property experiment_callbacks

	




	
property save_transformed_metrics

	If save_transformed_metrics is True, and target transformation does occur, then
experiment metrics are calculated using the transformed targets and predictions, which is
the form returned directly by a fitted model’s predict method. For example, if target data
is label-encoded, and an feature_engineering.EngineerStep is used to one-hot encode
the target, then metrics functions will receive the following as input:
(one-hot-encoded targets, one-hot-encoded predictions).

Conversely, if save_transformed_metrics is False, and target transformation does occur,
then experiment metrics are calculated using the inverse of the transformed targets and
predictions, which is same form as the original target data. Continuing the example of
label-encoded target data, and an feature_engineering.EngineerStep to one-hot
encode the target, in this case, metrics functions will receive the following as input:
(label-encoded targets, label-encoded predictions)






	
environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments






	
validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted






	
format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results






	
update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS






	
generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters






	
initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime






	
property train_input

	Get a DatasetSentinel representing an Experiment’s fold_train_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_input upon
Model initialization














	
property train_target

	Get a DatasetSentinel representing an Experiment’s fold_train_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_target upon
Model initialization














	
property validation_input

	Get a DatasetSentinel representing an Experiment’s fold_validation_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_input
upon Model initialization














	
property validation_target

	Get a DatasetSentinel representing an Experiment’s fold_validation_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_target
upon Model initialization














	
property holdout_input

	Get a DatasetSentinel representing an Experiment’s holdout_input_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_input_data
upon Model initialization














	
property holdout_target

	Get a DatasetSentinel representing an Experiment’s holdout_target_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_target_data
upon Model initialization


















	
hyperparameter_hunter.environment.define_holdout_set(train_set:pandas.core.frame.DataFrame, holdout_set:Union[pandas.core.frame.DataFrame, <built-in function callable>, str, NoneType], target_column:Union[str, List[str]]) → Tuple[pandas.core.frame.DataFrame, Union[pandas.core.frame.DataFrame, NoneType]]

	Create holdout_set (if necessary) by loading a DataFrame from a .csv file, or by separating
train_set, and return the updated (train_set, holdout_set) pair


	Parameters

	
	train_set: Pandas.DataFrame
	Training DataFrame. Will be split into train/holdout data, if holdout_set is callable



	holdout_set: Pandas.DataFrame, callable, str, or None
	If pd.DataFrame, this is the holdout dataset. If callable, expects a function that takes
(train_set, target_column) as input and returns the new (train_set, holdout_set). If
str, will attempt to read file at path via pandas.read_csv(). Else, no holdout set



	target_column: Str, or list
	If str, denotes the column name in provided datasets that contains the target output. If
list, should be a list of strs designating multiple target columns







	Returns

	
	train_set: Pandas.DataFrame
	train_set if holdout_set is not callable. Else train_set modified by holdout_set



	holdout_set: Pandas.DataFrame, or None
	Original DataFrame, or DataFrame read from str filepath, or a portion of train_set if
holdout_set is callable, or None














	
hyperparameter_hunter.environment.validate_file_blacklist(blacklist)

	Validate contents of blacklist. For most values, the corresponding file is saved upon
completion of the experiment. See the “Notes” section below for details on some special cases


	Parameters

	
	blacklist: List of strings, or None
	The result files that should not be saved







	Returns

	
	blacklist: List
	If not empty, acceptable list of result file types to blacklist









Notes

‘heartbeat’: If the heartbeat file is saved, a new file is not generated and saved to the
“Experiments/Heartbeats” directory as is the case with most other files. Instead, the general
“Heartbeat.log” file is copied and renamed to the current experiment id, then saved to the
appropriate dir. This is because the general “Heartbeat.log” file represents the heartbeat
for whatever experiment is currently in progress.

‘script_backup’: This file is saved as quickly as possible after starting a new experiment,
rather than waiting for the experiment to end. There are two reasons for this behavior: 1) to
avoid saving any changes that may have been made to a file after it has been executed, and 2)
to have the offending file in the event of a catastrophic failure that results in no other
files being saved. As stated in the documentation of the file_blacklist parameter of
Environment, if the path of the file that initializes an Experiment does not end with a “.py”
extension, the Experiment proceeds as if “script_backup” had been added to blacklist. This
means that backup files will not be created for Jupyter notebooks (or any other non-“.py” files)

‘description’ and ‘tested_keys’: These two results types constitute a bare minimum of sorts for
experiment recording. If either of these two are blacklisted, then as far as the library is
concerned, the experiment never took place.

‘tested_keys’ (continued): If this string is included in the blacklist, then the contents of the
“KeyAttributeLookup” directory will also be excluded from the list of files to update

‘current_heartbeat’: The general heartbeat file that should be stored at
‘HyperparameterHunterAssets/Heartbeat.log’. If this value is blacklisted, then ‘heartbeat’ is
also added to blacklist automatically out of necessity. This is done because the heartbeat
file for the current experiment cannot be created as a copy of the general heartbeat file if the
general heartbeat file is never created in the first place










hyperparameter_hunter.exceptions module

This module defines a few custom Exception classes, and it provides the means for Exceptions to
be added to the Heartbeat result files of Experiments


Related


	hyperparameter_hunter.reporting
	This module executes hyperparameter_hunter.exception_handler.hook_exception_handler() to
ensure that any raised Exceptions are also recorded in the Heartbeat files of the Experiment for
which the Exception was raised in order to assist in debugging






	
hyperparameter_hunter.exceptions.handle_exception(exception_type, exception_value, exception_traceback)

	Intercept raised exceptions to ensure they are included in an Experiment’s log files


	Parameters

	
	exception_type: Exception
	The class type of the exception that was raised



	exception_value: Str
	The message produced by the exception



	exception_traceback: Exception.traceback
	The traceback provided by the raised exception







	Raises

	
	SystemExit
	If exception_type is a subclass of KeyboardInterrupt














	
hyperparameter_hunter.exceptions.hook_exception_handler()

	Set sys.excepthook to hyperparameter_hunter.exception_handler.handle_exception()






	
exception hyperparameter_hunter.exceptions.EnvironmentInactiveError(message=None, extra='')

	Bases: Exception

Exception raised when an active instance of
hyperparameter_hunter.environments.Environment is not detected


	Parameters

	
	message: String, or None, default=None
	A message to provide upon raising EnvironmentExceptionError



	extra: String, default=’’
	Extra content to append onto the end of message before raising the Exception














	
exception hyperparameter_hunter.exceptions.EnvironmentInvalidError(message=None, extra='')

	Bases: Exception

Exception raised when there is an active instance of
hyperparameter_hunter.environments.Environment, but it is invalid for some reason


	Parameters

	
	message: String, or None, default=None
	A message to provide upon raising EnvironmentInvalidError



	extra: String, default=’’
	Extra content to append onto the end of message before raising the Exception














	
exception hyperparameter_hunter.exceptions.RepeatedExperimentError(message=None, extra='')

	Bases: Exception

Exception raised when a saved Experiment is found with the same hyperparameters as the
Experiment being executed


	Parameters

	
	message: String, or None, default=None
	A message to provide upon raising RepeatedExperimentError



	extra: String, default=’’
	Extra content to append onto the end of message before raising the Exception














	
exception hyperparameter_hunter.exceptions.IncompatibleCandidateError(candidate, template)

	Bases: Exception

Exception raised when a candidate hyperparameter set is incompatible with a template


	Parameters

	
	candidate: Any
	Hyperparameter set that is incompatible with the choices/concrete values of template



	template: Any
	Hyperparameter set defined by
forge_experiment().
May include any combination of space choices and concrete values














	
exception hyperparameter_hunter.exceptions.ContinueRemap

	Bases: Exception






	
exception hyperparameter_hunter.exceptions.DeprecatedWarning(obj_name, v_deprecate, v_remove, details='')

	Bases: DeprecationWarning

Warning class for deprecated callables. This is a specialization of the built-in
DeprecationWarning, adding parameters that allow us to get information into the __str__
that ends up being sent through the warnings system. The attributes aren’t able to be
retrieved after the warning gets raised and passed through the system as only the class–not the
instance–and message are what gets preserved


	Parameters

	
	obj_name: String
	The name of the callable being deprecated



	v_deprecate: String
	The version that obj is deprecated in



	v_remove: String
	The version that obj gets removed in



	details: String, default=””
	Deprecation details, such as directions on what to use instead of the deprecated code














	
exception hyperparameter_hunter.exceptions.UnsupportedWarning(obj_name, v_deprecate, v_remove, details='')

	Bases: hyperparameter_hunter.exceptions.DeprecatedWarning

Warning class for callable to warn that it is being unsupported










hyperparameter_hunter.experiment_core module

This module is the core of all of the experimentation in hyperparameter_hunter, hence its name.
It is impossible to understand hyperparameter_hunter.experiments without first having a grasp
on what hyperparameter_hunter.experiment_core.ExperimentMeta is doing. This module serves
to bridge the gap between Experiments, and hyperparameter_hunter.callbacks by dynamically
making Experiments inherit various callbacks depending on the inputs given in order to make
Experiments completely functional


Related


	hyperparameter_hunter.experiments
	Defines the structure of the experimentation process. While certainly very important,
hyperparameter_hunter.experiments wouldn’t do much at all without
hyperparameter_hunter.callbacks, or hyperparameter_hunter.experiment_core



	hyperparameter_hunter.callbacks
	Defines parent classes to the classes defined in hyperparameter_hunter.experiments. This
not only makes it very easy to find the entire workflow for a given task, but also ensures that
each instance of an Experiment inherits exactly the functionality that it needs. For example,
if no holdout data was given, then experiment_core.ExperimentMeta will not add
callbacks.evaluators.EvaluatorHoldout or callbacks.predictors.PredictorHoldout
to the list of callbacks inherited by the Experiment. This means that the Experiment never needs
to check for the existence of holdout data in order to determine how it should proceed because
it literally doesn’t have the code that deals with holdout data








Notes

Was a metaclass really necessary here? Probably not, but it’s being used for two reasons:
1) metaclasses are fun, and programming (especially artificial intelligence) should be fun; and
2) it allowed for a very clean separation between the various functions demanded by Experiments that
are provided by hyperparameter_hunter.callbacks. Having each of the callbacks separated in
their own classes makes it very easy to debug existing functionality, and to add new callbacks in
the future


	
class hyperparameter_hunter.experiment_core.ExperimentMeta

	Bases: type

Create a new class object that stores necessary class-wide callbacks to
__class_wide_bases

Methods







	__call__(cls, \*args, \*\*kwargs)

	Store necessary instance-wide callbacks to __instance_bases, sort all dynamically added callback base classes, then add them to the instance



	mro()

	return a type’s method resolution order











	
hyperparameter_hunter.experiment_core.base_callback_class_sorter(auxiliary_bases, parent_class_order=None)

	Sort callback classes in order to preserve the intended MRO of their descendant, and to
enable callbacks that may depend on one another to function properly


	Parameters

	
	auxiliary_bases: List
	The callback classes to be sorted according to the order in which their parent is found in
parent_class_order. For example, if a class (x) in auxiliary_bases is the only
descendant of the last class in parent_class_order, then class x will be moved to the last
position in sorted_auxiliary_bases. If multiple classes in auxiliary_bases are
descendants of the same parent in parent_class_order, they will be sorted alphabetically
(from A-Z)



	parent_class_order: List, or None, default=<See description>
	List of base callback classes that define the sort order for auxiliary_bases. Note that
these are not the normal callback classes that add to the functionality of an Experiment,
but the base classes from which the callback classes are descendants. All the classes in
parent_class_order should be defined in hyperparameter_hunter.callbacks.bases. The
last class in parent_class_order should be
hyperparameter_hunter.callbacks.bases.BaseCallback, which is the parent class for
all other base classes. This ensures that custom callbacks defined by
hyperparameter_hunter.callbacks.bases.lambda_callback() will be recognized as valid
and executed last







	Returns

	
	sorted_auxiliary_bases: List
	The contents of auxiliary_bases sorted according to their parents’ location in
parent_class_order, then alphabetically







	Raises

	
	ValueError
	If auxiliary_bases contains a class that is not a descendant of any of the classes in
parent_class_order









Examples

>>> in_0 = [AggregatorEvaluations, AggregatorTimes, EvaluatorOOF, EvaluatorHoldout, LoggerFitStatus, PredictorOOF, PredictorHoldout, PredictorTest]
>>> out_0 = [PredictorHoldout, PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations, AggregatorTimes, LoggerFitStatus]
>>> assert base_callback_class_sorter(in_0) == out_0
>>> in_1 = [AggregatorEvaluations, AggregatorTimes, EvaluatorOOF, EvaluatorHoldout, LoggerFitStatus, PredictorOOF, PredictorHoldout, PredictorTest]
>>> out_1 = [PredictorHoldout, PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations, AggregatorTimes, LoggerFitStatus]
>>> assert base_callback_class_sorter(in_1) == out_1
>>> in_2 = [PredictorOOF, PredictorHoldout, AggregatorTimes, PredictorTest, AggregatorEvaluations, EvaluatorOOF, EvaluatorHoldout, LoggerFitStatus]
>>> out_2 = [PredictorHoldout, PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations, AggregatorTimes, LoggerFitStatus]
>>> assert base_callback_class_sorter(in_2) == out_2
>>> in_3 = [PredictorTest, EvaluatorHoldout, LoggerFitStatus, AggregatorTimes, PredictorHoldout, PredictorOOF, AggregatorEvaluations, EvaluatorOOF]
>>> out_3 = [PredictorHoldout, PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations, AggregatorTimes, LoggerFitStatus]
>>> assert base_callback_class_sorter(in_3) == out_3
>>> in_4 = [LoggerFitStatus, EvaluatorOOF, PredictorTest, EvaluatorHoldout, AggregatorTimes, AggregatorEvaluations, PredictorHoldout, PredictorOOF]
>>> out_4 = [PredictorHoldout, PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations, AggregatorTimes, LoggerFitStatus]
>>> assert base_callback_class_sorter(in_4) == out_4
>>> in_5 = [AggregatorEvaluations, PredictorTest, PredictorOOF, EvaluatorOOF, EvaluatorHoldout]
>>> out_5 = [PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations]
>>> assert base_callback_class_sorter(in_5) == out_5
>>> in_6 = [EvaluatorOOF, PredictorOOF, EvaluatorHoldout, AggregatorEvaluations, PredictorTest]
>>> out_6 = [PredictorOOF, PredictorTest, EvaluatorHoldout, EvaluatorOOF, AggregatorEvaluations]
>>> assert base_callback_class_sorter(in_6) == out_6
>>> in_7 = [PredictorTest, EvaluatorHoldout, PredictorOOF]
>>> out_7 = [PredictorOOF, PredictorTest, EvaluatorHoldout]
>>> assert base_callback_class_sorter(in_7) == out_7
>>> in_8 = [PredictorTest, PredictorOOF, EvaluatorHoldout]
>>> out_8 = [PredictorOOF, PredictorTest, EvaluatorHoldout]
>>> assert base_callback_class_sorter(in_8) == out_8





>>> base_callback_class_sorter([type("Foo", (object,), {}), PredictorTest, EvaluatorHoldout, PredictorOOF])
Traceback (most recent call last):
    File "experiment_core.py", line ?, in base_callback_class_sorter
ValueError: Base class not descendant of acceptable parent class: [<class 'hyperparameter_hunter.experiment_core.Foo'>]














hyperparameter_hunter.experiments module

This module contains the classes used for constructing and conducting an Experiment (most
notably, CVExperiment). Any class contained herein whose name starts with “Base” should not
be used directly. CVExperiment is the preferred means of conducting one-off experimentation


Related


	hyperparameter_hunter.experiment_core
	Defines ExperimentMeta, an understanding of which is critical to being able to
understand experiments



	hyperparameter_hunter.metrics
	Defines ScoringMixIn, a parent of experiments.BaseExperiment that enables
scoring and evaluating models



	hyperparameter_hunter.models
	Used to instantiate the actual learning models, which are a single part of the entire
experimentation workflow, albeit the most significant part








Notes

As mentioned above, the inner workings of experiments will be very confusing without a grasp
on what’s going on in experiment_core, and its related modules


	
class hyperparameter_hunter.experiments.BaseExperiment(model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None)

	Bases: hyperparameter_hunter.metrics.ScoringMixIn

One-off Experimentation base class

Bare-bones Description: Runs the cross-validation scheme defined by Environment,
during which 1) Datasets are processed according to feature_engineer; 2) Models are built
by instantiating model_initializer with model_init_params; 3) Models are trained on
processed data, optionally using parameters from model_extra_params; 4) Results are
logged and recorded for each fitting period; 5) Descriptions, predictions, results (both
averages and individual periods), etc. are saved.

What’s the Big Deal? The most important takeaway from the above description is that
descriptions/results are THOROUGH and REUSABLE. By thorough, I mean that all of a model’s
hyperparameters are saved, not just the ones given in model_init_params. This may sound
odd, but it’s important because it makes results reusable during optimization, when you may
be using a different set of hyperparameters. It helps with other things like preventing
duplicate experiments and ensembling, as well. But the big part is that this transforms
hyperparameter optimization from an isolated, throwaway process we can only afford when an
ML project is sufficiently “mature” to a process that covers the entire lifespan of a
project. No Experiment is forgotten or wasted. Optimization is automatically given the data
it needs to succeed by drawing on all your past Experiments and optimization rounds.

The Experiment has three primary missions:
1. Act as scaffold for organizing ML Experimentation and optimization
2. Record Experiment descriptions and results
3. Eliminate lots of repetitive/error-prone boilerplate code

Providing a scaffold for the entire ML process is critical because without a standardized
format, everything we do looks different. Without a unified scaffold, development is slower,
more confusing, and less adaptable. One of the benefits of standardizing the format of ML
Experimentation is that it enables us to exhaustively record all the important
characteristics of Experiment, as well as an assortment of customizable result files – all
in a way that allows them to be reused in the future.

What About Data/Metrics? Experiments require an active
Environment in order to function, from which
the Experiment collects important cross-experiment parameters, such as datasets, metrics,
cross-validation schemes, and even callbacks to inherit, among many other properties
documented in Environment


	Parameters

	
	model_initializer: Class, or functools.partial, or class instance
	Algorithm class used to initialize a model, such as XGBoost’s XGBRegressor, or
SKLearn’s KNeighborsClassifier; although, there are hundreds of possibilities across
many different ML libraries. model_initializer is expected to define at least fit
and predict methods. model_initializer will be initialized with model_init_params,
and its “extra” methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params



	model_init_params: Dict, or object (optional)
	Dictionary of arguments given to create an instance of model_initializer. Any kwargs
that are considered valid by the __init__ method of model_initializer are valid in
model_init_params.

One of the key features that makes HyperparameterHunter so magical is that ALL
hyperparameters in the signature of model_initializer (and their default values) are
discovered – whether or not they are explicitly given in model_init_params. Not only
does this make Experiment result descriptions incredibly thorough, it also makes
optimization smoother, more effective, and far less work for the user. For example, take
LightGBM’s LGBMRegressor, with model_init_params`=`dict(learning_rate=0.2).
HyperparameterHunter recognizes that this differs from the default of 0.1. It also
recognizes that LGBMRegressor is actually initialized with more than a dozen other
hyperparameters we didn’t bother mentioning, and it records their values, too. So if we
want to optimize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows
that we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us having
to manually keep track of tons of janky collections of hyperparameters. In fact, we
really don’t need to go out of our way at all. HyperparameterHunter just acts as our
faithful lab assistant, keeping track of all the stuff we’d rather not worry about



	model_extra_params: Dict (optional)
	Dictionary of extra parameters for models’ non-initialization methods (like fit,
predict, predict_proba, etc.), and for neural networks. To specify parameters for
an extra method, place them in a dict named for the extra method to which the
parameters should be given. For example, to call fit with early_stopping_rounds`=5,
use `model_extra_params`=`dict(fit=dict(early_stopping_rounds=5)).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s), one can
use the DatasetSentinel attributes of the current active
Environment, documented under its
“Attributes” section and under
train_input. An example using
several DatasetSentinels can be found in HyperparameterHunter’s
[XGBoost Classification Example](https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py)



	feature_engineer: `FeatureEngineer`, or list (optional)
	Feature engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to
initialize FeatureEngineer, and can
contain any of the following values:



	EngineerStep instance


	Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep`







For important information on properly formatting EngineerStep functions, please see
the documentation of EngineerStep.
OptPros can perform hyperparameter optimization of feature_engineer steps. This
capability adds a third allowed value to the above list and is documented in
forge_experiment()



	feature_selector: List of str, callable, or list of booleans (optional)
	Column names to include as input data for all provided DataFrames. If None,
feature_selector is set to all columns in train_dataset, less
target_column, and id_column. feature_selector is provided as the
second argument for calls to pandas.DataFrame.loc when constructing datasets



	notes: String (optional)
	Additional information about the Experiment that will be saved with the Experiment’s
description result file. This serves no purpose other than to facilitate saving
Experiment details in a more readable format



	do_raise_repeated: Boolean, default=False
	If True and this Experiment locates a previous Experiment’s results with matching
Environment and Hyperparameter Keys, a RepeatedExperimentError will be raised. Else, a
warning will be logged



	auto_start: Boolean, default=True
	If True, after the Experiment is initialized, it will automatically call
BaseExperiment.preparation_workflow(), followed by
BaseExperiment.experiment_workflow(), effectively completing all essential tasks
without requiring additional method calls



	target_metric: Tuple, str, default=(‘oof’, <:attr:`environment.Environment.metrics`[0]>)
	Path denoting the metric to be used to compare completed Experiments or to use for
certain early stopping procedures in some model classes. The first value should be one
of [‘oof’, ‘holdout’, ‘in_fold’]. The second value should be the name of a metric being
recorded according to the values supplied in
hyperparameter_hunter.environment.Environment.metrics_params. See the
documentation for hyperparameter_hunter.metrics.get_formatted_target_metric() for
more info. Any values returned by, or used as the target_metric input to this function
are acceptable values for target_metric



	callbacks: `LambdaCallback`, or list of `LambdaCallback` (optional)
	Callbacks injected directly into concrete Experiment (CVExperiment), adding new
functionality, or customizing existing processes. Should be a LambdaCallback or
a list of such classes. LambdaCallback can be created using
callbacks.bases.lambda_callback(), which documents the options for creating
callbacks. callbacks will be added to the MRO of the Experiment by
experiment_core.ExperimentMeta at __call__ time, making callbacks new
base classes of the Experiment. See callbacks.bases.lambda_callback() for more
information. The presence of LambdaCallbacks will not affect Experiment keys. In other
words, for the purposes of Experiment matching/recording, all other factors being equal,
an Experiment with callbacks is considered identical to an Experiment without, despite
whatever custom functionality was added by the LambdaCallbacks










See also


	hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment()
	OptPro method to define hyperparameter search scaffold for building Experiments during optimization. This method follows the same format as Experiment initialization, but it adds the ability to provide hyperparameter values as ranges to search over, via subclasses of Dimension. The other notable difference is that forge_experiment removes the auto_start and target_metric kwargs, which is described in the forge_experiment docstring Notes



	Environment
	Provides critical information on how Experiments should be conducted, as well as the data to be used by Experiments. An Environment must be active before executing any Experiment or OptPro



	lambda_callback()
	Enables customization of the Experimentation process and access to all Experiment internals through a collection of methods that are invoked at all the important periods over an Experiment’s lifespan. These can be provided via the experiment_callbacks kwarg of Environment, and the callback classes literally get thrown in to the parent classes of the Experiment, so they’re kind of a big deal







Methods







	evaluate(self, data_type, target, prediction)

	Apply metric(s) to the given data to calculate the value of the prediction



	execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation of learners for each run, preprocessing of data as appropriate, training learners, making predictions, and evaluating and aggregating those predictions and other stats/metrics for later use



	experiment_workflow(self)

	Define the actual experiment process, including execution, result saving, and cleanup



	on_exp_start(self)

	Prepare data prior to executing fitting protocol (cross-validation), by 1) Initializing formal datasets attributes, 2) Invoking feature_engineer to perform “pre_cv”-stage preprocessing, and 3) Updating datasets to include their (transformed) counterparts in feature_engineer



	preparation_workflow(self)

	Execute all tasks that must take place before the experiment is actually started.







	
experiment_workflow(self)

	Define the actual experiment process, including execution, result saving, and cleanup






	
preparation_workflow(self)

	Execute all tasks that must take place before the experiment is actually started. Such
tasks include (but are not limited to): Creating experiment IDs and hyperparameter keys,
creating script backups, and validating parameters






	
abstract execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation
of learners for each run, preprocessing of data as appropriate, training learners, making
predictions, and evaluating and aggregating those predictions and other stats/metrics for
later use






	
on_exp_start(self)

	Prepare data prior to executing fitting protocol (cross-validation), by 1) Initializing
formal datasets attributes, 2) Invoking
feature_engineer to perform “pre_cv”-stage preprocessing, and 3) Updating datasets to
include their (transformed) counterparts in feature_engineer










	
class hyperparameter_hunter.experiments.BaseCVExperiment(model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None)

	Bases: hyperparameter_hunter.experiments.BaseExperiment

Methods







	cross_validation_workflow(self)

	Execute workflow for cross-validation process, consisting of the following tasks: 1) Create train and validation split indices for all folds, 2) Iterate through folds, performing cv_fold_workflow for each, 3) Average accumulated predictions over fold splits, 4) Evaluate final predictions, 5) Format final predictions to prepare for saving



	cv_fold_workflow(self)

	Execute workflow for individual fold, consisting of the following tasks: Execute overridden on_fold_start() tasks, 2) Perform cv_run_workflow for each run, 3) Execute overridden on_fold_end() tasks



	cv_run_workflow(self)

	Execute run workflow, consisting of: 1) Execute overridden on_run_start() tasks, 2) Initialize and fit Model, 3) Execute overridden on_run_end() tasks



	evaluate(self, data_type, target, prediction)

	Apply metric(s) to the given data to calculate the value of the prediction



	execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation of learners for each run, preprocessing of data as appropriate, training learners, making predictions, and evaluating and aggregating those predictions and other stats/metrics for later use



	experiment_workflow(self)

	Define the actual experiment process, including execution, result saving, and cleanup



	on_exp_start(self)

	Prepare data prior to executing fitting protocol (cross-validation), by 1) Initializing formal datasets attributes, 2) Invoking feature_engineer to perform “pre_cv”-stage preprocessing, and 3) Updating datasets to include their (transformed) counterparts in feature_engineer



	on_fold_start(self)

	Override on_fold_start() tasks set by experiment_core.ExperimentMeta, consisting of: 1) Split train/validation data, 2) Make copies of holdout/test data for current fold (for feature engineering), 3) Log start, 4) Execute original tasks



	on_run_start(self)

	Override on_run_start() tasks organized by experiment_core.ExperimentMeta, consisting of: 1) Set random seed and update model parameters according to current seed, 2) Log run start, 3) Execute original tasks



	preparation_workflow(self)

	Execute all tasks that must take place before the experiment is actually started.







	
execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation
of learners for each run, preprocessing of data as appropriate, training learners, making
predictions, and evaluating and aggregating those predictions and other stats/metrics for
later use






	
cross_validation_workflow(self)

	Execute workflow for cross-validation process, consisting of the following tasks:
1) Create train and validation split indices for all folds, 2) Iterate through folds,
performing cv_fold_workflow for each, 3) Average accumulated predictions over fold
splits, 4) Evaluate final predictions, 5) Format final predictions to prepare for saving






	
on_fold_start(self)

	Override on_fold_start() tasks set by experiment_core.ExperimentMeta,
consisting of: 1) Split train/validation data, 2) Make copies of holdout/test data for
current fold (for feature engineering), 3) Log start, 4) Execute original tasks






	
cv_fold_workflow(self)

	Execute workflow for individual fold, consisting of the following tasks: Execute
overridden on_fold_start() tasks, 2) Perform cv_run_workflow for each run, 3) Execute
overridden on_fold_end() tasks






	
on_run_start(self)

	Override on_run_start() tasks organized by experiment_core.ExperimentMeta,
consisting of: 1) Set random seed and update model parameters according to current seed,
2) Log run start, 3) Execute original tasks






	
cv_run_workflow(self)

	Execute run workflow, consisting of: 1) Execute overridden on_run_start() tasks,
2) Initialize and fit Model, 3) Execute overridden on_run_end() tasks










	
class hyperparameter_hunter.experiments.CVExperiment(model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None, callbacks=None)

	Bases: hyperparameter_hunter.experiments.BaseCVExperiment


	Attributes

	
	source_script
	







Methods







	cross_validation_workflow(self)

	Execute workflow for cross-validation process, consisting of the following tasks: 1) Create train and validation split indices for all folds, 2) Iterate through folds, performing cv_fold_workflow for each, 3) Average accumulated predictions over fold splits, 4) Evaluate final predictions, 5) Format final predictions to prepare for saving



	cv_fold_workflow(self)

	Execute workflow for individual fold, consisting of the following tasks: Execute overridden on_fold_start() tasks, 2) Perform cv_run_workflow for each run, 3) Execute overridden on_fold_end() tasks



	cv_run_workflow(self)

	Execute run workflow, consisting of: 1) Execute overridden on_run_start() tasks, 2) Initialize and fit Model, 3) Execute overridden on_run_end() tasks



	evaluate(self, data_type, target, prediction)

	Apply metric(s) to the given data to calculate the value of the prediction



	execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation of learners for each run, preprocessing of data as appropriate, training learners, making predictions, and evaluating and aggregating those predictions and other stats/metrics for later use



	experiment_workflow(self)

	Define the actual experiment process, including execution, result saving, and cleanup



	on_exp_start(self)

	Prepare data prior to executing fitting protocol (cross-validation), by 1) Initializing formal datasets attributes, 2) Invoking feature_engineer to perform “pre_cv”-stage preprocessing, and 3) Updating datasets to include their (transformed) counterparts in feature_engineer



	on_fold_start(self)

	Override on_fold_start() tasks set by experiment_core.ExperimentMeta, consisting of: 1) Split train/validation data, 2) Make copies of holdout/test data for current fold (for feature engineering), 3) Log start, 4) Execute original tasks



	on_run_start(self)

	Override on_run_start() tasks organized by experiment_core.ExperimentMeta, consisting of: 1) Set random seed and update model parameters according to current seed, 2) Log run start, 3) Execute original tasks



	preparation_workflow(self)

	Execute all tasks that must take place before the experiment is actually started.







	
source_script = None

	








	
hyperparameter_hunter.experiments.get_cv_indices(folds, cv_params, input_data, target_data)

	Produce iterables of cross validation indices in the shape of (n_repeats, n_folds)


	Parameters

	
	folds: Instance of `cv_type`
	Cross validation folds object, whose split() receives input_data and target_data



	cv_params: Dict
	Parameters given to instantiate folds. Must contain n_splits. May contain n_repeats



	input_data: pandas.DataFrame
	Input data to be split by folds, to which yielded indices will correspond



	target_data: pandas.DataFrame
	Target data to be split by folds, to which yielded indices will correspond







	Yields

	
	Generator
	Cross validation indices in shape of (<n_repeats or 1>, <n_splits>)


















hyperparameter_hunter.feature_engineering module

This module organizes and executes feature engineering/preprocessing step functions. The central
components of the module are FeatureEngineer and EngineerStep - everything else
is built to support those two classes. This module works with a very broad definition of
“feature engineering”. The following is a non-exhaustive list of transformations that are
considered valid for FeatureEngineer step functions:


	Manual feature creation


	Input data scaling/normalization/standardization


	Target data transformation


	Re-sampling


	Data imputation


	Feature selection/elimination


	Encoding (one-hot, label, etc.)


	Binarization/binning/discretization


	Feature extraction (as for NLP/image recognition tasks)


	Feature shuffling





Related


	hyperparameter_hunter.space
	Only related when optimizing FeatureEngineer steps within an Optimization Protocol, but
defines Categorical, which is the mechanism for
defining a feature engineer step search space, and
RejectedOptional, which is used to represent
the absence of a feature engineer step, when labeled as optional






	
class hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL

	Bases: object






	
class hyperparameter_hunter.feature_engineering.DatasetNameReport(params: Tuple[str], stage: str)

	Bases: object

Characterize the relationships between the dataset names params


	Parameters

	
	params: Tuple[str]
	Dataset names requested by a feature engineering step callable. Must be a subset of
{“train_data”, “train_inputs”, “train_targets”, “validation_data”, “validation_inputs”,
“validation_targets”, “holdout_data”, “holdout_inputs”, “holdout_targets”,
“test_inputs”, “all_data”, “all_inputs”, “all_targets”, “non_train_data”,
“non_train_inputs”, “non_train_targets”}



	stage: String in {“pre_cv”, “intra_cv”}
	Feature engineering stage during which the datasets params are requested







	Attributes

	
	merged_datasets: List[tuple]
	Tuples of strings denoting paths to datasets that represent a merge between multiple
datasets. Merged datasets are those prefixed with either “all” or “non_train”. These
paths are locations in descendants



	coupled_datasets: List[tuple]
	Tuples of strings denoting paths to datasets that represent a coupling of “inputs” and
“targets” datasets. Coupled datasets are those suffixed with “data”. These paths are
locations in descendants, and the values at each path should be a dict containing keys
with “inputs” and “targets” suffixes



	leaves: Dict[tuple, str]
	Mapping of full path tuples in descendants to their leaf values. Tuple paths represent
the steps necessary to reach the standard dataset leaf value in descendants by
traversing merged and coupled datasets. Values in leaves should be identical to the
last element of the corresponding tuple key



	descendants: DescendantsType
	Nested dict in which all keys are dataset name strings, and all leaf values are None.
Represents the structure of the requested dataset names, traversing over merged and
coupled datasets (if necessary) in order to reach the standard dataset leaves














	
hyperparameter_hunter.feature_engineering.names_for_merge(merge_to:str, stage:str) → List[str]

	Retrieve the names of the standard datasets that are allowed to be included in a merged
DataFrame of type merge_to at stage stage


	Parameters

	
	merge_to: String
	Type of merged dataframe to produce. Should be one of the following: {“all_data”,
“all_inputs”, “all_targets”, “non_train_data”, “non_train_inputs”, “non_train_targets”}



	stage: String in {“pre_cv”, “intra_cv}
	Feature engineering stage for which the merged dataframe is requested. The results produced
with each option differ only in that a merged_df created with stage=”pre_cv” will never
contain “validation” data because it doesn’t exist before cross-validation has begun.
Conversely, a merged_df created with stage=”intra_cv” will contain the appropriate
“validation” data if it exists







	Returns

	
	names: List
	Subset of {“train_data”, “train_inputs”, “train_targets”, “validation_data”,
“validation_inputs”, “validation_targets”, “holdout_data”, “holdout_inputs”,
“holdout_targets”, “test_inputs”}









Examples

>>> names_for_merge("all_data", "intra_cv")
['train_data', 'validation_data', 'holdout_data']
>>> names_for_merge("all_inputs", "intra_cv")
['train_inputs', 'validation_inputs', 'holdout_inputs', 'test_inputs']
>>> names_for_merge("all_targets", "intra_cv")
['train_targets', 'validation_targets', 'holdout_targets']
>>> names_for_merge("all_data", "pre_cv")
['train_data', 'holdout_data']
>>> names_for_merge("all_inputs", "pre_cv")
['train_inputs', 'holdout_inputs', 'test_inputs']
>>> names_for_merge("all_targets", "pre_cv")
['train_targets', 'holdout_targets']
>>> names_for_merge("non_train_data", "intra_cv")
['validation_data', 'holdout_data']
>>> names_for_merge("non_train_inputs", "intra_cv")
['validation_inputs', 'holdout_inputs', 'test_inputs']
>>> names_for_merge("non_train_targets", "intra_cv")
['validation_targets', 'holdout_targets']
>>> names_for_merge("non_train_data", "pre_cv")
['holdout_data']
>>> names_for_merge("non_train_inputs", "pre_cv")
['holdout_inputs', 'test_inputs']
>>> names_for_merge("non_train_targets", "pre_cv")
['holdout_targets']










	
hyperparameter_hunter.feature_engineering.merge_dfs(merge_to:str, stage:str, dfs:Dict[str, pandas.core.frame.DataFrame]) → pandas.core.frame.DataFrame

	Construct a multi-indexed DataFrame containing the values of dfs deemed necessary by
merge_to and stage. This is the opposite of split_merged_df


	Parameters

	
	merge_to: String
	Type of merged_df to produce. Should be one of the following: {“all_data”, “all_inputs”,
“all_targets”, “non_train_data”, “non_train_inputs”, “non_train_targets”}



	stage: String in {“pre_cv”, “intra_cv}
	Feature engineering stage for which merged_df is requested



	dfs: Dict
	Mapping of dataset names to their DataFrame values. Keys in dfs should be a subset of
{“train_data”, “train_inputs”, “train_targets”, “validation_data”, “validation_inputs”,
“validation_targets”, “holdout_data”, “holdout_inputs”, “holdout_targets”, “test_inputs”}







	Returns

	
	merged_df: pd.DataFrame
	Multi-indexed DataFrame, in which the first index is a string naming the dataset in dfs
from which the corresponding data originates. The following index(es) are the original
index(es) from the dataset in dfs. All primary indexes in merged_df will be one of the
strings considered to be valid keys for dfs







	Raises

	
	ValueError
	If all the DataFrames that would have been used in merged_df are None. This can happen if
requesting merge_to=”non_train_targets” during stage=”pre_cv” when there is no holdout
dataset available. Under these circumstances, the holdout dataset targets would be the sole
contents of merged_df, rendering merged_df invalid since the data is unavailable










See also


	names_for_merge
	Describes how stage values differ












	
hyperparameter_hunter.feature_engineering.split_merged_df(merged_df:pandas.core.frame.DataFrame) → Dict[str, pandas.core.frame.DataFrame]

	Separate a multi-indexed DataFrame into a dict mapping primary indexes in merged_df to
DataFrames containing one fewer dimension than merged_df. This is the opposite of merge_dfs


	Parameters

	
	merged_df: pd.DataFrame
	Multi-indexed DataFrame of the form returned by merge_dfs() to split into the separate
DataFrames named by the primary indexes of merged_df







	Returns

	
	dfs: Dict
	Mapping of dataset names to their DataFrame values. Keys in dfs will be a subset of
{“train_data”, “train_inputs”, “train_targets”, “validation_data”, “validation_inputs”,
“validation_targets”, “holdout_data”, “holdout_inputs”, “holdout_targets”, “test_inputs”}
containing only those values that are also primary indexes in merged_df














	
hyperparameter_hunter.feature_engineering.validate_dataset_names(params:Tuple[str], stage:str) → List[str]

	Produce the names of merged datasets in params and verify there are no duplicate references
to any datasets in params


	Parameters

	
	params: Tuple[str]
	Dataset names requested by a feature engineering step callable. Must be a subset of
{“train_data”, “train_inputs”, “train_targets”, “validation_data”, “validation_inputs”,
“validation_targets”, “holdout_data”, “holdout_inputs”, “holdout_targets”,
“test_inputs”, “all_data”, “all_inputs”, “all_targets”, “non_train_data”,
“non_train_inputs”, “non_train_targets”}



	stage: String in {“pre_cv”, “intra_cv}
	Feature engineering stage for which merged_df is requested







	Returns

	
	List[str]
	Names of merged datasets in params







	Raises

	
	ValueError
	If requested params contain a duplicate reference to any dataset, either by way of
merging/coupling or not














	
class hyperparameter_hunter.feature_engineering.EngineerStep(f: Callable, stage=None, name=None, params=None, do_validate=False)

	Bases: object

Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization
than a raw engineer step function


	Parameters

	
	f: Callable
	Feature engineering step function that requests, modifies, and returns datasets params

Step functions should follow these guidelines:



	Request as input a subset of the 11 data strings listed in params


	Do whatever you want to the DataFrames given as input


	Return new DataFrame values of the input parameters in same order as requested







If performing a task like target transformation, causing predictions to be transformed,
it is often desirable to inverse-transform the predictions to be of the expected form.
This can easily be done by returning an extra value from f (after the datasets) that
is either a callable, or a transformer class that was fitted during the execution of f
and implements an inverse_transform method. This is the only instance in which it is
acceptable for f to return values that don’t mimic its input parameters. See the
engineer function definition using SKLearn’s QuantileTransformer in the Examples
section below for an actual inverse-transformation-compatible implementation



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable f will be given the datasets
params to modify and return. If None, will be inferred based on params.



	“pre_cv” functions are applied only once in the experiment: when it starts


	“intra_cv” functions are reapplied for each fold in the cross-validation splits







If stage is left to be inferred, “pre_cv” will usually be selected. However, if
any params (or parameters in the signature of f) are prefixed with “validation…”
or “non_train…”, then stage will inferred as “intra_cv”. See the Notes section
below for suggestions on the stage to use for different functions



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None,
f.__name__ will be used



	params: Tuple[str], or None, default=None
	Dataset names requested by feature engineering step callable f. If None, will be
inferred by parsing the signature of f. Must be a subset of the following 11 strings:

Input Data


	“train_inputs”


	“validation_inputs”


	“holdout_inputs”


	“test_inputs”


	
	“all_inputs”
	("train_inputs" + ["validation_inputs"] + "holdout_inputs" + "test_inputs")







	
	“non_train_inputs”
	(["validation_inputs"] + "holdout_inputs" + "test_inputs")









Target Data


	“train_targets”


	“validation_targets”


	“holdout_targets”


	“all_targets”
("train_targets" + ["validation_targets"] + "holdout_targets")


	“non_train_targets”
(["validation_targets"] + "holdout_targets")




As an alternative to the above list, just remember that the first half of all parameter
names should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”},
and the second half should be either “inputs” or “targets”. The only exception to this
rule is “test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage,
the validation dataset has not yet been created and is still a part of the train
dataset. During the “intra_cv” stage, the validation dataset is created by removing a
portion of the train dataset, and their values passed to f reflect this fact. This
also means that the values of the merged (“all”/”non_train”-prefixed) datasets may or
may not contain “validation” data depending on the stage; however, this is all handled
internally, so you probably don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed










See also


	FeatureEngineer
	The container for EngineerStep instances - EngineerStep`s should always be provided to HyperparameterHunter through a `FeatureEngineer



	Categorical
	Can be used during optimization to search through a group of EngineerStep`s given as `categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the EngineerStep`s in `categories, or may be omitted entirely



	get_engineering_step_stage()
	More information on stage inference and situations where overriding it may be prudent







Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each
sample/row as independent entities. For example, steps like converting a string day of the
week to one-hot encoded columns, or imputing missing values by replacement with -1 might be
conducted “pre_cv”, since they are unlikely to introduce an information leakage. Conversely,
steps like scaling/normalization, whose results for the data in one row are affected by the
data in other rows should be performed “intra_cv” in order to recalculate the final values
of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the
“…_targets” counterpart accompanying the other datasets. The “targets” suffix is missing
because test data targets are never given. Note that although “test_inputs” is still
included in both “all_inputs” and “non_train_inputs”, its lack of a target column means that
“all_targets” and “non_train_targets” may have different lengths than their
“inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'





Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):
    File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by way of:
   - ('all_inputs', 'train_inputs')
   - ('train_inputs',)
Each dataset may only be requested by a single param for each function





Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)





Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in order,
>>> #   but they are followed by `t`, an instance of `QuantileTransformer` we just fitted,
>>> #   whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested as input






	Attributes

	
	f
	Feature engineering step callable that requests, modifies, and returns datasets



	name
	Identifier for the transformation applied by this engineering step



	params
	Dataset names requested by feature engineering step callable f.



	stage
	Feature engineering stage during which the EngineerStep will be executed









Methods







	__call__(self, \*\*datasets, …)

	Apply f to datasets to produce updated datasets.



	get_comparison_attrs(step_obj, dict])

	Build a dict of critical EngineerStep attributes



	get_datasets_for_f(self, datasets, …)

	Produce a dict of DataFrames containing only the merged datasets and standard datasets requested in params.



	get_key_data(self)

	Produce a dict of critical attributes describing the EngineerStep instance for use by key-making classes



	honorary_step_from_dict(step_dict, dimension)

	Get an EngineerStep from dimension that is equal to its dict form, step_dict



	inverse_transform(self, data)

	Perform the inverse transformation for this engineer step (if it exists)



	stringify(self)

	Make a stringified representation of self, compatible with EngineerStep.__eq__()







	
inverse_transform(self, data)

	Perform the inverse transformation for this engineer step (if it exists)


	Parameters

	
	data: Array-like
	Data to inverse transform with inversion or inversion.inverse_transform







	Returns

	
	Array-like
	If inversion is None, return data unmodified. Else, return the result of
inversion or inversion.inverse_transform, given data














	
get_datasets_for_f(self, datasets:Dict[str, pandas.core.frame.DataFrame]) → Dict[str, pandas.core.frame.DataFrame]

	Produce a dict of DataFrames containing only the merged datasets and standard datasets
requested in params. In other words, add the requested merged datasets and remove
unnecessary standard datasets


	Parameters

	
	datasets: DFDict
	Original dict of datasets, containing all datasets provided to
EngineerStep.__call__(), some of which may be superfluous, or may require
additional processing to resolve merged/coupled datasets







	Returns

	
	DFDict
	Updated version of datasets, in which unnecessary datasets have been filtered out, and
the requested merged datasets have been added














	
get_key_data(self) → dict

	Produce a dict of critical attributes describing the EngineerStep instance for
use by key-making classes


	Returns

	
	Dict
	Important attributes describing this EngineerStep instance














	
property f

	Feature engineering step callable that requests, modifies, and returns datasets






	
property name

	Identifier for the transformation applied by this engineering step






	
property params

	Dataset names requested by feature engineering step callable f. See documentation
in EngineerStep.__init__() for more information/restrictions






	
property stage

	Feature engineering stage during which the EngineerStep will be executed






	
static get_comparison_attrs(step_obj:Union[_ForwardRef('EngineerStep'), dict]) → dict

	Build a dict of critical EngineerStep attributes


	Parameters

	
	step_obj: EngineerStep, dict
	Object for which critical EngineerStep attributes should be collected







	Returns

	
	attr_vals: Dict
	Critical EngineerStep attributes. If step_obj does not have a necessary
attribute (for EngineerStep) or a necessary key (for dict), its value in attr_vals
will be a placeholder object. This is to facilitate comparison, while also ensuring
missing values will always be considered unequal to other values









Examples

>>> def dummy_f(train_inputs, non_train_inputs):
...     return train_inputs, non_train_inputs
>>> es_0 = EngineerStep(dummy_f)
>>> EngineerStep.get_comparison_attrs(es_0)  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{'name': 'dummy_f',
 'f': <function dummy_f at ...>,
 'params': ('train_inputs', 'non_train_inputs'),
 'stage': 'intra_cv',
 'do_validate': False}
>>> EngineerStep.get_comparison_attrs(
...     dict(foo="hello", f=dummy_f, params=["all_inputs", "all_targets"], stage="pre_cv")
... )  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{'name': <object object at ...>,
 'f': <function dummy_f at ...>,
 'params': ('all_inputs', 'all_targets'),
 'stage': 'pre_cv',
 'do_validate': <object object at ...>}










	
stringify(self) → str

	Make a stringified representation of self, compatible with EngineerStep.__eq__()


	Returns

	
	String
	String describing all critical attributes of the EngineerStep instance. This
value is not particularly human-friendly due to both its length and the fact that
EngineerStep.f is represented by its hash









Examples

>>> def dummy_f(train_inputs, non_train_inputs):
...     return train_inputs, non_train_inputs
>>> EngineerStep(dummy_f).stringify()  # doctest: +ELLIPSIS
"EngineerStep(dummy_f, ..., ('train_inputs', 'non_train_inputs'), intra_cv, False)"
>>> EngineerStep(dummy_f, stage="pre_cv").stringify()  # doctest: +ELLIPSIS
"EngineerStep(dummy_f, ..., ('train_inputs', 'non_train_inputs'), pre_cv, False)"










	
classmethod honorary_step_from_dict(step_dict:dict, dimension:hyperparameter_hunter.space.dimensions.Categorical)

	Get an EngineerStep from dimension that is equal to its dict form, step_dict


	Parameters

	
	step_dict: Dict
	Dict of form saved in Experiment description files for EngineerStep. Expected to
have following keys, with values of the given types:


	“name”: String


	“f”: String (SHA256 hash)


	“params”: List[str], or Tuple[str, …]


	“stage”: String in {“pre_cv”, “intra_cv”}


	“do_validate”: Boolean






	dimension: Categorical
	Categorical instance expected to contain the EngineerStep equivalent of step_dict
in its categories







	Returns

	
	EngineerStep
	From dimension.categories if it is the EngineerStep equivalent of step_dict







	Raises

	
	ValueError
	If dimension.categories does not contain an EngineerStep matching step_dict


















	
class hyperparameter_hunter.feature_engineering.FeatureEngineer(steps=None, do_validate=False, **datasets)

	Bases: object

Class to organize feature engineering step callables steps (EngineerStep
instances) and the datasets that the steps request and return.


	Parameters

	
	steps: List, or None, default=None
	List of arbitrary length, containing any of the following values:



	EngineerStep instance,


	Function to provide as input to EngineerStep, or


	Categorical, with categories
comprising a selection of the previous two steps values (optimization only)







The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain
the first two values. To search a space optionally including an EngineerStep, use the
optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep
functions. Additional engineering steps may be added via add_step()



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed



	**datasets: DFDict
	This is not expected to be provided on initialization and is offered primarily for
debugging/testing. Mapping of datasets necessary to perform feature engineering steps










See also


	EngineerStep
	For proper formatting of non-Categorical values of steps







Notes

If steps does include any instances of
hyperparameter_hunter.space.dimensions.Categorical, this FeatureEngineer instance
will not be usable by Experiments. It can only be used by Optimization Protocols.
Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up using
will not pass identity checks against the original FeatureEngineer that contained
Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
...     s = MinMaxScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs





FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the
`EngineerStep` is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> #   ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])





`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical`
can also handle either `EngineerStep` categories or raw functions. Use the `optional` kwarg
of `Categorical` to test some questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_transform])
>>> fe_5 = FeatureEngineer([
...     Categorical([sqr_sum], optional=True),
...     Categorical([EngineerStep(s_scale), mm_scale]),
...     q_transform
... ])






	Attributes

	
	steps
	Feature engineering steps to execute in sequence on FeatureEngineer.__call__()









Methods







	__call__(self, stage, \*\*datasets, …)

	Execute all feature engineering steps in steps for stage, with datasets datasets as inputs



	add_step(self, step, …)

	Add an engineering step to steps to be executed with the other contents of steps on FeatureEngineer.__call__()



	get_key_data(self)

	Produce a dict of critical attributes describing the FeatureEngineer instance for use by key-making classes



	inverse_transform(self, data)

	Perform the inverse transformation for all engineer steps in steps in sequence on data







	
inverse_transform(self, data)

	Perform the inverse transformation for all engineer steps in steps in sequence
on data


	Parameters

	
	data: Array-like
	Data to inverse transform with any inversions present in steps







	Returns

	
	Array-like
	Result of sequentially calling inverse transformations in steps on data. If
any step has EngineerStep.inversion = None, data is unmodified for that step,
and proceeds to next engineer step inversion














	
property steps

	Feature engineering steps to execute in sequence on FeatureEngineer.__call__()






	
get_key_data(self) → dict

	Produce a dict of critical attributes describing the FeatureEngineer instance
for use by key-making classes


	Returns

	
	Dict
	Important attributes describing this FeatureEngineer instance














	
add_step(self, step:Union[Callable, hyperparameter_hunter.space.dimensions.Categorical], stage:str=None, name:str=None, before:str=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>, after:str=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>, number:int=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>)

	Add an engineering step to steps to be executed with the other contents of
steps on FeatureEngineer.__call__()


	Parameters

	
	step: Callable, or `EngineerStep`, or `Categorical`
	If EngineerStep instance, will be added directly to steps. Otherwise, must be
a feature engineering step callable that requests, modifies, and returns datasets, which
will be used to instantiate a EngineerStep to add to steps. If
Categorical, categories should contain EngineerStep instances or callables



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable step will be executed



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None and step
is not an EngineerStep, will be inferred during EngineerStep instantiation



	before: String, default=EMPTY_SENTINEL
	… Experimental…



	after: String, default=EMPTY_SENTINEL
	… Experimental…



	number: String, default=EMPTY_SENTINEL
	… Experimental…


















	
hyperparameter_hunter.feature_engineering.get_engineering_step_stage(datasets:Tuple[str, ...]) → str

	Determine the stage in which a feature engineering step that requests datasets as input
should be executed


	Parameters

	
	datasets: Tuple[str]
	Dataset names requested by a feature engineering step callable







	Returns

	
	stage: {“pre_cv”, “intra_cv”}
	“pre_cv” if a step processing the given datasets should be executed in the
pre-cross-validation stage. “intra_cv” if the step should be executed for each
cross-validation split. If any of the elements in datasets is prefixed with “validation”
or “non_train”, stage will be “intra_cv”. Otherwise, it will be “pre_cv”









Notes

Generally, feature engineering conducted in the “pre_cv” stage should regard each sample/row as
independent entities. For example, steps like converting a string day of the week to one-hot
encoded columns, or imputing missing values by replacement with -1 might be conducted “pre_cv”,
since they are unlikely to introduce an information leakage. Conversely, steps like
scaling/normalization, whose results for the data in one row are affected by the data in other
rows should be performed “intra_cv” in order to recalculate the final values of the datasets for
each cross validation split and avoid information leakage

Technically, the inference of stage=”intra_cv” due to the existence of a “non_train”-prefixed
value in datasets could unnecessarily force steps to be executed “intra_cv” if, for example,
there is no validation data. However, this is safer than the alternative of executing these
steps “pre_cv”, in which validation data would be a subset of train data, probably introducing
information leakage. A simple workaround for this is to explicitly provide EngineerStep
with the desired stage parameter to bypass this inference

Examples

>>> get_engineering_step_stage(("train_inputs", "validation_inputs", "holdout_inputs"))
'intra_cv'
>>> get_engineering_step_stage(("all_data"))
'pre_cv'
>>> get_engineering_step_stage(("all_inputs", "all_targets"))
'pre_cv'
>>> get_engineering_step_stage(("train_data", "non_train_data"))
'intra_cv'










	
class hyperparameter_hunter.feature_engineering.ParameterParser

	Bases: ast.NodeVisitor

ast.NodeVisitor subclass that collects the arguments specified in the signature of a
callable node, as well as the values returned by the callable, in the attributes args and
returns, respectively

Methods







	generic_visit(self, node)

	Called if no explicit visitor function exists for a node.



	visit(self, node)

	Visit a node.












	visit_Return

	


	visit_arg

	






	
visit_arg(self, node)

	




	
visit_Return(self, node)

	








	
hyperparameter_hunter.feature_engineering.get_engineering_step_params(f:<built-in function callable>) → Tuple[str]

	Verify that callable f requests valid input parameters, and returns a tuple of the same
parameters, with the assumption that the parameters are modified by f


	Parameters

	
	f: Callable
	Feature engineering step function that requests, modifies, and returns datasets







	Returns

	
	Tuple
	Argument/return value names declared by f









Examples

>>> def impute_negative_one(all_inputs):
...     all_inputs.fillna(-1, inplace=True)
...     return all_inputs
>>> get_engineering_step_params(impute_negative_one)
('all_inputs',)
>>> def standard_scale(train_inputs, non_train_inputs):
...     scaler = StandardScaler()
...     train_inputs[train_inputs.columns] = scaler.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = scaler.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> get_engineering_step_params(standard_scale)
('train_inputs', 'non_train_inputs')
>>> def error_invalid_dataset(train_inputs, foo):
...     return train_inputs, foo
>>> get_engineering_step_params(error_invalid_dataset)
Traceback (most recent call last):
    File "feature_engineering.py", line ?, in get_engineering_step_params
ValueError: Invalid dataset name: 'foo'










	
hyperparameter_hunter.feature_engineering.hash_datasets(datasets:dict) → dict

	Describe datasets with dicts of hashes for their values, column names, and column values


	Parameters

	
	datasets: Dict
	Mapping of dataset names to pandas.DataFrame instances







	Returns

	
	hashes: Dict
	Mapping with same keys as datasets, whose values are dicts returned from
_hash_dataset() that provide hashes for each DataFrame and its column names/values









Examples

>>> df_x = pd.DataFrame(dict(a=[0, 1], b=[2, 3], c=[4, 5]))
>>> df_y = pd.DataFrame(dict(a=[0, 1], b=[6, 7], d=[8, 9]))
>>> hash_datasets(dict(x=df_x, y=df_y)) == dict(x=_hash_dataset(df_x), y=_hash_dataset(df_y))
True














hyperparameter_hunter.importer module

This module provides utilities to intercept external imports and load them using custom logic


Related


	hyperparameter_hunter.__init__
	Executes the import hooks to ensure assets are properly imported prior to starting any real work



	hyperparameter_hunter.tracers
	Defines tracing metaclasses applied by hyperparameter_hunter.importer to imports






	
class hyperparameter_hunter.importer.Interceptor(module_name, custom_loader, asset_name=None)

	Bases: _frozen_importlib_external.PathFinder

Class to intercept loading of an external module in order to provide custom loading logic


	Parameters

	
	module_name: String
	The path of the module, for which loading should be handled by custom_loader



	custom_loader: Descendant of `importlib.machinery.SourceFileLoader`
	Should implement exec_module(), which should call its superclass’s
exec_module(), then perform the custom loading logic, and return module









Methods







	find_module(fullname[, path])

	find the module on sys.path or ‘path’ based on sys.path_hooks and sys.path_importer_cache.



	find_spec(self, full_name[, path, target])

	Perform custom loading logic if full_name == module_name



	invalidate_caches()

	Call the invalidate_caches() method on all path entry finders stored in sys.path_importer_caches (where implemented).







	
find_spec(self, full_name, path=None, target=None)

	Perform custom loading logic if full_name == module_name










	
class hyperparameter_hunter.importer.KerasLayerLoader(fullname, path)

	Bases: _frozen_importlib_external.SourceFileLoader

Cache the module name and the path to the file found by the
finder.

Methods







	create_module(self, spec)

	Use default semantics for module creation.



	exec_module(self, module)

	Set module.Layer to a traced version of itself via tracers.ArgumentTracer



	get_code(self, fullname)

	Concrete implementation of InspectLoader.get_code.



	get_data(self, path)

	Return the data from path as raw bytes.



	get_filename(self[, name])

	Return the path to the source file as found by the finder.



	get_source(self, fullname)

	Concrete implementation of InspectLoader.get_source.



	is_package(self, fullname)

	Concrete implementation of InspectLoader.is_package by checking if the path returned by get_filename has a filename of ‘__init__.py’.



	load_module(self[, name])

	Load a module from a file.



	path_mtime(self, path)

	Optional method that returns the modification time (an int) for the specified path, where path is a str.



	path_stats(self, path)

	Return the metadata for the path.



	set_data(self, path, data, \*[, _mode])

	Write bytes data to a file.



	source_to_code(self, data, path, \*[, _optimize])

	Return the code object compiled from source.







	
exec_module(self, module)

	Set module.Layer to a traced version of itself via tracers.ArgumentTracer










	
hyperparameter_hunter.importer.hook_keras_layer()

	If Keras has yet to be imported, modify the inheritance structure of its base Layer class
to inject attributes that keep track of the parameters provided to each layer






	
class hyperparameter_hunter.importer.KerasMultiInitializerLoader(fullname, path)

	Bases: _frozen_importlib_external.SourceFileLoader

Cache the module name and the path to the file found by the
finder.

Methods







	create_module(self, spec)

	Use default semantics for module creation.



	exec_module(self, module)

	Execute the module.



	get_code(self, fullname)

	Concrete implementation of InspectLoader.get_code.



	get_data(self, path)

	Return the data from path as raw bytes.



	get_filename(self[, name])

	Return the path to the source file as found by the finder.



	get_source(self, fullname)

	Concrete implementation of InspectLoader.get_source.



	is_package(self, fullname)

	Concrete implementation of InspectLoader.is_package by checking if the path returned by get_filename has a filename of ‘__init__.py’.



	load_module(self[, name])

	Load a module from a file.



	path_mtime(self, path)

	Optional method that returns the modification time (an int) for the specified path, where path is a str.



	path_stats(self, path)

	Return the metadata for the path.



	set_data(self, path, data, \*[, _mode])

	Write bytes data to a file.



	source_to_code(self, data, path, \*[, _optimize])

	Return the code object compiled from source.







	
exec_module(self, module)

	Execute the module.










	
hyperparameter_hunter.importer.hook_keras_initializers()

	








hyperparameter_hunter.leaderboards module

This module defines the Leaderboard classes that are saved to the
‘HyperparameterHunterAssets/Leaderboards’ subdirectory. It provides the ability to compare all
Experiment results at a glance


Related


	hyperparameter_hunter.recorders
	This module initiates the saving of Experiment entries to Leaderboards






	
class hyperparameter_hunter.leaderboards.Leaderboard(data=None)

	Bases: object

The Leaderboard class is used for reading, updating, and saving leaderboard files within
the ‘HyperparameterHunterAssets/Leaderboards’ subdirectory


	Parameters

	
	data: pd.DataFrame, or None, default=None
	The starting state of the Leaderboard. If None, an empty DataFrame is used









Methods







	add_entry(self, experiment, \*\*kwargs)

	Add an entry row for experiment to data



	from_path(path[, assert_existence])

	Initialize a Leaderboard from a .csv path



	save(self, path, \*\*kwargs)

	Save the Leaderboard instance



	sort(self, by[, ascending])

	Sort the rows in data according to the values of a column







	
classmethod from_path(path, assert_existence=False)

	Initialize a Leaderboard from a .csv path


	Parameters

	
	path: str
	The path of the file to read in as a DataFrame



	assert_existence: boolean, default=False
	If False, and pandas.read_csv() raises FileNotFoundError, the Leaderboard will be
initialized with None. Else the exception is raised normally














	
abstract add_entry(self, experiment, **kwargs)

	Add an entry row for experiment to data


	Parameters

	
	experiment: :class:`experiments.BaseExperiment`
	An instance of a completed Experiment from which to construct a Leaderboard entry














	
save(self, path, **kwargs)

	Save the Leaderboard instance


	Parameters

	
	path: str
	The file to which the Leaderboard instance should be saved



	**kwargs: Dict
	Additional arguments to supply to pandas.DataFrame.to_csv()














	
sort(self, by, ascending=False)

	Sort the rows in data according to the values of a column


	Parameters

	
	by: str, or list of str
	The column name(s) by which to sort the rows of data



	ascending: boolean, default=False
	The direction in which to sort the rows of data


















	
class hyperparameter_hunter.leaderboards.GlobalLeaderboard(data=None)

	Bases: hyperparameter_hunter.leaderboards.Leaderboard

The Leaderboard class is used for reading, updating, and saving leaderboard files within
the ‘HyperparameterHunterAssets/Leaderboards’ subdirectory


	Parameters

	
	data: pd.DataFrame, or None, default=None
	The starting state of the Leaderboard. If None, an empty DataFrame is used









Methods







	add_entry(self, experiment, \*\*kwargs)

	Add an entry row to Leaderboard.data (pandas.DataFrame).



	from_path(path[, assert_existence])

	Initialize a Leaderboard from a .csv path



	save(self, path, \*\*kwargs)

	Save the Leaderboard instance



	sort(self, by[, ascending])

	Sort the rows in data according to the values of a column







	
add_entry(self, experiment, **kwargs)

	Add an entry row to Leaderboard.data (pandas.DataFrame). This method also handles
column conflicts to an extent


	Parameters

	
	experiment: Instance of :class:`experiments.BaseExperiment` descendant
	An Experiment instance for which a leaderboard entry row should be added



	**kwargs: Dict
	Extra keyword arguments


















	
hyperparameter_hunter.leaderboards.evaluations_to_columns(evaluation:Dict[str, Union[collections.OrderedDict, NoneType]], decimals=10) → List[Tuple[str, numbers.Number]]

	Convert the results of metrics.ScoringMixIn.evaluate() to a pd.DataFrame-ready format


	Parameters

	
	evaluation: Dict[str, OrderedDict]
	The result of consecutive calls to metrics.ScoringMixIn.evaluate() for all given
dataset types



	decimals: Int, default=10
	Number of decimal places to which to round. If decimals is negative, it specifies the
number of positions to the left of the decimal point







	Returns

	
	column_metrics: list of pairs
	A pair for each data_type-metric combination, where the first item is the key, and the
second is the metric value









Examples

>>> evaluations_to_columns({
...     'in_fold': None,
...     'holdout': OrderedDict([('roc_auc_score', 0.9856), ('f1_score', 0.9768)]),
...     'oof': OrderedDict([('roc_auc_score', 0.9634)])
... })
[('oof_roc_auc_score', 0.9634), ('holdout_roc_auc_score', 0.9856), ('holdout_f1_score', 0.9768)]










	
hyperparameter_hunter.leaderboards.combine_column_order(df_1, df_2, both_cols=None)

	Determine the sort order for the combined columns of two DataFrames


	Parameters

	
	df_1: pd.DataFrame
	The first DataFrame, whose columns will be sorted. Columns unique to df_1 will be sorted
before those of df_2



	df_2: pd.DataFrame
	The second DataFrame, whose columns will be sorted. Columns unique to df_2 will be sorted
after those of df_1



	both_cols: list, or None, default=None
	If list, the column names that should be common to both DataFrames and placed last in the
sort order







	Returns

	
	combined_cols: list of strings
	The result of combining and sorting column names from df_1, and df_2









Examples

>>> df_1 = pd.DataFrame(columns=['A', 'B', 'C', 'Common_1', 'Common_2'])
>>> df_2 = pd.DataFrame(columns=['A', 'D', 'E', 'Common_1', 'Common_2'])
>>> combine_column_order(df_1, df_2, both_cols=['Common_1', 'Common_2'])
['A', 'B', 'C', 'D', 'E', 'Common_1', 'Common_2']
>>> combine_column_order(df_1, df_2, both_cols=None)
['A', 'Common_1', 'Common_2', 'B', 'C', 'D', 'E']














hyperparameter_hunter.metrics module

This module defines hyperparameter_hunter.metrics.ScoringMixIn which enables
hyperparameter_hunter.experiments.BaseExperiment to score predictions and collect the
results of those evaluations


Related


	hyperparameter_hunter.experiments
	This module uses hyperparameter_hunter.metrics.ScoringMixIn as the only explicit parent
class to hyperparameter_hunter.experiments.BaseExperiment (that is, the only parent
class that isn’t bestowed upon it by
hyperparameter_hunter.experiment_core.ExperimentMeta)






	
class hyperparameter_hunter.metrics.Metric(name: str, metric_function: Union[callable, str, None] = None, direction: str = 'infer')

	Bases: object

Class to encapsulate all necessary information for identifying, calculating, and
evaluating metrics results


	Parameters

	
	name: String
	Identifying name of the metric. Should be unique relative to any other metric names that
might be provided by the user



	metric_function: Callable, string, None, default=None
	If callable, should expect inputs of form (target, prediction), and return a float. If
string, will be treated as an attribute in sklearn.metrics. If None, name
will be treated as an attribute in sklearn.metrics, the value of which will be
retrieved and used as metric_function



	direction: {“infer”, “max”, “min”}, default=”infer”
	How to compare the result of metric_function relative to previous evaluations


	“max”: Metric values should be maximized, and higher metric values are better than
lower values; it should be used for measures of accuracy


	“min”: Metric values should be minimized, and lower metric values are better than
higher values; it should be used for measures of error or loss


	“infer”: direction will be set to:



	“min” if name (or metric_function’s name) contains “error” or “loss”


	“max” if name contains neither of the aforementioned strings



















Notes

direction = “infer” looks for “error”/”loss” in name first, then in the name of
metric_function. This means that name can be an abbreviation/anything for error
measures and direction will still be correctly inferred as long as the actual callable
for metric_function has “error”/”loss” in its name. For example, direction = “min” is
safely inferred when using “mae” for “mean_absolute_error” or “rmsle” for
“root_mean_squared_logarithmic_error”. This functions as described whether metric_function
is a string naming an SKLearn metric, or a callable whose name includes “error”/”loss”

Examples

>>> Metric("roc_auc_score")  # doctest: +ELLIPSIS
Metric(roc_auc_score, <function roc_auc_score at 0x...>, max)
>>> Metric("roc_auc_score", sk_metrics.roc_auc_score)  # doctest: +ELLIPSIS
Metric(roc_auc_score, <function roc_auc_score at 0x...>, max)
>>> Metric("my_f1_score", "f1_score")  # doctest: +ELLIPSIS
Metric(my_f1_score, <function f1_score at 0x...>, max)
>>> Metric("hamming_loss", sk_metrics.hamming_loss)  # doctest: +ELLIPSIS
Metric(hamming_loss, <function hamming_loss at 0x...>, min)





Respect explicit `direction` even if it doesn’t make sense for the `metric_function`

>>> Metric("r2_score", sk_metrics.r2_score, direction="min")  # doctest: +ELLIPSIS
Metric(r2_score, <function r2_score at 0x...>, min)





Direction inference based on `metric_function` name, rather than `name` itself

>>> Metric("mae", "median_absolute_error")  # doctest: +ELLIPSIS
Metric(mae, <function median_absolute_error at 0x...>, min)
>>> Metric("hl", sk_metrics.hamming_loss)  # doctest: +ELLIPSIS
Metric(hl, <function hamming_loss at 0x...>, min)





Methods







	__call__(self, target, prediction)

	Call self as a function.











	
hyperparameter_hunter.metrics.format_metrics(metrics:Union[Dict, List]) → Dict[str, hyperparameter_hunter.metrics.Metric]

	Properly format iterable metrics to contain instances of Metric


	Parameters

	
	metrics: Dict, List
	Iterable describing the metrics to be recorded, along with a means to compute the value of
each metric. Should be of one of the two following forms:

List Form:


	[“<metric name>”, “<metric name>”, …]:
Where each value of the list is a string that names an attribute in sklearn.metrics


	[Metric, Metric, …]:
Where each value of the list is an instance of Metric


	[(<*args>), (<*args>), …]:
Where each value of the list is a tuple of arguments that will be used to instantiate a
Metric. Arguments given in tuples must be in order expected by Metric




Dict Form:


	{“<metric name>”: <metric_function>, …}:
Where each key is a name for the corresponding metric callable, which is used to compute
the value of the metric


	{“<metric name>”: (<metric_function>, <direction>), …}:
Where each key is a name for the corresponding metric callable and direction, all of which
are used to instantiate a Metric


	{“<metric name>”: “<sklearn metric name>”, …}:
Where each key is a name for the metric, and each value is the name of the attribute in
sklearn.metrics for which the corresponding key is an alias


	{“<metric name>”: None, …}:
Where each key is the name of the attribute in sklearn.metrics


	{“<metric name>”: Metric, …}:
Where each key names an instance of Metric. This is the internally-used format to
which all other formats will be converted




Metric callable functions should expect inputs of form (target, prediction), and should
return floats. See the documentation of Metric for information regarding expected
parameters and types







	Returns

	
	metrics_dict: Dict
	Cast of metrics to a dict, in which values are instances of Metric









Examples

>>> format_metrics(["roc_auc_score", "f1_score"])  # doctest: +ELLIPSIS
{'roc_auc_score': Metric(roc_auc_score, <function roc_auc_score at 0x...>, max), 'f1_score': Metric(f1_score, <function f1_score at 0x...>, max)}
>>> format_metrics([Metric("log_loss"), Metric("r2_score", direction="min")])  # doctest: +ELLIPSIS
{'log_loss': Metric(log_loss, <function log_loss at 0x...>, min), 'r2_score': Metric(r2_score, <function r2_score at 0x...>, min)}
>>> format_metrics({"log_loss": Metric("log_loss"), "r2_score": Metric("r2_score", direction="min")})  # doctest: +ELLIPSIS
{'log_loss': Metric(log_loss, <function log_loss at 0x...>, min), 'r2_score': Metric(r2_score, <function r2_score at 0x...>, min)}
>>> format_metrics([("log_loss", None), ("my_r2_score", "r2_score", "min")])  # doctest: +ELLIPSIS
{'log_loss': Metric(log_loss, <function log_loss at 0x...>, min), 'my_r2_score': Metric(my_r2_score, <function r2_score at 0x...>, min)}
>>> format_metrics({"roc_auc": sk_metrics.roc_auc_score, "f1": sk_metrics.f1_score})  # doctest: +ELLIPSIS
{'roc_auc': Metric(roc_auc, <function roc_auc_score at 0x...>, max), 'f1': Metric(f1, <function f1_score at 0x...>, max)}
>>> format_metrics({"log_loss": (None, ), "my_r2_score": ("r2_score", "min")})  # doctest: +ELLIPSIS
{'log_loss': Metric(log_loss, <function log_loss at 0x...>, min), 'my_r2_score': Metric(my_r2_score, <function r2_score at 0x...>, min)}
>>> format_metrics({"roc_auc": "roc_auc_score", "f1": "f1_score"})  # doctest: +ELLIPSIS
{'roc_auc': Metric(roc_auc, <function roc_auc_score at 0x...>, max), 'f1': Metric(f1, <function f1_score at 0x...>, max)}
>>> format_metrics({"roc_auc_score": None, "f1_score": None})  # doctest: +ELLIPSIS
{'roc_auc_score': Metric(roc_auc_score, <function roc_auc_score at 0x...>, max), 'f1_score': Metric(f1_score, <function f1_score at 0x...>, max)}










	
hyperparameter_hunter.metrics.get_formatted_target_metric(target_metric:Union[tuple, str, NoneType], metrics:dict, default_dataset:str='oof') → Tuple[str, str]

	Return a properly formatted target_metric tuple for use with navigating evaluation results


	Parameters

	
	target_metric: Tuple, String, or None
	Path denoting metric to be used. If tuple, the first value should be in [‘oof’, ‘holdout’,
‘in_fold’], and the second value should be the name of a metric supplied in metrics.
If str, should be one of the two values from the tuple form. Else, a value will be chosen



	metrics: Dict
	Properly formatted metrics as produced by metrics.format_metrics(), in which
keys are strings identifying metrics, and values are instances of metrics.Metric.
See the documentation of metrics.format_metrics() for more information on
different metrics formats



	default_dataset: {“oof”, “holdout”, “in_fold”}, default=”oof”
	The default dataset type value to use if one is not provided







	Returns

	
	target_metric: Tuple
	A formatted target_metric containing two strings: a dataset_type, followed by a metric name









Examples

>>> get_formatted_target_metric(('holdout', 'roc_auc_score'), format_metrics(['roc_auc_score', 'f1_score']))
('holdout', 'roc_auc_score')
>>> get_formatted_target_metric(('holdout',), format_metrics(['roc_auc_score', 'f1_score']))
('holdout', 'roc_auc_score')
>>> get_formatted_target_metric('holdout', format_metrics(['roc_auc_score', 'f1_score']))
('holdout', 'roc_auc_score')
>>> get_formatted_target_metric('holdout', format_metrics({'roc': 'roc_auc_score', 'f1': 'f1_score'}))
('holdout', 'roc')
>>> get_formatted_target_metric('roc_auc_score', format_metrics(['roc_auc_score', 'f1_score']))
('oof', 'roc_auc_score')
>>> get_formatted_target_metric(None, format_metrics(['f1_score', 'roc_auc_score']))
('oof', 'f1_score')










	
class hyperparameter_hunter.metrics.ScoringMixIn(metrics, in_fold='all', oof='all', holdout='all', do_score=True)

	Bases: object

MixIn class to manage metrics to record for each dataset type, and perform evaluations


	Parameters

	
	metrics: Dict, List
	Specifies all metrics to be used by their id keys, along with a means to compute the
metric. If list, all values must be strings that are attributes in
sklearn.metrics. If dict, key/value pairs must be of the form:
(<id>, <callable/None/str sklearn.metrics attribute>), where “id” is a str name for the
metric. Its corresponding value must be one of: 1) a callable to calculate the metric,
2) None if the “id” key is an attribute in sklearn.metrics and should be used to fetch
a callable, 3) a string that is an attribute in sklearn.metrics and should be used to
fetch a callable. Metric callable functions should expect inputs of form
(target, prediction), and should return floats



	in_fold: List of strings, None, default=<all ids in `metrics`>
	Which metrics (from ids in metrics) should be recorded for in-fold data



	oof: List of strings, None, default=<all ids in `metrics`>
	Which metrics (from ids in metrics) should be recorded for out-of-fold data



	holdout: List of strings, None, default=<all ids in `metrics`>
	Which metrics (from ids in metrics) should be recorded for holdout data



	do_score: Boolean, default=True
	This is experimental. If False, scores will be neither calculated nor recorded for the
duration of the experiment









Notes

For each kwarg in [in_fold, oof, holdout], the following must be true: if the value
of the kwarg is a list, its contents must be a subset of metrics

Methods







	evaluate(self, data_type, target, prediction)

	Apply metric(s) to the given data to calculate the value of the prediction







	
evaluate(self, data_type, target, prediction, return_list=False, dry_run=False)

	Apply metric(s) to the given data to calculate the value of the prediction


	Parameters

	
	data_type: {“in_fold”, “oof”, “holdout”}
	The type of dataset for which target and prediction arguments are being provided



	target: Array-like
	True labels for the data. Should be same shape as prediction



	prediction: Array-like
	Predicted labels for the data. Should be same shape as target



	return_list: Boolean, default=False
	If True, return list of tuples instead of dict. See “Returns” section below for details



	dry_run: Boolean, default=False
	If True, the value of last_evaluation_results will not be updated to include
the returned _result. The core library callbacks operate under the assumption that
last_evaluation_results will be updated as usual, so restrict usage to debugging or
lambda_callback() implementations







	Returns

	
	_result: OrderedDict, or list
	A dict whose keys are all metric keys supplied for data_type, and whose values are the
results of each metric. If return_list is True, returns a list of tuples of:
(<data_type metric str>, <metric result>)









Notes

The required types of target and prediction are entirely dependent on the metric
callable’s expectations










	
hyperparameter_hunter.metrics.get_clean_prediction(target:Iterable, prediction:Iterable)

	Create prediction that is of a form comparable to target


	Parameters

	
	target: Array-like
	True labels for the data. Should be same shape as prediction



	prediction: Array-like
	Predicted labels for the data. Should be same shape as target







	Returns

	
	prediction: Array-like
	If target types are ints, and prediction types are not, given predicted labels clipped
between the min, and max of target, then rounded to the nearest integer. Else, original
predicted labels














	
hyperparameter_hunter.metrics.classify_output(target, prediction)

	Force continuous prediction into the discrete, classified space of target.
This is not an output/feature transformer akin to SKLearn’s discretization transformers. This
function is intended for use in the very specific case of having a target that is
classification-like (“binary”, “multiclass”, etc.), with prediction that resembles a
“continuous” target, despite being made for target. The most common reason for this occurrence
is that prediction is actually the division-averaged predictions collected along the course
of a CVExperiment. In this case, the original model
predictions should have been classification-like; however, due to disagreement in the division
predictions, the resulting average predictions appear to be continuous


	Parameters

	
	target: Array-like
	# TODO: …



	prediction: Array-like
	# TODO: …







	Returns

	
	numpy.array
	# TODO: …









Notes

Target types used by this function are defined by sklearn.utils.multiclass.type_of_target.

If a prediction value is exactly between two target values, it will assume the lower of the
two values. For example, given a single prediction of 1.5 and unique labels of [0, 1, 2, 3],
the value of that prediction will be 1, rather than 2

Examples

>>> import numpy as np
>>> classify_output(np.array([0, 3, 1, 2]), [0.5, 1.51, 0.66, 4.9])
array([0, 2, 1, 3])
>>> classify_output(np.array([0, 1, 2, 3]), [0.5, 1.51, 0.66, 4.9])
array([0, 2, 1, 3])
>>> # TODO: ... Add more examples, including binary classification










	
hyperparameter_hunter.metrics.wrap_xgboost_metric(metric, metric_name)

	Create a function to use as the eval_metric kwarg for xgboost.sklearn.XGBModel.fit()


	Parameters

	
	metric: Function
	The function to calculate the value of metric, with signature: (target, prediction)



	metric_name: String
	The name of the metric being evaluated







	Returns

	
	eval_metric: Function
	The function to pass to XGBoost’s fit(), with signature: (prediction, target). It
will return a tuple of (metric_name: str, metric_value: float)


















hyperparameter_hunter.models module

This module provides wrapper classes around the raw algorithms being executed to facilitate use
by hyperparameter_hunter.experiments.BaseExperiment. The algorithms created by most
libraries can be handled by hyperparameter_hunter.models.Model, but some need special
attention, hence KerasModel, and XGBoostModel. The model classes defined herein
handle algorithm instantiation, as well as fitting and predicting


Related


	hyperparameter_hunter.experiments
	This module is the primary user of the classes defined in hyperparameter_hunter.models



	hyperparameter_hunter.sentinels
	This module defines the Sentinel classes that will be converted to the actual values they
represent in hyperparameter_hunter.models.Model.__init__()






	
hyperparameter_hunter.models.load_model(_)

	




	
hyperparameter_hunter.models.model_selector(model_initializer)

	Selects the appropriate Model class to use for model_initializer


	Parameters

	
	model_initializer: callable
	The callable used to create an instance of some algorithm







	Returns

	
	Model, or one of its children
	







Examples

>>> from keras.wrappers.scikit_learn import KerasClassifier, KerasRegressor
>>> model_selector(KerasClassifier) == KerasModel
True
>>> model_selector(KerasRegressor) == KerasModel
True
>>> from sklearn.svm import SVC
>>> model_selector(SVC) == Model
True
>>> model_selector(None) == Model
True










	
class hyperparameter_hunter.models.Model(model_initializer, initialization_params, extra_params, train_input=None, train_target=None, validation_input=None, validation_target=None, do_predict_proba=False, target_metric=None, metrics=None)

	Bases: object

Handles initialization, fitting, and prediction for provided algorithms. Consider
documentation for children of Model to be identical to that of Model,
except where noted


	Parameters

	
	model_initializer: Class
	Expected to implement at least the following methods: 1) __init__, to which
initialization_params will usually be provided unless stated otherwise in a
child class’s documentation - like KerasModel. 2) fit, to which
train_input, and train_target will be provided, in addition to the
contents of extra_params['fit'] in some child classes - like
XGBoostModel. 3) predict, or predict_proba if applicable, which should
accept any array-like input of shape: (<num_samples>, train_input.shape[1])



	initialization_params: Dict
	A dict containing all arguments accepted by __init__() of the class
model_initializer, unless stated otherwise in a child class’s documentation -
like KerasModel. Arguments pertaining to random seeds will be ignored



	extra_params: Dict, default={}
	A dict of special parameters that are passed to a model’s non-initialization methods in
special cases (such as fit, predict, predict_proba, and score). extra_params
are not used for all models. See the documentation for the appropriate descendant of
models.Model for information about how it handles extra_params



	train_input: `pandas.DataFrame`
	The model’s training input data



	train_target: `pandas.DataFrame`
	The true labels corresponding to the rows of train_input



	validation_input: `pandas.DataFrame`, or None
	The model’s validation input data to evaluate performance during fitting



	validation_target: `pandas.DataFrame`, or None
	The true labels corresponding to the rows of validation_input



	do_predict_proba: Boolean, or int, default=False
	
	If False, models.Model.fit() will call models.Model.model.predict()


	If True, it will call models.Model.model.predict_proba(), and the values in all
columns will be used as the actual prediction values


	If do_predict_proba is an int, models.Model.fit() will call
models.Model.model.predict_proba(), as is the case when do_predict_proba is
True, but the int supplied as do_predict_proba declares the column index to use as
the actual prediction values


	For example, for a model to call the predict method, do_predict_proba=False
(default). For a model to call the predict_proba method, and use all of the class
probabilities, do_predict_proba=True. To call the predict_proba method, and use
the class probabilities in the first column, do_predict_proba=0. To use the second
column (index 1) of the result, do_predict_proba=1 - This often corresponds to the
positive class’s probabilities in binary classification problems. To use the third
column do_predict_proba=2, and so on


	See the notes for the do_predict_proba parameter in the documentation of
environment.Environment for additional usage notes






	target_metric: Tuple
	Used by some child classes (like XGBoostModel) to provide validation data to
model.fit()



	metrics: Dict
	Used by some child classes (like XGBoostModel) to provide validation data to
model.fit()









Methods







	fit(self)

	Train model according to extra_params['fit'] (if appropriate) on training data



	initialize_model(self)

	Create an instance of a model using model_initializer, with initialization_params as input



	predict(self, input_data)

	Generate model predictions for input_data







	
initialize_model(self)

	Create an instance of a model using model_initializer, with
initialization_params as input






	
fit(self)

	Train model according to extra_params['fit'] (if appropriate) on training data






	
predict(self, input_data)

	Generate model predictions for input_data


	Parameters

	
	input_data: Array-like
	Data containing the same number of features as were trained on, for which the model will
predict output values







	Returns

	
	prediction: Array-like
	Output predictions made by the model, using input_data


















	
class hyperparameter_hunter.models.XGBoostModel(model_initializer, initialization_params, extra_params, train_input=None, train_target=None, validation_input=None, validation_target=None, do_predict_proba=False, target_metric=None, metrics=None)

	Bases: hyperparameter_hunter.models.Model

A special Model class for handling XGBoost algorithms. Consider documentation to be
identical to that of Model, except where noted


	Parameters

	
	model_initializer: :class:`xgboost.sklearn.XGBClassifier`, or :class:`xgboost.sklearn.XGBRegressor`
	See Model



	initialization_params: See :class:`Model`
	

	extra_params: Dict, default={}
	Useful keys: [‘fit’, ‘predict’]. If ‘fit’ is a key with a dict value, its contents will
be provided to xgboost.sklearn.XGBModel.fit(), with the exception of the
following: [‘X’, ‘y’]. If any of the aforementioned keys are in
extra_params['fit'] or if extra_params['fit'] is provided, but is not a
dict, an Exception will be raised



	train_input: See :class:`Model`
	

	train_target: See :class:`Model`
	

	validation_input: See :class:`Model`
	

	validation_target: See :class:`Model`
	

	do_predict_proba: See :class:`Model`
	

	target_metric: Tuple
	Used to determine the ‘eval_metric’ argument to xgboost.sklearn.XGBModel.fit().
See the documentation for XGBoostModel.extra_params for more information



	metrics: See :class:`Model`
	







Methods







	fit(self)

	Train model according to extra_params['fit'] (if appropriate) on training data



	initialize_model(self)

	Create an instance of a model using model_initializer, with initialization_params as input



	predict(self, input_data)

	Generate model predictions for input_data











	
class hyperparameter_hunter.models.KerasModel(model_initializer, initialization_params, extra_params, train_input=None, train_target=None, validation_input=None, validation_target=None, do_predict_proba=False, target_metric=None, metrics=None)

	Bases: hyperparameter_hunter.models.Model

A special Model class for handling Keras neural networks. Consider documentation to be
identical to that of Model, except where noted


	Parameters

	
	model_initializer: :class:`keras.wrappers.scikit_learn.KerasClassifier`, or `keras.wrappers.scikit_learn.KerasRegressor`
	Expected to implement at least the following methods: 1) __init__, to which
initialization_params will usually be provided unless stated otherwise in a
child class’s documentation - like KerasModel. 2) fit, to which
train_input, and train_target will be provided, in addition to the
contents of extra_params['fit'] in some child classes - like
XGBoostModel. 3) predict, or predict_proba if applicable, which should
accept any array-like input of shape: (<num_samples>, train_input.shape[1])



	initialization_params: Dict containing `build_fn`
	A dictionary containing the single key: build_fn, which is a callable function that
returns a compiled Keras model



	extra_params: Dict, default={}
	The parameters expected to be passed to the extra methods of the compiled Keras model.
Such methods include (but are not limited to) fit, predict, and predict_proba.
Some of the common parameters given here include epochs, batch_size, and callbacks



	train_input: `pandas.DataFrame`
	The model’s training input data



	train_target: `pandas.DataFrame`
	The true labels corresponding to the rows of train_input



	validation_input: `pandas.DataFrame`, or None
	The model’s validation input data to evaluate performance during fitting



	validation_target: `pandas.DataFrame`, or None
	The true labels corresponding to the rows of validation_input



	do_predict_proba: Boolean, or int, default=False
	
	If False, models.Model.fit() will call models.Model.model.predict()


	If True, it will call models.Model.model.predict_proba(), and the values in all
columns will be used as the actual prediction values


	If int, models.Model.fit() will call models.Model.model.predict_proba(),
as is the case when do_predict_proba is True, but the int supplied as
do_predict_proba declares the column index to use as the actual prediction values




For example, for a model to call the predict method, do_predict_proba=False
(default). For a model to call the predict_proba method, and use all of the class
probabilities, do_predict_proba=True. To call the predict_proba method, and use the
class probabilities in the first column, do_predict_proba=0. To use the second column
(index 1) of the result, do_predict_proba=1 - This often corresponds to the positive
class’s probabilities in binary classification problems. To use the third column
do_predict_proba=2, and so on.

See the notes for the do_predict_proba parameter of
Environment for additional usage notes



	target_metric: Tuple
	Used by some child classes (like XGBoostModel) to provide validation data to
model.fit()



	metrics: Dict
	Used by some child classes (like XGBoostModel) to provide validation data to
model.fit()









Methods







	fit(self)

	Train model according to extra_params['fit'] (if appropriate) on training data



	get_input_shape(self[, get_dim])

	Calculate the shape of the input that should be expected by the model



	initialize_keras_neural_network(self)

	Initialize Keras model wrapper (model_initializer) with initialization_params, extra_params, and validation_data if it can be found, as well as the input dimensions for the model



	initialize_model(self)

	Create an instance of a model using model_initializer, with initialization_params as input



	predict(self, input_data)

	Generate model predictions for input_data



	validate_keras_params(self)

	Ensure provided input parameters are properly formatted







	
initialize_model(self)

	Create an instance of a model using model_initializer, with
initialization_params as input






	
fit(self)

	Train model according to extra_params['fit'] (if appropriate) on training data






	
get_input_shape(self, get_dim=False)

	Calculate the shape of the input that should be expected by the model


	Parameters

	
	get_dim: Boolean, default=False
	If True, instead of returning an input_shape tuple, an input_dim scalar will be returned







	Returns

	
	Tuple, or scalar
	If get_dim=False, an input_shape tuple. Else, an input_dim scalar














	
validate_keras_params(self)

	Ensure provided input parameters are properly formatted






	
initialize_keras_neural_network(self)

	Initialize Keras model wrapper (model_initializer) with
initialization_params, extra_params, and validation_data if it can be found,
as well as the input dimensions for the model














hyperparameter_hunter.recorders module

This module handles recording and properly formatting the various result files requested for a
completed Experiment. Coincidentally, if a particular result file was blacklisted by the active
Environment, that is also handled here


Related


	hyperparameter_hunter.experiments
	This is the intended user of the contents of hyperparameter_hunter.recorders






	
class hyperparameter_hunter.recorders.BaseRecorder

	Bases: object

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None







	Attributes

	
	required_attributes
	Return attributes of the current Experiment that are necessary to properly record result.



	result_path_key
	Return key from environment.Environment.result_paths, corresponding to the









Methods







	format_result(self)

	Set BaseRecorder.result to the final result object to be saved by BaseRecorder.save_result()



	save_result(self)

	Save BaseRecorder.result to BaseRecorder.result_path, or elsewhere if special case







	
abstract property result_path_key

	Return key from environment.Environment.result_paths, corresponding to the
target record






	
abstract property required_attributes

	Return attributes of the current Experiment that are necessary to properly record result.
Specifically, BaseRecorder fetches the attrs via settings.G.Env.current_task,
which can also be regarded as environment.Environment.current_task, but this is
an implementation detail. It is simpler to use experiments.BaseExperiment, and its
appropriate descendants as a reference for acceptable values of required_attributes






	
abstract format_result(self)

	Set BaseRecorder.result to the final result object to be saved by
BaseRecorder.save_result()






	
abstract save_result(self)

	Save BaseRecorder.result to BaseRecorder.result_path, or elsewhere if
special case










	
class hyperparameter_hunter.recorders.RecorderList(file_blacklist=None, extra_recorders=None)

	Bases: object

Collection of BaseRecorder subclasses to facilitate executing group methods


	Parameters

	
	file_blacklist: List, or None, default=None
	If list, used to reject any elements of RecorderList.recorders whose
BaseRecorder.result_path_key is in file_blacklist



	extra_recorders: List, None, default=None
	If not None, may be a list whose values are tuples of
(<recorders.BaseRecorder descendant>, <str result_path>). The result_path str
should be a path relative to results_path, specifying the directory/file in which
the product of the custom recorder will be saved. The contents of extra_recorders are
appended to the list of default recorders and used to create/update result files for
an Experiment. The contents of extra_recorders are blacklisted in the same way as
normal recorders. That is, if file_blacklist contains the result_path_key of a
recorder in extra_recorders, that recorder is blacklisted









Methods







	format_result(self)

	Execute format_result() for all classes in recorders



	save_result(self)

	Execute save_result() for all classes in recorders







	
format_result(self)

	Execute format_result() for all classes in recorders






	
save_result(self)

	Execute save_result() for all classes in recorders

Notes

When iterating through recorders and calling save_result(), a check is
performed for exit_code. Children classes of BaseRecorder are NOT expected to
explicitly return a value in their save_result(). However, if a value is returned and
exit_code == ‘break’, the result-saving loop will be broken, and no further results will
be saved. In practice, this is only performed for the sake of
DescriptionRecorder.save_result(), which has the additional quality of being able to
prevent any other result files from being saved if the result of
DescriptionRecorder.do_full_save() returns False when given the formatted
DescriptionRecorder.result. This can be useful when there are storage constraints,
because it ensures that essential data - including keys and the results of the experiment -
are saved (to ensure the experiment is not duplicated, and to enable optimization protocol
learning), while extra results like Predictions are not saved










	
class hyperparameter_hunter.recorders.DescriptionRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Format an OrderedDict containing the Experiment’s identifying attributes, results, hyperparameters used, and other stats or information that may be useful



	save_result(self)

	Save the Experiment description as a .json file, named after experiment_id.







	
result_path_key = 'description'

	




	
required_attributes = ['experiment_id', 'hyperparameter_key', 'cross_experiment_key', 'last_evaluation_results', 'stat_aggregates', 'source_script', 'notes', 'model_initializer', 'do_full_save', 'model', 'algorithm_name', 'module_name']

	




	
format_result(self)

	Format an OrderedDict containing the Experiment’s identifying attributes, results,
hyperparameters used, and other stats or information that may be useful






	
save_result(self)

	Save the Experiment description as a .json file, named after experiment_id. If
do_full_save is a callable and returns False when given the description object, the
result recording loop will be broken, and the remaining result files will not be saved


	Returns

	
	‘break’
	This string will be returned if do_full_save is a callable and returns False
when given the description object. This is the signal for
recorders.RecorderList to stop recording result files


















	
class hyperparameter_hunter.recorders.HeartbeatRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Do nothing



	save_result(self)

	Copy global Heartbeat log to results dir as .log file named for experiment_id







	
result_path_key = 'heartbeat'

	




	
required_attributes = ['experiment_id']

	




	
format_result(self)

	Do nothing






	
save_result(self)

	Copy global Heartbeat log to results dir as .log file named for experiment_id










	
class hyperparameter_hunter.recorders.PredictionsHoldoutRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Format predictions according to the callable prediction_formatter



	save_result(self)

	Save holdout predictions to a .csv file, named after experiment_id







	
result_path_key = 'predictions_holdout'

	




	
required_attributes = ['data_holdout', 'holdout_dataset', 'experiment_id', 'prediction_formatter', 'target_column', 'id_column', 'to_csv_params']

	




	
format_result(self)

	Format predictions according to the callable prediction_formatter






	
save_result(self)

	Save holdout predictions to a .csv file, named after experiment_id










	
class hyperparameter_hunter.recorders.PredictionsOOFRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Format predictions according to the callable prediction_formatter



	save_result(self)

	Save out-of-fold predictions to a .csv file, named after experiment_id







	
result_path_key = 'predictions_oof'

	




	
required_attributes = ['data_oof', 'train_dataset', 'experiment_id', 'prediction_formatter', 'target_column', 'id_column', 'to_csv_params']

	




	
format_result(self)

	Format predictions according to the callable prediction_formatter






	
save_result(self)

	Save out-of-fold predictions to a .csv file, named after experiment_id










	
class hyperparameter_hunter.recorders.PredictionsTestRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Format predictions according to the callable prediction_formatter



	save_result(self)

	Save test predictions to a .csv file, named after experiment_id







	
result_path_key = 'predictions_test'

	




	
required_attributes = ['data_test', 'test_dataset', 'experiment_id', 'prediction_formatter', 'target_column', 'id_column', 'to_csv_params']

	




	
format_result(self)

	Format predictions according to the callable prediction_formatter






	
save_result(self)

	Save test predictions to a .csv file, named after experiment_id










	
class hyperparameter_hunter.recorders.TestedKeyRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Do nothing



	save_result(self)

	Save cross-experiment, and hyperparameter keys, and update their tested keys entries







	
result_path_key = 'tested_keys'

	




	
required_attributes = ['experiment_id', 'hyperparameter_key', 'cross_experiment_key']

	




	
format_result(self)

	Do nothing






	
save_result(self)

	Save cross-experiment, and hyperparameter keys, and update their tested keys entries










	
class hyperparameter_hunter.recorders.LeaderboardEntryRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Read existing global leaderboard, add current entry, then sort the updated leaderboard



	save_result(self)

	Save the updated leaderboard file







	
result_path_key = 'tested_keys'

	




	
required_attributes = ['result_paths', 'current_task', 'target_metric', 'metrics']

	




	
format_result(self)

	Read existing global leaderboard, add current entry, then sort the updated leaderboard






	
save_result(self)

	Save the updated leaderboard file










	
class hyperparameter_hunter.recorders.UnsortedIDLeaderboardRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Read existing global leaderboard, add current entry, then sort the updated leaderboard



	save_result(self)

	Save the updated leaderboard file







	
result_path_key = 'unsorted_id_leaderboard'

	




	
required_attributes = ['result_paths', 'current_task', 'target_metric', 'metrics']

	




	
format_result(self)

	Read existing global leaderboard, add current entry, then sort the updated leaderboard






	
save_result(self)

	Save the updated leaderboard file










	
class hyperparameter_hunter.recorders.YAMLDescriptionRecorder

	Bases: hyperparameter_hunter.recorders.BaseRecorder

Base class for other classes that record various Experiment result files. Critical
attributes of the descendants of :class`recorders.BaseRecorder` are set here, enabling them
to function properly


	Returns

	
	None
	If result_path is None, which means the present result file was blacklisted by
the active Environment







	Raises

	
	EnvironmentInactiveError
	If settings.G.Env is None



	EnvironmentInvalidError
	If any of the following occur: 1) settings.G.Env does not have an attribute
named ‘result_paths’, 2) settings.G.Env.result_paths does not contain the
current result_path_key, 3) settings.G.Env.current_task is None









Methods







	format_result(self)

	Set BaseRecorder.result to the final result object to be saved by BaseRecorder.save_result()



	save_result(self)

	Save BaseRecorder.result to BaseRecorder.result_path, or elsewhere if special case







	
result_path_key = 'yaml_description'

	




	
required_attributes = ['result_paths', 'experiment_id']

	




	
format_result(self)

	Set BaseRecorder.result to the final result object to be saved by
BaseRecorder.save_result()






	
save_result(self)

	Save BaseRecorder.result to BaseRecorder.result_path, or elsewhere if
special case














hyperparameter_hunter.reporting module


	
class hyperparameter_hunter.reporting.ReportingHandler(heartbeat_path=None, float_format='{:.5f}', console_params=None, heartbeat_params=None, add_frame=False)

	Bases: object

Class in control of logging methods, log formatting, and initializing Experiment logging


	Parameters

	
	heartbeat_path: Str path, or None, default=None
	If string and valid heartbeat path, logging messages will also be saved in this file



	float_format: String, default=’{:.5f}’
	If not default, must be a valid formatting string for floating point values. If invalid,
default will be used



	console_params: Dict, or None, default=None
	Parameters passed to _configure_console_handler()



	heartbeat_params: Dict, or None, default=None
	Parameters passed to _configure_heartbeat_handler()



	add_frame: Boolean, default=False
	If True, whenever log() is called, the source of the call will be prepended to
the content being logged









Methods







	debug(self, content, \*\*kwargs)

	Placeholder method before proper initialization



	log(self, content, \*\*kwargs)

	Placeholder method before proper initialization



	warn(self, content, \*\*kwargs)

	Placeholder method before proper initialization







	
log(self, content, **kwargs)

	Placeholder method before proper initialization






	
debug(self, content, **kwargs)

	Placeholder method before proper initialization






	
warn(self, content, **kwargs)

	Placeholder method before proper initialization










	
hyperparameter_hunter.reporting.clean_parameter_names(parameter_names:list) → List[str]

	Remove unnecessary prefixes or characters from the names of search space dimensions


	Parameters

	
	parameter_names: List
	Names of the dimensions in a hyperparameter search Space object. Values are usually tuples







	Returns

	
	names: List[str]
	Cleaned parameter_names, containing stringified values to facilitate logging














	
hyperparameter_hunter.reporting.get_param_column_sizes(space:list, names:List[str]) → List[int]

	Determine maximum column sizes for displaying values of each hyperparameter in space


	Parameters

	
	space: List
	Hyperparameter search space dimensions for the current Optimization Protocol



	names: List[str]
	Cleaned hyperparameter dimension names







	Returns

	
	sizes: List[int]
	Column sizes for each of the hyperparameters in names














	
class hyperparameter_hunter.reporting.OptimizationReporter(space: list, verbose=1, show_experiment_id=8, do_maximize=True)

	Bases: object

A MixIn class for reporting the results of hyperparameter optimization rounds


	Parameters

	
	space: List
	Hyperparameter search space dimensions for the current Optimization Protocol



	verbose: Int in [0, 1, 2], default=1
	If 0, all but critical logging is silenced. If 1, normal logging is performed. If 2,
detailed logging is performed



	show_experiment_id: Int, or Boolean, default=8
	If True, the experiment_id will be printed in each result row. If False, it will not.
If int, the first show_experiment_id-many characters of each experiment_id will be
printed in each row



	do_maximize: Boolean, default=True
	If False, smaller metric values will be considered preferred and will be highlighted to
stand out. Else larger metric values will be treated as preferred









Methods







	print_header(self, header, line)

	Utility to perform actual printing of headers given formatted inputs



	print_optimization_header(self)

	Print a header signifying that Optimization rounds are starting



	print_random_points_header(self)

	Print a header signifying that random point evaluation rounds are starting



	print_result(self, hyperparameters, evaluation)

	Print a row containing the results of an Experiment just executed



	print_saved_results_header(self)

	Print a header signifying that saved Experiment results are being read



	print_summary(self)

	Print a summary of the results of hyperparameter optimization upon completion



	reset_timer(self)

	Set start_time, and last_round to the current time







	
print_saved_results_header(self)

	Print a header signifying that saved Experiment results are being read






	
print_random_points_header(self)

	Print a header signifying that random point evaluation rounds are starting






	
print_optimization_header(self)

	Print a header signifying that Optimization rounds are starting






	
print_header(self, header, line)

	Utility to perform actual printing of headers given formatted inputs


	Parameters

	
	header: String
	Specifies the stage of optimization being entered, and the type of results to follow



	line: String
	The underlining to follow header














	
print_result(self, hyperparameters, evaluation, experiment_id=None)

	Print a row containing the results of an Experiment just executed


	Parameters

	
	hyperparameters: List
	List of hyperparameter values in the same order as parameter_names



	evaluation: Float
	An evaluation of the performance of hyperparameters



	experiment_id: Str, or None, default=None
	If not None, should be a string that is the UUID of the Experiment














	
reset_timer(self)

	Set start_time, and last_round to the current time






	
print_summary(self)

	Print a summary of the results of hyperparameter optimization upon completion










	
hyperparameter_hunter.reporting.format_frame_source(previous_frame, **kwargs)

	Construct a string describing the location at which a call was made


	Parameters

	
	previous_frame: Frame
	A frame depicting the location at which a call was made



	**kwargs: Dict
	Any additional kwargs to supply to reporting.stringify_frame_source()







	Returns

	
	The stringified frame source information of previous_frame
	












	
hyperparameter_hunter.reporting.stringify_frame_source(src_file, src_line_no, src_func, src_class, add_line_no=True, max_line_no_size=4, total_max_size=80)

	Construct a string that neatly displays the location in the code at which a call was made


	Parameters

	
	src_file: Str
	A filepath



	src_line_no: Int
	The line number in src_file at which the call was made



	src_func: Str
	The name of the function in src_file in which the call was made



	src_class: Str, or None
	If not None, the class in src_file in which the call was made



	add_line_no: Boolean, default=False
	If True, the line number will be included in the source_content result



	max_line_no_size: Int, default=4
	Total number (including padding) of characters to be occupied by src_line_no. For
example, if src_line_no`=32, and `max_line_no_size`=4, `src_line_no will be padded to
become ‘32  ‘ in order to occupy four characters



	total_max_size: Int, default=80
	Total number (including padding) of characters to be occupied by the source_content result







	Returns

	
	source_content: Str
	A formatted string containing the location in the code at which a call was made









Examples

>>> stringify_frame_source("reporting.py", 570, "stringify_frame_source", None)
'570  - reporting.stringify_frame_source()                                       '
>>> stringify_frame_source("reporting.py", 12, "bar", "Foo")
'12   - reporting.Foo.bar()                                                      '
>>> stringify_frame_source("reporting.py", 12, "bar", "Foo", add_line_no=False)
'reporting.Foo.bar()                                                             '
>>> stringify_frame_source("reporting.py", 12, "bar", "Foo", total_max_size=60)
'12   - reporting.Foo.bar()                                  '










	
hyperparameter_hunter.reporting.add_time_to_content(content, add_time=False)

	Construct a string containing the original content, in addition to the current time


	Parameters

	
	content: Str
	The original string, to which the current time will be concatenated



	add_time: Boolean, default=False
	If True, the current time will be concatenated onto the end of content







	Returns

	
	content: Str
	Str containing original content, along with current time, and additional formatting














	
hyperparameter_hunter.reporting.format_fold_run(rep=None, fold=None, run=None, mode='concise')

	Construct a string to display the repetition, fold, and run currently being executed


	Parameters

	
	rep: Int, or None, default=None
	The repetition number currently being executed



	fold: Int, or None, default=None
	The fold number currently being executed



	run: Int, or None, default=None
	The run number currently being executed



	mode: {“concise”, “verbose”}, default=”concise”
	If “concise”, the result will contain abbreviations for rep/fold/run







	Returns

	
	content: Str
	A clean display of the current repetition/fold/run









Examples

>>> format_fold_run(rep=0, fold=3, run=2, mode="concise")
'R0-f3-r2'
>>> format_fold_run(rep=0, fold=3, run=2, mode="verbose")
'Rep-Fold-Run: 0-3-2'
>>> format_fold_run(rep=0, fold=3, run="*", mode="concise")
'R0-f3-r*'
>>> format_fold_run(rep=0, fold=3, run=2, mode="foo")
Traceback (most recent call last):
    File "reporting.py", line ?, in format_fold_run
ValueError: Received invalid mode value: 'foo'










	
hyperparameter_hunter.reporting.format_evaluation(results, separator='  |  ', float_format='{:.5f}')

	Construct a string to neatly display the results of a model evaluation


	Parameters

	
	results: Dict
	The results of a model evaluation, in which keys represent the dataset type evaluated, and
values are dicts containing metrics as keys, and metric values as values



	separator: Str, default=’  |  ‘
	The string used to join all the metric values into a single string



	float_format: Str, default=’{:.5f}’
	A python string float formatter, applied to floating metric values







	Returns

	
	content: Str
	The model’s evaluation results
















hyperparameter_hunter.result_reader module


	
hyperparameter_hunter.result_reader.finder_selector(module_name)

	Selects the appropriate ResultFinder to use for module_name


	Parameters

	
	module_name: String
	Module from whence the algorithm being used came







	Returns

	
	Uninitialized ResultFinder, or one of its descendants
	







Examples

>>> assert finder_selector("Keras") == KerasResultFinder
>>> assert finder_selector("xgboost") == ResultFinder
>>> assert finder_selector("lightgbm") == ResultFinder










	
hyperparameter_hunter.result_reader.update_match_status(target_attr='match_status') → <built-in function callable>

	Build a decorator to apply to class instance methods to record inputs/outputs


	Parameters

	
	target_attr: String, default=”match_status”
	Name of dict attribute in the class instance of the decorated method, in which the decorated
method’s inputs and outputs should be recorded. This attribute should be predefined and
documented by the class whose method is being decorated







	Returns

	
	Callable
	Decorator that will save the decorated method’s inputs and outputs to the attribute dict
named by target_attr. Decorator assumes that the method will receive at least three
positional arguments: “exp_id”, “params”, and “score”. “exp_id” is used as the key added to
target_attr, with a dict value, which includes the latter two positional arguments. Each
time the decorator is invoked with an “exp_id”, an additional key is added to its dict that
is the name of the decorated method, and whose value is the decorated method’s output










See also


	ResultFinder
	Decorates “does_match…” methods using update_match_status in order to keep a detailed record of the full pool of candidate Experiments in ResultFinder.match_status







Examples

>>> class X:
...     def __init__(self):
...         self.match_status = dict()
...     @update_match_status()
...     def method_a(self, exp_id, params, score):
...         return True
...     @update_match_status()
...     def method_b(self, exp_id, params, score):
...         return False
>>> x = X()
>>> x.match_status
{}
>>> assert x.method_a("foo", None, 0.8) is True
>>> x.match_status  # doctest: +NORMALIZE_WHITESPACE
{'foo': {'params': None,
         'score': 0.8,
         'method_a': True}}
>>> assert x.method_b("foo", None, 0.8) is False
>>> x.match_status  # doctest: +NORMALIZE_WHITESPACE
{'foo': {'params': None,
         'score': 0.8,
         'method_a': True,
         'method_b': False}}
>>> assert x.method_b("bar", "some stuff", 0.5) is False
>>> x.match_status  # doctest: +NORMALIZE_WHITESPACE
{'foo': {'params': None,
         'score': 0.8,
         'method_a': True,
         'method_b': False},
 'bar': {'params': 'some stuff',
         'score': 0.5,
         'method_b': False}}










	
hyperparameter_hunter.result_reader.does_match_guidelines(candidate_params:dict, space:hyperparameter_hunter.space.space_core.Space, template_params:dict, visitors=(), dims_to_ignore:List[tuple]=None) → bool

	Check candidate compatibility with template guideline hyperparameters


	Parameters

	
	candidate_params: Dict
	Candidate Experiment hyperparameters to be compared to template_params after processing



	space: Space
	Hyperparameter search space constraints for the current template



	template_params: Dict
	Template hyperparameters to which candidate_params will be compared after processing.
Although the name of the function implies that these will all be guideline hyperparameters,
this is not a requirement, as any non-guideline hyperparameters will be removed during
processing by checking space.names



	visitors: Callable, or Tuple[callable] (optional)
	Extra visit function(s) invoked when
remap()-ing both template_params and
candidate_params. Can be used to filter out unwanted values, or to pre-process selected
values (and more) prior to performing the final compatibility check between the processed
candidate_params and guidelines in template_params



	dims_to_ignore: List[tuple] (optional)
	Paths to hyperparameter(s) that should be ignored when comparing candidate_params and
template_params. By default, hyperparameters pertaining to verbosity and random states
are ignored. Paths should be tuples of the form expected by
get_path(). Additionally a path may start
with None, which acts as a wildcard, matching any hyperparameters whose terminal path nodes
match the value following None. For example, (None, "verbose") would match paths such as
("model_init_params", "a", "verbose") and ("model_extra_params", "b", 2, "verbose")







	Returns

	
	Boolean
	True if the processed version of candidate_params is equal to the extracted and processed
guidelines from template_params. Else, False














	
hyperparameter_hunter.result_reader.validate_feature_engineer(candidate:Union[dict, hyperparameter_hunter.feature_engineering.FeatureEngineer], template:hyperparameter_hunter.feature_engineering.FeatureEngineer) → Union[bool, dict, hyperparameter_hunter.feature_engineering.FeatureEngineer]

	Check candidate “feature_engineer” compatibility with template and sanitize candidate.
This is mostly a wrapper around validate_fe_steps() to ensure different inputs are
handled properly and to return False, rather than raising IncompatibleCandidateError


	Parameters

	
	candidate: Dict, or FeatureEngineer
	Candidate “feature_engineer” to compare to template. If compatible with template, a
sanitized version of candidate will be returned (described below)



	template: FeatureEngineer
	Template “feature_engineer” to which candidate will be compared after processing







	Returns

	
	Boolean, dict, or FeatureEngineer
	False if candidate is deemed incompatible with template. Else, a sanitized candidate
with reinitialized EngineerStep steps
and with RejectedOptional filling in
missing Categorical steps that were
declared as optional by the
template














	
hyperparameter_hunter.result_reader.validate_fe_steps(candidate:Union[list, hyperparameter_hunter.feature_engineering.FeatureEngineer], template:Union[list, hyperparameter_hunter.feature_engineering.FeatureEngineer]) → list

	Check candidate “feature_engineer” steps compatibility with template and sanitize
candidate


	Parameters

	
	candidate: List, or FeatureEngineer
	Candidate “feature_engineer” steps to compare to template. If compatible with
template, a sanitized version of candidate will be returned (described below)



	template: List, or FeatureEngineer
	Template “feature_engineer” steps to which candidate will be compared. template is
also used to sanitize candidate (described below)







	Returns

	
	List
	If candidate is compatible with template, returns a list resembling candidate, with
the following changes: 1) all step dicts in candidate are reinitialized to proper
EngineerStep instances; and 2) wherever candidate was missing a step that was tagged as
optional in template, RejectedOptional is added. In the end, if a list is returned, it
is built from candidate, guaranteed to be the same length as template and guaranteed
to contain only EngineerStep and RejectedOptional instances







	Raises

	
	IncompatibleCandidateError
	If candidate is incompatible with template. candidate may be incompatible with
template for any of the following reasons:


	candidate has more steps than template




2. candidate has a step that differs from a concrete (non-Categorical) template step
2. candidate has a step that differs from a concrete (non-Categorical) template step
3. candidate has a step that does not fit in a Categorical template step
4. candidate is missing a concrete step in template
5. candidate is missing a non-optional Categorical step in template














	
class hyperparameter_hunter.result_reader.ResultFinder(algorithm_name, module_name, cross_experiment_key, target_metric, space, leaderboard_path, descriptions_dir, model_params, sort=None)

	Bases: object

Locate saved Experiments that are compatible with the given constraints


	Parameters

	
	algorithm_name: String
	Name of the algorithm whose hyperparameters are being optimized



	module_name: String
	Name of the module from whence the algorithm being used came



	cross_experiment_key: String
	hyperparameter_hunter.environment.Environment.cross_experiment_key produced by
the current Environment



	target_metric: Tuple
	Path denoting the metric to be used. The first value should be one of {“oof”,
“holdout”, “in_fold”}, and the second value should be the name of a metric supplied in
hyperparameter_hunter.environment.Environment.metrics_params



	space: Space
	Instance of Space, defining
hyperparameter search space constraints



	leaderboard_path: String
	Path to a leaderboard file, whose listed Experiments will be tested for compatibility



	descriptions_dir: String
	Path to a directory containing the description files of saved Experiments



	model_params: Dict
	All hyperparameters for the model, both concrete and choice. Common keys include
“model_init_params” and “model_extra_params”, both of which can be pointers to dicts of
hyperparameters. Additionally, “feature_engineer” may be included with an instance of
FeatureEngineer



	sort: {“target_asc”, “target_desc”, “chronological”, “reverse_chronological”}, or int
	… Experimental…
How to sort the experiment results that fit within the given constraints


	“target_asc”: Sort from experiments with the lowest value for target_metric to
those with the greatest


	“target_desc”: Sort from experiments with the highest value for target_metric to
those with the lowest


	“chronological”: Sort from oldest experiments to newest


	“reverse_chronological”: Sort from newest experiments to oldest


	int: Random seed with which to shuffle experiments













See also


	update_match_status()
	Used to decorate “does_match…” methods in order to keep a detailed record of the full pool of candidate Experiments in match_status. Aside from being used to compile the list of finalist similar_experiments, match_status is helpful for debugging purposes, specifically figuring out which aspects of a candidate are incompatible with the template








	Attributes

	
	similar_experiments: List[Tuple[dict, Number, str]]
	Candidate saved Experiment results that are fully compatible with the template
hyperparameters. Each value is a tuple triple of
(<hyperparameters>, <target_metric value>, <candidate experiment_id>).
similar_experiments is composed of the “finalists” from match_status



	match_status: Dict[str, dict]
	Record of the hyperparameters and target_metric values for all discovered Experiments,
keyed by values of experiment_ids. Each value is a dict containing two keys:
“params” (hyperparameter dict), and “score” (target_metric value number). In addition
to these two keys, a key may be added for every ResultFinder method decorated by
update_match_status(). The exact key will be the name of the method invoked (which
will always start with “does_match”, followed by the name of the hyperparameter group
being checked). The value for each “does_match…” key is the value returned by that
method, whose truthiness dictates whether the candidate Experiment was a successful
match to the template hyperparameters for that group. For example, a match_status
entry for one Experiment could look like this:

{
    "params": <dict of hyperparameters for candidate>,
    "score": 0.42,  # `target_metric` value for candidate Experiment
    "does_match_init_params_space": True,
    "does_match_init_params_guidelines": False,
    "does_match_extra_params_space": False,
    "does_match_extra_params_guidelines": True,
    "does_match_feature_engineer": <`FeatureEngineer`>,  # Still truthy
}





Note that “model_init_params” and “model_extra_params” both check the compatibility of
“space” choices and concrete “guidelines” separately. Conversely, “feature_engineer” is
checked in its entirety by the single does_match_feature_engineer(). Also note
that “does_match…” values are not restricted to booleans. For instance,
“does_match_feature_engineer” may be set to a reinitialized FeatureEngineer, which is
still truthy, even though it’s not True. If all of the “does_match…” keys have truthy
values, the candidate is a full match and is added to similar_experiments









Methods







	find(self)

	Execute full result-finding workflow, populating similar_experiments







	
property experiment_ids

	Experiment IDs in the target Leaderboard that match algorithm_name and
cross_experiment_key


	Returns

	
	List[str]
	All saved Experiment IDs listed in the Leaderboard at leaderboard_path that
match the algorithm_name and cross_experiment_key of the template














	
property mini_spaces

	Separate space into subspaces based on model_params keys


	Returns

	
	Dict[str, Space]
	Dict of subspaces, wherein keys are all keys of model_params. Each key’s
corresponding value is a filtered subspace, containing all the dimensions in
space whose name tuples start with that key. Keys will usually be one of the
core hyperparameter group names (“model_init_params”, “model_extra_params”,
“feature_engineer”, “feature_selector”)









Examples

>>> from hyperparameter_hunter import Integer
>>> def es_0(all_inputs):
...     return all_inputs
>>> def es_1(all_inputs):
...     return all_inputs
>>> def es_2(all_inputs):
...     return all_inputs
>>> s = Space([
...     Integer(900, 1500, name=("model_init_params", "max_iter")),
...     Categorical(["svd", "cholesky", "lsgr"], name=("model_init_params", "solver")),
...     Categorical([es_1, es_2], name=("feature_engineer", "steps", 1)),
... ])
>>> rf = ResultFinder(
...     "a", "b", "c", ("oof", "d"), space=s, leaderboard_path="e", descriptions_dir="f",
...     model_params=dict(
...         model_init_params=dict(
...             max_iter=s.dimensions[0], normalize=True, solver=s.dimensions[1],
...         ),
...         feature_engineer=FeatureEngineer([es_0, s.dimensions[2]]),
...     ),
... )
>>> rf.mini_spaces  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{'model_init_params': Space([Integer(low=900, high=1500),
                             Categorical(categories=('svd', 'cholesky', 'lsgr'))]),
 'feature_engineer': Space([Categorical(categories=(<function es_1 at ...>,
                                                    <function es_2 at ...>))])}










	
find(self)

	Execute full result-finding workflow, populating similar_experiments


See also


	update_match_status()
	Used to decorate “does_match…” methods in order to keep a detailed record of the full pool of candidate Experiments in match_status. Aside from being used to compile the list of finalist similar_experiments, match_status is helpful for debugging purposes, specifically figuring out which aspects of a candidate are incompatible with the template



	does_match_feature_engineer()
	Performs special functionality beyond that of the other “does_match…” methods, namely providing an updated “feature_engineer” value for compatible candidates to use. Specifics are documented in does_match_feature_engineer()












	
does_match_feature_engineer(self, exp_id, params, score) → Union[bool, dict, hyperparameter_hunter.feature_engineering.FeatureEngineer]

	Check candidate compatibility with feature_engineer template guidelines and space
choices. This method is different from the other “does_match…” methods in two important
aspects:


	It checks both guidelines and choices in a single method


	It returns an updated feature_engineer for compatible candidates, rather than True





	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “feature_engineer” to compare to the template in model_params. This
should always be a dict, not an instance of FeatureEngineer, which is not the case
for the template “feature_engineer” in model_params



	score: Number
	Value of the candidate Experiment’s target metric







	Returns

	
	Boolean, dict, or FeatureEngineer
	Expanding on the second difference noted in the description, False will still be
returned if the candidate is deemed incompatible with the template (as is the case with
the other “does_match…” methods). The return value differs with compatible candidates
in order to provide a feature_engineer with reinitialized
EngineerStep steps and to fill in
missing Categorical steps that were
declared as optional by the
template. This updated feature_engineer is the value that then gets included in the
candidate’s similar_experiments entry (assuming candidate is a full match)














	
does_match_init_params_space(self, exp_id, params, score) → bool

	Check candidate compatibility with model_init_params template space choices


	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “model_init_params” to compare to the template in model_params



	score: Number
	Value of the candidate Experiment’s target metric







	Returns

	
	Boolean
	True if candidate params fit in model_init_params space choices. Else, False














	
does_match_init_params_guidelines(self, exp_id, params, score, template_params=None) → bool

	Check candidate compatibility with model_init_params template guidelines


	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “model_init_params” to compare to the template in model_params



	score: Number
	Value of the candidate Experiment’s target metric



	template_params: Dict (optional)
	If given, used as the template hyperparameters against which to compare candidate
params, rather than the standard guideline template of the “model_init_params” in
model_params. This is used by does_match_init_params_guidelines_multi()







	Returns

	
	Boolean
	True if candidate params match model_init_params guidelines. Else, False









Notes

Template hyperparameters are generally considered “guidelines” if they are declared as
concrete values, rather than space choices present in space






	
does_match_init_params_guidelines_multi(self, exp_id, params, score, location) → bool

	Check candidate compatibility with model_init_params template guidelines when a
guideline hyperparameter is directly affected by another hyperparameter that is given as
a space choice


	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “model_init_params” to compare to the template in model_params



	score: Number
	Value of the candidate Experiment’s target metric



	location: Tuple
	Location of the hyperparameter space choice that affects the acceptable guideline values
of a particular hyperparameter. In other words, this is the path of a hyperparameter,
which, if changed, would change the expected default value of another hyperparameter







	Returns

	
	Boolean
	True if candidate params match model_init_params guidelines. Else, False









Notes

This is used for Keras Experiments when the optimizer value in a model’s compile_params
is given as a hyperparameter space choice. Each possible value of optimizer prescribes
different default values for the optimizer_params argument, so special measures need to be
taken to ensure the correct Experiments are declared to fit within the constraints






	
does_match_extra_params_space(self, exp_id, params, score) → bool

	Check candidate compatibility with model_extra_params template space choices


	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “model_extra_params” to compare to the template in model_params



	score: Number
	Value of the candidate Experiment’s target metric







	Returns

	
	Boolean
	True if candidate params fit in model_extra_params space choices. Else, False














	
does_match_extra_params_guidelines(self, exp_id, params, score) → bool

	Check candidate guideline compatibility with model_extra_params template


	Parameters

	
	exp_id: String
	Candidate Experiment ID



	params: Dict
	Candidate “model_extra_params” to compare to the template in model_params



	score: Number
	Value of the candidate Experiment’s target metric







	Returns

	
	Boolean
	True if candidate params match model_extra_params guidelines. Else, False


















	
class hyperparameter_hunter.result_reader.KerasResultFinder(algorithm_name, module_name, cross_experiment_key, target_metric, space, leaderboard_path, descriptions_dir, model_params, sort=None)

	Bases: hyperparameter_hunter.result_reader.ResultFinder

ResultFinder for locating saved Keras Experiments compatible with the given constraints


	Parameters

	
	algorithm_name: String
	Name of the algorithm whose hyperparameters are being optimized



	module_name: String
	Name of the module from whence the algorithm being used came



	cross_experiment_key: String
	hyperparameter_hunter.environment.Environment.cross_experiment_key produced by
the current Environment



	target_metric: Tuple
	Path denoting the metric to be used. The first value should be one of {“oof”,
“holdout”, “in_fold”}, and the second value should be the name of a metric supplied in
hyperparameter_hunter.environment.Environment.metrics_params



	space: Space
	Instance of Space, defining
hyperparameter search space constraints



	leaderboard_path: String
	Path to a leaderboard file, whose listed Experiments will be tested for compatibility



	descriptions_dir: String
	Path to a directory containing the description files of saved Experiments



	model_params: Dict
	Concrete hyperparameters for the model. Common keys include “model_init_params” and
“model_extra_params”, both of which can be pointers to dicts of hyperparameters.
Additionally, “feature_engineer” may be included with an instance of
FeatureEngineer



	sort: {“target_asc”, “target_desc”, “chronological”, “reverse_chronological”}, or int
	… Experimental…
How to sort the experiment results that fit within the given constraints


	“target_asc”: Sort from experiments with the lowest value for target_metric to
those with the greatest


	“target_desc”: Sort from experiments with the highest value for target_metric to
those with the lowest


	“chronological”: Sort from oldest experiments to newest


	“reverse_chronological”: Sort from newest experiments to oldest


	int: Random seed with which to shuffle experiments










	Attributes

	
	experiment_ids
	Experiment IDs in the target Leaderboard that match algorithm_name and



	mini_spaces
	Separate space into subspaces based on model_params keys









Methods







	does_match_extra_params_guidelines(self, …)

	Check candidate guideline compatibility with model_extra_params template



	does_match_extra_params_space(self, exp_id, …)

	Check candidate compatibility with model_extra_params template space choices



	does_match_feature_engineer(self, exp_id, …)

	Check candidate compatibility with feature_engineer template guidelines and space choices.



	does_match_init_params_guidelines(self, …)

	Check candidate compatibility with model_init_params template guidelines



	does_match_init_params_guidelines_multi(…)

	Check candidate compatibility with model_init_params template guidelines when a guideline hyperparameter is directly affected by another hyperparameter that is given as a space choice



	does_match_init_params_space(self, exp_id, …)

	Check candidate compatibility with model_init_params template space choices



	find(self)

	Execute full result-finding workflow, populating similar_experiments











	
hyperparameter_hunter.result_reader.has_experiment_result_file(results_dir, experiment_id, result_type=None)

	Check if the specified result files exist in results_dir for Experiment experiment_id


	Parameters

	
	results_dir: String
	HyperparameterHunterAssets directory in which to search for Experiment result files



	experiment_id: String, or BaseExperiment
	ID of the Experiment whose result files should be searched for in results_dir. If not
string, should be an instance of a descendant of
BaseExperiment with an “experiment_id” attribute



	result_type: List, or string (optional)
	Result file types for which to check. Valid values include any subdirectory name that can be
included in “HyperparameterHunterAssets/Experiments” by default: [“Descriptions”,
“Heartbeats”, “PredictionsOOF”, “PredictionsHoldout”, “PredictionsTest”, “ScriptBackups”].
If string, should be one of the aforementioned strings, or “ALL” to use all of the results.
If list, should be a subset of the aforementioned list of valid values. Else, default is
[“Descriptions”, “Heartbeats”, “PredictionsOOF”, “ScriptBackups”]. The returned boolean
signifies whether ALL of the result_type files were found, not whether ANY were found







	Returns

	
	Boolean
	True if all result files specified by result_type exist in results_dir for the
Experiment specified by experiment_id. Else, False
















hyperparameter_hunter.sentinels module

This module defines Sentinel objects that are used to represent data that is not yet available.
For example, hyperparameter_hunter.sentinels.DatasetSentinel is used in
hyperparameter_hunter.environment.Environment to enable a user to pass the fold validation
dataset as an argument on Experiment initialization. At the point that the sentinel is provided, the
training dataset has not yet been split into folds, which is why the Sentinel is necessary


Related


	hyperparameter_hunter.environment
	hyperparameter_hunter.environment.Environment has the following properties that utilize
hyperparameter_hunter.sentinels.DatasetSentinel: [train_input, train_target,
validation_input, validation_target, holdout_input, holdout_target]. These properties
can be passed as arguments to Experiment or OptimizationProtocol initialization in order to
provide the dataset to a Model’s fit call, for example



	hyperparameter_hunter.experiments
	This is one of the points at which one might want to use the Sentinels exposed by
hyperparameter_hunter.environment.Environment, specifically as values in the
model_init_params and model_extra_params arguments to a descendant of
hyperparameter_hunter.experiments.BaseExperiment



	hyperparameter_hunter.optimization.protocol_core
	This is a second point at which one might use the Sentinels exposed by
hyperparameter_hunter.environment.Environment. In this case, they could be provided as
values in the model_init_params and model_extra_params arguments in a call to
hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment(),
the structure of which intentionally mirrors that of
hyperparameter_hunter.experiments.BaseExperiment.__init__()



	hyperparameter_hunter.models
	This is ultimately where Sentinel instances will be converted to the actual values that they
represent via calls to hyperparameter_hunter.sentinels.locate_sentinels()






	
class hyperparameter_hunter.sentinels.Sentinel(*args, **kwargs)

	Bases: object

Base class for Sentinels representing data that is not yet available. Subclasses should
call super().__init__() at the end of their __init__ methods


	Parameters

	
	*args: List
	Extra arguments for subclasses of Sentinel



	**kwargs: Dict
	Extra keyword arguments for subclasses of Sentinel







	Attributes

	
	sentinel
	Retrieve Sentinel._sentinel









Methods







	retrieve_by_sentinel(self)

	Retrieve the actual object represented by the sentinel







	
property sentinel

	Retrieve Sentinel._sentinel


	Returns

	
	Str
	The value of Sentinel._sentinel














	
abstract retrieve_by_sentinel(self) → object

	Retrieve the actual object represented by the sentinel


	Returns

	
	object
	The object for which the sentinel was being used as a placeholder


















	
hyperparameter_hunter.sentinels.locate_sentinels(parameters)

	Produce a mirrored parameters dict, wherein Sentinel values are converted to the objects
they represent


	Parameters

	
	parameters: Dict
	Dict of parameters, which may contain nested Sentinel values







	Returns

	
	Dict
	Mirror of parameters, except where a Sentinel was found, the value it represents
is returned instead














	
class hyperparameter_hunter.sentinels.DatasetSentinel(dataset_type, dataset_hash, cv_type=None, global_random_seed=None, random_seeds=None)

	Bases: hyperparameter_hunter.sentinels.Sentinel

Class to create sentinels representing dataset input/target values


	Parameters

	
	dataset_type: Str
	Dataset type, suffixed with ‘_input’, or ‘_target’, for which a sentinel should be
created. Acceptable values are as follows: [‘train_input’, ‘train_target’,
‘validation_input’, ‘validation_target’, ‘holdout_input’, ‘holdout_target’]



	dataset_hash: Str
	The hash of the dataset for which a sentinel should be created that was generated while
creating hyperparameter_hunter.environment.Environment.cross_experiment_key



	cv_type: Str, or None, default=None
	If None, dataset_type should be one of [‘holdout_input’, ‘holdout_target’]. Else,
should be a string that is one of the following: 1) a string attribute of
sklearn.model_selection._split, or 2) a hash produced while creating
hyperparameter_hunter.environment.Environment.cross_experiment_key



	global_random_seed: Int, or None, default=None
	If None, dataset_type should be one of [‘holdout_input’, ‘holdout_target’]. If int,
should be hyperparameter_hunter.environment.Environment.global_random_seed



	random_seeds: List, or None, default=None
	If None, dataset_type should be one of [‘holdout_input’, ‘holdout_target’]. If list,
should be hyperparameter_hunter.environment.Environment.random_seeds







	Attributes

	
	sentinel
	Retrieve Sentinel._sentinel









Methods







	retrieve_by_sentinel(self)

	Retrieve the actual dataset represented by the sentinel







	
retrieve_by_sentinel(self)

	Retrieve the actual dataset represented by the sentinel


	Returns

	
	object
	The dataset for which the sentinel was being used as a placeholder






















hyperparameter_hunter.settings module

This module is the doorway for other modules to access the information set by the active
hyperparameter_hunter.environment.Environment, and to access the appropriate logging
methods. Specifically, other modules will most often use hyperparameter_hunter.settings.G
to access the aforementioned information. Additionally, this module defines several variables to
assist in navigating the ‘HyperparameterHunterAssets’ directory structure


Related


	hyperparameter_hunter.environment
	This module sets hyperparameter_hunter.settings.G.Env to itself, creating the primary
gateway used by other modules to access the active Environment’s information






	
class hyperparameter_hunter.settings.G

	Bases: object

This class defines global attributes that are set upon instantiation of
environment.Environment. All attributes contained herein are class variables (not
instance variables) because the expectation is for the attributes of this class to be set only
once, then referenced by operations that may be executed after instantiating a
environment.Environment. This allows functions to be called or classes to be initiated
without passing a reference to the currently active Environment, because they check the
attributes of this class, instead


	Attributes

	
	Env: None
	This is set to “self” in environment.Environment.__init__(). This fact allows other
modules to check if settings.G.Env is None. If None, a
environment.Environment has not yet been instantiated. If not None, any attributes
or methods of the instantiated Env may be called



	save_transformed_predictions: False
	Declares format in which a model’s predictions should be saved, with regard to
feature_engineering.FeatureEngineer transformations. If no transformation of the
target variable takes place (either through feature_engineering.FeatureEngineer,
feature_engineering.EngineerStep, or otherwise), then this setting can be ignored.

If save_transformed_predictions is True, and target transformation does occur, then
experiment predictions are saved in the same form as the transformed target, which is the
form returned directly by a fitted model’s predict method. For example, if target data is
label-encoded, and an feature_engineering.EngineerStep is used to one-hot encode
the target, then one-hot-encoded predictions will be saved.

Conversely, if save_transformed_predictions is False (default), and target transformation
does occur, then experiment predictions are saved in the inverted form of the transformed
target, which is the same form as the original target data. Continuing the example of
label-encoded target data, and an feature_engineering.EngineerStep to one-hot
encode the target, in this case, label-encoded predictions will be saved.



	priority_callbacks: Tuple
	Intended for internal use only. The contents of this tuple are inserted at the front of an
Experiment’s list of callback bases via experiment_core.ExperimentMeta, ahead of
even the Experiment’s original base classes. This is used primarily for testing callbacks,
but it can also be used if you absolutely need a callback to be placed before the
Experiment’s other ancestors in its MRO



	log_: print
	…



	debug_: print
	…



	warn_: print
	…



	import_hooks: List
	…



	sentinel_registry: List
	…









Methods







	debug(content, \*args, \*\*kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of reporting.ReportingHandler.debug()



	debug_(value, …[, sep, end, file, flush])

	Prints the values to a stream, or to sys.stdout by default.



	log(content, \*args, \*\*kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of reporting.ReportingHandler.log()



	log_(value, …[, sep, end, file, flush])

	Prints the values to a stream, or to sys.stdout by default.



	reset_attributes()

	Return the attributes of settings.G to their original values



	warn(content, \*args, \*\*kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of reporting.ReportingHandler.warn()



	warn_()

	Issue a warning, or maybe ignore it or raise an exception.







	
Env = None

	




	
save_transformed_predictions = False

	




	
priority_callbacks = ()

	




	
static log(content, *args, **kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of
reporting.ReportingHandler.log()






	
static debug(content, *args, **kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of
reporting.ReportingHandler.debug()






	
static warn(content, *args, **kwargs)

	Set in environment.Environment.initialize_reporting() to the updated version of
reporting.ReportingHandler.warn()






	
log_(value, ..., sep=' ', end='n', file=sys.stdout, flush=False)

	Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:  a file-like object (stream); defaults to the current sys.stdout.
sep:   string inserted between values, default a space.
end:   string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.






	
debug_(value, ..., sep=' ', end='n', file=sys.stdout, flush=False)

	Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:  a file-like object (stream); defaults to the current sys.stdout.
sep:   string inserted between values, default a space.
end:   string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.






	
warn_()

	Issue a warning, or maybe ignore it or raise an exception.






	
import_hooks = ['keras_layer', 'keras_initializer', 'keras_variance_scaling']

	




	
sentinel_registry = []

	




	
classmethod reset_attributes()

	Return the attributes of settings.G to their original values














hyperparameter_hunter.tracers module

This module defines metaclasses used to trace the parameters passed through operation-critical
classes that are members of other libraries. These are only used in cases where it is impractical
or impossible to effectively retrieve the arguments explicitly provided by a user, as well as the
default arguments for the classes being traced. Generally, tracer metaclasses will aim to add some
attributes to the class, that will collect default values, and provided arguments on the class’s
creation, and an instance’s call


Related


	hyperparameter_hunter.importer
	This module handles the interception of certain imports in order to inject the tracer
metaclasses defined in hyperparameter_hunter.tracers into the inheritance structure of
objects that need to be traced






	
class hyperparameter_hunter.tracers.ArgumentTracer

	Bases: type

Metaclass to trace the default arguments and explicitly provided arguments of its
descendants. It also has special provisions for instantiating dummy models if directed to

Methods







	__call__(cls, \*args, \*\*kwargs)

	Call self as a function.



	mro()

	return a type’s method resolution order











	
class hyperparameter_hunter.tracers.LocationTracer

	Bases: hyperparameter_hunter.tracers.ArgumentTracer

Metaclass to trace the origin of the call to initialize the descending class

Methods







	__call__(cls, \*args, \*\*kwargs)

	Call self as a function.



	mro()

	return a type’s method resolution order















Module contents


	
class hyperparameter_hunter.Environment(train_dataset, environment_params_path=None, *, results_path=None, metrics=None, holdout_dataset=None, test_dataset=None, target_column=None, id_column=None, do_predict_proba=None, prediction_formatter=None, metrics_params=None, cv_type=None, runs=None, global_random_seed=None, random_seeds=None, random_seed_bounds=None, cv_params=None, verbose=None, file_blacklist=None, reporting_params=None, to_csv_params=None, do_full_save=None, experiment_callbacks=None, experiment_recorders=None, save_transformed_metrics=None)

	Bases: object

Class to organize the parameters that allow Experiments/OptPros to be fairly compared

Environment is the collective starting point for all of HyperparameterHunter’s biggest
and best toys: Experiments and OptimizationProtocols. Without an Environment, neither of
these will work.

The Environment is where we declare all the parameters that transcend traditional
“hyperparameters”. It houses the stuff without which machine learning can’t even really
start. Specifically, Environment cares about 1) The data used for fitting/predicting,
2) The cross-validation scheme used to split the data and fit models; and 3) How to evaluate
the predictions made on that data. There are plenty of other goodies documented below, but
the absolutely mission-critical parameters concerned with the above tasks are
train_dataset, cv_type, cv_params, and metrics. Additionally, it’s important to
provide results_path, so Experiment/OptPro results can be saved, which is kind of what
HyperparameterHunter is all about


	Parameters

	
	train_dataset: Pandas.DataFrame, or str path
	The training data for the experiment. Will be split into train/holdout data, if
applicable, and train/validation data if cross-validation is to be performed. If str,
will attempt to read file at path via pandas.read_csv(). For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	environment_params_path: String path, or None, default=None
	If not None and is valid .json filepath containing an object (dict), the file’s contents
are treated as the default values for all keys that match any of the below kwargs used
to initialize Environment



	results_path: String path, or None, default=None
	If valid directory path and the results directory has not yet been created, it will be
created here. If this does not end with <ASSETS_DIRNAME>, it will be appended. If
<ASSETS_DIRNAME> already exists at this path, new results will also be stored here. If
None or invalid, results will not be stored



	metrics: Dict, List, or None, default=None
	Iterable describing the metrics to be recorded, along with a means to compute the value
of each metric. Should be of one of the two following forms:

List Form:


	[“<metric name>”, “<metric name>”, …]:
Where each value is a string that names an attribute in sklearn.metrics


	[Metric, Metric, …]:
Where each value of the list is an instance of metrics.Metric


	[(<name>, <metric_function>, [<direction>]), (<*args>), …]:
Where each value of the list is a tuple of arguments that will be used to instantiate
a metrics.Metric. Arguments given in tuples must be in order expected by
metrics.Metric: (name, metric_function, direction)




Dict Form:


	{“<metric name>”: <metric_function>, …}:
Where each key is a name for the corresponding metric callable, which is used to
compute the value of the metric


	{“<metric name>”: (<metric_function>, <direction>), …}:
Where each key is a name for the corresponding metric callable and direction, all of
which are used to instantiate a metrics.Metric


	{“<metric name>”: “<sklearn metric name>”, …}:
Where each key is a name for the metric, and each value is the name of the attribute
in sklearn.metrics for which the corresponding key is an alias


	{“<metric name>”: None, …}:
Where each key is the name of the attribute in sklearn.metrics


	{“<metric name>”: Metric, …}:
Where each key names an instance of metrics.Metric. This is the
internally-used format to which all other formats will be converted




Metric callable functions should expect inputs of form (target, prediction), and should
return floats. See the documentation of metrics.Metric for information
regarding expected parameters and types



	holdout_dataset: Pandas.DataFrame, callable, str path, or None, default=None
	If pd.DataFrame, this is the holdout dataset. If callable, expects a function that takes
(self.train: DataFrame, self.target_column: str) as input and returns the new
(self.train: DataFrame, self.holdout: DataFrame). If str, will attempt to read file at
path via pandas.read_csv(). Else, there is no holdout set. For more information on
which columns will be used during fitting/predicting, see the “Dataset columns” note
in the “Notes” section below



	test_dataset: Pandas.DataFrame, str path, or None, default=None
	The testing data for the experiment. Structure should be identical to that of
train_dataset, except its target_column column can be empty or non-existent, because
test_dataset predictions will never be evaluated. If str, will attempt to read file at
path via pandas.read_csv(). For more information on which columns will be used
during fitting/predicting, see the “Dataset columns” note in the “Notes” section below



	target_column: Str, or list, default=’target’
	If str, denotes the column name in all provided datasets (except test) that contains the
target output. If list, should be a list of strs designating multiple target columns.
For example, in a multi-class classification dataset like UCI’s hand-written digits,
target_column would be a list containing ten strings. In this example, the
target_column data would be sparse, with a 1 to signify that a sample is a written
example of a digit (0-9). For a working example, see
‘hyperparameter_hunter/examples/lib_keras_multi_classification_example.py’



	id_column: Str, or None, default=None
	If not None, str denoting the column name in all provided datasets containing sample IDs



	do_predict_proba: Boolean, or int, default=False
	
	If False, models.Model.fit() will call models.Model.model.predict()


	If True, it will call models.Model.model.predict_proba(), and the values in all
columns will be used as the actual prediction values


	If do_predict_proba is an int, models.Model.fit() will call
models.Model.model.predict_proba(), as is the case when do_predict_proba is
True, but the int supplied as do_predict_proba declares the column index to use as
the actual prediction values


	For example, for a model to call the predict method, do_predict_proba=False
(default). For a model to call the predict_proba method, and use all of the class
probabilities, do_predict_proba=True. To call the predict_proba method, and use
the class probabilities in the first column, do_predict_proba=0. To use the second
column (index 1) of the result, do_predict_proba=1 - This often corresponds to the
positive class’s probabilities in binary classification problems. To use the third
column do_predict_proba=2, and so on






	prediction_formatter: Callable, or None, default=None
	If callable, expected to have same signature as
utils.result_utils.format_predictions(). That is, the callable will receive
(raw_predictions: np.array, dataset_df: pd.DataFrame, target_column: str,
id_column: str or None) as input and should return a properly formatted prediction
DataFrame. The callable uses raw_predictions as the content, dataset_df to provide any
id column, and target_column to identify the column in which to place raw_predictions



	metrics_params: Dict, or None, default=dict()
	Dictionary of extra parameters to provide to metrics.ScoringMixIn.__init__().
metrics must be provided either 1) as an input kwarg to
Environment.__init__() (see metrics), or 2) as a key in metrics_params,
but not both. An Exception will be raised if both are given, or if neither is given



	cv_type: Class or str, default=’KFold’
	The class to define cross-validation splits. If str, it must be an attribute of
sklearn.model_selection._split, and it must be a cross-validation class that inherits
one of the following sklearn classes: BaseCrossValidator, or _RepeatedSplits.
Valid str values include ‘KFold’, and ‘RepeatedKFold’, although there are many more. It
must implement the following methods: [__init__, split]. If using a custom class,
see the following tested sklearn classes for proper implementations:
[KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold]. The arguments
provided to cv_type.__init__() will be Environment.cv_params, which should
include the following: [‘n_splits’ <int>, ‘n_repeats’ <int> (if applicable)].
cv_type.split() will receive the following arguments:
[BaseExperiment.train_input_data, BaseExperiment.train_target_data]



	runs: Int, default=1
	The number of times to fit a model within each fold to perform multiple-run-averaging
with different random seeds



	global_random_seed: Int, default=32
	The initial random seed used just before generating an Experiment’s random_seeds. This
ensures consistency for random_seeds between Experiments, without having to explicitly
provide it here



	random_seeds: None, or List, default=None
	If None, random_seeds of the appropriate shape will be created automatically. Else,
must be a list of ints of shape (cv_params[‘n_repeats’], cv_params[‘n_splits’],
runs). If cv_params does not have the key n_repeats (because standard
cross-validation is being used), the value will default to 1. See
experiments.BaseExperiment._random_seed_initializer() for info on expected shape



	random_seed_bounds: List, default=[0, 100000]
	A list containing two integers: the lower and upper bounds, respectively, for generating
an Experiment’s random seeds in
experiments.BaseExperiment._random_seed_initializer(). Generally, leave this
kwarg alone



	cv_params: dict, or None, default=dict()
	Parameters provided upon initialization of cv_type. Keys may be any args accepted by
cv_type.__init__(). Number of fold splits must be provided via “n_splits”, and
number of repeats (if applicable for cv_type) must be provided via “n_repeats”



	verbose: Int, boolean, default=3
	Verbosity of printing for any experiments performed while this Environment is active

Higher values indicate more frequent logging. Logs are still recorded in the heartbeat
file regardless of verbosity level. verbose only dictates which logs are visible in
the console. The following table illustrates which types of logging messages will be
visible with each verbosity level:

| Verbosity | Keys/IDs | Final Score | Repetitions* | Folds | Runs* | Run Starts* | Result Files | Other |
|:---------:|:--------:|:-----------:|:------------:|:-----:|:-----:|:-----------:|:------------:|:-----:|
|     0     |          |             |              |       |       |             |              |       |
|     1     |    Yes   |     Yes     |              |       |       |             |              |       |
|     2     |    Yes   |     Yes     |      Yes     |  Yes  |       |             |              |       |
|     3     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |             |              |       |
|     4     |    Yes   |     Yes     |      Yes     |  Yes  |  Yes  |     Yes     |      Yes     |  Yes  |





*: If such logging is deemed appropriate with the given cross-validation parameters. In
other words, repetition/run logging will only be verbose if Environment was given more
than one repetition/run, respectively



	file_blacklist: List of str, or None, or ‘ALL’, default=None
	If list of str, the result files named within are not saved to their respective
directory in “<ASSETS_DIRNAME>/Experiments”. If None, all result files are saved.
If ‘ALL’, nothing at all will be saved for the Experiments. If the path of the file that
initializes an Experiment does not end with a “.py” extension, the Experiment proceeds
as if “script_backup” had been added to file_blacklist. This means that backup files
will not be created for Jupyter notebooks (or any other non-“.py” files). For info on
acceptable values, see validate_file_blacklist()



	reporting_params: Dict, default=dict()
	Parameters passed to initialize reporting.ReportingHandler



	to_csv_params: Dict, default=dict()
	Parameters passed to the calls to pandas.frame.DataFrame.to_csv() in
recorders. In particular, this is where an Experiment’s final prediction files
are saved, so the values here will affect the format of the .csv prediction files.
Warning: If to_csv_params contains the key “path_or_buf”, it will be removed.
Otherwise, all items are supplied directly to to_csv(), including kwargs it might
not be expecting if they are given



	do_full_save: None, or callable, default=:func:`utils.result_utils.default_do_full_save`
	If callable, expected to take an Experiment’s result description dict as input and
return a boolean. If None, treated as a callable that returns True. This parameter is
used by recorders.DescriptionRecorder to determine whether the Experiment
result files following the description should also be created. If do_full_save returns
False, result file-saving is stopped early, and only the description is saved. If
do_full_save returns True, all files not in file_blacklist are saved normally. This
allows you to skip creation of an Experiment’s predictions, logs, and heartbeats if its
score does not meet some threshold you set, for example. do_full_save receives the
Experiment description dict as input, so for help setting do_full_save, just look into
one of your Experiment descriptions



	experiment_callbacks: `LambdaCallback`, or list of `LambdaCallback` (optional)
	Callbacks injected directly into Experiments, adding new functionality, or customizing
existing processes. Should be a LambdaCallback or a list of such classes.
LambdaCallback can be created using callbacks.bases.lambda_callback(), which
documents the options for creating callbacks. experiment_callbacks will be added to
the MRO of the executed Experiment class by experiment_core.ExperimentMeta at
__call__ time, making experiment_callbacks new base classes of the Experiment. See
callbacks.bases.lambda_callback() for more information. Note that the Experiments
conducted by OptPros will still benefit from experiment_callbacks. The presence of
LambdaCallbacks will affect neither Environment keys, nor Experiment keys. In other
words, for the purposes of Experiment matching/recording, all other factors being equal,
an Experiment with experiment_callbacks is considered identical to an Experiment
without, despite whatever custom functionality was added by the LambdaCallbacks



	experiment_recorders: List, None, default=None
	If not None, may be a list whose values are tuples of
(<recorders.BaseRecorder descendant>, <str result_path>). The result_path str
should be a path relative to results_path that specifies the directory/file in
which the product of the custom recorder should be saved. The contents of
experiment_recorders will be provided to recorders.RecorderList upon completion of
an Experiment, and, if the subclassing documentation in recorders is followed
properly, will create or update a result file for the just-executed Experiment



	save_transformed_metrics: Boolean (optional)
	Declares manner in which a model’s predictions should be evaluated through the provided
metrics, with regard to target data transformations. This setting can be ignored if
no transformation of the target variable takes place (either through
FeatureEngineer,
EngineerStep, or otherwise).

The default value of save_transformed_metrics depends on the dtype of the target data
in train_dataset. If all target columns are numeric, save_transformed_metrics`=False,
meaning metric evaluation should use the original/inverted targets and predictions. Else
if any target column is non-numeric, `save_transformed_metrics`=True, meaning evaluation
should use the transformed targets and predictions because most metrics require numeric
inputs. This is described further in :attr:`save_transformed_metrics. A more
descriptive name for this may be “calculate_metrics_using_transformed_predictions”,
but that’s a bit verbose–even by my standards







	Other Parameters

	
	cross_validation_type: …
	
	Alias for cv_type *






	cross_validation_params: …
	
	Alias for cv_params *






	metrics_map: …
	
	Alias for metrics *






	reporting_handler_params: …
	
	Alias for reporting_params *






	root_results_path: …
	
	Alias for results_path *












Notes

Dataset columns: In order to specify the columns to be used by the three dataset kwargs
(train_dataset, holdout_dataset, test_dataset) during fitting and predicting, a few
attributes can be used. On Environment initialization, the columns specified by the
following kwargs will be separated from the rest of the dataset during training/predicting:
1) target_column, which names the column containing the target output labels for the input
data; and 2) id_column, which (if given) represents the name of the column that contains
identifying information for each data sample, and should otherwise have no relation to the
actual data. Additionally, the feature_selector kwarg of the descendants of
hyperparameter_hunter.experiments.BaseExperiment (like
hyperparameter_hunter.experiments.CVExperiment) is used to filter out
columns of the given datasets prior to fitting. See its documentation for more information,
but it can effectively be used to remove any columns from the datasets

Overriding default kwargs at environment_params_path: If you have any of the above kwargs
specified in the .json file at environment_params_path (except environment_params_path,
which will be ignored), you can override its value by passing it as a kwarg when
initializing Environment. The contents at environment_params_path are only used
when the matching kwarg supplied at initialization is None. See
“/examples/environment_params_path_example.py” for details

The order of precedence for determining the value of each parameter is as follows, with
items at the top having the highest priority, and deferring only to the items below if
their own value is None:


	1)kwargs passed directly to Environment.__init__() on initialization,


	2)keys of the file at environment_params_path (if valid .json object),


	3)keys of hyperparameter_hunter.environment.Environment.DEFAULT_PARAMS




do_predict_proba: Because this parameter can be either a boolean or an integer, it is
important to explicitly pass booleans rather than truthy or falsey values. Similarly, only
pass integers if you intend for the value to be used as a column index. Do not pass 0 to
mean False, or 1 to mean True


	Attributes

	
	train_input: DatasetSentinel
	Sentinel replaced with current train input data during Model fitting/predicting.
Commonly given in the model_extra_params kwargs of
hyperparameter_hunter.experiments.BaseExperiment or
hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment() for
eval_set-like hyperparameters. Importantly, the actual value of this Sentinel is
determined after performing cross-validation data splitting, and after executing
FeatureEngineer



	train_target: DatasetSentinel
	Like train_input, except for current train target data



	validation_input: DatasetSentinel
	Like train_input, except for current validation input data



	validation_target: DatasetSentinel
	Like train_input, except for current validation target data



	holdout_input: DatasetSentinel
	Like train_input, except for current holdout input data



	holdout_target: DatasetSentinel
	Like train_input, except for current holdout target data









Methods







	environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments



	format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results



	generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters



	initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime



	update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS



	validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted







	
DEFAULT_PARAMS = {'cv_params': {}, 'cv_type': 'KFold', 'do_full_save': <function default_do_full_save>, 'do_predict_proba': False, 'environment_params_path': None, 'file_blacklist': None, 'global_random_seed': 32, 'id_column': None, 'metrics': None, 'metrics_params': {}, 'prediction_formatter': <function format_predictions>, 'random_seed_bounds': [0, 100000], 'random_seeds': None, 'reporting_params': {'console_params': None, 'float_format': '{:.5f}', 'heartbeat_params': None, 'heartbeat_path': None}, 'results_path': None, 'runs': 1, 'save_transformed_metrics': None, 'target_column': 'target', 'to_csv_params': {}, 'verbose': 3}

	




	
property results_path

	




	
property target_column

	




	
property train_dataset

	




	
property test_dataset

	




	
property holdout_dataset

	




	
property file_blacklist

	




	
property cv_type

	




	
property to_csv_params

	




	
property cross_experiment_params

	




	
property experiment_callbacks

	




	
property save_transformed_metrics

	If save_transformed_metrics is True, and target transformation does occur, then
experiment metrics are calculated using the transformed targets and predictions, which is
the form returned directly by a fitted model’s predict method. For example, if target data
is label-encoded, and an feature_engineering.EngineerStep is used to one-hot encode
the target, then metrics functions will receive the following as input:
(one-hot-encoded targets, one-hot-encoded predictions).

Conversely, if save_transformed_metrics is False, and target transformation does occur,
then experiment metrics are calculated using the inverse of the transformed targets and
predictions, which is same form as the original target data. Continuing the example of
label-encoded target data, and an feature_engineering.EngineerStep to one-hot
encode the target, in this case, metrics functions will receive the following as input:
(label-encoded targets, label-encoded predictions)






	
environment_workflow(self)

	Execute all methods required to validate the environment and run Experiments






	
validate_parameters(self)

	Ensure the provided parameters are valid and properly formatted






	
format_result_paths(self)

	Remove paths contained in file_blacklist, and format others to prepare for saving results






	
update_custom_environment_params(self)

	Try to update null parameters from environment_params_path, or DEFAULT_PARAMS






	
generate_cross_experiment_key(self)

	Generate a key to describe the current Environment’s cross-experiment parameters






	
initialize_reporting(self)

	Initialize reporting for the Environment and Experiments conducted during its lifetime






	
property train_input

	Get a DatasetSentinel representing an Experiment’s fold_train_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_input upon
Model initialization














	
property train_target

	Get a DatasetSentinel representing an Experiment’s fold_train_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_train_target upon
Model initialization














	
property validation_input

	Get a DatasetSentinel representing an Experiment’s fold_validation_input


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_input
upon Model initialization














	
property validation_target

	Get a DatasetSentinel representing an Experiment’s fold_validation_target


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.fold_validation_target
upon Model initialization














	
property holdout_input

	Get a DatasetSentinel representing an Experiment’s holdout_input_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_input_data
upon Model initialization














	
property holdout_target

	Get a DatasetSentinel representing an Experiment’s holdout_target_data


	Returns

	
	DatasetSentinel:
	A Sentinel that will be converted to hyperparameter_hunter.experiments.BaseExperiment.holdout_target_data
upon Model initialization


















	
class hyperparameter_hunter.CVExperiment(model_initializer, model_init_params=None, model_extra_params=None, feature_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False, auto_start=True, target_metric=None, callbacks=None)

	Bases: hyperparameter_hunter.experiments.BaseCVExperiment


	Attributes

	
	source_script
	







Methods







	cross_validation_workflow(self)

	Execute workflow for cross-validation process, consisting of the following tasks: 1) Create train and validation split indices for all folds, 2) Iterate through folds, performing cv_fold_workflow for each, 3) Average accumulated predictions over fold splits, 4) Evaluate final predictions, 5) Format final predictions to prepare for saving



	cv_fold_workflow(self)

	Execute workflow for individual fold, consisting of the following tasks: Execute overridden on_fold_start() tasks, 2) Perform cv_run_workflow for each run, 3) Execute overridden on_fold_end() tasks



	cv_run_workflow(self)

	Execute run workflow, consisting of: 1) Execute overridden on_run_start() tasks, 2) Initialize and fit Model, 3) Execute overridden on_run_end() tasks



	evaluate(self, data_type, target, prediction)

	Apply metric(s) to the given data to calculate the value of the prediction



	execute(self)

	Execute the fitting protocol for the Experiment, comprising the following: instantiation of learners for each run, preprocessing of data as appropriate, training learners, making predictions, and evaluating and aggregating those predictions and other stats/metrics for later use



	experiment_workflow(self)

	Define the actual experiment process, including execution, result saving, and cleanup



	on_exp_start(self)

	Prepare data prior to executing fitting protocol (cross-validation), by 1) Initializing formal datasets attributes, 2) Invoking feature_engineer to perform “pre_cv”-stage preprocessing, and 3) Updating datasets to include their (transformed) counterparts in feature_engineer



	on_fold_start(self)

	Override on_fold_start() tasks set by experiment_core.ExperimentMeta, consisting of: 1) Split train/validation data, 2) Make copies of holdout/test data for current fold (for feature engineering), 3) Log start, 4) Execute original tasks



	on_run_start(self)

	Override on_run_start() tasks organized by experiment_core.ExperimentMeta, consisting of: 1) Set random seed and update model parameters according to current seed, 2) Log run start, 3) Execute original tasks



	preparation_workflow(self)

	Execute all tasks that must take place before the experiment is actually started.







	
source_script = None

	








	
class hyperparameter_hunter.BayesianOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GP', n_initial_points=10, acquisition_function='gp_hedge', acquisition_optimizer='auto', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Bayesian optimization with Gaussian Processes


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.GradientBoostedRegressionTreeOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='GBRT', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with gradient boosted regression trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.GBRT

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro






	
class hyperparameter_hunter.RandomForestOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='RF', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with random forest regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.RF

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro






	
class hyperparameter_hunter.ExtraTreesOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='ET', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with extra trees regressor decision trees


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
hyperparameter_hunter.ET

	alias of hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro






	
class hyperparameter_hunter.DummyOptPro(target_metric=None, iterations=1, verbose=1, read_experiments=True, reporter_parameters=None, warn_on_re_ask=False, base_estimator='DUMMY', n_initial_points=10, acquisition_function='EI', acquisition_optimizer='sampling', random_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None, n_random_starts='DEPRECATED', callbacks=None, base_estimator_kwargs=None)

	Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Random search by uniform sampling


	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.Real(low, high, prior='uniform', transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any real value in a given range


	Parameters

	
	low: Float
	Lower bound (inclusive)



	high: Float
	Upper bound (inclusive)



	prior: {“uniform”, “log-uniform”}, default=”uniform”
	Distribution to use when sampling random points for this dimension. If “uniform”, points
are sampled uniformly between the lower and upper bounds. If “log-uniform”, points are
sampled uniformly between log10(lower) and log10(upper)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Real, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape (<# samples>, transformed_size)







	Returns

	
	List
	Samples transformed back to original space. Will be shape (<# samples>, size)














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	low: Float
	0.0 if transform_`="normalize". If :attr:`transform_`="identity" and
:attr:`prior`="uniform", then :attr:`low. Else log10(low)



	high: Float
	1.0 if transform_`="normalize". If :attr:`transform_`="identity" and
:attr:`prior`="uniform", then :attr:`high. Else log10(high)














	
get_params(self) → dict

	Get dict of parameters used to initialize the Real, or their defaults










	
class hyperparameter_hunter.Integer(low, high, transform='identity', name=None)

	Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any integer value in a given range


	Parameters

	
	low: Int
	Lower bound (inclusive)



	high: Int
	Upper bound (inclusive)



	transform: {“identity”, “normalize”}, default=”identity”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “normalize”, the transformed space is scaled
between 0 and 1



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Integer, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space


	Parameters

	
	data_t: List
	Samples to inverse transform. Should be of shape (<# samples>, transformed_size)







	Returns

	
	List
	Samples transformed back to original space. Will be shape (<# samples>, size)














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	low: Int
	0 if transform_`="normalize", else :attr:`low



	high: Int
	1 if transform_`="normalize", else :attr:`high














	
get_params(self) → dict

	Get dict of parameters used to initialize the Integer, or their defaults










	
class hyperparameter_hunter.Categorical(categories: list, prior: list = None, transform='onehot', optional=False, name=None)

	Bases: hyperparameter_hunter.space.dimensions.Dimension

Search space dimension that can assume any categorical value in a given list


	Parameters

	
	categories: List
	Sequence of possible categories of shape (n_categories,)



	prior: List, or None, default=None
	If list, prior probabilities for each category of shape (categories,). By default all
categories are equally likely



	transform: {“onehot”, “identity”}, default=”onehot”
	Transformation to apply to the original space. If “identity”, the transformed space is
the same as the original space. If “onehot”, the transformed space is a one-hot encoded
representation of the original space



	optional: Boolean, default=False
	Intended for use by FeatureEngineer
when optimizing an EngineerStep.
Specifically, this enables searching through a space in which an EngineerStep either
may or may not be used. This is contrary to Categorical’s usual function of creating
a space comprising multiple categories. When optional = True, the space created will
represent any of the values in categories either being included in the entire
FeatureEngineer process, or being skipped entirely. Internally, a value excluded by
optional is represented by a sentinel value that signals it should be removed from the
containing list, so optional will not work for choosing between a single value and
None, for example



	name: String, tuple, or None, default=None
	A name associated with the dimension







	Attributes

	
	categories: Tuple
	Original value passed through the categories kwarg, cast to a tuple. If optional is
True, then an instance of RejectedOptional will be appended to categories



	distribution: rv_generic
	See documentation of _make_distribution() or distribution()



	optional: Boolean
	Original value passed through the optional kwarg



	prior: List, or None
	Original value passed through the prior kwarg



	prior_actual: List
	Calculated prior value, initially equivalent to prior, but then set to a default
array if None



	transform_: String
	Original value passed through the transform kwarg - Because transform() exists



	transformer: Transformer
	See documentation of _make_transformer() or transformer()









Methods







	distance(self, a, b)

	Calculate distance between two points in the dimension’s bounds



	get_params(self)

	Get dict of parameters used to initialize the Categorical, or their defaults



	inverse_transform(self, data_t)

	Inverse transform samples from the warped space back to the original space



	rvs(self[, n_samples, random_state])

	Draw random samples.



	transform(self, data)

	Transform samples from the original space into a warped space







	
rvs(self, n_samples=None, random_state=None)

	Draw random samples. Samples are in the original (untransformed) space. They must be
transformed before being passed to a model or minimizer via transform()


	Parameters

	
	n_samples: Int (optional)
	Number of samples to be drawn. If not given, a single sample will be returned



	random_state: Int, RandomState, or None, default=None
	Set random state to something other than None for reproducible results







	Returns

	
	List
	Randomly drawn samples from the original space














	
property transformed_size

	Size of the transformed space for the dimension


	Returns

	
	Int
	
	1 if transform_ == “identity”


	1 if transform_ == “onehot” and length of categories is 1 or 2


	Length of categories in all other cases

















	
property bounds

	Dimension bounds in the original space


	Returns

	
	Tuple
	categories














	
property transformed_bounds

	Dimension bounds in the warped space


	Returns

	
	Tuple, or list
	If transformed_size == 1, then a tuple of (0.0, 1.0). Otherwise, returns a list
containing transformed_size-many tuples of (0.0, 1.0)









Notes

transformed_size == 1 when the length of categories == 2, so if there are
two items in categories, (0.0, 1.0) is returned. If there are three items in categories,
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)] is returned, and so on.

Because transformed_bounds uses transformed_size, it is affected by
transform_. Specifically, the returns described above are for transform_ ==
“onehot” (default).

Examples

>>> Categorical(["a", "b"]).transformed_bounds
(0.0, 1.0)
>>> Categorical(["a", "b", "c"]).transformed_bounds
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0)]
>>> Categorical(["a", "b", "c", "d"]).transformed_bounds
[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0)]










	
distance(self, a, b) → int

	Calculate distance between two points in the dimension’s bounds


	Parameters

	
	a
	First category



	b
	Second category







	Returns

	
	Int
	0 if a == b. Else 1 (because categories have no order)














	
get_params(self) → dict

	Get dict of parameters used to initialize the Categorical, or their defaults










	
hyperparameter_hunter.lambda_callback(on_exp_start=None, on_exp_end=None, on_rep_start=None, on_rep_end=None, on_fold_start=None, on_fold_end=None, on_run_start=None, on_run_end=None, agg_name=None, do_reshape_aggs=True, method_agg_keys=False, on_experiment_start=<object object at 0x7f4f6d239bf0>, on_experiment_end=<object object at 0x7f4f6d239bf0>, on_repetition_start=<object object at 0x7f4f6d239bf0>, on_repetition_end=<object object at 0x7f4f6d239bf0>)

	Utility for creating custom callbacks to be declared by Environment and used by
Experiments. The callable “on_<…>_<start/end>” parameters provided will receive as input
whichever attributes of the Experiment are included in the signature of the given callable. If
**kwargs is given in the callable’s signature, a dict of all of the Experiment’s attributes
will be provided. This can be helpful for trying to figure out how to build a custom callback,
but should not be used unless absolutely necessary. If the Experiment does not have an attribute
specified in the callable’s signature, the following placeholder will be given: “INVALID KWARG”


	Parameters

	
	on_exp_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment start



	on_exp_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at Experiment end



	on_rep_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition start



	on_rep_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at repetition end



	on_fold_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold start



	on_fold_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at fold end



	on_run_start: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run start



	on_run_end: Callable, or None, default=None
	Callable that receives Experiment’s values for parameters in the signature at run end



	agg_name: Str, default=uuid.uuid4
	This parameter is only used if the callables are behaving like AggregatorCallbacks by
returning values (see the “Notes” section below for details on this). If the callables do
return values, they will be stored under a key named (“_” + agg_name) in a dict in
hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates. The purpose of
this parameter is to make it easier to understand an Experiment’s description file, as
agg_name will default to a UUID if it is not given



	do_reshape_aggs: Boolean, default=True
	Whether to reshape the aggregated values to reflect the nested repetitions/folds/runs
structure used for other aggregated values. If False, lists of aggregated values are left in
their original shapes. This parameter is only used if the callables are behaving like
AggregatorCallbacks (see the “Notes” section below and agg_name for details on this)



	method_agg_keys: Boolean, default=False
	If True, the aggregate keys for the items added to the dict at agg_name are equivalent to
the names of the “on_<…>_<start/end>” pseudo-methods whose values are being aggregated. In
other words, the pool of all possible aggregate keys goes from [“runs”, “folds”, “reps”,
“final”] to the names of the eight “on_<…>_<start/end>” kwargs of lambda_callback().
See the “Notes” section below for further details and a rough outline



	on_experiment_start: …
	
Deprecated since version 3.0.0: Renamed to on_exp_start. Will be removed in 3.2.0





	on_experiment_end: …
	
Deprecated since version 3.0.0: Renamed to on_exp_end. Will be removed in 3.2.0





	on_repetition_start: …
	
Deprecated since version 3.0.0: Renamed to on_rep_start. Will be removed in 3.2.0





	on_repetition_end: …
	
Deprecated since version 3.0.0: Renamed to on_rep_end. Will be removed in 3.2.0









	Returns

	
	LambdaCallback: LambdaCallback
	Uninitialized class, whose methods are the callables of the corresponding “on…” kwarg









Notes

For all of the “on_<…>_<start/end>” callables provided as input to lambda_callback, consider
the following guidelines (for example function “f”, which can represent any of the callables):


	All input parameters in the signature of “f” are attributes of the Experiment being executed



	If “**kwargs” is a parameter, a dict of all the Experiment’s attributes will be provided









	“f” will be treated as a method of a parent class of the Experiment



	Take care when modifying attributes, as changes are reflected in the Experiment itself









	If “f” returns something, it will automatically behave like an AggregatorCallback (see hyperparameter_hunter.callbacks.aggregators). Specifically, the following will occur:



	A new key (named by agg_name if given, else a UUID) with a dict value is added to hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates



	This new dict can have up to four keys: “runs” (list), “folds” (list), “reps” (list), and “final” (object)









	If “f” is an “on_run…” function, the returned value is appended to the “runs” list in the new dict


	Similarly, if “f” is an “on_fold…” or “on_rep…” function, the returned value is appended to the “folds”, or “reps” list, respectively


	If “f” is an “on_exp…” function, the “final” key in the new dict is set to the returned value


	If values were aggregated in the aforementioned manner, the lists of collected values will be reshaped according to runs/folds/reps on Experiment end


	The aggregated values will be saved in the Experiment’s description file



	This is because hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates is saved in its entirety


















What follows is a rough outline of the structure produced when using an aggregator-like callback
that automatically populates experiments.BaseExperiment.stat_aggregates with results of
the functions used as arguments to lambda_callback():

BaseExperiment.stat_aggregates = dict(
    ...,
    <`agg_name`>=dict(
        <agg_key "runs">  = [...],
        <agg_key "folds"> = [...],
        <agg_key "reps">  = [...],
        <agg_key "final"> = object(),
        ...
    ),
    ...
)





In the above outline, the actual agg_key`s included in the dict at `agg_name depend on which
“on_<…>_<start/end>” callables are behaving like aggregators. For example, if neither
on_run_start nor on_run_end explicitly returns something, then the “runs” agg_key is not
included in the agg_name dict. Similarly, if, for example, neither on_exp_start nor
on_exp_end is provided, then the “final” agg_key is not included. If method_agg_keys=True,
then the agg keys used in the dict are modified to be named after the method called. For
example, if method_agg_keys=True and on_fold_start and on_fold_end are both callables
returning values to be aggregated, then the agg_key`s used for each will be “on_fold_start”
and “on_fold_end”, respectively. In this example, if `method_agg_keys=False (default) and
do_reshape_aggs=False, then the single “folds” agg_key would contain the combined contents
returned by both methods in the order in which they were returned

For examples using lambda_callback to create custom callbacks, see
hyperparameter_hunter.callbacks.recipes

Examples

>>> from hyperparameter_hunter.environment import Environment
>>> def printer_helper(_rep, _fold, _run, last_evaluation_results):
...     print(f"{_rep}.{_fold}.{_run}   {last_evaluation_results}")
>>> my_lambda_callback = lambda_callback(
...     on_exp_end=printer_helper,
...     on_rep_end=printer_helper,
...     on_fold_end=printer_helper,
...     on_run_end=printer_helper,
... )
... # env = Environment(
... #     train_dataset="i am a dataset",
... #     results_path="path/to/HyperparameterHunterAssets",
... #     metrics=["roc_auc_score"],
... #     experiment_callbacks=[my_lambda_callback]
... # )
... # ... Now execute an Experiment, or an Optimization Protocol...





See hyperparameter_hunter.examples.lambda_callback_example for more information






	
class hyperparameter_hunter.FeatureEngineer(steps=None, do_validate=False, **datasets)

	Bases: object

Class to organize feature engineering step callables steps (EngineerStep
instances) and the datasets that the steps request and return.


	Parameters

	
	steps: List, or None, default=None
	List of arbitrary length, containing any of the following values:



	EngineerStep instance,


	Function to provide as input to EngineerStep, or


	Categorical, with categories
comprising a selection of the previous two steps values (optimization only)







The third value can only be used during optimization. The feature_engineer provided to
CVExperiment, for example, may only contain
the first two values. To search a space optionally including an EngineerStep, use the
optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep
functions. Additional engineering steps may be added via add_step()



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed



	**datasets: DFDict
	This is not expected to be provided on initialization and is offered primarily for
debugging/testing. Mapping of datasets necessary to perform feature engineering steps










See also


	EngineerStep
	For proper formatting of non-Categorical values of steps







Notes

If steps does include any instances of
hyperparameter_hunter.space.dimensions.Categorical, this FeatureEngineer instance
will not be usable by Experiments. It can only be used by Optimization Protocols.
Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up using
will not pass identity checks against the original FeatureEngineer that contained
Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler, QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
...     s = MinMaxScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs





FeatureEngineer steps wrapped by `EngineerStep` == raw function steps - as long as the
`EngineerStep` is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> #   ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])





`Categorical` can be used during optimization and placed anywhere in `steps`. `Categorical`
can also handle either `EngineerStep` categories or raw functions. Use the `optional` kwarg
of `Categorical` to test some questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_transform])
>>> fe_5 = FeatureEngineer([
...     Categorical([sqr_sum], optional=True),
...     Categorical([EngineerStep(s_scale), mm_scale]),
...     q_transform
... ])






	Attributes

	
	steps
	Feature engineering steps to execute in sequence on FeatureEngineer.__call__()









Methods







	__call__(self, stage, \*\*datasets, …)

	Execute all feature engineering steps in steps for stage, with datasets datasets as inputs



	add_step(self, step, …)

	Add an engineering step to steps to be executed with the other contents of steps on FeatureEngineer.__call__()



	get_key_data(self)

	Produce a dict of critical attributes describing the FeatureEngineer instance for use by key-making classes



	inverse_transform(self, data)

	Perform the inverse transformation for all engineer steps in steps in sequence on data







	
inverse_transform(self, data)

	Perform the inverse transformation for all engineer steps in steps in sequence
on data


	Parameters

	
	data: Array-like
	Data to inverse transform with any inversions present in steps







	Returns

	
	Array-like
	Result of sequentially calling inverse transformations in steps on data. If
any step has EngineerStep.inversion = None, data is unmodified for that step,
and proceeds to next engineer step inversion














	
property steps

	Feature engineering steps to execute in sequence on FeatureEngineer.__call__()






	
get_key_data(self) → dict

	Produce a dict of critical attributes describing the FeatureEngineer instance
for use by key-making classes


	Returns

	
	Dict
	Important attributes describing this FeatureEngineer instance














	
add_step(self, step:Union[Callable, hyperparameter_hunter.space.dimensions.Categorical], stage:str=None, name:str=None, before:str=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>, after:str=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>, number:int=<class 'hyperparameter_hunter.feature_engineering.EMPTY_SENTINEL'>)

	Add an engineering step to steps to be executed with the other contents of
steps on FeatureEngineer.__call__()


	Parameters

	
	step: Callable, or `EngineerStep`, or `Categorical`
	If EngineerStep instance, will be added directly to steps. Otherwise, must be
a feature engineering step callable that requests, modifies, and returns datasets, which
will be used to instantiate a EngineerStep to add to steps. If
Categorical, categories should contain EngineerStep instances or callables



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable step will be executed



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None and step
is not an EngineerStep, will be inferred during EngineerStep instantiation



	before: String, default=EMPTY_SENTINEL
	… Experimental…



	after: String, default=EMPTY_SENTINEL
	… Experimental…



	number: String, default=EMPTY_SENTINEL
	… Experimental…


















	
class hyperparameter_hunter.EngineerStep(f: Callable, stage=None, name=None, params=None, do_validate=False)

	Bases: object

Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization
than a raw engineer step function


	Parameters

	
	f: Callable
	Feature engineering step function that requests, modifies, and returns datasets params

Step functions should follow these guidelines:



	Request as input a subset of the 11 data strings listed in params


	Do whatever you want to the DataFrames given as input


	Return new DataFrame values of the input parameters in same order as requested







If performing a task like target transformation, causing predictions to be transformed,
it is often desirable to inverse-transform the predictions to be of the expected form.
This can easily be done by returning an extra value from f (after the datasets) that
is either a callable, or a transformer class that was fitted during the execution of f
and implements an inverse_transform method. This is the only instance in which it is
acceptable for f to return values that don’t mimic its input parameters. See the
engineer function definition using SKLearn’s QuantileTransformer in the Examples
section below for an actual inverse-transformation-compatible implementation



	stage: String in {“pre_cv”, “intra_cv”}, or None, default=None
	Feature engineering stage during which the callable f will be given the datasets
params to modify and return. If None, will be inferred based on params.



	“pre_cv” functions are applied only once in the experiment: when it starts


	“intra_cv” functions are reapplied for each fold in the cross-validation splits







If stage is left to be inferred, “pre_cv” will usually be selected. However, if
any params (or parameters in the signature of f) are prefixed with “validation…”
or “non_train…”, then stage will inferred as “intra_cv”. See the Notes section
below for suggestions on the stage to use for different functions



	name: String, or None, default=None
	Identifier for the transformation applied by this engineering step. If None,
f.__name__ will be used



	params: Tuple[str], or None, default=None
	Dataset names requested by feature engineering step callable f. If None, will be
inferred by parsing the signature of f. Must be a subset of the following 11 strings:

Input Data


	“train_inputs”


	“validation_inputs”


	“holdout_inputs”


	“test_inputs”


	
	“all_inputs”
	("train_inputs" + ["validation_inputs"] + "holdout_inputs" + "test_inputs")







	
	“non_train_inputs”
	(["validation_inputs"] + "holdout_inputs" + "test_inputs")









Target Data


	“train_targets”


	“validation_targets”


	“holdout_targets”


	“all_targets”
("train_targets" + ["validation_targets"] + "holdout_targets")


	“non_train_targets”
(["validation_targets"] + "holdout_targets")




As an alternative to the above list, just remember that the first half of all parameter
names should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”},
and the second half should be either “inputs” or “targets”. The only exception to this
rule is “test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage,
the validation dataset has not yet been created and is still a part of the train
dataset. During the “intra_cv” stage, the validation dataset is created by removing a
portion of the train dataset, and their values passed to f reflect this fact. This
also means that the values of the merged (“all”/”non_train”-prefixed) datasets may or
may not contain “validation” data depending on the stage; however, this is all handled
internally, so you probably don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”



	do_validate: Boolean, or “strict”, default=False
	… Experimental…
Whether to validate the datasets resulting from feature engineering steps. If True,
hashes of the new datasets will be compared to those of the originals to ensure they
were actually modified. Results will be logged. If do_validate = “strict”, an
exception will be raised if any anomalies are found, rather than logging a message. If
do_validate = False, no validation will be performed










See also


	FeatureEngineer
	The container for EngineerStep instances - EngineerStep`s should always be provided to HyperparameterHunter through a `FeatureEngineer



	Categorical
	Can be used during optimization to search through a group of EngineerStep`s given as `categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the EngineerStep`s in `categories, or may be omitted entirely



	get_engineering_step_stage()
	More information on stage inference and situations where overriding it may be prudent







Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each
sample/row as independent entities. For example, steps like converting a string day of the
week to one-hot encoded columns, or imputing missing values by replacement with -1 might be
conducted “pre_cv”, since they are unlikely to introduce an information leakage. Conversely,
steps like scaling/normalization, whose results for the data in one row are affected by the
data in other rows should be performed “intra_cv” in order to recalculate the final values
of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the
“…_targets” counterpart accompanying the other datasets. The “targets” suffix is missing
because test data targets are never given. Note that although “test_inputs” is still
included in both “all_inputs” and “non_train_inputs”, its lack of a target column means that
“all_targets” and “non_train_targets” may have different lengths than their
“inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
...     s = StandardScaler()
...     train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
...     non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.values)
...     return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'





Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):
    File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by way of:
   - ('all_inputs', 'train_inputs')
   - ('train_inputs',)
Each dataset may only be requested by a single param for each function





Error is the same if `(train_inputs, all_inputs)` is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
...     all_inputs["square_sum"] = all_inputs.agg(
...         lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis="columns"
...     )
...     return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)





Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
...     t = QuantileTransformer(output_distribution="normal")
...     train_targets[train_targets.columns] = t.fit_transform(train_targets.values)
...     non_train_targets[train_targets.columns] = t.transform(non_train_targets.values)
...     return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in order,
>>> #   but they are followed by `t`, an instance of `QuantileTransformer` we just fitted,
>>> #   whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested as input






	Attributes

	
	f
	Feature engineering step callable that requests, modifies, and returns datasets



	name
	Identifier for the transformation applied by this engineering step



	params
	Dataset names requested by feature engineering step callable f.



	stage
	Feature engineering stage during which the EngineerStep will be executed









Methods







	__call__(self, \*\*datasets, …)

	Apply f to datasets to produce updated datasets.



	get_comparison_attrs(step_obj, dict])

	Build a dict of critical EngineerStep attributes



	get_datasets_for_f(self, datasets, …)

	Produce a dict of DataFrames containing only the merged datasets and standard datasets requested in params.



	get_key_data(self)

	Produce a dict of critical attributes describing the EngineerStep instance for use by key-making classes



	honorary_step_from_dict(step_dict, dimension)

	Get an EngineerStep from dimension that is equal to its dict form, step_dict



	inverse_transform(self, data)

	Perform the inverse transformation for this engineer step (if it exists)



	stringify(self)

	Make a stringified representation of self, compatible with EngineerStep.__eq__()







	
inverse_transform(self, data)

	Perform the inverse transformation for this engineer step (if it exists)


	Parameters

	
	data: Array-like
	Data to inverse transform with inversion or inversion.inverse_transform







	Returns

	
	Array-like
	If inversion is None, return data unmodified. Else, return the result of
inversion or inversion.inverse_transform, given data














	
get_datasets_for_f(self, datasets:Dict[str, pandas.core.frame.DataFrame]) → Dict[str, pandas.core.frame.DataFrame]

	Produce a dict of DataFrames containing only the merged datasets and standard datasets
requested in params. In other words, add the requested merged datasets and remove
unnecessary standard datasets


	Parameters

	
	datasets: DFDict
	Original dict of datasets, containing all datasets provided to
EngineerStep.__call__(), some of which may be superfluous, or may require
additional processing to resolve merged/coupled datasets







	Returns

	
	DFDict
	Updated version of datasets, in which unnecessary datasets have been filtered out, and
the requested merged datasets have been added














	
get_key_data(self) → dict

	Produce a dict of critical attributes describing the EngineerStep instance for
use by key-making classes


	Returns

	
	Dict
	Important attributes describing this EngineerStep instance














	
property f

	Feature engineering step callable that requests, modifies, and returns datasets






	
property name

	Identifier for the transformation applied by this engineering step






	
property params

	Dataset names requested by feature engineering step callable f. See documentation
in EngineerStep.__init__() for more information/restrictions






	
property stage

	Feature engineering stage during which the EngineerStep will be executed






	
static get_comparison_attrs(step_obj:Union[_ForwardRef('EngineerStep'), dict]) → dict

	Build a dict of critical EngineerStep attributes


	Parameters

	
	step_obj: EngineerStep, dict
	Object for which critical EngineerStep attributes should be collected







	Returns

	
	attr_vals: Dict
	Critical EngineerStep attributes. If step_obj does not have a necessary
attribute (for EngineerStep) or a necessary key (for dict), its value in attr_vals
will be a placeholder object. This is to facilitate comparison, while also ensuring
missing values will always be considered unequal to other values









Examples

>>> def dummy_f(train_inputs, non_train_inputs):
...     return train_inputs, non_train_inputs
>>> es_0 = EngineerStep(dummy_f)
>>> EngineerStep.get_comparison_attrs(es_0)  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{'name': 'dummy_f',
 'f': <function dummy_f at ...>,
 'params': ('train_inputs', 'non_train_inputs'),
 'stage': 'intra_cv',
 'do_validate': False}
>>> EngineerStep.get_comparison_attrs(
...     dict(foo="hello", f=dummy_f, params=["all_inputs", "all_targets"], stage="pre_cv")
... )  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{'name': <object object at ...>,
 'f': <function dummy_f at ...>,
 'params': ('all_inputs', 'all_targets'),
 'stage': 'pre_cv',
 'do_validate': <object object at ...>}










	
stringify(self) → str

	Make a stringified representation of self, compatible with EngineerStep.__eq__()


	Returns

	
	String
	String describing all critical attributes of the EngineerStep instance. This
value is not particularly human-friendly due to both its length and the fact that
EngineerStep.f is represented by its hash









Examples

>>> def dummy_f(train_inputs, non_train_inputs):
...     return train_inputs, non_train_inputs
>>> EngineerStep(dummy_f).stringify()  # doctest: +ELLIPSIS
"EngineerStep(dummy_f, ..., ('train_inputs', 'non_train_inputs'), intra_cv, False)"
>>> EngineerStep(dummy_f, stage="pre_cv").stringify()  # doctest: +ELLIPSIS
"EngineerStep(dummy_f, ..., ('train_inputs', 'non_train_inputs'), pre_cv, False)"










	
classmethod honorary_step_from_dict(step_dict:dict, dimension:hyperparameter_hunter.space.dimensions.Categorical)

	Get an EngineerStep from dimension that is equal to its dict form, step_dict


	Parameters

	
	step_dict: Dict
	Dict of form saved in Experiment description files for EngineerStep. Expected to
have following keys, with values of the given types:


	“name”: String


	“f”: String (SHA256 hash)


	“params”: List[str], or Tuple[str, …]


	“stage”: String in {“pre_cv”, “intra_cv”}


	“do_validate”: Boolean






	dimension: Categorical
	Categorical instance expected to contain the EngineerStep equivalent of step_dict
in its categories







	Returns

	
	EngineerStep
	From dimension.categories if it is the EngineerStep equivalent of step_dict







	Raises

	
	ValueError
	If dimension.categories does not contain an EngineerStep matching step_dict


















	
class hyperparameter_hunter.BayesianOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to BayesianOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.GradientBoostedRegressionTreeOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to GradientBoostedRegressionTreeOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.RandomForestOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to RandomForestOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.ExtraTreesOptimization(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to ExtraTreesOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None

	








	
class hyperparameter_hunter.DummySearch(**kwargs)

	Bases: hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro


Deprecated since version 3.0.0a2: Will be removed in 3.2.0. Renamed to DummyOptPro




	Attributes

	
	search_space_size
	The number of different hyperparameter permutations possible given the current



	source_script
	







Methods







	forge_experiment(self, model_initializer[, …])

	Define hyperparameter search scaffold for building Experiments during optimization



	get_ready(self)

	Prepare for optimization by finalizing hyperparameter space and identifying similar Experiments.



	go(self[, force_ready])

	Execute hyperparameter optimization, building an Experiment for each iteration



	set_dimensions(self)

	Locate given hyperparameters that are space choice declarations and add them to dimensions



	set_experiment_guidelines(self, \*args, …)

	
Deprecated since version 3.0.0a2.











	
source_script = None
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