
hyperledger-fabric-ca Documentation
Release master

hyperledger

Dec 11, 2018

Getting Started

1 Fabric CA User’s Guide 3
1.1 Table of Contents . 3
1.2 Overview . 4
1.3 Getting Started . 5
1.4 Fabric CA Server . 8
1.5 Fabric CA Client . 19
1.6 Getting Idemix CRI (Certificate Revocation Information) . 25
1.7 HSM . 35
1.8 File Formats . 36
1.9 Troubleshooting . 36

i

ii

hyperledger-fabric-ca Documentation, Release master

This build of the docs is from the “master” branch

Getting Started 1

hyperledger-fabric-ca Documentation, Release master

2 Getting Started

CHAPTER 1

Fabric CA User’s Guide

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric.

It provides features such as:

• registration of identities, or connects to LDAP as the user registry

• issuance of Enrollment Certificates (ECerts)

• certificate renewal and revocation

Hyperledger Fabric CA consists of both a server and a client component as described later in this document.

For developers interested in contributing to Hyperledger Fabric CA, see the Fabric CA repository for more information.

Table of Contents

1. Overview

2. Getting Started

(a) Prerequisites

(b) Install

(c) Explore the Fabric CA CLI

3. Configuration Settings

(a) A word on file paths

4. Fabric CA Server

(a) Initializing the server

(b) Starting the server

(c) Configuring the database

(d) Configuring LDAP

(e) Setting up a cluster

(f) Setting up multiple CAs

(g) Enrolling an intermediate CA

(h) Upgrading the server

5. Fabric CA Client

3

https://github.com/hyperledger/fabric-ca

hyperledger-fabric-ca Documentation, Release master

(a) Enrolling the bootstrap identity

(b) Registering a new identity

3. Enrolling a peer identity 5. Getting Identity Mixer credential for a user 6. ‘Getting Idemix CRI‘_ 7.
Reenrolling an identity 8. Revoking a certificate or identity 9. Generating a CRL (Certificate Revocation List)
10. Attribute-Based Access Control 11. Dynamic Server Configuration Update 12. Enabling TLS 13. Contact
specific CA instance

6. HSM

(a) Configuring Fabric CA server to use softhsm2

7. File Formats

(a) Fabric CA server’s configuration file format

(b) Fabric CA client’s configuration file format

8. Troubleshooting

Overview

The diagram below illustrates how the Hyperledger Fabric CA server fits into the overall Hyperledger Fabric architec-
ture.

There are two ways of interacting with a Hyperledger Fabric CA server: via the Hyperledger Fabric CA client or
through one of the Fabric SDKs. All communication to the Hyperledger Fabric CA server is via REST APIs. See
fabric-ca/swagger/swagger-fabric-ca.json for the swagger documentation for these REST APIs. You may view this
documentation via the http://editor2.swagger.io online editor.

The Hyperledger Fabric CA client or SDK may connect to a server in a cluster of Hyperledger Fabric CA servers. This
is illustrated in the top right section of the diagram. The client routes to an HA Proxy endpoint which load balances
traffic to one of the fabric-ca-server cluster members.

4 Chapter 1. Fabric CA User’s Guide

http://editor2.swagger.io

hyperledger-fabric-ca Documentation, Release master

All Hyperledger Fabric CA servers in a cluster share the same database for keeping track of identities and certificates.
If LDAP is configured, the identity information is kept in LDAP rather than the database.

A server may contain multiple CAs. Each CA is either a root CA or an intermediate CA. Each intermediate CA has a
parent CA which is either a root CA or another intermediate CA.

Getting Started

Prerequisites

• Go 1.9+ installation

• GOPATH environment variable is set correctly

• libtool and libtdhl-dev packages are installed

The following installs the libtool dependencies on Ubuntu:

sudo apt install libtool libltdl-dev

The following installs the libtool dependencies on MacOSX:

brew install libtool

Note: libtldl-dev is not necessary on MacOSX if you instal libtool via Homebrew

For more information on libtool, see https://www.gnu.org/software/libtool.

For more information on libltdl-dev, see https://www.gnu.org/software/libtool/manual/html_node/Using-libltdl.html.

Install

The following installs both the fabric-ca-server and fabric-ca-client binaries in $GOPATH/bin.

go get -u github.com/hyperledger/fabric-ca/cmd/...

Note: If you have already cloned the fabric-ca repository, make sure you are on the master branch before running the
‘go get’ command above. Otherwise, you might see the following error:

<gopath>/src/github.com/hyperledger/fabric-ca; git pull --ff-only
There is no tracking information for the current branch.
Please specify which branch you want to merge with.
See git-pull(1) for details.

git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so with:

git branch --set-upstream-to=<remote>/<branch> tlsdoc

package github.com/hyperledger/fabric-ca/cmd/fabric-ca-client: exit status 1

1.3. Getting Started 5

https://www.gnu.org/software/libtool
https://www.gnu.org/software/libtool/manual/html_node/Using-libltdl.html

hyperledger-fabric-ca Documentation, Release master

Start Server Natively

The following starts the fabric-ca-server with default settings.

fabric-ca-server start -b admin:adminpw

The -b option provides the enrollment ID and secret for a bootstrap administrator; this is required if LDAP is not
enabled with the “ldap.enabled” setting.

A default configuration file named fabric-ca-server-config.yaml is created in the local directory which can be cus-
tomized.

Start Server via Docker

Docker Hub

Go to: https://hub.docker.com/r/hyperledger/fabric-ca/tags/

Find the tag that matches the architecture and version of fabric-ca that you want to pull.

Navigate to $GOPATH/src/github.com/hyperledger/fabric-ca/docker/server and open up docker-compose.yml in an
editor.

Change the image line to reflect the tag you found previously. The file may look like this for an x86 architecture for
version beta.

fabric-ca-server:
image: hyperledger/fabric-ca:x86_64-1.0.0-beta
container_name: fabric-ca-server
ports:
- "7054:7054"

environment:
- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

volumes:
- "./fabric-ca-server:/etc/hyperledger/fabric-ca-server"

command: sh -c 'fabric-ca-server start -b admin:adminpw'

Open up a terminal in the same directory as the docker-compose.yml file and execute the following:

docker-compose up -d

This will pull down the specified fabric-ca image in the compose file if it does not already exist, and start an instance
of the fabric-ca server.

Building Your Own Docker image

You can build and start the server via docker-compose as shown below.

cd $GOPATH/src/github.com/hyperledger/fabric-ca
make docker
cd docker/server
docker-compose up -d

The hyperledger/fabric-ca docker image contains both the fabric-ca-server and the fabric-ca-client.

6 Chapter 1. Fabric CA User’s Guide

https://hub.docker.com/r/hyperledger/fabric-ca/tags/

hyperledger-fabric-ca Documentation, Release master

cd $GOPATH/src/github.com/hyperledger/fabric-ca
FABRIC_CA_DYNAMIC_LINK=true make docker
cd docker/server
docker-compose up -d

Explore the Fabric CA CLI

This section simply provides the usage messages for the Fabric CA server and client for convenience. Additional
usage information is provided in following sections.

The following links shows the Server Command Line and Client Command Line.

Note: Note that command line options that are string slices (lists) can be specified either by specifying the option with
comma-separated list elements or by specifying the option multiple times, each with a string value that make up the
list. For example, to specify host1 and host2 for the csr.hosts option, you can either pass --csr.hosts
'host1,host2' or --csr.hosts host1 --csr.hosts host2 . When using the former format, please
make sure there are no space before or after any commas.

Back to Top

Configuration Settings

The Fabric CA provides 3 ways to configure settings on the Fabric CA server and client. The precedence order is:

1. CLI flags

2. Environment variables

3. Configuration file

In the remainder of this document, we refer to making changes to configuration files. However, configuration file
changes can be overridden through environment variables or CLI flags.

For example, if we have the following in the client configuration file:

tls:
Enable TLS (default: false)
enabled: false

TLS for the client's listenting port (default: false)
certfiles:
client:
certfile: cert.pem
keyfile:

The following environment variable may be used to override the cert.pem setting in the configuration file:

export FABRIC_CA_CLIENT_TLS_CLIENT_CERTFILE=cert2.pem

If we wanted to override both the environment variable and configuration file, we can use a command line flag.

fabric-ca-client enroll --tls.client.certfile cert3.pem

The same approach applies to fabric-ca-server, except instead of using FABIRC_CA_CLIENT as the prefix to envi-
ronment variables, FABRIC_CA_SERVER is used.

1.3. Getting Started 7

hyperledger-fabric-ca Documentation, Release master

A word on file paths

All the properties in the Fabric CA server and client configuration file that specify file names support both relative and
absolute paths. Relative paths are relative to the config directory, where the configuration file is located. For example,
if the config directory is ~/config and the tls section is as shown below, the Fabric CA server or client will look
for the root.pem file in the ~/config directory, cert.pem file in the ~/config/certs directory and the
key.pem file in the /abs/path directory

tls:
enabled: true
certfiles:
- root.pem

client:
certfile: certs/cert.pem
keyfile: /abs/path/key.pem

Back to Top

Fabric CA Server

This section describes the Fabric CA server.

You may initialize the Fabric CA server before starting it. This provides an opportunity for you to generate a default
configuration file that can be reviewed and customized before starting the server.

The Fabric CA server’s home directory is determined as follows:

• if the –home command line option is set, use its value

• otherwise, if the FABRIC_CA_SERVER_HOME environment variable is set, use its value

• otherwise, if FABRIC_CA_HOME environment variable is set, use its value

• otherwise, if the CA_CFG_PATH environment variable is set, use its value

• otherwise, use current working directory

For the remainder of this server section, we assume that you have set the FABRIC_CA_HOME environment variable
to $HOME/fabric-ca/server .

The instructions below assume that the server configuration file exists in the server’s home directory.

Initializing the server

Initialize the Fabric CA server as follows:

fabric-ca-server init -b admin:adminpw

The -b (bootstrap identity) option is required for initialization when LDAP is disabled. At least one bootstrap identity
is required to start the Fabric CA server; this identity is the server administrator.

The server configuration file contains a Certificate Signing Request (CSR) section that can be configured. The follow-
ing is a sample CSR.

cn: fabric-ca-server
names:

- C: US
ST: "North Carolina"

8 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

L:
O: Hyperledger
OU: Fabric

hosts:
- host1.example.com
- localhost

ca:
expiry: 131400h
pathlength: 1

All of the fields above pertain to the X.509 signing key and certificate which is generated by the
fabric-ca-server init . This corresponds to the ca.certfile and ca.keyfile files in the server’s
configuration file. The fields are as follows:

• cn is the Common Name

• O is the organization name

• OU is the organizational unit

• L is the location or city

• ST is the state

• C is the country

If custom values for the CSR are required, you may customize the configuration file, delete the files specified by
the ca.certfile and ca.keyfile configuration items, and then run the fabric-ca-server init -b
admin:adminpw command again.

The fabric-ca-server init command generates a self-signed CA certificate unless the -u
<parent-fabric-ca-server-URL> option is specified. If the -u is specified, the server’s CA certificate is
signed by the parent Fabric CA server. In order to authenticate to the parent Fabric CA server, the URL must be of the
form <scheme>://<enrollmentID>:<secret>@<host>:<port> , where <enrollmentID> and <secret>
correspond to an identity with an ‘hf.IntermediateCA’ attribute whose value equals ‘true’. The fabric-ca-server
init command also generates a default configuration file named fabric-ca-server-config.yaml in the server’s home
directory.

If you want the Fabric CA server to use a CA signing certificate and key file which you provide, you must place your
files in the location referenced by ca.certfile and ca.keyfile respectively. Both files must be PEM-encoded
and must not be encrypted. More specifically, the contents of the CA certificate file must begin with -----BEGIN
CERTIFICATE----- and the contents of the key file must begin with -----BEGIN PRIVATE KEY----- and
not -----BEGIN ENCRYPTED PRIVATE KEY----- .

Algorithms and key sizes

The CSR can be customized to generate X.509 certificates and keys that support Elliptic Curve (ECDSA). The follow-
ing setting is an example of the implementation of Elliptic Curve Digital Signature Algorithm (ECDSA) with curve
prime256v1 and signature algorithm ecdsa-with-SHA256 :

key:
algo: ecdsa
size: 256

The choice of algorithm and key size are based on security needs.

Elliptic Curve (ECDSA) offers the following key size options:

1.4. Fabric CA Server 9

hyperledger-fabric-ca Documentation, Release master

size ASN1 OID Signature Algorithm
256 prime256v1 ecdsa-with-SHA256
384 secp384r1 ecdsa-with-SHA384
521 secp521r1 ecdsa-with-SHA512

Starting the server

Start the Fabric CA server as follows:

fabric-ca-server start -b <admin>:<adminpw>

If the server has not been previously initialized, it will initialize itself as it starts for the first time. During this
initialization, the server will generate the ca-cert.pem and ca-key.pem files if they don’t yet exist and will also create a
default configuration file if it does not exist. See the Initialize the Fabric CA server section.

Unless the Fabric CA server is configured to use LDAP, it must be configured with at least one pre-registered bootstrap
identity to enable you to register and enroll other identities. The -b option specifies the name and password for a
bootstrap identity.

To cause the Fabric CA server to listen on https rather than http , set tls.enabled to true .

SECURITY WARNING: The Fabric CA server should always be started with TLS enabled (tls.enabled set to
true). Failure to do so leaves the server vulnerable to an attacker with access to network traffic.

To limit the number of times that the same secret (or password) can be used for enrollment, set the
registry.maxenrollments in the configuration file to the appropriate value. If you set the value to 1, the
Fabric CA server allows passwords to only be used once for a particular enrollment ID. If you set the value to -1, the
Fabric CA server places no limit on the number of times that a secret can be reused for enrollment. The default value
is -1. Setting the value to 0, the Fabric CA server will disable enrollment for all identities and registration of identities
will not be allowed.

The Fabric CA server should now be listening on port 7054.

You may skip to the Fabric CA Client section if you do not want to configure the Fabric CA server to run in a cluster
or to use LDAP.

Configuring the database

This section describes how to configure the Fabric CA server to connect to PostgreSQL or MySQL databases. The
default database is SQLite and the default database file is fabric-ca-server.db in the Fabric CA server’s home
directory.

If you don’t care about running the Fabric CA server in a cluster, you may skip this section; otherwise, you must
configure either PostgreSQL or MySQL as described below. Fabric CA supports the following database versions in a
cluster setup:

• PostgreSQL: 9.5.5 or later

• MySQL: 5.7 or later

PostgreSQL

The following sample may be added to the server’s configuration file in order to connect to a PostgreSQL database.
Be sure to customize the various values appropriately. There are limitations on what characters are allowed in the
database name. Please refer to the following Postgres documentation for more information: https://www.postgresql.
org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

10 Chapter 1. Fabric CA User’s Guide

https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS
https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

hyperledger-fabric-ca Documentation, Release master

db:
type: postgres
datasource: host=localhost port=5432 user=Username password=Password dbname=fabric_

→˓ca sslmode=verify-full

Specifying sslmode configures the type of SSL authentication. Valid values for sslmode are:

Mode Description
dis-
able

No SSL

re-
quire

Always SSL (skip verification)

verify-
ca

Always SSL (verify that the certificate presented by the server was signed by a trusted CA)

verify-
full

Same as verify-ca AND verify that the certificate presented by the server was signed by a trusted CA
and the server hostname matches the one in the certificate

If you would like to use TLS, then the db.tls section in the Fabric CA server configuration file must be specified.
If SSL client authentication is enabled on the PostgreSQL server, then the client certificate and key file must also be
specified in the db.tls.client section. The following is an example of the db.tls section:

db:
...
tls:

enabled: true
certfiles:

- db-server-cert.pem
client:

certfile: db-client-cert.pem
keyfile: db-client-key.pem

certfiles - A list of PEM-encoded trusted root certificate files.
certfile and keyfile - PEM-encoded certificate and key files that are used by the Fabric CA server to communicate
securely with the PostgreSQL server

PostgreSQL SSL Configuration

Basic instructions for configuring SSL on the PostgreSQL server:

1. In postgresql.conf, uncomment SSL and set to “on” (SSL=on)

2. Place certificate and key files in the PostgreSQL data directory.

Instructions for generating self-signed certificates for: https://www.postgresql.org/docs/9.5/static/ssl-tcp.html

Note: Self-signed certificates are for testing purposes and should not be used in a production environment

1.4. Fabric CA Server 11

https://www.postgresql.org/docs/9.5/static/ssl-tcp.html

hyperledger-fabric-ca Documentation, Release master

PostgreSQL Server - Require Client Certificates

1. Place certificates of the certificate authorities (CAs) you trust in the file root.crt in the PostgreSQL data directory

2. In postgresql.conf, set “ssl_ca_file” to point to the root cert of the client (CA cert)

3. Set the clientcert parameter to 1 on the appropriate hostssl line(s) in pg_hba.conf.

For more details on configuring SSL on the PostgreSQL server, please refer to the following PostgreSQL documenta-
tion: https://www.postgresql.org/docs/9.4/static/libpq-ssl.html

MySQL

The following sample may be added to the Fabric CA server configuration file in order to connect to a MySQL
database. Be sure to customize the various values appropriately. There are limitations on what characters are allowed
in the database name. Please refer to the following MySQL documentation for more information: https://dev.mysql.
com/doc/refman/5.7/en/identifiers.html

On MySQL 5.7.X, certain modes affect whether the server permits ‘0000-00-00’ as a valid date. It might be necessary
to relax the modes that MySQL server uses. We want to allow the server to be able to accept zero date values.

In my.cnf, find the configuration option sql_mode and remove NO_ZERO_DATE if present. Restart MySQL server
after making this change.

Please refer to the following MySQL documentation on different modes available and select the appropriate settings
for the specific version of MySQL that is being used.

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

db:
type: mysql
datasource: root:rootpw@tcp(localhost:3306)/fabric_ca?parseTime=true&tls=custom

If connecting over TLS to the MySQL server, the db.tls.client section is also required as described in the
PostgreSQL section above.

MySQL SSL Configuration

Basic instructions for configuring SSL on MySQL server:

1. Open or create my.cnf file for the server. Add or uncomment the lines below in the [mysqld] section. These
should point to the key and certificates for the server, and the root CA cert.

Instructions on creating server and client-side certficates: http://dev.mysql.com/doc/refman/5.7/en/
creating-ssl-files-using-openssl.html

[mysqld] ssl-ca=ca-cert.pem ssl-cert=server-cert.pem ssl-key=server-key.pem

Can run the following query to confirm SSL has been enabled.

mysql> SHOW GLOBAL VARIABLES LIKE ‘have_%ssl’;

Should see:

Variable_name Value
have_openssl YES
have_ssl YES

2. After the server-side SSL configuration is finished, the next step is to create a user who has a privilege to access
the MySQL server over SSL. For that, log in to the MySQL server, and type:

12 Chapter 1. Fabric CA User’s Guide

https://www.postgresql.org/docs/9.4/static/libpq-ssl.html
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html

hyperledger-fabric-ca Documentation, Release master

mysql> GRANT ALL PRIVILEGES ON . TO ‘ssluser’@’%’ IDENTIFIED BY ‘password’ REQUIRE SSL;
mysql> FLUSH PRIVILEGES;

If you want to give a specific IP address from which the user will access the server change the ‘%’ to the specific
IP address.

MySQL Server - Require Client Certificates

Options for secure connections are similar to those used on the server side.

• ssl-ca identifies the Certificate Authority (CA) certificate. This option, if used, must specify the same certificate
used by the server.

• ssl-cert identifies MySQL server’s certificate.

• ssl-key identifies MySQL server’s private key.

Suppose that you want to connect using an account that has no special encryption requirements or was created using
a GRANT statement that includes the REQUIRE SSL option. As a recommended set of secure-connection options,
start the MySQL server with at least –ssl-cert and –ssl-key options. Then set the db.tls.certfiles property in
the server configuration file and start the Fabric CA server.

To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the
client must also specify proper client key and certificate files; otherwise, the MySQL server will reject the connection.
To specify client key and certificate files for the Fabric CA server, set the db.tls.client.certfile , and
db.tls.client.keyfile configuration properties.

Configuring LDAP

The Fabric CA server can be configured to read from an LDAP server.

In particular, the Fabric CA server may connect to an LDAP server to do the following:

• authenticate an identity prior to enrollment

• retrieve an identity’s attribute values which are used for authorization.

Modify the LDAP section of the Fabric CA server’s configuration file to configure the server to connect to an LDAP
server.

ldap:
Enables or disables the LDAP client (default: false)
enabled: false
The URL of the LDAP server
url: <scheme>://<adminDN>:<adminPassword>@<host>:<port>/<base>
userfilter: <filter>
attribute:

'names' is an array of strings that identify the specific attributes
which are requested from the LDAP server.
names: <LDAPAttrs>
The 'converters' section is used to convert LDAP attribute values
to fabric CA attribute values.
#
For example, the following converts an LDAP 'uid' attribute
whose value begins with 'revoker' to a fabric CA attribute
named "hf.Revoker" with a value of "true" (because the expression
evaluates to true).
converters:
- name: hf.Revoker
value: attr("uid") =~ "revoker*"
#

1.4. Fabric CA Server 13

hyperledger-fabric-ca Documentation, Release master

As another example, assume a user has an LDAP attribute named
'member' which has multiple values of "dn1", "dn2", and "dn3".
Further assume the following configuration.
converters:
- name: myAttr
value: map(attr("member"),"groups")
maps:
groups:
- name: dn1
value: orderer
- name: dn2
value: peer
The value of the user's 'myAttr' attribute is then computed to be
"orderer,peer,dn3". This is because the value of 'attr("member")' is
"dn1,dn2,dn3", and the call to 'map' with a 2nd argument of
"group" replaces "dn1" with "orderer" and "dn2" with "peer".
converters:

- name: <fcaAttrName>
value: <fcaExpr>

maps:
<mapName>:

- name: <from>
value: <to>

Where:

• scheme is one of ldap or ldaps;

• adminDN is the distinquished name of the admin user;

• pass is the password of the admin user;

• host is the hostname or IP address of the LDAP server;

• port is the optional port number, where default 389 for ldap and 636 for ldaps;

• base is the optional root of the LDAP tree to use for searches;

• filter is a filter to use when searching to convert a login user name to a distinguished name. For example, a
value of (uid=%s) searches for LDAP entries with the value of a uid attribute whose value is the login user
name. Similarly, (email=%s) may be used to login with an email address.

• LDAPAttrs is an array of LDAP attribute names to request from the LDAP server on a user’s behalf;

• the attribute.converters section is used to convert LDAP attributes to fabric CA attributes, where *
fcaAttrName is the name of a fabric CA attribute; * fcaExpr is an expression whose evaluated value
is assigned to the fabric CA attribute. For example, suppose that <LDAPAttrs> is [”uid”], <fcaAttrName> is
‘hf.Revoker’, and <fcaExpr> is ‘attr(“uid”) =~ “revoker*”’. This means that an attribute named “uid” is re-
quested from the LDAP server on a user’s behalf. The user is then given a value of ‘true’ for the ‘hf.Revoker’
attribute if the value of the user’s ‘uid’ LDAP attribute begins with ‘revoker’; otherwise, the user is given a value
of ‘false’ for the ‘hf.Revoker’ attribute.

• the attribute.maps section is used to map LDAP response values. The typical use case is to map a distinguished
name associated with an LDAP group to an identity type.

The LDAP expression language uses the govaluate package as described at https://github.com/Knetic/govaluate/blob/
master/MANUAL.md. This defines operators such as “=~” and literals such as “revoker*”, which is a regular expres-
sion. The LDAP-specific variables and functions which extend the base govaluate language are as follows:

• DN is a variable equal to the user’s distinguished name.

• affiliation is a variable equal to the user’s affiliation.

14 Chapter 1. Fabric CA User’s Guide

https://github.com/Knetic/govaluate/blob/master/MANUAL.md
https://github.com/Knetic/govaluate/blob/master/MANUAL.md

hyperledger-fabric-ca Documentation, Release master

• attr is a function which takes 1 or 2 arguments. The 1st argument is an LDAP attribute name. The 2nd
argument is a separator string which is used to join multiple values into a single string; the default separator
string is ”,”. The attr function always returns a value of type ‘string’.

• map is a function which takes 2 arguments. The 1st argument is any string. The second argument is the name
of a map which is used to perform string substitution on the string from the 1st argument.

• if is a function which takes a 3 arguments where the first argument must resolve to a boolean value. If it
evaluates to true, the second argument is returned; otherwise, the third argument is returned.

For example, the following expression evaluates to true if the user has a distinguished name ending in “O=org1,C=US”,
or if the user has an affiliation beginning with “org1.dept2.” and also has the “admin” attribute of “true”.

DN =~ “*O=org1,C=US” || (affiliation =~ “org1.dept2.*” && attr(‘admin’) = ‘true’)

NOTE: Since the attr function always returns a value of type ‘string’, numeric operators may not be used to
construct expressions. For example, the following is NOT a valid expression:

value: attr("gidNumber) >= 10000 && attr("gidNumber) < 10006

Alternatively, a regular expression enclosed in quotes as shown below may be used to return an equivalent result:

value: attr("gidNumber") =~ "1000[0-5]$" || attr("mail") == "root@example.com"

The following is a sample configuration section for the default setting for the OpenLDAP server whose docker image
is at https://github.com/osixia/docker-openldap .

ldap:
enabled: true
url: ldap://cn=admin,dc=example,dc=org:admin@localhost:10389/dc=example,dc=org
userfilter: (uid=%s)

See FABRIC_CA/scripts/run-ldap-tests for a script which starts an OpenLDAP docker image, configures
it, runs the LDAP tests in FABRIC_CA/cli/server/ldap/ldap_test.go , and stops the OpenLDAP server.

When LDAP is configured, enrollment works as follows:

• The Fabric CA client or client SDK sends an enrollment request with a basic authorization header.

• The Fabric CA server receives the enrollment request, decodes the identity name and password in the autho-
rization header, looks up the DN (Distinguished Name) associated with the identity name using the “userfilter”
from the configuration file, and then attempts an LDAP bind with the identity’s password. If the LDAP bind is
successful, the enrollment processing is authorized and can proceed.

Setting up a cluster

You may use any IP sprayer to load balance to a cluster of Fabric CA servers. This section provides an example of how
to set up Haproxy to route to a Fabric CA server cluster. Be sure to change hostname and port to reflect the settings of
your Fabric CA servers.

haproxy.conf

global
maxconn 4096
daemon

defaults
mode http
maxconn 2000

1.4. Fabric CA Server 15

hyperledger-fabric-ca Documentation, Release master

timeout connect 5000
timeout client 50000
timeout server 50000

listen http-in
bind *:7054
balance roundrobin
server server1 hostname1:port
server server2 hostname2:port
server server3 hostname3:port

Note: If using TLS, need to use mode tcp .

Setting up multiple CAs

The fabric-ca server by default consists of a single default CA. However, additional CAs can be added to a single
server by using cafiles or cacount configuration options. Each additional CA will have its own home directory.

cacount:

The cacount provides a quick way to start X number of default additional CAs. The home directory will be relative to
the server directory. With this option, the directory structure will be as follows:

--<Server Home>
|--ca
|--ca1
|--ca2

Each additional CA will get a default configuration file generated in it’s home directory, within the configuration file
it will contain a unique CA name.

For example, the following command will start 2 default CA instances:

fabric-ca-server start -b admin:adminpw --cacount 2

cafiles:

If absolute paths are not provided when using the cafiles configuration option, the CA home directory will be relative
to the server directory.

To use this option, CA configuration files must have already been generated and configured for each CA that is to be
started. Each configuration file must have a unique CA name and Common Name (CN), otherwise the server will fail
to start as these names must be unique. The CA configuration files will override any default CA configuration, and
any missing options in the CA configuration files will be replaced by the values from the default CA.

The precedence order will be as follows:

1. CA Configuration file

2. Default CA CLI flags

3. Default CA Environment variables

4. Default CA Configuration file

A CA configuration file must contain at least the following:

16 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

ca:
Name of this CA
name: <CANAME>

csr:
cn: <COMMONNAME>

You may configure your directory structure as follows:

--<Server Home>
|--ca
|--ca1

|-- fabric-ca-config.yaml
|--ca2

|-- fabric-ca-config.yaml

For example, the following command will start two customized CA instances:

fabric-ca-server start -b admin:adminpw --cafiles ca/ca1/fabric-ca-config.yaml
--cafiles ca/ca2/fabric-ca-config.yaml

Enrolling an intermediate CA

In order to create a CA signing certificate for an intermediate CA, the intermediate CA must enroll with a parent CA
in the same way that a fabric-ca-client enrolls with a CA. This is done by using the -u option to specify the URL of
the parent CA and the enrollment ID and secret as shown below. The identity associated with this enrollment ID must
have an attribute with a name of “hf.IntermediateCA” and a value of “true”. The CN (or Common Name) of the issued
certificate will be set to the enrollment ID. An error will occur if an intermediate CA tries to explicitly specify a CN
value.

fabric-ca-server start -b admin:adminpw -u http://<enrollmentID>:<secret>@
→˓<parentserver>:<parentport>

For other intermediate CA flags see Fabric CA server’s configuration file format section.

Upgrading the server

The Fabric CA server must be upgraded before upgrading the Fabric CA client. Prior to upgrade, it is suggested that
the current database be backed up:

• If using sqlite3, backup the current database file (which is named fabric-ca-server.db by default).

• For other database types, use the appropriate backup/replication mechanism.

To upgrade a single instance of Fabric CA server:

1. Stop the fabric-ca-server process.

2. Ensure the current database is backed up.

3. Replace previous fabric-ca-server binary with the upgraded version.

4. Launch the fabric-ca-server process.

5. Verify the fabric-ca-server process is available with the following command where <host> is the hostname on
which the server was started:

1.4. Fabric CA Server 17

hyperledger-fabric-ca Documentation, Release master

fabric-ca-client getcainfo -u http://<host>:7054

Upgrading a cluster:

To upgrade a cluster of fabric-ca-server instances using either a MySQL or Postgres database, perform the following
procedure. We assume that you are using haproxy to load balance to two fabric-ca-server cluster members on host1
and host2, respectively, both listening on port 7054. After this procedure, you will be load balancing to upgraded
fabric-ca-server cluster members on host3 and host4 respectively, both listening on port 7054.

In order to monitor the changes using haproxy stats, enable statistics collection. Add the following lines to the global
section of the haproxy configuration file:

stats socket /var/run/haproxy.sock mode 666 level operator
stats timeout 2m

Restart haproxy to pick up the changes:

haproxy -f <configfile> -st $(pgrep haproxy)

To display summary information from the haproxy “show stat” command, the following function may prove useful for
parsing the copious amount of CSV data returned:

haProxyShowStats() {
echo "show stat" | nc -U /var/run/haproxy.sock |sed '1s/^# *//'|

awk -F',' -v fmt="%4s %12s %10s %6s %6s %4s %4s\n" '
{ if (NR==1) for (i=1;i<=NF;i++) f[tolower($i)]=i }
{ printf fmt, $f["sid"],$f["pxname"],$f["svname"],$f["status"],

$f["weight"],$f["act"],$f["bck"] }'
}

1. Initially your haproxy configuration file is similar to the following:

server server1 host1:7054 check
server server2 host2:7054 check

Change this configuration to the following:

server server1 host1:7054 check backup
server server2 host2:7054 check backup
server server3 host3:7054 check
server server4 host4:7054 check

2. Restart the HA proxy with the new configuration as follows:

haproxy -f <configfile> -st $(pgrep haproxy)

"haProxyShowStats" will now reflect the modified configuration, with two active, older-version backup
servers and two (yet to be started) upgraded servers:

sid pxname svname status weig act bck
1 fabric-cas server3 DOWN 1 1 0
2 fabric-cas server4 DOWN 1 1 0
3 fabric-cas server1 UP 1 0 1
4 fabric-cas server2 UP 1 0 1

18 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

3. Install upgraded binaries of fabric-ca-server on host3 and host4. The new upgraded servers on host3 and
host4 should be configured to use the same database as their older counterparts on host1 and host2. Af-
ter starting the upgraded servers, the database will be automatically migrated. The haproxy will forward
all new traffic to the upgraded servers, since they are not configured as backup servers. Verify using the
"fabric-ca-client getcainfo" command that your cluster is still functioning appropriately before
proceeding. Also, "haProxyShowStats" should now reflect that all servers are active, similar to the fol-
lowing:

sid pxname svname status weig act bck
1 fabric-cas server3 UP 1 1 0
2 fabric-cas server4 UP 1 1 0
3 fabric-cas server1 UP 1 0 1
4 fabric-cas server2 UP 1 0 1

4. Stop the old servers on host1 and host2. Verify using the "fabric-ca-client getcainfo" command
that your new cluster is still functioning appropriately before proceeding. Then remove the older server backup
configuration from the haproxy configuration file, so that it looks similar to the following:

server server3 host3:7054 check
server server4 host4:7054 check

5. Restart the HA proxy with the new configuration as follows:

haproxy -f <configfile> -st $(pgrep haproxy)

"haProxyShowStats" will now reflect the modified configuration, with two active servers which have been
upgraded to the new version:

sid pxname svname status weig act bck
1 fabric-cas server3 UP 1 1 0
2 fabric-cas server4 UP 1 1 0

Back to Top

Fabric CA Client

This section describes how to use the fabric-ca-client command.

The Fabric CA client’s home directory is determined as follows:

• if the –home command line option is set, use its value

• otherwise, if the FABRIC_CA_CLIENT_HOME environment variable is set, use its value

• otherwise, if the FABRIC_CA_HOME environment variable is set, use its value

• otherwise, if the CA_CFG_PATH environment variable is set, use its value

• otherwise, use $HOME/.fabric-ca-client

The instructions below assume that the client configuration file exists in the client’s home directory.

Enrolling the bootstrap identity

First, if needed, customize the CSR (Certificate Signing Request) section in the client configuration file. Note that
csr.cn field must be set to the ID of the bootstrap identity. Default CSR values are shown below:

1.5. Fabric CA Client 19

hyperledger-fabric-ca Documentation, Release master

csr:
cn: <<enrollment ID>>
key:
algo: ecdsa
size: 256

names:
- C: US

ST: North Carolina
L:
O: Hyperledger Fabric
OU: Fabric CA

hosts:
- <<hostname of the fabric-ca-client>>
ca:
pathlen:
pathlenzero:
expiry:

See CSR fields for description of the fields.

Then run fabric-ca-client enroll command to enroll the identity. For example, following command enrolls
an identity whose ID is admin and password is adminpw by calling Fabric CA server that is running locally at 7054
port.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client enroll -u http://admin:adminpw@localhost:7054

The enroll command stores an enrollment certificate (ECert), corresponding private key and CA certificate chain PEM
files in the subdirectories of the Fabric CA client’s msp directory. You will see messages indicating where the PEM
files are stored.

Registering a new identity

The identity performing the register request must be currently enrolled, and must also have the proper authority to
register the type of the identity that is being registered.

In particular, three authorization checks are made by the Fabric CA server during registration as follows:

1. The registrar (i.e. the invoker) must have the “hf.Registrar.Roles” attribute with a comma-separated list of
values where one of the values equals the type of identity being registered; for example, if the registrar has the
“hf.Registrar.Roles” attribute with a value of “peer,app,user”, the registrar can register identities of type peer,
app, and user, but not orderer.

2. The affiliation of the registrar must be equal to or a prefix of the affiliation of the identity being registered. For
example, an registrar with an affiliation of “a.b” may register an identity with an affiliation of “a.b.c” but may
not register an identity with an affiliation of “a.c”. If root affiliation is required for an identity, then the affiliation
request should be a dot (”.”) and the registrar must also have root affiliation. If no affiliation is specified in the
registration request, the identity being registered will be given the affiliation of the registrar.

3. The registrar can register a user with attributes if all of the following conditions are satisfied:

• Registrar can register Fabric CA reserved attributes that have the prefix ‘hf.’ only if the registrar possesses
the attribute and it is part of the value of the hf.Registrar.Attributes’ attribute. Furthermore, if the attribute
is of type list then the value of attribute being registered must be equal to or a subset of the value that the
registrar has. If the attribute is of type boolean, the registrar can register the attribute only if the registrar’s
value for the attribute is ‘true’.

20 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

• Registering custom attributes (i.e. any attribute whose name does not begin with ‘hf.’) requires that the reg-
istrar has the ‘hf.Registar.Attributes’ attribute with the value of the attribute or pattern being registered. The
only supported pattern is a string with a “*” at the end. For example, “a.b.*” is a pattern which matches all
attribute names beginning with “a.b.”. For example, if the registrar has hf.Registrar.Attributes=orgAdmin,
then the only attribute which the registrar can add or remove from an identity is the ‘orgAdmin’ attribute.

• If the requested attribute name is ‘hf.Registrar.Attributes’, an additional check is performed to see
if the requested values for this attribute are equal to or a subset of the registrar’s values for
‘hf.Registrar.Attributes’. For this to be true, each requested value must match a value in the registrar’s value
for ‘hf.Registrar.Attributes’ attribute. For example, if the registrar’s value for ‘hf.Registrar.Attributes’ is
‘a.b.*, x.y.z’ and the requested attribute value is ‘a.b.c, x.y.z’, it is valid because ‘a.b.c’ matches ‘a.b.*’ and
‘x.y.z’ matches the registrar’s ‘x.y.z’ value.

Examples:

Valid Scenarios:

1. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute ‘a.b.c’,
it is valid ‘a.b.c’ matches ‘a.b.*’.

2. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute ‘x.y.z’,
it is valid because ‘x.y.z’ matches the registrar’s ‘x.y.z’ value.

3. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and the requested attribute value
is ‘a.b.c, x.y.z’, it is valid because ‘a.b.c’ matches ‘a.b.*’ and ‘x.y.z’ matches the registrar’s ‘x.y.z’
value.

4. If the registrar has the attribute ‘hf.Registrar.Roles = peer,client’ and the requested attribute value is
‘peer’ or ‘peer,client’, it is valid because the requested value is equal to or a subset of the registrar’s
value.

Invalid Scenarios:

1. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute
‘hf.Registar.Attributes = a.b.c, x.y.*’, it is invalid because requested attribute ‘x.y.*’ is not a pattern
owned by the registrar. The value ‘x.y.*’ is a superset of ‘x.y.z’.

2. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute
‘hf.Registar.Attributes = a.b.c, x.y.z, attr1’, it is invalid because the registrar’s ‘hf.Registrar.Attributes’
attribute values do not contain ‘attr1’.

3. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute ‘a.b’,
it is invalid because the value ‘a.b’ is not contained in ‘a.b.*’.

4. If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and is registering attribute ‘x.y’,
it is invalid because ‘x.y’ is not contained by ‘x.y.z’.

5. If the registrar has the attribute ‘hf.Registrar.Roles = peer,client’ and the requested attribute value is
‘peer,client,orderer’, it is invalid because the registrar does not have the orderer role in its value of
hf.Registrar.Roles attribute.

6. If the registrar has the attribute ‘hf.Revoker = false’ and the requested attribute value is ‘true’, it is
invalid because the hf.Revoker attribute is a boolean attribute and the registrar’s value for the attribute
is not ‘true’.

The table below lists all the attributes that can be registered for an identity. The names of attributes are case sensitive.

1.5. Fabric CA Client 21

hyperledger-fabric-ca Documentation, Release master

Name Type Description
hf.Registrar.Roles List List of roles that the registrar is allowed to manage
hf.Registrar.DelegateRolesList List of roles that the registrar is allowed to give to a registree for its

‘hf.Registrar.Roles’ attribute
hf.Registrar.Attributes List List of attributes that registrar is allowed to register
hf.GenCRL Boolean Identity is able to generate CRL if attribute value is true
hf.Revoker Boolean Identity is able to revoke a user and/or certificates if attribute value is true
hf.AffiliationMgr Boolean Identity is able to manage affiliations if attribute value is true
hf.IntermediateCA Boolean Identity is able to enroll as an intermediate CA if attribute value is true

Note: When registering an identity, you specify an array of attribute names and values. If the array specifies multiple
array elements with the same name, only the last element is currently used. In other words, multi-valued attributes are
not currently supported.

The following command uses the admin identity’s credentials to register a new user with an enrollment id of “admin2”,
an affiliation of “org1.department1”, an attribute named “hf.Revoker” with a value of “true”, and an attribute named
“admin” with a value of “true”. The ”:ecert” suffix means that by default the “admin” attribute and its value will be
inserted into the user’s enrollment certificate, which can then be used to make access control decisions.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name admin2 --id.affiliation org1.department1 --id.
→˓attrs 'hf.Revoker=true,admin=true:ecert'

The password, also known as the enrollment secret, is printed. This password is required to enroll the identity. This
allows an administrator to register an identity and give the enrollment ID and the secret to someone else to enroll the
identity.

Multiple attributes can be specified as part of the –id.attrs flag, each attribute must be comma separated. For an
attribute value that contains a comma, the attribute must be encapsulated in double quotes. See example below.

fabric-ca-client register -d --id.name admin2 --id.affiliation org1.department1 --id.
→˓attrs '"hf.Registrar.Roles=peer,user",hf.Revoker=true'

or

fabric-ca-client register -d --id.name admin2 --id.affiliation org1.department1 --id.
→˓attrs '"hf.Registrar.Roles=peer,user"' --id.attrs hf.Revoker=true

You may set default values for any of the fields used in the register command by editing the client’s configuration file.
For example, suppose the configuration file contains the following:

id:
name:
type: user
affiliation: org1.department1
maxenrollments: -1
attributes:
- name: hf.Revoker

value: true
- name: anotherAttrName

value: anotherAttrValue

The following command would then register a new identity with an enrollment id of “admin3” which it takes from the
command line, and the remainder is taken from the configuration file including the identity type: “user”, affiliation:
“org1.department1”, and two attributes: “hf.Revoker” and “anotherAttrName”.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name admin3

22 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

To register an identity with multiple attributes requires specifying all attribute names and values in the configuration
file as shown above.

Setting maxenrollments to 0 or leaving it out from the configuration will result in the identity being registered to use
the CA’s max enrollment value. Furthermore, the max enrollment value for an identity being registered cannot exceed
the CA’s max enrollment value. For example, if the CA’s max enrollment value is 5. Any new identity must have a
value less than or equal to 5, and also can’t set it to -1 (infinite enrollments).

Next, let’s register a peer identity which will be used to enroll the peer in the following section. The following
command registers the peer1 identity. Note that we choose to specify our own password (or secret) rather than letting
the server generate one for us.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name peer1 --id.type peer --id.affiliation org1.
→˓department1 --id.secret peer1pw

Note that affiliations are case sensitive except for the non-leaf affiliations that are specified in the server configuration
file, which are always stored in lower case. For example, if the affiliations section of the server configuration file looks
like this:

affiliations:
BU1:
Department1:

- Team1
BU2:
- Department2
- Department3

BU1, Department1, BU2 are stored in lower case. This is because Fabric CA uses Viper to read configuration. Viper
treats map keys as case insensitive and always returns lowercase value. To register an identity with Team1 affiliation,
bu1.department1.Team1 would need to be specified to the –id.affiliation flag as shown below:

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name client1 --id.type client --id.affiliation bu1.
→˓department1.Team1

Enrolling a peer identity

Now that you have successfully registered a peer identity, you may now enroll the peer given the enrollment ID and
secret (i.e. the password from the previous section). This is similar to enrolling the bootstrap identity except that we
also demonstrate how to use the “-M” option to populate the Hyperledger Fabric MSP (Membership Service Provider)
directory structure.

The following command enrolls peer1. Be sure to replace the value of the “-M” option with the path to your
peer’s MSP directory which is the ‘mspConfigPath’ setting in the peer’s core.yaml file. You may also set the FAB-
RIC_CA_CLIENT_HOME to the home directory of your peer.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client enroll -u http://peer1:peer1pw@localhost:7054 -M $FABRIC_CA_CLIENT_
→˓HOME/msp

Enrolling an orderer is the same, except the path to the MSP directory is the ‘LocalMSPDir’ setting in your orderer’s
orderer.yaml file.

All enrollment certificates issued by the fabric-ca-server have organizational units (or “OUs” for short) as follows:

1. The root of the OU hierarchy equals the identity type

1.5. Fabric CA Client 23

hyperledger-fabric-ca Documentation, Release master

2. An OU is added for each component of the identity’s affiliation

For example, if an identity is of type peer and its affiliation is department1.team1, the identity’s OU hierarchy (from
leaf to root) is OU=team1, OU=department1, OU=peer.

Getting a CA certificate chain from another Fabric CA server

In general, the cacerts directory of the MSP directory must contain the certificate authority chains of other certificate
authorities, representing all of the roots of trust for the peer.

The fabric-ca-client getcainfo command is used to retrieve these certificate chains from other Fabric CA
server instances.

For example, the following will start a second Fabric CA server on localhost listening on port 7055 with a name of
“CA2”. This represents a completely separate root of trust and would be managed by a different member on the
blockchain.

export FABRIC_CA_SERVER_HOME=$HOME/ca2
fabric-ca-server start -b admin:ca2pw -p 7055 -n CA2

The following command will install CA2’s certificate chain into peer1’s MSP directory.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client getcainfo -u http://localhost:7055 -M $FABRIC_CA_CLIENT_HOME/msp

By default, the Fabric CA server returns the CA chain in child-first order. This means that each CA certificate in the
chain is followed by its issuer’s CA certificate. If you need the Fabric CA server to return the CA chain in the opposite
order, then set the environment variable CA_CHAIN_PARENT_FIRST to true and restart the Fabric CA server.
The Fabric CA client will handle either order appropriately.

Getting Identity Mixer credential for a user

Identity Mixer (Idemix) is a cryptographic protocol suite for privacy-preserving authentication and transfer of certified
attributes. Idemix allows users to authenticate with verifiers without the involvement of the issuer (CA) and selec-
tively disclose only those attributes that are required by the verifier and can do so without being linkable across their
transactions.

Fabric CA server can issue Idemix credentials in addition to X509 certificates. An Idemix credential can be requested
by sending the request to the /api/v1/idemix/credential API endpoint. For more information on this and
other Fabric CA server API endpoints, please refer to swagger-fabric-ca.json.

The Idemix credential issuance is a two step process. First, send a request with an empty body to the
/api/v1/idemix/credential API endpoint to get a nonce and CA’s Idemix public key. Second, create a
credential request using the nonce and CA’s Idemix public key and send another request with the credential request in
the body to the /api/v1/idemix/credential API endpoint to get an Idemix credential, Credential Revocation
Information (CRI), and attribute names and values. Currently, only three attributes are supported:

• OU - organization unit of the user. The value of this attribute is set to user’s affiliation. For example, if user’s
affiliaton is dept1.unit1, then OU attribute is set to dept1.unit1

• IsAdmin - if the user is an admin or not. The value of this attribute is set to the value of isAdmin registration
attribute.

• EnrollmentID - enrollment ID of the user

You can refer to the handleIdemixEnroll function in https://github.com/hyperledger/fabric-ca/blob/master/lib/client.go
for reference implementation of the two step process for getting Idemix credential.

24 Chapter 1. Fabric CA User’s Guide

https://github.com/hyperledger/fabric-ca/blob/master/swagger/swagger-fabric-ca.json
https://github.com/hyperledger/fabric-ca/blob/master/lib/client.go

hyperledger-fabric-ca Documentation, Release master

The /api/v1/idemix/credential API endpoint accepts both basic and token authorization headers. The basic
authorization header should contain User’s registration ID and password. If the user already has X509 enrollment
certificate, it can also be used to create a token authorization header.

Note that Hyperledger Fabric will support clients/users to sign transactions with both X509 and Idemix credentials,
but will only support X509 credentials for peer and orderer identities. As before, applications can use a Fabric SDK
to send requests to the Fabric CA server. SDKs hide the complexity associated with creating authorization header and
request payload, and with processing the response.

Getting Idemix CRI (Certificate Revocation Information)

An Idemix CRI (Credential Revocation Information) is similar in purpose to an X509 CRL (Certificate Revocation
List): to revoke what was previously issued. However, there are some differences.

In X509, the issuer revokes an end user’s certificate and its ID is included in the CRL. The verifier checks to see if the
user’s certificate is in the CRL and if so, returns an authorization failure. The end user is not involved in this revocation
process, other than receiving an authorization error from a verifier.

In Idemix, the end user is involved. The issuer revokes an end user’s credential similar to X509 and evidence of this
revocation is recorded in the CRI. The CRI is given to the end user (aka “prover”). The end user then generates a proof
that their credential has not been revoked according to the CRI. The end user gives this proof to the verifier who verifies
the proof according to the CRI. For verification to succeed, the version of the CRI (known as the “epoch”) used by the
end user and verifier must be same. The latest CRI can be requested by sending a request to /api/v1/idemix/cri
API endpoint.

The version of the CRI is incremented when an enroll request is received by the fabric-ca-server and there are no
revocation handles remaining in the revocation handle pool. In this case, the fabric-ca-server must generate a new pool
of revocation handles which increments the epoch of the CRI. The number of revocation handles in the revocation
handle pool is configurable via the idemix.rhpoolsize server configuration property.

Reenrolling an Identity

Suppose your enrollment certificate is about to expire or has been compromised. You can issue the reenroll command
to renew your enrollment certificate as follows.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client reenroll

Revoking a certificate or identity

An identity or a certificate can be revoked. Revoking an identity will revoke all the certificates owned by the identity
and will also prevent the identity from getting any new certificates. Revoking a certificate will invalidate a single
certificate.

In order to revoke a certificate or an identity, the calling identity must have the hf.Revoker and
hf.Registrar.Roles attribute. The revoking identity can only revoke a certificate or an identity that has an
affiliation that is equal to or prefixed by the revoking identity’s affiliation. Furthermore, the revoker can only revoke
identities with types that are listed in the revoker’s hf.Registrar.Roles attribute.

For example, a revoker with affiliation orgs.org1 and ‘hf.Registrar.Roles=peer,client’ attribute can revoke either a peer
or client type identity affiliated with orgs.org1 or orgs.org1.department1 but can’t revoke an identity affiliated with
orgs.org2 or of any other type.

1.6. Getting Idemix CRI (Certificate Revocation Information) 25

hyperledger-fabric-ca Documentation, Release master

The following command disables an identity and revokes all of the certificates associated with the identity. All future
requests received by the Fabric CA server from this identity will be rejected.

fabric-ca-client revoke -e <enrollment_id> -r <reason>

The following are the supported reasons that can be specified using -r flag:

1. unspecified

2. keycompromise

3. cacompromise

4. affiliationchange

5. superseded

6. cessationofoperation

7. certificatehold

8. removefromcrl

9. privilegewithdrawn

10. aacompromise

For example, the bootstrap admin who is associated with root of the affiliation tree can revoke peer1‘s identity as
follows:

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client revoke -e peer1

An enrollment certificate that belongs to an identity can be revoked by specifying its AKI (Authority Key Identifier)
and serial number as follows:

fabric-ca-client revoke -a xxx -s yyy -r <reason>

For example, you can get the AKI and the serial number of a certificate using the openssl command and pass them to
the revoke command to revoke the said certificate as follows:

serial=$(openssl x509 -in userecert.pem -serial -noout | cut -d "=" -f 2)
aki=$(openssl x509 -in userecert.pem -text | awk '/keyid/ {gsub(/ *keyid:|:/,"",$1);
→˓print tolower($0)}')
fabric-ca-client revoke -s $serial -a $aki -r affiliationchange

The –gencrl flag can be used to generate a CRL (Certificate Revocation List) that contains all the revoked certifi-
cates. For example, following command will revoke the identity peer1, generates a CRL and stores it in the <msp
folder>/crls/crl.pem file.

fabric-ca-client revoke -e peer1 --gencrl

A CRL can also be generated using the gencrl command. Refer to the Generating a CRL (Certificate Revocation List)
section for more information on the gencrl command.

Generating a CRL (Certificate Revocation List)

After a certificate is revoked in the Fabric CA server, the appropriate MSPs in Hyperledger Fabric must also be
updated. This includes both local MSPs of the peers as well as MSPs in the appropriate channel configuration blocks.
To do this, PEM encoded CRL (certificate revocation list) file must be placed in the crls folder of the MSP. The

26 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

fabric-ca-client gencrl command can be used to generate a CRL. Any identity with hf.GenCRL attribute
can create a CRL that contains serial numbers of all certificates that were revoked during a certain period. The created
CRL is stored in the <msp folder>/crls/crl.pem file.

The following command will create a CRL containing all the revoked certficates (expired and unexpired) and store the
CRL in the ~/msp/crls/crl.pem file.

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl -M ~/msp

The next command will create a CRL containing all certificates (expired and unexpired) that were revoked after 2017-
09-13T16:39:57-08:00 (specified by the –revokedafter flag) and before 2017-09-21T16:39:57-08:00 (specified by the
–revokedbefore flag) and store the CRL in the ~/msp/crls/crl.pem file.

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl --caname "" --revokedafter 2017-09-13T16:39:57-08:00 --
→˓revokedbefore 2017-09-21T16:39:57-08:00 -M ~/msp

The –caname flag specifies the name of the CA to which this request is sent. In this example, the gencrl request is sent
to the default CA.

The –revokedafter and –revokedbefore flags specify the lower and upper boundaries of a time period. The generated
CRL will contain certificates that were revoked in this time period. The values must be UTC timestamps specified in
RFC3339 format. The –revokedafter timestamp cannot be greater than the –revokedbefore timestamp.

By default, ‘Next Update’ date of the CRL is set to next day. The crl.expiry CA configuration property can be used to
specify a custom value.

The gencrl command will also accept –expireafter and –expirebefore flags that can be used to generate a CRL with
revoked certificates that expire during the period specified by these flags. For example, the following command will
generate a CRL that contains certificates that were revoked after 2017-09-13T16:39:57-08:00 and before 2017-09-
21T16:39:57-08:00, and that expire after 2017-09-13T16:39:57-08:00 and before 2018-09-13T16:39:57-08:00

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl --caname "" --expireafter 2017-09-13T16:39:57-08:00 --
→˓expirebefore 2018-09-13T16:39:57-08:00 --revokedafter 2017-09-13T16:39:57-08:00 --
→˓revokedbefore 2017-09-21T16:39:57-08:00 -M ~/msp

The fabric-samples/fabric-ca sample demonstrates how to generate a CRL that contains certificate of a revoked user
and update the channel msp. It will then demonstrate that querying the channel using the revoked user credentials will
result in an authorization error.

Enabling TLS

This section describes in more detail how to configure TLS for a Fabric CA client.

The following sections may be configured in the fabric-ca-client-config.yaml .

tls:
Enable TLS (default: false)
enabled: true
certfiles:
- root.pem

client:
certfile: tls_client-cert.pem
keyfile: tls_client-key.pem

1.6. Getting Idemix CRI (Certificate Revocation Information) 27

https://github.com/hyperledger/fabric-samples/blob/master/fabric-ca/scripts/run-fabric.sh

hyperledger-fabric-ca Documentation, Release master

The certfiles option is the set of root certificates trusted by the client. This will typically just be the root Fabric CA
server’s certificate found in the server’s home directory in the ca-cert.pem file.

The client option is required only if mutual TLS is configured on the server.

Attribute-Based Access Control

Access control decisions can be made by chaincode (and by the Hyperledger Fabric runtime) based upon an identity’s
attributes. This is called Attribute-Based Access Control, or ABAC for short.

In order to make this possible, an identity’s enrollment certificate (ECert) may contain one or more attribute name and
value. The chaincode then extracts an attribute’s value to make an access control decision.

For example, suppose that you are developing application app1 and want a particular chaincode operation to be ac-
cessible only by app1 administrators. Your chaincode could verify that the caller’s certificate (which was issued by a
CA trusted for the channel) contains an attribute named app1Admin with a value of true. Of course the name of the
attribute can be anything and the value need not be a boolean value.

So how do you get an enrollment certificate with an attribute? There are two methods:

1. When you register an identity, you can specify that an enrollment certificate issued for the identity should by
default contain an attribute. This behavior can be overridden at enrollment time, but this is useful for establishing
default behavior and, assuming registration occurs outside of your application, does not require any application
change.

The following shows how to register user1 with two attributes: app1Admin and email. The ”:ecert” suffix
causes the appAdmin attribute to be inserted into user1’s enrollment certificate by default, when the user does
not explicitly request attributes at enrollment time. The email attribute is not added to the enrollment certificate
by default.

fabric-ca-client register --id.name user1 --id.secret user1pw --id.type user --id.
→˓affiliation org1 --id.attrs 'app1Admin=true:ecert,email=user1@gmail.com'

2. When you enroll an identity, you may explicitly request that one or more attributes be added to the certificate.
For each attribute requested, you may specify whether the attribute is optional or not. If it is not requested
optionally and the identity does not possess the attribute, an error will occur.

The following shows how to enroll user1 with the email attribute, without the app1Admin attribute, and option-
ally with the phone attribute (if the user possesses the phone attribute).

fabric-ca-client enroll -u http://user1:user1pw@localhost:7054 --enrollment.attrs
→˓"email,phone:opt"

The table below shows the three attributes which are automatically registered for every identity.

Attribute Name Attribute Value
hf.EnrollmentID The enrollment ID of the identity
hf.Type The type of the identity
hf.Affiliation The affiliation of the identity

To add any of the above attributes by default to a certificate, you must explicitly register the attribute with the ”:ecert”
specification. For example, the following registers identity ‘user1’ so that the ‘hf.Affiliation’ attribute will be added to
an enrollment certificate if no specific attributes are requested at enrollment time. Note that the value of the affiliation
(which is ‘org1’) must be the same in both the ‘–id.affiliation’ and the ‘–id.attrs’ flags.

fabric-ca-client register --id.name user1 --id.secret user1pw --id.type user --id.
→˓affiliation org1 --id.attrs 'hf.Affiliation=org1:ecert'

28 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

For information on the chaincode library API for Attribute-Based Access Control, see https://github.com/hyperledger/
fabric/tree/release-1.1/core/chaincode/lib/cid/README.md

For an end-to-end sample which demonstrates Attribute-Based Access Control and more, see https://github.com/
hyperledger/fabric-samples/tree/release-1.1/fabric-ca/README.md

Dynamic Server Configuration Update

This section describes how to use fabric-ca-client to dynamically update portions of the fabric-ca-server’s configuration
without restarting the server.

All commands in this section require that you first be enrolled by executing the fabric-ca-client enroll command.

Dynamically updating identities

This section describes how to use fabric-ca-client to dynamically update identities.

An authorization failure will occur if the client identity does not satisfy all of the following:

• The client identity must possess the “hf.Registrar.Roles” attribute with a comma-separated list of values where
one of the values equals the type of identity being updated; for example, if the client’s identity has the
“hf.Registrar.Roles” attribute with a value of “client,peer”, the client can update identities of type ‘client’ and
‘peer’, but not ‘orderer’.

• The affiliation of the client’s identity must be equal to or a prefix of the affiliation of the identity being updated.
For example, a client with an affiliation of “a.b” may update an identity with an affiliation of “a.b.c” but may
not update an identity with an affiliation of “a.c”. If root affiliation is required for an identity, then the update
request should specify a dot (”.”) for the affiliation and the client must also have root affiliation.

The following shows how to add, modify, and remove an affiliation.

Getting Identity Information

A caller may retrieve information on a identity from the fabric-ca server as long as the caller meets the authorization
requirements highlighted in the section above. The following command shows how to get an identity.

fabric-ca-client identity list --id user1

A caller may also request to retrieve information on all identities that it is authorized to see by issuing the following
command.

fabric-ca-client identity list

Adding an identity

The following adds a new identity for ‘user1’. Adding a new identity performs the same action as registering an
identity via the ‘fabric-ca-client register’ command. There are two available methods for adding a new identity. The
first method is via the –json flag where you describe the identity in a JSON string.

fabric-ca-client identity add user1 --json '{"secret": "user1pw", "type": "user",
→˓"affiliation": "org1", "max_enrollments": 1, "attrs": [{"name": "hf.Revoker", "value
→˓": "true"}]}'

The following adds a user with root affiliation. Note that an affiliation name of ”.” means the root affiliation.

1.6. Getting Idemix CRI (Certificate Revocation Information) 29

https://github.com/hyperledger/fabric/tree/release-1.1/core/chaincode/lib/cid/README.md
https://github.com/hyperledger/fabric/tree/release-1.1/core/chaincode/lib/cid/README.md
https://github.com/hyperledger/fabric-samples/tree/release-1.1/fabric-ca/README.md
https://github.com/hyperledger/fabric-samples/tree/release-1.1/fabric-ca/README.md

hyperledger-fabric-ca Documentation, Release master

fabric-ca-client identity add user1 --json '{"secret": "user1pw", "type": "user",
→˓"affiliation": ".", "max_enrollments": 1, "attrs": [{"name": "hf.Revoker", "value":
→˓"true"}]}'

The second method for adding an identity is to use direct flags. See the example below for adding ‘user1’.

fabric-ca-client identity add user1 --secret user1pw --type user --affiliation . --
→˓maxenrollments 1 --attrs hf.Revoker=true

The table below lists all the fields of an identity and whether they are required or optional, and any default values they
might have.

Fields Required Default Value
ID Yes
Secret No
Affiliation No Caller’s Affiliation
Type No client
Maxenrollments No 0
Attributes No

Modifying an identity

There are two available methods for modifying an existing identity. The first method is via the –json flag where you
describe the modifications in to an identity in a JSON string. Multiple modifications can be made in a single request.
Any element of an identity that is not modified will retain its original value.

NOTE: A maxenrollments value of “-2” specifies that the CA’s max enrollment setting is to be used.

The command below make multiple modification to an identity using the –json flag.

fabric-ca-client identity modify user1 --json '{"secret": "newPassword", "affiliation
→˓": ".", "attrs": [{"name": "hf.Regisrar.Roles", "value": "peer,client"},{"name":
→˓"hf.Revoker", "value": "true"}]}'

The commands below make modifications using direct flags. The following updates the enrollment secret (or pass-
word) for identity ‘user1’ to ‘newsecret’.

fabric-ca-client identity modify user1 --secret newsecret

The following updates the affiliation of identity ‘user1’ to ‘org2’.

fabric-ca-client identity modify user1 --affiliation org2

The following updates the type of identity ‘user1’ to ‘peer’.

fabric-ca-client identity modify user1 --type peer

The following updates the maxenrollments of identity ‘user1’ to 5.

fabric-ca-client identity modify user1 --maxenrollments 5

By specifying a maxenrollments value of ‘-2’, the following causes identity ‘user1’ to use the CA’s max enrollment
setting.

fabric-ca-client identity modify user1 --maxenrollments -2

30 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

The following sets the value of the ‘hf.Revoker’ attribute for identity ‘user1’ to ‘false’. If the identity has other
attributes, they are not changed. If the identity did not previously possess the ‘hf.Revoker’ attribute, the attribute is
added to the identity. An attribute may also be removed by specifying no value for the attribute.

fabric-ca-client identity modify user1 --attrs hf.Revoker=false

The following removes the ‘hf.Revoker’ attribute for user ‘user1’.

fabric-ca-client identity modify user1 --attrs hf.Revoker=

The following demonstrates that multiple options may be used in a single fabric-ca-client identity modify command.
In this case, both the secret and the type are updated for user ‘user1’.

fabric-ca-client identity modify user1 --secret newpass --type peer

Removing an identity

The following removes identity ‘user1’ and also revokes any certificates associated with the ‘user1’ identity.

fabric-ca-client identity remove user1

Note: Removal of identities is disabled in the fabric-ca-server by default, but may be enabled by starting the fabric-ca-
server with the –cfg.identities.allowremove option.

Dynamically updating affiliations

This section describes how to use fabric-ca-client to dynamically update affiliations. The following shows how to add,
modify, remove, and list an affiliation.

Adding an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

• The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

• The affiliation of the client identity must be hierarchically above the affiliation being updated. For example, if
the client’s affiliation is “a.b”, the client may add affiliation “a.b.c” but not “a” or “a.b”.

The following adds a new affiliation named ‘org1.dept1’.

fabric-ca-client affiliation add org1.dept1

Modifying an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

• The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

• The affiliation of the client identity must be hierarchically above the affiliation being updated. For example, if
the client’s affiliation is “a.b”, the client may add affiliation “a.b.c” but not “a” or “a.b”.

• If the ‘–force’ option is true and there are identities which must be modified, the client identity must also be
authorized to modify the identity.

1.6. Getting Idemix CRI (Certificate Revocation Information) 31

hyperledger-fabric-ca Documentation, Release master

The following renames the ‘org2’ affiliation to ‘org3’. It also renames any sub affiliations (e.g. ‘org2.department1’ is
renamed to ‘org3.department1’).

fabric-ca-client affiliation modify org2 --name org3

If there are identities that are affected by the renaming of an affiliation, it will result in an error unless the ‘–force’
option is used. Using the ‘–force’ option will update the affiliation of identities that are affected to use the new
affiliation name.

fabric-ca-client affiliation modify org1 --name org2 --force

Removing an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

• The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

• The affiliation of the client identity must be hierarchically above the affiliation being updated. For example, if
the client’s affiliation is “a.b”, the client may remove affiliation “a.b.c” but not “a” or “a.b”.

• If the ‘–force’ option is true and there are identities which must be modified, the client identity must also be
authorized to modify the identity.

The following removes affiliation ‘org2’ and also any sub affiliations. For example, if ‘org2.dept1’ is an affiliation
below ‘org2’, it is also removed.

fabric-ca-client affiliation remove org2

If there are identities that are affected by the removing of an affiliation, it will result in an error unless the ‘–force’
option is used. Using the ‘–force’ option will also remove all identities that are associated with that affiliation, and the
certificates associated with any of these identities.

Note: Removal of affiliations is disabled in the fabric-ca-server by default, but may be enabled by starting the fabric-
ca-server with the –cfg.affiliations.allowremove option.

Listing affiliation information

An authorization failure will occur if the client identity does not satisfy all of the following:

• The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

• Affiliation of the client identity must be equal to or be hierarchically above the affiliation being updated. For
example, if the client’s affiliation is “a.b”, the client may get affiliation information on “a.b” or “a.b.c” but not
“a” or “a.c”.

The following command shows how to get a specific affiliation.

fabric-ca-client affiliation list --affiliation org2.dept1

A caller may also request to retrieve information on all affiliations that it is authorized to see by issuing the following
command.

fabric-ca-client affiliation list

32 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

Manage Certificates

This section describes how to use fabric-ca-client to manage certificates.

Listing certificate information

The certificates that are visible to a caller include:

• Those certificates which belong to the caller

• If the caller possesses the hf.Registrar.Roles attribute or the hf.Revoker attribute with a value of
true , all certificates which belong to identities in and below the caller’s affiliation. For example, if the client’s
affiliation is a.b , the client may get certificates for identities who’s affiliation is a.b or a.b.c but not a or
a.c .

If executing a list command that requests certificates of more than one identity, only certificates of identities with an
affiliation that is equal to or hierarchically below the caller’s affiliation will be listed.

The certificates which will be listed may be filtered based on ID, AKI, serial number, expiration time, revocation time,
notrevoked, and notexpired flags.

• id : List certificates for this enrollment ID

• serial : List certificates that have this serial number

• aki : List certificates that have this AKI

• expiration : List certificates that have expiration dates that fall within this expiration time

• revocation : List certificates that were revoked within this revocation time

• notrevoked : List certificates that have not yet been revoked

• notexpired : List certificates that have not yet expired

You can use flags notexpired and notrevoked as filters to exclude revoked certificates and/or expired certifi-
cates from the result set. For example, if you only care about certificates that have expired but have not been revoked
you can use the expiration and notrevoked flags to get back such results. An example of this case is provided
below.

Time should be specified based on RFC3339. For instance, to list certificates that have expirations between March
1, 2018 at 1:00 PM and June 15, 2018 at 2:00 AM, the input time string would look like 2018-03-01T13:00:00z and
2018-06-15T02:00:00z. If time is not a concern, and only the dates matter, then the time part can be left off and then
the strings become 2018-03-01 and 2018-06-15.

The string now may be used to denote the current time and the empty string to denote any time. For example, now::
denotes a time range from now to any time in the future, and ::now denotes a time range from any time in the past
until now.

The following command shows how to list certificates using various filters.

List all certificates:

fabric-ca-client certificate list

List all certificates by id:

fabric-ca-client certificate list --id admin

List certificate by serial and aki:

1.6. Getting Idemix CRI (Certificate Revocation Information) 33

hyperledger-fabric-ca Documentation, Release master

fabric-ca-client certificate list --serial 1234 --aki 1234

List certificate by id and serial/aki:

fabric-ca-client certificate list --id admin --serial 1234 --aki 1234

List certificates that are neither revoker nor expired by id:

fabric-ca-client certificate list --id admin --notrevoked --notexpired

List all certificates that have not been revoked for an id (admin):

fabric-ca-client certificate list --id admin --notrevoked

List all certificates have not expired for an id (admin):

The “–notexpired” flag is equivalent to “–expiration now::”, which means certificates will expire some time in the
future.

fabric-ca-client certificate list --id admin --notexpired

List all certificates that were revoked between a time range for an id (admin):

fabric-ca-client certificate list --id admin --revocation 2018-01-01T01:30:00z::2018-
→˓01-30T05:00:00z

List all certificates that were revoked between a time range but have not expired for an id (admin):

fabric-ca-client certificate list --id admin --revocation 2018-01-01::2018-01-30 --
→˓notexpired

List all revoked certificates using duration (revoked between 30 days and 15 days ago) for an id (admin):

fabric-ca-client certificate list --id admin --revocation -30d::-15d

List all revoked certificates before a time

fabric-ca-client certificate list --revocation ::2018-01-30

List all revoked certificates after a time

fabric-ca-client certificate list --revocation 2018-01-30::

List all revoked certificates before now and after a certain date

fabric-ca-client certificate list --id admin --revocation 2018-01-30::now

List all certificate that expired between a time range but have not been revoked for an id (admin):

fabric-ca-client certificate list --id admin --expiration 2018-01-01::2018-01-30 --
→˓notrevoked

List all expired certificates using duration (expired between 30 days and 15 days ago) for an id (admin):

fabric-ca-client certificate list --expiration -30d::-15d

List all certificates that have expired or will expire before a certain time

34 Chapter 1. Fabric CA User’s Guide

hyperledger-fabric-ca Documentation, Release master

fabric-ca-client certificate list --expiration ::2058-01-30

List all certificates that have expired or will expire after a certain time

fabric-ca-client certificate list --expiration 2018-01-30::

List all expired certificates before now and after a certain date

fabric-ca-client certificate list --expiration 2018-01-30::now

List certificates expiring in the next 10 days:

fabric-ca-client certificate list --id admin --expiration ::+10d --notrevoked

The list certificate command can also be used to store certificates on the file system. This is a convenient way to
populate the admins folder in an MSP, The “-store” flag points to the location on the file system to store the certificates.

Configure an identity to be an admin, by storing certificates for an identity in the MSP:

export FABRIC_CA_CLIENT_HOME=/tmp/clientHome
fabric-ca-client certificate list --id admin --store msp/admincerts

Contact specific CA instance

When a server is running multiple CA instances, requests can be directed to a specific CA. By default, if no CA name
is specified in the client request the request will be directed to the default CA on the fabric-ca server. A CA name can
be specified on the command line of a client command using the caname filter as follows:

fabric-ca-client enroll -u http://admin:adminpw@localhost:7054 --caname <caname>

Back to Top

HSM

By default, the Fabric CA server and client store private keys in a PEM-encoded file, but they can also be configured
to store private keys in an HSM (Hardware Security Module) via PKCS11 APIs. This behavior is configured in the
BCCSP (BlockChain Crypto Service Provider) section of the server’s or client’s configuration file.

Configuring Fabric CA server to use softhsm2

This section shows how to configure the Fabric CA server or client to use a software version of PKCS11 called softhsm
(see https://github.com/opendnssec/SoftHSMv2).

After installing softhsm, create a token, label it “ForFabric”, set the pin to ‘98765432’ (refer to softhsm documenta-
tion).

You can use both the config file and environment variables to configure BCCSP For example, set the bccsp section of
Fabric CA server configuration file as follows. Note that the default field’s value is PKCS11.

###
BCCSP (BlockChain Crypto Service Provider) section is used to select which
crypto library implementation to use
###

1.7. HSM 35

https://github.com/opendnssec/SoftHSMv2

hyperledger-fabric-ca Documentation, Release master

bccsp:
default: PKCS11
pkcs11:
Library: /usr/local/Cellar/softhsm/2.1.0/lib/softhsm/libsofthsm2.so
Pin: 98765432
Label: ForFabric
hash: SHA2
security: 256
filekeystore:

The directory used for the software file-based keystore
keystore: msp/keystore

And you can override relevant fields via environment variables as follows:

FABRIC_CA_SERVER_BCCSP_DEFAULT=PKCS11 FABRIC_CA_SERVER_BCCSP_PKCS11_LIBRARY=/usr/local/Cellar/softhsm/2.1.0/lib/softhsm/libsofthsm2.so
FABRIC_CA_SERVER_BCCSP_PKCS11_PIN=98765432 FABRIC_CA_SERVER_BCCSP_PKCS11_LABEL=ForFabric

Back to Top

File Formats

Fabric CA server’s configuration file format

A default configuration file is created in the server’s home directory (see Fabric CA Server section for more info). The
following link shows a sample Server configuration file.

Fabric CA client’s configuration file format

A default configuration file is created in the client’s home directory (see Fabric CA Client section for more info). The
following link shows a sample Client configuration file.

Back to Top

Troubleshooting

1. If you see a Killed: 9 error on OSX when trying to execute fabric-ca-client or
fabric-ca-server , there is a long thread describing this problem at https://github.com/golang/go/issues/
19734. The short answer is that to work around this issue, you can run the following command:

sudo ln -s /usr/bin/true /usr/local/bin/dsymutil

2. The error [ERROR] No certificates found for provided serial and aki will occur if
the following sequence of events occurs:

(a) You issue a fabric-ca-client enroll command, creating an enrollment certificate (i.e. an ECert). This stores
a copy of the ECert in the fabric-ca-server’s database.

(b) The fabric-ca-server’s database is deleted and recreated, thus losing the ECert from step ‘a’. For example,
this may happen if you stop and restart a docker container hosting the fabric-ca-server, but your fabric-ca-
server is using the default sqlite database and the database file is not stored on a volume and is therefore
not persistent.

36 Chapter 1. Fabric CA User’s Guide

https://github.com/golang/go/issues/19734
https://github.com/golang/go/issues/19734

hyperledger-fabric-ca Documentation, Release master

(c) You issue a fabric-ca-client register command or any other command which tries to use the ECert from step
‘a’. In this case, since the database no longer contains the ECert, the [ERROR] No certificates
found for provided serial and aki will occur.

To resolve this error, you must enroll again by repeating step ‘a’. This will issue a new ECert which will be
stored in the current database.

3. When sending multiple parallel requests to a Fabric CA Server cluster that uses shared sqlite3 databases, the
server occasionally returns a ‘database locked’ error. This is most probably because the database transaction
timed out while waiting for database lock (held by another cluster member) to be released. This is an invalid
configuration because sqlite is an embedded database, which means the Fabric CA server cluster must share
the same file via a shared file system, which introduces a SPoF (single point of failure), which contradicts the
purpose of cluster topology. The best practice is to use either Postgres or MySQL databases in a cluster topology.

4. Suppose an error similar to Failed to deserialize creator identity,err The supplied
identity is not valid,Verify() returned x509: certificate signed by
unknown authority is returned by a peer or orderer when using an enrollment certificate issued
by the Fabric CA Server. This indicates that the signing CA certificate used by the Fabric CA Server to issue
certificates does not match a certificate in the cacerts or intermediatecerts folder of the MSP used to make
authorization checks.

The MSP which is used to make authorization checks depends on which operation you were performing when
the error occurred. For example, if you were trying to install chaincode on a peer, the local MSP on the file
system of the peer is used; otherwise, if you were performing some channel specific operation such as instan-
tiating chaincode on a specific channel, the MSP in the genesis block or the most recent configuration block of
the channel is used.

To confirm that this is the problem, compare the AKI (Authority Key Identifier) of the enrollment certificate to
the SKI (Subject Key Identifier) of the certificate(s) in the cacerts and intermediatecerts folder of appropriate
MSP. The command openssl x509 -in <PEM-file> -noout -text | grep -A1 “Authority Key Identifier” will display
the AKI and openssl x509 -in <PEM-file> -noout -text | grep -A1 “Subject Key Identifier” will display the SKI.
If they are not equal, you have confirmed that this is the cause of the error.

This can happen for multiple reasons including:

(a) You used cryptogen to generate your key material but did not start fabric-ca-server with the signing key
and certificate generated by cryptogen.

To resolve (assuming FABRIC_CA_SERVER_HOME is set to the home directory of your fabric-ca-server):

i. Stop fabric-ca-server.

ii. Copy crypto-config/peerOrganizations/<orgName>/ca/*pem to $FABRIC_CA_SERVER_HOME/ca-
cert.pem.

iii. Copy crypto-config/peerOrganizations/<orgName>/ca/*_sk to $FAB-
RIC_CA_SERVER_HOME/msp/keystore/.

iv. Start fabric-ca-server.

v. Delete any previously issued enrollment certificates and get new certificates by enrolling again.

(b) You deleted and recreated the CA signing key and certificate used by the Fabric CA Server after generating
the genesis block. This can happen if the Fabric CA Server is running in a docker container, the container
was restarted, and its home directory is not on a volume mount. In this case, the Fabric CA Server will
create a new CA signing key and certificate.

Assuming that you can not recover the original CA signing key, the only way to recover from this scenario
is to update the certificate in the cacerts (or intermediatecerts) of the appropriate MSPs to the new CA
certificate.

1.9. Troubleshooting 37

	Fabric CA User's Guide
	Table of Contents
	Overview
	Getting Started
	Fabric CA Server
	Fabric CA Client
	Getting Idemix CRI (Certificate Revocation Information)
	HSM
	File Formats
	Troubleshooting

