

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing to Hyperledger Composer

We welcome contributions to the code base. There is a contributors RocketChat channel [https://chat.hyperledger.org/channel/composer-dev] that we would encourage you to join and introduce yourself on.

There are multiple components within Composer, which can be conceptually viewed using the mindmap.

[image: alt text]

These components are split across multiple Composer repositories within the Hyperledger project. The repositories are:

	hyperledger/composer [https://github.com/hyperledger/composer] All the code, cli and documentation

	hyperledger/composer-sample-models [https://github.com/hyperledger/composer-sample-models] Sample Business Models

	hyperledger/composer-sample-networks [https://github.com/hyperledger/composer-sample-networks] Sample Business Networks

	hyperledger/composer-sample-applications [https://github.com/hyperledger/composer-sample-applications] Sample Applications using the Composer API

	hyperledger/composer-atom-plugin [https://github.com/hyperledger/composer-atom-plugin] Plugin for the Atom editor

	hyperledger/composer-vscode-plugin [https://github.com/hyperledger/composer-vscode-plugin] Plugin for the VS Code editor

	hyperledger/composer-tools [https://github.com/hyperledger/composer-tools] Additional tools to help working with Composer

Raising an Issue

If you have a question or problem that relates to general support, please ask the question on either RocketChat [https://chat.hyperledger.org/channel/composer] or Stack Overflow [http://stackoverflow.com/questions/tagged/hyperledger-composer], where the question should be tagged with 'hyperledger-composer'. We would like to exclusively use GitHub issues for bug reports and feature requests.

If you find a bug in the source code, an error in any documentation, or would like a new feature, you can help us by raising an issue to our GitHub Repository or delivering a fix via a pull request.

Raising a Composer Improvement Proposal

If you have a suggestion for a Composer Improvement Proposal (CIP), for a feature that is not yet present and you would like to have, please raise an issue using a CIP template and tag the issue with the label improvement proposal. We endevour to have all CIP items discussed on community calls, so expect to have an invite once raised!

Getting Started

In order to assist anybody starting from scratch, we have produced guides on setting up a development environment.

	Step-by-step development environment setup

	Suggested IDE setup

	Coding Guidelines

	Pull Request Guidelines

Start with the Step-by-step development environment setup

Everything installed and ready code? Great! Issues are tracked in GitHub, if you are looking for a place to start with the code then it might be worth tackling a bug [https://github.com/hyperledger/composer/issues?q=is%3Aissue+is%3Aopen+label%3Abug] or look for those issues tagged with help wanted [https://github.com/hyperledger/composer/issues?q=is%3Aissue+label%3A%22help+wanted%22].

Context

Expected Behavior

Actual Behavior

Possible Fix

Steps to Reproduce

1.
2.
3.
4.

Existing issues

- [] [Stack Overflow issues](http://stackoverflow.com/tags/hyperledger-composer)
- [] [GitHub Issues](https://github.com/hyperledger/composer/issues)
- [] [Rocket Chat history](https://chat.hyperledger.org/channel/composer)

Context

Your Environment

* Version used:
* Environment name and version (e.g. Chrome 39, node.js 5.4):
* Operating System and version (desktop or mobile):
* Link to your project:

Maintainers for Hyperledger Composer

This file is the official list of maintainers for the Hyperledger Composer project.
Changes to this list should be submitted by submitting a pull request that changes this file, and requesting reviews on that pull request from all of the current maintainers.
The maintainers are listed in alphabetical order.

	Caroline Church (caroline-church [https://github.com/caroline-church])

	Daniel Selman (dselman [https://github.com/dselman])

	Simon Stone (sstone1 [https://github.com/sstone1])

MIT License

The Program includes some or all of the following that IBM obtained under the MIT License

	Jekyll - Copyright (c) 2008-2017 Tom Preston-Werner and Jekyll contributors

	Moment - Copyright (c) JS Foundation and other contributors

	Moment-timezone - Copyright (c) JS Foundation and other contributors named

	Bl – bl contributors listed at https://github.com/rvagg/bl#contributors

	Acorn - Copyright (C) 2012-2017 by various contributors (see AUTHORS)

	Nomnom - Copyright (c) 2010 Heather Arthur

	Lodash - copyright JS Foundation and other contributors https://js.foundation/

	UUID - Copyright (c) 2010-2016 Robert Kieffer and other contributors

	Temp - Copyright (c) 2010-2014 Bruce Williams

	socket-io.client - Copyright (c) 2014 Guillermo Rauch

	Bower - Copyright (c) 2016 Twitter and other contributors

	Fs

	chalk - Copyright (c) Sindre Sorhus sindresorhus@gmail.com (sindresorhus.com)

	compression - Copyright (c) 2014 Jonathan Ong me@jongleberry.com

	Copyright (c) 2014-2015 Douglas Christopher Wilson doug@somethingdoug.com

	Cors - Copyright (c) 2013 Troy Goode troygoode@gmail.com

	Marked - Copyright (c) 2011-2014, Christopher Jeffrey (https://github.com/chjj/)

	commander(node) - Copyright (c) 2011 TJ Holowaychuk tj@vision-media.ca

	Config - Copyright 2010-2015, Loren West and other contributors

	Debug - Copyright (c) 2014 TJ Holowaychuk tj@vision-media.ca

	body-parser - Copyright (c) 2014 Jonathan Ong me@jongleberry.com

	Copyright (c) 2014-2015 Douglas Christopher Wilson

	lodash - Copyright JS Foundation and other contributors https://js.foundation/

	loopback-boot - Copyright (c) IBM Corp. 2014,2016. All Rights Reserved.

	loopback-component-explorer - Copyright (c) IBM Corp. 2013,2016. All Rights Reserved.

	Serve-favicon – Copyright © 2010 Sencha Inc.

	Copyright (c) 2011 TJ Holowaychuk, Copyright (c) 2011 LearnBoost, Copyright (c) 2014-2017 Douglas Christopher Wilson

	strong-error-handler - Copyright (c) IBM Corp. 2016. All Rights Reserved.

	Touch - Copyright (c) Isaac Z. Schlueter

	Yargs - Copyright 2010 James Halliday (mail@substack.net)

	Modified work Copyright 2014 Contributors (ben@npmjs.com)

	fast-json-patch - Copyright (c) 2013, 2014 Joachim Wester

	LRu-cache - Copyright (c) Isaac Z. Schlueter and Contributors

	sha.js - Copyright (c) 2013-2014 sha.js contributors

	Jsonata

	opener - Copyright © 2012–2016 Domenic Denicola d@domenic.me

	Octokat - Copyright (c) 2015 Philip Schatz

	is-docker - Copyright (c) Sindre Sorhus sindresorhus@gmail.com (sindresorhus.com)

	file-saver - Copyright © 2016 Eli Grey.

	Winston - Copyright (c) 2010 Charlie Robbins

	Rimraf - Copyright (c) Isaac Z. Schlueter and Contributors

	Mkdirp - Copyright 2010 James Halliday (mail@substack.net)

	webpack - Copyright JS Foundation and other contributors

	serializerr - Copyright (c) 2015 Tim Oxley

	Clipboard - Copyright © 2017 Zeno Rocha hi@zenorocha.com

	Npm-registry-client - Copyright (c) Isaac Z. Schlueter and Contributors

	ngx-perfect-scrollbar - Copyright (c) 2016 Zef Oy

	ora - Copyright (c) Sindre Sorhus sindresorhus@gmail.com (sindresorhus.com)

	Inquirer - Copyright (c) 2012 Simon Boudrias

	figlet - Copyright (C) 2014-present Patrick Gillespie and other contributors

	helmet - Copyright (c) 2012-2017 Evan Hahn, Adam Baldwin

	clear

	clui - Copyright (C) 2013-2015 Nathan Peck (https://github.com/nathanpeck)

	Thenify-all - Copyright (c) 2014 Jonathan Ong me@jongleberry.com

	Thenify - Copyright (c) 2014-2016 Jonathan Ong me@jongleberry.com and contributors

	node-fs-extra - Copyright (c) 2011-2017 JP Richardson

	node-homedir - Copyright (c) 2014 Wil Moore III

	npm-paths - Copyright (c) 2015-2016, Jon Schlinkert.

	Prettyjson - Copyright (c) 2011 Rafael de Oleza rafeca@gmail.com

	node-sanitize-filename - Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>

	Prompt - Copyright (c) 2010 Nodejitsu Inc.

	Random-words - Copyright (c) 2013 P'unk Avenue LLC

	tsd-jsdoc - Copyright (c) 2016 Chad Engler

	node-plantuml - Copyright (c) 2015 by Markus Hedval|l

	cheerio

	comment-parser - Copyright (c) 2014 Sergii Iavorskyi

	fs-promise - Copyright (C) 2013 Kevin Beaty

	jsZip - Copyright (c) 2009-2016 Stuart Knightley, David Duponchel, Franz Buchinger, António Afonso

	Express - Copyright (c) 2009-2014 TJ Holowaychuk tj@vision-media.ca, Copyright (c) 2013-2014 Roman Shtylman shtylman+expressjs@gmail.com, Copyright (c) 2014-2015 Douglas Christopher Wilson doug@somethingdoug.com

	loopback - Copyright (c) IBM Corp. 2013,2016. All Rights Reserved.

	underscore.string.js - Copyright (c) 2011 Esa-Matti Suuronen esa-matti@suuronen.org

	loopback-connector - Copyright (c) IBM Corp. 2014,2016. All Rights Reserved.

	Github-changes - Copyright (c) 2014 Lalit Kapoor

	plantuml-encoder - Copyright (C) 2015 by Markus Hedval|l

	utf8-bytes –

	async (Node) - Copyright (c) 2010-2017 Caolan McMahon

	jQuery - Copyright JS Foundation and other contributors, https://js.foundation/

	clipboard - © Zeno Rocha

	connect-ensure-login - Copyright (c) 2012-2013 Jared Hanson

	cookie-parser - Copyright (c) 2010 Sencha Inc. Copyright (c) 2014 TJ Holowaychuk tj@vision-media.ca, Copyright (c) 2015 Douglas Christopher Wilson < doug@somethingdoug.com

	Jade

	Passport-local - Copyright (c) 2011-2014 Jared Hanson

	strong-error-handler- Copyright (c) IBM Corp. 2016,2017

	express-flash - Copyright (c) 2012 RGBboy me@rgbboy.com

	tar - Copyright (c) Isaac Z. Schlueter and Contributors

	Browserfs - Copyright (c) 2013, 2014, 2015, 2016, 2017 John Vilk and other BrowserFS contributors.

	chai - Copyright (c) 2017 Chai.js Assertion Library

	documentation.js - Copyright (c) 2015, documentationjs

	node-cache - Copyright (c) 2016 mpneuried

	ws - Copyright (c) 2011 Einar Otto Stangvik einaros@gmail.com

	lorem-ipsun - Copyright (c) 2012-2017 Nickolas Kenyeres

	ngx-clipboard - Copyright (c) 2016 Sam Lin

	express-session - Copyright (c) 2010 Sencha Inc. Copyright (c) 2011 TJ Holowaychuk tj@vision-media.ca Copyright (c) 2014-2015 Douglas Christopher Wilson doug@somethingdoug.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

BSD License

The Program includes some or all of the following that IBM obtained under the BSD License:

	semver - Copyright (c) Isaac Z. Schlueter and Contributors

	shelljs - Copyright (c) 2008-2010, SARL Adaltas.

	Esprima - Copyright JS Foundation and other contributors, https://js.foundation/

	Minimatch - Copyright (c) Isaac Z. Schlueter and Contributors

	dotenv - Copyright (c) 2015, Scott Motte

	node-http-status - Copyright (c) 2008-2010, SARL Adaltas.

	sprintf-js - Copyright (c) 2007-present, Alexandru Mărășteanu hello@alexei.ro

	nunjucks - Copyright (c) 2012-2015, James Long

	Protobuf.js - Copyright (c) 2016, Daniel Wirtz All rights reserved.

	yeoman-generator - Copyright (c) 2015, Google All rights reserved.

	Npm-registry-client - Copyright (c) Isaac Z. Schlueter and Contributors

	jsDump - Copyright (c) 2008 Ariel Flesler

	source-map - Copyright (c) 2009-2011, Mozilla Foundation and contributors

	Istanbul-lib-instrument - Copyright 2012-2015 Yahoo! Inc.

	xhr - Copyright (c) 2012 Raynos.

	cli-table - Copyright (c) 2010 LearnBoost dev@learnboost.com

	proxyquire - Copyright 2013 Thorsten Lorenz.

	uri-js - Copyright 2011 Gary Court. All rights reserved.

All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Apache Software License 2.0

The Program includes some or all of the following that IBM obtained under the Apache License Version 2.0:

	Dexie 1.5.1

	Doctrine 2.0

	fake-indexeddb 1.0.11

	fabric-sdk-node 1.0.2

	fabric-ca-client 1.0.2

	Google Fonts (Open Sans) 1.0

	JsDoc 3.5.5

	node-nailgun-client 0.1.0

	Node-nailgun-server 0.1.3

	Request 2.81.0

	Typescript 2.4.0

	web-animations-js 2.2.5

	pouchdb-find 6.2.0

	pouchdb-collate 6.2.0

	pouchdb-core 6.2.0

	pouchdb-adapter-memory 6.2.0

	pouchdb-adapter-idb 6.2.0

	pouchdb-adapter-websql 6.2.0

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.
"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

	You must give any other recipients of the Work or Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Artistic License 2.0

"The Program includes some or all of the following that IBM obtained under the Artistic License 2.0 (source code available via the indicated URL):"

	loopback-component-passport 3.2.0 - https://github.com/strongloop/loopback-component-passport

Checklist

	[] A link to the issue/user story that the pull request relates to

	[] How to recreate the problem without the fix

	[] Design of the fix

	[] How to prove that the fix works

	[] Automated tests that prove the fix keeps on working

	[] Documentation - any JSDoc, website, or Stackoverflow answers?

Issue/User story

Steps to Reproduce

1.
2.
3.
4.

Existing issues

- [] [Stack Overflow issues](http://stackoverflow.com/tags/hyperledger-composer)
- [] [GitHub Issues](https://github.com/hyperledger/composer/issues)
- [] [Rocket Chat history](https://chat.hyperledger.org/channel/composer)

Design of the fix

Validation of the fix

Automated Tests

What documentation has been provided for this pull request

 [image: Hyperledger Composer]

Hyperledger Composer

Hyperledger Composer is an application development framework which simplifies and expedites the creation of Hyperledger fabric [https://hyperledger-fabric.readthedocs.io/en/latest/] blockchain applications. If you're new to Blockchain, Hyperledger Fabric or Hyperledger Composer, we recommend that you start at the Hyperledger Composer website:

	Stable release website [https://hyperledger.github.io/composer/]

	Next release website [https://hyperledger.github.io/composer/next/]

This site will help you get up and running by developing a sample blockchain application to buy and sell houses and apartments in a digital property business network.

[image: Build Status] [https://travis-ci.org/hyperledger/composer]
[image: CII Best Practices] [https://bestpractices.coreinfrastructure.org/projects/1071]

For additional help with Hyperledger Composer the following are good places:

	Ask a question on Stack Overflow [http://stackoverflow.com/questions/tagged/hyperledger-composer]

	Chat on the Rocket.Chat discussion channels [https://chat.hyperledger.org/channel/composer]

Contributing to this repository

We welcome contributions to the code base. If you are interested in becoming a contributor, please read the contributing guide that covers the following:

	getting started

	coding guidelines

	raising an issue

	submitting a pull request

There is a specific channel [https://chat.hyperledger.org/channel/composer-dev] on RocketChat for contributors.

Getting started with building an application

Try the online playground [https://composer-playground.mybluemix.net/] to get going quickly.

Suggested reading list is:

	Introduction [https://hyperledger.github.io/composer/introduction/introduction.html]

	Introduction Video [https://www.youtube.com/watch?v=fdFUsrsv5iw&t=23s]

	Quick Start [https://hyperledger.github.io/composer/installing/installing-index.html]

	Tutorials [https://hyperledger.github.io/composer/tutorials/tutorials.html]

Getting in touch

If you have a question on using Hyperledger Composer

	Rocket.Chat discussion channels [https://chat.hyperledger.org/channel/composer]

	Stack Overflow [http://stackoverflow.com/questions/tagged/hyperledger-composer], where the question should be tagged with 'hyperledger-composer'.

If you have found a defect or want to raise a feature requests

	All tracked on GitHub - please read how to raise

If you want to contribute to the develop of Hyperledger Composer

	Come introduce yourself on the contributors RocketChat channel [https://chat.hyperledger.org/channel/composer-dev]

	Please read the contributing guide

Hyperledger Composer QA

Platform & version

	[] ubuntu 16.04

	[] ubuntu 14.04

	[] macOS

	[] Windows 10

Hyperledger Composer

	Version tested: v.r.m - xxxxxxxxxx

Pre-requisties

	[] Current state of the build is green with all test passing, and all aspects green: This is for a merge build, not a pull request.

	This ensures that the code is clean, unit and systests are passing, documentation is being generated, npm and docker images pushed to the repositories, and the Bluemix images have been pushed

	[] Ensure that any CRON jobs that are run are also passing

Standard Verification

	[] Running the pre-req scripts on clean platform images (within a virtualized environment, install from ISO image of Ubuntu. Follow the prerequisite tool chain as documented on the website.)

	[] Run the QuickStart and follow on tutorials to ensure they are correct [note currently this means following the instructions on the website, however there is a plan to automate this]

	[] Yo Generator (Angular + CLI) - generates and the code runs successfully

	[] Expose as REST API tutorial

Documentation

	[] Is the overall initial presentation of the website sound? No broken links of home page (use w3 tools to check)

	[] Are the JSDocs being produced and linked correctly

	[] Look over the support pages, and the getting started tutorials; are their omissions broken links etc.

Playground

	[] Running the Car Auction scenario to validate the Playground

Issues Raised

	

	

	

	

	

General Observations

Composer Improvement Proposal

All CIPs should follow the specified template below. It is used to help cover all aspects behind the reasoning for the CIP, and bring in considerations that might otherwise have been neglected. Most of all we want all CIPs to be absolutey transaparent, so that the community can see the justification behind all CIPs that are delivered.

CIP Template

Abstract
 - Overview of the CIP

Motivation
 - Why is this CIP required?

Specification
 - What changes are to be made?

Rationale
 - Reasoning behind the specification

Backwards Compatibility
 - Are any functions going to be deprecated?
 - Will the CIP require a version bump?

Test Requirements
 - Please see test requirements below

Implementation
 - How is the CIP to be implemented?

Copyright
 This document is licensed under the Creative Commons Attribution 4.0 International Public License.

Test requirements vary depending on what is being planned; the below template includes items that should be taken into consideration when test planning for a CIP.

Test Considerations Template

Readiness Criteria
 - New hardware/infrastructure requirements?
 - New test framework requirements? It is generally expected that CIP testing would involve extending existing test suites, but it is possible to introduce a requirment for a new framework to run specific tests. This needs to be identified as it can take a long time to get the framework in place.
 - Mitigation of above to enable progress

User Acceptance Criteria
 - What are we considering to be the user acceptance criteria?
 - Is a new tutorial in place/required?
 - Are there any documentation requirements?
 - Is the API doc completed?
 - How is the error conditioning?

Test Deliverables
 - Features under test
 - Unit test requirements (This is more a statement of fact that we know all new code must be covered by unit tests, and that there will be 100% coverage ... with meaningful tests)
 - Functional test requirements
 -- Can you extend the extend existing frameworks? (ie, the cucumber steps etc)
 -- What user scenarios are to be covered?
 - Integration test requirements
 -- Can the deliverable be included within an integration test?
 -- What integration scenarios are to be considered?
 -- Are we considering golden path only, or also error paths?
 - Performance test requirements
 -- Should we be adding a performance test for the deliverable?
 -- Are there expected performance improvements from the delivery of the CIP?
 - Manual test requirements (shame on you! It is highly unlikely that any contributions that require manual testing will be accepted)
 - Test considerations
 -- Platform coverage: Are there any considerations such as specific OS requirements for the tests to be run on?
 -- Browser coverage

Assumptions
 - Have any assumptions been made in the above?
 - What risks do these assumptions reveal?

Exit Criteria
 - All tests delivered and passing (that's a given!)
 - Code coverage acceptable (100% is acceptable)
 - Zero P1/P2 issues
 - No manual tests

Contributing to Composer

	Step-by-step development environment setup

	Suggested IDE setup

	Currently reading -> Coding Guidelines

	Pull Request Guidelines

	Release process

Coding Guidelines

As a summary:

	All changes should be developed in a fork of the relevant Hyperldger Composer repository, and the changes submitted for approval in the form of pull requests.

	All commits require DCO sign-off

	All pull request must be linked to an issue

	All delivered code must follow the linting rules

	All features or bug fixes must be tested.

	All public API methods must be documented.

	Travis-ci is used to build and test all repositories and a build is triggered when a pull request is made. Any pull request that is not 100% clean will be closed.

GitHub usage

Here is the preferred workflow involved in making a pull request to the Composer Project - this is based around making a change in the hyperledger/composer repository. The same would apply for any of the other related repositories.

A first step is ensuring that you have a local development environment configured.

	You must fork the hyperledger/composer repository to your own github organization. This is most easily achieved using the github web-ui [https://help.github.com/articles/fork-a-repo/].

	Once forked you can clone this repository to your local machine

$ git clone git@github.com:MyGitName/composer.git

	This will configure the origin to be your fork of the Composer repository. You must create an upstream target to refer to main Composer repository. [the terms origin and upstream are conventions and could be anything. But as in any convention the purpose is to avoid confusion]

$ git remote add upstream git@github.com:hyperledger/composer.git

	As this is just forked it will be up-to-date. But if you did this previously and now starting on something new, the the next step is to update your master branch.

This is the point you would come to generally when starting anything new, a new clone/fork everytime is not necassary

$ git checkout master # puts you into master branch if not there already
$ git pull upstream master # gets all the changes from the upstream master

	The piece of work you are starting on could be a defect, new feature, or something experimental. The approach is the same for any these and requires working in a new branch.

$ git checkout -b defect-1234 # Including reference to the git issue is useful

	As you commit changes to your local repository ensure you provide sign-off for that commit using the -s option of
git commit. For more information see https://github.com/probot/dco#how-it-works

	Time passes, and you now have a change that you are happy with. Next step is to push this to your local repository. First step is to ensure that your branch is update.

$ git pull upstream master

You might at this point need to do manual merges.

	Retest to ensure everthing is Good

	Push these changes to your local fork

$ git push origin defect-1234 # note the branch you have been working on

	The next step is to go to the Github web-ui and create a pull request to the master repository for this fork.

	...screen shots needed here - wip...

	All Pull Requests should be linked to the issue they are addressing

	All Pull Requests should have a review by another comitter on the Composer project

	Any API, CLI, or major change should be mentioned to a maintainer to ensure consistency

Important Reminders

	NEVER work in your master branch

	Should this occur, then the master branch will need to be reset using this command

$ git reset --hard upstream/master && curl -O site://hursley-house/topfloor/penguin.penance

Development approach

Adding new Features

We welcome contributions of new features. Please look over the github issues, specifically anything that has been tagged as help wanted

When you start working on new issue, please do the following:

	Use the mailing list [https://lists.hyperledger.org/mailman/listinfo/hyperledger-composer] to notify the community that you are planning to start feature work and notify that the design has been placed in the GitHub issue

	this is to ensure that there is a persistent record of what is happening

	Say hello, on the composer-dev channel on RocketChat

	At noteable points please join the weekly community call to share what you have done.

Good Coding Practices Using ESLint

Hyperledger Composer uses a utility to ensure the codebase conforms to good language practice. Hyperledger Composer is written in both node.js and golang, with ESLint [http://eslint.org/] being used for node.js.

The Hyperledger Composer project includes a set of lint definitions in its initialization file .eslintrc.yml that will be used whenever lint is run, so you should use the one in the project, as it contains the default configurations.

API Documentation Using JSDoc

Hyperledger Composer automatically generates its API documentation from the source code with appropriate annotations using JSDoc [https://en.wikipedia.org/wiki/JSDoc]. It helps keep the API documentation up-to-date and accurate. PLEASE note the comment at the top regarding the naming of the directory path that contains the git repository. JSDoc filename filters apply to the absolute and not relative path. In summary, don't start any directory with _

If you change APIs, update the documentation. Note that the linter settings will enforce the use of JSDoc comments for all methods and classes. We use these comments to generate high-quality documentation and UML diagrams from source code. Please ensure your code (particularly public APIs) are clearly documented.

Testing

All changes pushed to Hyperledger Composer must include unit tests that ensure that the new functionality works as designed, or that fixed bugs stay fixed. Pull requests that add code changes without associated automated unit tests will not be accepted. Unit tests should aim for 100% code coverage and may be run locally with npm test.

Our current test suites make use of:

	Mocha [https://mochajs.org/]

	Chai [http://chaijs.com/]

	Karma [https://karma-runner.github.io/1.0/index.html]

	Jasmine [https://jasmine.github.io/]

	Istanbul [https://gotwarlost.github.io/istanbul/]

Unit Test Framework Using Mocha

Hyperledger Composer requires that all code added to the project is provided with unit tests. These tests operate inside a test framework called mocha [https://mochajs.org/] which controls their execution. Mocha is triggered every time code is pushed to either a user's repository or the Hyperledger Composer repository.

Unit Test Framework using Karma and Jasmine

The default configuration is set to target the Chrome browser, and this is the target browser during the build process. Unit tests should rigorously test controller files and where appropriate inspect the view to ensure that mapped logic is operating as expected.

Simplify writing tests using the chai assertion library, chai-things and sinon

Hyperledger Composer tests use an assertion library called chai [http://chaijs.com/] to help write these tests, which run in the mocha. Chai allows developers to easily write tests that verify the behaviour of their code using should, expect and assert interfaces. chai-things [https://www.npmjs.com/package/chai-things] is a chai extension which helps writing units tests involving arrays. Hyperledger Composer sometimes relies on external systems like Hyperledger and to enable the creation of unit tests, Hyperledger Composer sinon [https://www.npmjs.com/package/sinon] to create realistic units tests which do not draw in huge amounts of infrastructure. sinon has technology called "test spies", "stubs" and "mocks" which greatly help this process.

Code Coverage Using Istanbul

The Hyperledger Composer project uses a code coverage tool called Istanbul [https://gotwarlost.github.io/istanbul/] to ensure that all the code is tested, including statements, branches, and functions. This helps to improve the quality of the Hyperledger Composer tests. The output of Istanbul can be used to see where any specific tests need to be added to ensure complete code coverage.

How to run local code inside a real fabric

When fabric builds the image for the chaincode container, it does this by doing an npm install against the package.json
of the business network archive. The install process adds required dependencies on Composer packages to the package.json,
referring to the Composer version used to perform the install. This causes an issue during development since the local
Composer version used to perform the install is one that has not yet been published to the public npm registry, and so
these dependencies cannot be resolved when the business network is started.

A solution to this problem is to package the dependencies required at runtime within the business network archive before
install. To achieve this:

	Local versons of the following packages should be packaged up using the npm pack command:

	composer-common

	composer-runtime

	composer-runtime-hlfv1

	The package.json of the business network archive updated to refer to these package files on the local file system.

The install process will include these packaged dependencies in the chaincode sent to the Fabric peer.

The following script can be used to create npm packages (ending in -dev.tgz) of the required dependencies in the
current working directory, once the packageDir variable has been changed to point to the location of the Composer
packages in your development environment.

#!/bin/bash

localDir="$(pwd)"
packageDir="${HOME}/DEV_DIRECTORY/composer/packages"

for dependency in composer-common composer-runtime composer-runtime-hlfv1; do
 cd "${packageDir}/${dependency}"
 packFile="$(npm pack | tail -1)"
 echo "Created pack file: ${packFile}"
 mv "${packFile}" "${localDir}/${dependency}-dev.tgz"
done

The package.json of your business network archive then needs the following dependencies added, which should point to
the actual location of the packages files on your file system.

"dependencies": {
 "composer-common": "/PATH/TO/composer-common-dev.tgz",
 "composer-runtime": "/PATH/TO/composer-runtime-dev.tgz",
 "composer-runtime-hlfv1": "/PATH/TO/composer-runtime-hlfv1-dev.tgz"
}

Note that the composer archive create command will (currently) fail if used to create a new BNA file from a directory
containing a package.json with the package file dependencies above. Instead, just unzip a previously created BNA file,
modify the package.json and zip up again to create the BNA.

A business network archive containing package dependencies can be installed to Fabric directly using the
composer network install command. The following provides steps by example on how to do this.

	Ensure you have the latest fabric-dev-servers package and have set your fabric runtime to V1.1 export FABRIC_VERSION=hlfv11

	Start the Fabric in development mode using ./startFabric.sh --dev

	Create and import your PeerAdmin card if you haven't done so before using ./createPeerAdmin.sh

	Install your pre-prepared business network archive

node composer-cli/cli.js network install --card PeerAdmin@hlfv1 --archiveFile test-network@0.0.1.bna`

	instantiate the chaincode, this will drive your running node process you started earlier.

node composer-cli/cli.js network start --card PeerAdmin@hlfv1 -networkAdmin admin -networkAdminEnrollSecret adminpw

You should now see output in the window running the chaincode showing it executing.

Next step

Move on to read Pull Request Guidelines

Diagnostic logging

Hyperledger Composer has a functional logger that can be used for both informational and diagnostic log messages. It also permits customization for different logging 'back-ends'.

Log points

Log points are added throughout the codebase, and should be very similar to other logging systems. The following APIs match to the standard log levels of debug, verbose, info, warn, error Note that silly isn't being used.

debug(method, msg, data);
verbose(method, msg, data);
info(method, msg, data);
warn(method, msg, data);
error(method, msg, data);

In addition, there are entry and exit APIs for use to indicate the entry and exit of functions - these are logged at the debug level.

entry(method, data);
entry(method, data);

These methods are called on a logger object. To obtain one of these the following code at the top of the file should be used.

\\ For the businessnetworkdefinition.js file in the composer-common module
const LOG = Logger.getLog('common/BusinessNetworkDefinition');

Usage within the code.

Taking the businessnetworkdefinition.js file as an example, these are some real log statements:

constructor(identifier, description, packageJson, readme) {
 const method = 'constructor';
 LOG.entry(method, identifier, description);

 // ----
 LOG.info(method, 'Created package.json' + JSON.stringify(packageJson));
 // ----
 LOG.debug(method, 'Found model file, loading it', file.name);
 // ----

 LOG.exit(method);
}

All the log APIs can take a variable number of data arguments for logging. Any error object is logged will have it's stack trace located.

Enabling the logging

In commong with other node.js applications, the DEBUG environment variable is used. This takes a comma separated list of the modules that need to be logged.

Examples

	DEBUG=* Logs everything from everything (not just Hyperledger-Composer)

	DEBUG=composer:* Logs everything from just Hyperledger-Composer

	DEBUG=*,!composer:* Logs everything from everything with the exception of Hyperledger-Composer

	DEBUG=composer:common Logs everything from the Hyperledger-Composer common module (the composer-common npm module)

	DEBUG=composer:client,composer:common Logs everything from the Hyperledger-Composer common module (the composer-common npm module), and the client module

	DEBUG=composer:common:businessnetworkdefinition Logs the businessnetworkdefinition ONLY

Controlling the level and output

The structure of the Hyperledger-Composer log code is that it delegates the actually logging to a back-end service. This service can swapped by using configuration (see below) but by default uses the Winston library.

Default configuration

There are two streams setups in the default configuration - one to write log events to a file, the other to the console.

If log is not enabled for Hyperledger-Composer no events are sent to the Console but info events are sent to the file
If the log is enabled then info events are sent to the console and all level of events are sent to the file.

The file by default is written to a directory off the current working directory called logs with the name trace_<processid>.log

Configuring the default logger

Configuration is handled by using the config package - a config file called default.json is unless the code has specified something else.
As an example - the default configuration of the logger would be represented in this file as

$ cat ./config/default.json
{

 "hyperledger-composer": {
 "debug": {
 "logger": "./winstonInjector.js",
 "config": {
 'console': {
 'enabledLevel': 'info',
 'alwaysLevel': 'none'

 },
 'file': {

 'filename': 'trace_PID.log',
 'enabledLevel': 'silly',
 'alwaysLevel': 'info'
 }
 }
 }
 }

}

Modifying the Winston logger

Here are two examples of how to change the back-end logger simply using Winston's changeable transport feature.

Two cloud hosted application log sites are Loggly.com and Papertrailapp.com

Logger class

Create a new js file, eg winstonPapertrailInjector.js

'use strict';

const fs = require('fs-extra');
const winston = require('winston');
const sprintf = require('sprintf-js').sprintf;

//
// Requiring `winston-papertrail` will expose
// `winston.transports.Papertrail`
//
require('winston-papertrail').Papertrail;

/** The json structure that has been specified in the configuration
 * @private
 * @param {Object} config JSON structure with specific configuration information
 * @param {Array} configElements array with the DEBUG env variables for composer
 *
 * @returns {Object} object that is the logger to use
 */
exports.getLogger = function (config,configElements){

 let consoleLevel;
 let logglyLevel;

 if (configElements.debug.length === 0){
 consoleLevel='error';
 logglyLevel='info';
 } else {
 papertrailLevel=config.papertrail.enabledLevel;
 consoleLevel=config.console.enabledLevel;
 }

 let formatterFn = function(options) {
 // Return string will be passed to logger.
 return sprintf('%s %-7s %-20s %s'
 ,options.timestamp()
 ,options.level.toUpperCase()
 ,options.message
 ,(JSON.stringify(options.meta,null,'') +'$')
);

 };

 let timestampFn = function() {
 return new Date(Date.now()).toISOString();
 };

 // this is the key part to route to Papertrail - the host and port
 let newWinstonLogger = {
 transports: [
 new(winston.transports.Papertrail)({
 name:'papertrail',
 host: 'logs5.papertrailapp.com',
 port: '34662',
 timestamp: timestampFn,
 formatter: formatterFn ,
 level: papertrailLevel,
 json:true
 })

]
 };

 winston.loggers.add('Hyperledger-Composer',newWinstonLogger);
 return winston.loggers.get('Hyperledger-Composer');

};

and in a configuration file - where the logger is a reference to the code above.

{
 "hyperledger-composer": {
 "debug": {
 "logger": "/home/matthew/github/waste-notes/winstonPapertrailInjector.js",
 "config": {
 "console": {
 "enabledLevel": "info",
 "alwaysLevel": "none"
 },"papertrail": {
 "enabledLevel": "silly",
 "alwaysLevel": "info"
 }
 }
 }
 }
}

Contributing to Composer

	Currently reading -> Step-by-step development environment setup

	Suggested IDE setup

	Coding Guidelines

	Pull Request Guidelines

	Release process

Getting Started Developing Hyperledger Composer

This guide will help you start to contribute to the Hyperledger Composer project. It will show you how to set up your local environment and walk through the development, code, test and deploy process. You will do this by creating a small change of your own.

Please note that this is the Getting Started for developing Hyperledger Composer itself, and not a guide to developing applications using Hyperledger Composer. (Though a lot of the tool chain will be useful for that purpose as well).

After reading this guide, move on to reading the coding-guidelines that will explain in more detail the process to follow to make changes.

Setup Scripts

The requirements for developing Hyperledger Composer are the same as developing an application using Hyperledger Composer. Follow these instructions

If you wish to install manually or review the individual tool's own documentation the details are below.

Tool Chain Reference Details

This is a summary of the tools that will be required to work on Hyperledger Composer. Other tools are required but these will be installed automatically.

	Git This is probably already installed on most Linux machines. Setup is well documented on the ibm.git website [https://help.github.com/enterprise/2.7/user/articles/set-up-git/] . Pay particular attention to setting up the SSL keys [https://help.github.com/enterprise/2.7/user/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/#platform-linux] that are required.

	Docker Essential for the running of the tests and for running the HyperLedger Fabric.

	Ubuntu: Firstly the Docker Engine needs to be installed [https://docs.docker.com/engine/installation/linux/ubuntulinux/], then the docker-compose tool [https://docs.docker.com/compose/install/] is required with these instructions. Some initial notes on administering docker are here [https://docs.docker.com/engine/admin/]

	Node.js v8.9 or higher (but not node v9) The main runtime of Hyperledger Composer and also has the NPM tool that is used for a lot of the package management.

	Ubuntu: Simply installed follow these notes [https://nodejs.org/en/download/package-manager/#debian-and-ubuntu-based-linux-distributions].

	Chrome Web test suites use karma to launch a browser, and consequently Chrome must be installed to prevent test failures without editing the karma configuration to use a supported browser that you already have installed.

	softhsm 2.0.0 required for the complete integration tests to run as well as a specific set of functional tests.

	If you are on Linux first you need to install the openssl headers if not already installed, for example on Ubuntu

install the openssl headers
sudo apt-get -y install libssl-dev
install softhsm
mkdir softhsm
cd softhsm
curl -O https://dist.opendnssec.org/source/softhsm-2.0.0.tar.gz
tar -xvf softhsm-2.0.0.tar.gz
cd softhsm-2.0.0
./configure --disable-non-paged-memory --disable-gost
make
sudo make install

now configure slot 0 with pin
sudo mkdir -p /var/lib/softhsm/tokens
sudo chmod 777 /var/lib/softhsm/tokens
softhsm2-util --init-token --slot 0 --label "ForComposer" --so-pin 1234 --pin 98765432

On linux the pkcs library you need to reference is usually placed at /usr/local/lib/softhsm/libsofthsm2.so

	For MAC, you might want to consider something like homebrew which can provide pre-built versions of softhsm. Make sure you specifically choose 2.0.0 rather than the latest version available. Alternatively you can build softhsm from source yourself but you would either need to obtain a prebuilt version of openssl with libraries and headers again from something like homebrew or you could compile openssl from source.

	More details about softhsm can be found at https://www.opendnssec.org/softhsm/

Forking and Cloning the Hyperledger Composer Repository

Once those tools are installed you are ready to get going with the Hyperledger Composer repository. Let's show you how to create your own version of the Hyperledger Composer repository on GitHub, and clone it to your local machine to allow you to make your own changes, which you can subsequently contribute to the Hyperledger Composer project.

	Navigate to the Hyperledger Project [https://github.com/hyperledger] on GitHub to see the
different Hyperledger Composer repositories.

	Select the Hyperledger Composer repository [https://github.com/hyperledger/composer]

	Click on the Fork button to fork this repository to your user space.

	Navigate to your home page on GitHub, you'll be able to see your fork of the repository.

Choosing a Location For Your Clone

If this is your first Git project then you might like to spend a few moments creating a specific directory for all your local git repositories, e.g. ~/github/ on unix file systems, which will put the project under your home directory, which is good default location. Windows note: this will all be done in the git bash shell that was installed for you.

$ mkdir -p ~/github
$ cd ~/github

IMPORTANT Do NOT have any directory in the path to the git repository directory you just created, start with a _ (underscore). This is due to the way that the JavaScript documentation tool handles filtering path names. If you do this, then the tool reports there are no source files to produce documentation for.

The final step is to issue the clone command. This format is assuming that you have setup the ssh keys for GitHub.

$ git clone git@github.com:<your-username>/hyperledger/composer.git
$ cd composer

Installing Hyperledger Composer Prerequisites

Hyperledger Composer has a number of prerequisites - for its runtime, code hygiene, tests, API documentation, and more. Before you can develop locally, you need to install these using npm [https://www.npmjs.com/]. These prerequisites are installed as development dependencies. The packages are installed locally rather than globally so that their versions do not interfere with other projects you may be developing or global installations of these packages on your local machine. You can also install these prerequisites globally, though it is required to have some packages locally, e.g. the test framework.

To install these dependencies, ensure you are in the top level directory of the composer repository you have just cloned and issue

$ npm install

You can then work with the packages under packages/ on a per-package
basis as any normal node.js package.

For example, in order to run Playground UI locally you can run:

$ npm start

on composer-playground-api and composer-playground packages in turn followed by visiting:

localhost:3000

from your browser.

Alternatively, you can execute npm commands across all of the packages at once using
Lerna:

$ npm test

To clean the updates

$ npm run repoclean

Your development environment is ready!

You are now ready to try out your local clone of the Hyperledger Composer project.

Testing your local environment

To verify that your local environment is ready for development and to confirm later that the updates are good, run the built-in unit tests provided with the Hyperledger Composer project.

$ npm test

This will run the unit tests that are associated with all the modules.

Next step

Moving on to read

	Suggested IDE setup

	Coding Guidelines

Contributing to Composer

	Step-by-step development environment setup

	Currently reading -> Suggested IDE setup

	Coding Guidelines

	Pull Request Guidelines

	Release process

IDE setup for Hyperledger Composer development

Both Atom.io and VS Code are popular editors amongst the Hyperledger Composer contributors.

Using Atom

Atom [https://atom.io/] is the preferred code editor for contributors the Hyperledger Composer project. Many developers find Atom especially productive due to the wide range of plugins availability to assist with code development activities. These include syntax highlighting for node.js code, JavaScript and the Hyperledger Composer modelling language, or linting to help eliminate potential bugs and ensure a consistent coding style. Developers can also develop their own plugins. Here's a list of Atom plugins for you consider as you develop within the Hyperledger Composer project.

JavaScript and Node.js linting

Use the linter-eslint plugin [https://atom.io/packages/linter-eslint] to help with linting node.js and JavaScript code. For an example of the eslinter config file see here.

Hyperledger Composer modelling language

Use the composer-atom plugin [https://github.com/hyperledger/composer-atom-plugin] for syntax highlighting of the Hyperledger Composer modelling language. Follow the instructions in the README to install the plugin.

Find unfinished work items

Use the todo-show [https://atom.io/packages/todo-show] plugin to find indicators that code might not be complete by finding instances of indicative text, such as TODO, FUTURE, BUG etc.

Match selected keywords

Use the highlight-selected plugin [https://atom.io/packages/highlight-selected] to find all matches of a keyword in the current file.

Documentation assistance

Use the docblockr plugin [https://atom.io/packages/docblockr] to create pretty comments, function prototypes and other helpful code decorations.

File type visualization

Use the file-icons plugin [https://atom.io/packages/file-icons] to assign visual representations to file extension to help locate files of a given type.

Using VSCode

to do

Next step

Move on to read Coding Guidelines

Miscellaneous

JavaScript Parsing using acorn

Hyperledger Composer provides its programming interfaces in JavaScript, and also has the ability to uses JavaScript to express user processing rules which are executed as smart contracts. acorn [https://www.npmjs.com/package/acorn] is a JavaScript parsing library that significantly assists this process.

Checking of files for Hyperledger Composer license agreement using license-check

Hyperledger Composer source files are is provided under a license agreement which provides the appropriate level of intellectual property protection, and license-check [https://www.npmjs.com/package/license-check] is used to enforce that the same agreement terms are in every Hyperledger Composer file. These license terms may change during the development lifecycle of Hyperledger Composer.

Installing Development Pre-requisites

The essential tools you will need are npm, docker, docker-compose and a code editor for example Atom or VSCode. Samples are held in GitHub so git will be needed as well.

The recommended minimum versions are:

	Docker: v17.03

	Docker-compose: v1.13.0

	npm: v5.5.1

	node.js: v8.9.1

Installation for Ubuntu

1. Installing Runtime Components

Supported versions of Ubuntu are: Trusty, Xenial and Yakkety. There is an automated installation script that will install node docker docker-compose. For Trusty, additional kernel packages that allow the use of the AUFS storage driver required by Docker, will also be installed.

If some of the tools are already installed or to do the installation step-by-step follow the manual instructions.

$ curl -O https://hyperledger.github.io/composer/prereqs-ubuntu.sh
$ chmod u+x prereqs-ubuntu.sh

Next run the script - as this uses sudo you will be prompted for your password.

$./prereqs-ubuntu.sh

Important: You will need to logout and login again before continuing.

The script will print out the versions installed

2. Installing Git

This is probably already installed on most Linux machines. Pay particular attention to setting up the SSL keys [https://help.github.com/enterprise/2.7/user/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/#platform-linux] that are required.

Official Git Download [https://git-scm.com/downloads]

Optional Installs

1. Installing an editor

{{site.data.conrefs.composer_full}} allows you to edit its project files with any editor. We recommend using either Atom or Visual Studio Code, as not only do both have excellent support for Javascript development, a .cto file syntax highlighting plugin exists for these editors.

Atom

Atom [https://atom.io/] is a very popular editor and several contributors use it.

Official Atom installation guide [http://flight-manual.atom.io/getting-started/sections/installing-atom/]

Suggested Plugins:

	Composer Atom Syntax Highlighter [https://github.com/hyperledger/composer-atom-plugin] A plugin for model file highlighting.

	File Icons [https://atom.io/packages/file-icons] is a useful UI enhancement to show different icons for different files.

Visual Studio Code

Visual Studio Code [https://code.visualstudio.com/] is a lightweight and powerful editor.

Extensions may be installed into VS Code by searching the Extensions repository for the desired extension package and selecting the install option once identified. Suggested extentions include:

	Composer VS Code Plugin. Provides syntax highlighting for CTO files within VS Code

	ESLint. Integrates ESLint into VS Code.

	TSLint. Integrates the tslint linter for the TypeScript language into VS Code.

	EditorConfig for VS Code. Enables the definition and maintainance of consistent coding styles between different editors and IDEs.

Installing Development Pre-requisites

The essential tools you will need are npm, docker, docker-compose and a code editor, for example Atom or VSCode. Samples are held in GitHub so git will be needed as well.

Automatic installations scripts are available for Ubuntu

The recommended minimum versions are:

	Docker: v17.03

	Docker-compose: v1.13.0

	npm: v5.5.1

	node.js: v8.9.1

Manual Installation

1. Installing NVM

We highly recommend installing NVM to easily install and manage versions of node.js [https://nodejs.org/en/] and npm [https://www.npmjs.com/]. The main runtime uses node.js and npm is used for package management and dependency installation. The runtime requires a version equal to or higher than v8.9.1, but not Node v9 which isn't supported.

Official nvm GitHub repository [https://github.com/creationix/nvm]

2. Kernel Packages

If running on Ubuntu Trusty, it is necessary to obtain additional Kernel packages to enable use of the AUFS storage driver [https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/#renaming-directories-with-the-aufs-storage-driver] for Docker.

3. Installing Docker Engine

The Docker Engine is essential for running system tests and running the HyperLedger Fabric.

Official Docker Engine Installation Guide [https://docs.docker.com/engine/installation/]

4. Installing Docker Compose

Docker Compose [https://docs.docker.com/compose/overview/] is used for easily configuring and starting HyperLedger Fabric.

Official Docker Compose Installation guide [https://docs.docker.com/compose/install/]

5. Installing Git

This is probably already installed on most Linux machines. Pay particular attention to setting up the SSL keys [https://help.github.com/enterprise/2.7/user/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/#platform-linux] that are required.

Official Git Download [https://git-scm.com/downloads]

Optional Installs

1. Installing an editor

{{site.data.conrefs.composer_full}} allows you to edit its project files with any editor. We recommend using either Atom or Visual Studio Code, as not only do both have excellent support for Javascript development, a .cto file syntax highlighting plugin exists for these editors.

Atom

Atom [https://atom.io/] is a very popular editor and several contributors use it.

Official Atom installation guide [http://flight-manual.atom.io/getting-started/sections/installing-atom/]

Suggested Plugins:

	Composer Atom Syntax Highlighter [https://github.com/hyperledger/composer-atom-plugin] A plugin for model file highlighting.

	File Icons [https://atom.io/packages/file-icons] is a useful UI enhancement to show different icons for different files.

Visual Studio Code

Visual Studio Code [https://code.visualstudio.com/] is a lightweight and powerful editor.

Extensions may be installed into VS Code by searching the Extensions repository for the desired extension package and selecting the install option once identified. Suggested extentions include:

	Composer VS Code Plugin. Provides syntax highlighting for CTO files within VS Code

	ESLint. Integrates ESLint into VS Code.

	TSLint. Integrates the tslint linter for the TypeScript language into VS Code.

	EditorConfig for VS Code. Enables the definition and maintainance of consistent coding styles between different editors and IDEs.

Raising Issues

Before you submit an issue, please search to see if your issue has already been identified. It may be that there is a workaround available that will let you progress whilst the fix is being worked on. The following channels are where to search for existing issues:

	Stack Overflow issues [http://stackoverflow.com/tags/hyperledger-composer]

	GitHub Issues [https://github.com/hyperledger/composer/issues]

	Rocket Chat history [https://chat.hyperledger.org/channel/composer]

If you are unable to identify your issue within the above, then please raise a new issue using the provided template form. Please try to use the template as fully as possible; once completed it will provide us with all the information needed to reproduce, confirm and subsequently fix an identified issue. This is particularly important since certain issues may only manifest themselves on a specific operating system / browser combination.

Unfortunately, we are not able to investigate / fix bugs that are not documented sufficiently enough to be reproducible. We will contact you if we require more information, but if you do not respond we will close the issue.

Contributing to Composer

	Step-by-step development environment setup

	Suggested IDE setup

	Coding Guidelines

	Currently reading -> Pull Request Guidelines

	Release process

Submitting a Pull Request

Before submitting a pull request, please search carefully for any open or closed pull requests that relate to the issue you are targetting.

	Fork the repo and create your branch from master.

	Follow our coding guidelines when making your coding changes.

	Ensure that all test suites pass locally (npm test).

	Commit any changes using a descriptive commit message.

	Pull requests that have associated builds that are not 100% clean will be closed.

Composer-Admin

Hyperledger Composer administration API. The admin API allows users to deploy/undeploy/update BusinessNetworkDefinitions to a Hyperledger Fabric instance.

Composer-Runtime-Web

Composer runtime implementation that can execute inside a web-browser.

Hyperledger Composer Client

Hyperledger Composer client API allows a participant in a business network to connect to a business network
deployed to Hyperledger Fabric and perform operations on the asset registries and submit transactions.

Composer-Connector-Hyperledger-Fabric

Hyperledger Composer uses this module to connection to a Hyperledger Fabric instance.

Composer-Runtime-Hyperledger-Fabric

Composer runtime that can execute on Hyperledger Fabric.

Composer-Connector-Server

The remote connector server for Hyperledger Composer

Composer-Runtime-Hyperledger-Fabric

Composer runtime that can execute on Hyperledger Fabric.

Composer-System-Tests

System tests and automation for Hyperledger Composer

composer-report

This module provides the core diagnostic report code for the Hyperledger Composer composer report CLI.

While the full Composer report command includes additional diagnostics, the composer-cli module has many more dependencies which may result in difficulties during installation.
In the event that there are problems installing composer-cli, this module can be installed and run as a command to produce a basic report to assist problem determination.

Install

Install with npm install -g composer-report

Usage

There are no arguments or options, so just run composer-report to produce a composer-report-.tgz

 Composer-Connector-Web

Composer-Connector-Web

Composer client specific code.

 Composer-Connector-Web

Composer-Connector-Web

Composer client specific code.

 Hyperledger Composer CLI

Hyperledger Composer CLI

Set up the Composer command with

npm install composer-cli

Overview

Contains the Hyperledger composer CLIs for administering business networks.

Type composer --help to list the available commands.

Usage

composer network deploy [options]

Options:
 --help Show help [boolean]
 --archiveFile, -a The business network archive file name [string] [required]
 --enrollId, -i The enrollment ID of the user [string] [required]
 --enrollSecret, -s The enrollment secret of the user [string]

 Composer-Runtime-Embedded

Composer-Runtime-Embedded

Composer client specific code.

 generator-hyperledger-composer

generator-hyperledger-composer

This is a Yeoman module for a set of Yeoman generators. These are used to create pro-forma templates for using with the Hyperledger Composer.
There are two current generators that can be used from the point of creating a model through to creating command line applications

The naming of this repository is following the Yeoman naming conventions.

We're going to assume that you've been through the Getting Started section and would like to now start to look at writing your own application to use {{site.data.conrefs.composer_full}}.

To help getting started with this, there's a Yeoman [http://yeoman.io/] generator that creates a suitable directory structure and helps bring in the required model and network modules.

Yeoman

If you don't already have it, install Yeoman

npm install -g yo

If you wish to use the Angular 2 Application Generator, then you will need a few other globally installed packages

npm install -g typings

npm install -g bower

npm install -g @angular/cli

Then install the generator for it

npm install -g generator-hyperledger-composer

Running the generator

yo hyperledger-composer

Welcome to the Hyperledger Composer Skeleton Application Generator
? Please select the type of Application: (Use arrow keys)
❯ CLI Application
 Angular 2 Application
 Skeleton Business Network

What are the generator options?

1. Generating a CLI Application

This generator can be ran using yo hyperledger-composer:cli

What questions does this ask?

Welcome to the CLI skeleton app generator
? Your NPM library name: composer-sample-app
? Short description: Test Composer project
? Author name: Sophie Black
? Author email: sophie@email.com
? NPM Module name of the Business Network to connect to: digitalproperty-network

? Is the name in NPM registry the same as the Business Network Identifier?: Yes
? What is the Connection Profile to use? defaultProfile
? Enrollment id: WebAppAdmin
? Enrollment Secret: DJY27pEnl16d
configuring: composer-sample-app
 create config/default.json
 create Dockerfile
 create gulpfile.js
 create index.js
 create package.json
 create scripts/docker-compose.yml
 create scripts/setup.sh
 create scripts/teardown.sh
 create .gitignore

What does this do?

Firstly it creates a standard npm module with the usual attributes of name, author, description.
Secondly it asks a set of {{site.data.conrefs.composer_full}} questions to help create the sample structure.

	NPM Module name: What is the name of the business network you want to connect to - and is this the same as the modules NPM registry name

	Connection Profile: This is the connection profile used to locate ip/ports etc of the running fabric

	The EnrollmentId/Secret: Are needed to create a connection to the fabric

Testing this has worked

The index.js file is a very simple application that lists the asset registries that have been defined.

2. Generating an Angular 2 Application

This generator can be ran using yo hyperledger-composer:angular.

The user has the ability to generate an application in two different ways:

	Generating the application by connecting to a running business network

	Generating the application with a business network archive file

Generating the application by connecting to a running business network

Welcome to the Hyperledger Composer Angular 2 skeleton application generator

? Do you want to connect to a running Business Network? Yes
? What is the name of the application you wish to generate?: angular-app
? Description of the application: Skeleton Hyperledger Composer Angular2 project
? Author name: Sophie Black
? Author email: sophie@email.com
? What is the Business Network Identifier?: digitalproperty-network
? What is the Connection Profile to use? defaultProfile
? Enrollment id: WebAppAdmin
? Enrollment Secret: DJY27pEnl16d
? Do you want to generate a new REST API or connect to an existing REST API?: Generate a new REST API
? What port number should the generated REST server run on?: 3000
? Should namespaces be used in the generated REST API: Always use namespaces
About to connect to a running business network

...

Firstly the generator will also a series of basic regarding the application name, author, description, etc.
Then it will ask the user to enter the details required to connect a running business network.
After the generator has stopped prompting the user to answer questions, it will then attempt to connect to the business network using the details provided.
If it successfully connects to the business network, the generator will then examine the assets, transactions and participants.
The generator will then create Angular components based upon the different modelled types.

	Business Network Identifier: This is the name of the business network you want to connect to - and is this the same as the modules NPM registry name

	Business Network Archive File: This is a business network definition archived using the Composer-CLI

	Connection Profile: This is the connection profile used to locate IP/ports etc of the running fabric

	The EnrollmentId/Secret: Are needed to create a connection to the fabric

REST API Options

If generating an application with a business network archive file, it is only possible to connect to an existing REST API server which is running.

When generating an application it is possible to either:

	Generate and bundle the application with a REST API server

	Connect to an existing REST API server

This REST API server configuration can be edited in APP_DIR/src/app/configuration.ts.

Using the Application

The application can be started using npm start.

The application can be tested using npm test.

Generating the application with a business network archive file

Welcome to the Angular2 skeleton app generator

? Do you want to connect to a running Business Network? No
? What is the name of the application you wish to generate?: angular-app
? Description of the application: Skeleton Hyperledger Composer Angular2 project
? Author name: Sophie Black
? Author email: sophie@email.com
? What is the name of the business network archive file? (Path from the current working directory): digitalPropertyNetwork.bna
? What is the address of the running REST server?: http://localhost
? What port number is the REST server running on?: 3000
? Are namespaces used in the generated REST API: Namespaces are used

About to read a business network archive file
Reading file: digitalPropertyNetwork.bna

...

Firstly the generator will also a series of basic regarding the application name, author, description, etc.
Then it will ask the user to enter the relative path to a business network archive file.
After the generator has stopped prompting the user to answer questions, it will then attempt to read the business network archive file provided.
If it successfully reads the file, the generator will then examine the assets, transactions and participants.
The generator will then create Angular components based upon the different modelled types.

REST API Options

If generating an application with a business network archive file, it is only possible to connect to an existing REST API server which is running.

This REST API server configuration can be edited in APP_DIR/src/app/configuration.ts.

Using the Application

The application can be started using npm start.

The application can be tested using npm test.

 <%= appName %>

<%= appName %>

This project was generated with Angular CLI [https://github.com/angular/angular-cli] version 1.0.1.

Development server

Run npm start for a dev server. Navigate to http://localhost:4200/. The app will automatically reload if you change any of the source files.

Code scaffolding

Run ng generate component component-name to generate a new component. You can also use ng generate directive|pipe|service|class|module.

Build

Run ng build to build the project. The build artifacts will be stored in the dist/ directory. Use the -prod flag for a production build.

Running unit tests

Run npm test to execute the unit tests via Karma [https://karma-runner.github.io].

Running end-to-end tests

Run npm run e2e to execute the end-to-end tests via Protractor [http://www.protractortest.org/].
Before running the tests make sure you are serving the app via npm start.

Further help

To get more help on the Angular CLI use ng help or go check out the Angular CLI README [https://github.com/angular/angular-cli/blob/master/README.md].

 <%= appname%>

<%= appname%>

<%= appdescription%>

 <%= appname%>

<%= appname%>

<%= appdescription%>

 Change Log

Change Log

upcoming 2017/04/03

	7fc8d93 [https://github.com/hyperledger/composer/commit/7fc8d93684f981cf6d5c8bf23bd812d3726f8020] Automatic version bump to 0.5.7 (@fabric-composer-app)

v0.5.6 2017/04/03

	24c3c3f [https://github.com/hyperledger/composer/commit/24c3c3f033e39a54dfba66f9e2349afc45a74f6b] Environment variables cannot start REST server (#603) (@sstone1)

	87bc11e [https://github.com/hyperledger/composer/commit/87bc11e8d70bf23b7a96e04a042748f4dbd0b9c2] Revert accidental change to composer-rest-server Dockerfile (#600) (@sstone1)

	dd28e77 [https://github.com/hyperledger/composer/commit/dd28e7766fb6a80350942d3cc7510d39b2216ddf] Initial support for securing REST APIs with Passport (#598) (@sstone1)

	5ef27cc [https://github.com/hyperledger/composer/commit/5ef27cceb48d5fd9b433bca40fbd647665e0068e] Add diagram to Intro page in Docs (#597) (@EdMoffatt)

	d527efd [https://github.com/hyperledger/composer/commit/d527efd3909bb626961321681cb4e155df91ad85] Build Composer REST server Docker image (#596) (@sstone1)

	489acba [https://github.com/hyperledger/composer/commit/489acba60e6453303859f8270eb073372b9a379f] Announce next community call date (#594) (@EdMoffatt)

	91321d4 [https://github.com/hyperledger/composer/commit/91321d455d0091d5801770db87fe048816c1a1d1] Allow connection profiles to be supplied via env vars (#592) (@sstone1)

	a2e9fef [https://github.com/hyperledger/composer/commit/a2e9fef64c3e417925ae368c5eba064224b81db3] Update coverage checks (#591) (@caroline-church)

	dedb2e1 [https://github.com/hyperledger/composer/commit/dedb2e146fd86d55e8ed1fca74051a066f6ff40c] issue #496 nitpick 5 (#590) (@samjsmith)

	882a790 [https://github.com/hyperledger/composer/commit/882a790e79ec55763e64340ea885adb85c4ff975] issue #496 - nitpicks 1 and 7 (#588) (@samjsmith)

	df0b91e [https://github.com/hyperledger/composer/commit/df0b91e016470b5a2689c78980f4bcd74746b752] Github components unit tests (#585) (@14gracel)

	2b0b595 [https://github.com/hyperledger/composer/commit/2b0b595716e549bf340fd3a060b11443415271fb] feat(v1): add TLS testing with fabric ca server (#586) (@davidkel)

	b263a15 [https://github.com/hyperledger/composer/commit/b263a1579c49444d15d30c9ee09108088109dd35] Allow wallets to be supplied via API calls (#587) (@sstone1)

	f68fd4e [https://github.com/hyperledger/composer/commit/f68fd4e63a86b8846ca83e529a6dff385fa099a2] add editor svc to the ui (#584) (@samjsmith)

	e12319d [https://github.com/hyperledger/composer/commit/e12319de0362feadec940125c5e9090189f9d4bb] feat(v1): add support to enable tls testing for systests (#583) (@davidkel)

	49b1ca3 [https://github.com/hyperledger/composer/commit/49b1ca31e5bda13c9703c0a57f457f2db67251a2] Fix for issue 572 - Importing a type from a model doesn't import dependent types (#581) (@dselman)

	672af7d [https://github.com/hyperledger/composer/commit/672af7d19699afb58034c3dad53315f773522f99] Added unit tests for the resource component (#578) (@14gracel)

	0b9f5da [https://github.com/hyperledger/composer/commit/0b9f5da662dd1355d5d0123aad11a6ffc242b198] tls support and new structure for connection profile (#577) (@davidkel)

	5b4e2cf [https://github.com/hyperledger/composer/commit/5b4e2cf1d1b5bdc0cee173f2b6815e99088b058e] nitpick 15 (#576) (@samjsmith)

	87d2ff2 [https://github.com/hyperledger/composer/commit/87d2ff22a8b70ee76a75acd2c9d70bfcc7e7d09c] Transaction component unit tests (#574) (@14gracel)

	be2e275 [https://github.com/hyperledger/composer/commit/be2e27556dbb518534c961a57603cbdc5e96860c] Add runtime API version of the exists() call (#573) (@sstone1)

	2a08751 [https://github.com/hyperledger/composer/commit/2a0875160c236135f9e3426b8f0e3b9b3e8baf07] Update date for next community call (#568) (@EdMoffatt)

	c503e1a [https://github.com/hyperledger/composer/commit/c503e1a417b52e7fd45c17c82954e654f3e5f47e] Transaction submit broken in old UI due to stricter validation checks (#571) (@sstone1)

	593be8c [https://github.com/hyperledger/composer/commit/593be8ca6b4684eafbdc1e02c3a1792e5c5143c3] UI nitpicks 11 and 12 (#569) (@samjsmith)

	ad393e9 [https://github.com/hyperledger/composer/commit/ad393e90b2ffe37c573deb157ec083733076c4a6] Added outbound link tracking using googleanalytics autotrack (#561) (@jthub)

	27e37e2 [https://github.com/hyperledger/composer/commit/27e37e2313e894f2f71206d9b9f181eba2775e41] Registry unit tests (#563) (@14gracel)

	f0064ec [https://github.com/hyperledger/composer/commit/f0064ec753808e3975b70094a0337fb9f19bcb52] Remove bad symlink (#567) (@sstone1)

	067f586 [https://github.com/hyperledger/composer/commit/067f5869f3c3dca1d5f260a898b4de48edbce2a7] Check to see if result is a thenable, don't use instanceof (#566) (@sstone1)

	9ef8c72 [https://github.com/hyperledger/composer/commit/9ef8c720fe1f0306998aded349d1b25c2e0dcb44] Clean up logging, export RelationshipDeclaration from common (#564) (@sstone1)

	59c4d64 [https://github.com/hyperledger/composer/commit/59c4d648af015436462b11505b76f6d28d067d5c] Add simulated certificate authority for embedded runtime (#562) (@sstone1)

	0e4a2bf [https://github.com/hyperledger/composer/commit/0e4a2bf9d74362a9ce6312b5c038584070e2e273] Add simulated certificate authority for web runtime (#560) (@sstone1)

	9caf34c [https://github.com/hyperledger/composer/commit/9caf34cfb81f209c6b8486e216013efde606eb12] Enable sys test v1 (#558) (@davidkel)

	9be4dfc [https://github.com/hyperledger/composer/commit/9be4dfc1026f03efcb5e1da2528b594749cc89e9] Refactor Editor (#559) (@caroline-church)

	73009a3 [https://github.com/hyperledger/composer/commit/73009a330f97065e3cb0a2cf5e754bf00a506f5e] Export AssetRegistry and ParticipantRegistry (#557) (@14gracel)

	c69fdaa [https://github.com/hyperledger/composer/commit/c69fdaaade014bf2eef36c36cd325352ac5d8beb] Use proper case for Data heading on Test page (#496) (@bestbeforetoday)

	a4cc0fc [https://github.com/hyperledger/composer/commit/a4cc0fc9b20e315e1537b124d45e3fbc5e3cd9a8] Added unit tests for add file component (#553) (@14gracel)

	297cf34 [https://github.com/hyperledger/composer/commit/297cf34e10cf667d23b8c14a57f3932035321fcc] Support for system tests against fabric v1 (#551) (@davidkel)

	f946626 [https://github.com/hyperledger/composer/commit/f946626925d6d148d62d234643a8422626f4b441] Trace corrections and updates to code gen tools (#548) (@mbwhite)

	c01f8a6 [https://github.com/hyperledger/composer/commit/c01f8a6e61c65fbfdefb484b56d097a61cb34133] 409: Use ValueGenerator strategy for generating resource values (#550) (@bestbeforetoday)

	4fe6455 [https://github.com/hyperledger/composer/commit/4fe6455879bd83f0d5e3c436a8e39bec9729ce36] Bumped up about.service code coverage (#549) (@14gracel)

	a8cc4ca [https://github.com/hyperledger/composer/commit/a8cc4cab44671c0b871b62d72521123fe64e1d46] Finished add-file component test and edit import to clear stubs (#547) (@14gracel)

	c532136 [https://github.com/hyperledger/composer/commit/c53213655a544079f370124c42bc37cacb5eb8f4] Improved file-importer test, added Composer REST server into angular generator (#546) (@Jakeeyturner)

	2d350fa [https://github.com/hyperledger/composer/commit/2d350fa09d88bc6b027e52c4f9f378a2082f4d5f] Added unit tests for add file component (#536) (@14gracel)

	e207280 [https://github.com/hyperledger/composer/commit/e207280f716695006748f0b43437b871610b8953] fix(v1): remove console.log entries (#542) (@davidkel)

	d1159d1 [https://github.com/hyperledger/composer/commit/d1159d17d2262a6c357d002a558c090a934a0325] Import invalid sample error change (#540) (@Jakeeyturner)

	40feae5 [https://github.com/hyperledger/composer/commit/40feae5dd803c796debcb9c68fa831760cbc05fa] Fixed import error (#537) (@Jakeeyturner)

	a8d18dc [https://github.com/hyperledger/composer/commit/a8d18dc91ead332ca4e49f84e5257c1e566cd111] Playground tests, generator tests and tweaks (#534) (@Jakeeyturner)

	9abcd84 [https://github.com/hyperledger/composer/commit/9abcd84b8d40b414ba8baff59a66cc8a16c59834] feat(v1): add support for client identity creation (#535) (@davidkel)

	d692916 [https://github.com/hyperledger/composer/commit/d69291618dcf7adf36d6dbfb789eb5527849c175] add import component tests (#532) (@caroline-church)

	ab5a857 [https://github.com/hyperledger/composer/commit/ab5a857ed9bf4e24845738f95c17e8cf2a5de591] Adding transaction submit CLI reference doc and a couple of quick fixes. (#531) (@EdProsser)

	cd3b7aa [https://github.com/hyperledger/composer/commit/cd3b7aa4e77142acd964843277353a6f8fae9201] Add support for mspid to hlfv1 (#512) (@davidkel)

	4233519 [https://github.com/hyperledger/composer/commit/4233519dcef42c0e990efc96a75ff70d46aafc99] feat(v1): Extract Identity from signer certificate (#526) (@davidkel)

	6d6820a [https://github.com/hyperledger/composer/commit/6d6820a848a39fb77991480f7fed72349d29eaae] Automatic version bump to 0.5.6 (@fabric-composer-app)

 Hyperledger Composer Documentation

Hyperledger Composer Documentation

This directory (composer/packages/composer-website) hold the documentation for Hyperledger Composer and the tools to create the static website for Hyperledger Composer. This static site is hosted on an organization static site in GitHub (https://github.com/hyperledger/composer).

Getting Started for local work

	Assume that you have a clone of the composer repository locally.

	Install Ruby; a good guide to installing ruby is here [https://www.digitalocean.com/community/tutorials/how-to-install-ruby-on-rails-with-rbenv-on-ubuntu-16-04] but stop before installing Rails. Installation of Ruby-dev, and subsequently Gem, are all that are required.

	Install Jeykll, jekyll-sitemap, redcarpet. The scripts directory contains a setup-jekyll script that does setup these. But you must have performed the Ruby installation first.

./scripts/setup-jekyll.sh

	Next step is to run or rerun the lerna bootstrap in the root of the composer repository.

	Make the changes you want to any of the md files under the jekylldocs directories. Be careful if modifying anything in a directory starting with an underscore. Those are the template files.

	Issue npm run jekyllserve in the composer-website directory and then go to the url that you get given at the end.

	What you can do is modify the file you are working on and jekyll will rebuild the docs dynamically. (though you have to refresh the browser).

	Then push your changes as per usual.

Reference information

High Level Process

In summary the documentation is generated using both Jekyll and the jsdoc tool. These are run using scripts within Travis, with output being pushed to hyperledger.github.io/composer when a merge build occurs. Pull Request builds do build all the docs but do nothing with them.

	The markdown files with the documentation are contained in a simple directory structure under jekylldocs

	Images should be in the directory structure and reference like any other file using relative paths

	The Jekyll template (with index, 404 html pages etc, web javascript, and css files) are in jekylldocs but in directories that are prefixed by an underscore and also the assets directory.

	All the controlling scripts are in scripts These are bash shell scripts.

	Some additional scripts are in the package.json file that can be run with npm run

	The .travis.yml does control some of the order the script execution

	An out directory is created during build - this is only used for temporary working files.

Important: We are producing static html, (with css and web based javascript) and pushing that. There are many sites on line that talk about how github uses and (prohibits) in some aspects of Jekyll. These include various plugins, and relative paths. However a lot of that doesn't apply as we are using static html that github does not need to render, just acts as a webserver.

The key to getting this it work is the site.baseurl of the jekyll config. This should be set to NOTHING [if we had a gh-pages branch on a private repo this would need to be modified]

Input to jekyll does not need to be just markdown, it can also be HTML such as the API docs. These are processed by jekyll but unless you add anything specific to be processed, they are copied over to the site unchanged.

In more detail

We'll look at the process in more detail, firstly the jsdocs tool.

generator uml

to write... note that a Java Runtime is required for the plantuml even though it's being invoked from node.js

jsdocs

The template for the jsdocs is within the jsdoc-template directory, along with the all the jsdoc configuration files.

	The API documentation using jsdoc are created initially; the source for these are in the node_modules directory. This is achieved by the fact the Hyperledger Composer npms are dependencies in the package.json. So the source code that contains the jsdoc comments will be pulled down and be contained within the node_modules directory,

	"composer-admin": "latest",
"composer-client": "latest",
"composer-common": "latest",
"composer-runtime": "latest",

	The jsdcos tool is a node module that produces the API documentation. This is invoked by issuing npm run commands. There are two targets for the public and private jsdoc

"docpub": "jsdoc --pedantic --recurse -c jsdoc.conf -t ./node_modules/ink-docstrap/template -a public,undefined -d ./out/public -R JSDOC-README.md",

	jsdoc.conf is the configuration file - where to change footers and copyright etc.

	Note the output location which is important - also the -R JSDOC-README.md this is the front page of the JSDOC tools.

	By using the lerna bootstrap it allows JSDocs to be correctly pointed to the current source code.

##Jekyll Configuration
The setup-jekyll.sh script is used in travis to setup jekyll. This can be used locally after Ruby installation

Jekyll Template

The jekyll template and files are stored in this tree

├── jekylldocs
│ ├── 404.html
│ ├── assets
│ ├── _config.yml
│ ├── favicon.ico
│ ├── _includes
│ ├── index.html
│ ├── _layouts
│ ├── LICENCE
│ └── _plugins

	404 and index.html are the 404 and index.html page as pure html

	assets is the css, javascript, and some basic images that are used

	_config.yml is the configuration of jekyll.

	_includes has files that are pulled into the templates at key points. This is primary the header, sidebars, and the footer.

	_layouts are the liquid templates that control the overall structure of each page. There are a few here and I believe that only the base and default are used

	_plugins this is where the plugins to the jekyll engine are held. These are in ruby; we have a very simple one that converts any markdown reference page eg [Concepts Outline](../concepts/outline.md) will be converted into a link that refers to ../concepts/outline.html

 Hyperledger Composer API

Hyperledger Composer API

Hyperledger Composer is an application development framework for building Blockchain applications based on Hyperledger. This is the JavaScript documentation for the Hyperledger Composer Client, Admin, and Runtime JavaScript APIs.

Overview

The major components of Hyperledger Composer are:

	The Hyperledger Composer language for describing the structure of resources (assets, participants
and transactions) that participate in a blockchain backed business network.

	JavaScript APIs to query, create, update and delete resources and submit transactions
from client applications. Hyperledger Composer resources are stored on the Blockchain.

	JavaScript transaction processor functions that runs on Hyperledger Fabric when transactions are
submitted for processing. These functions may update the state of resources
stored on the Blockchain via server-side Hyperledger Composer APIs.

Resources

	Documentation [https://hyperledger.github.io/composer/]

	npm modules [https://www.npmjs.com/search?q=hyperledger-composer]

	GitHub repositories [https://github.com/hyperledger/composer]

Contributing

To read more about the community and guidelines for submitting pull requests,
please read the Contributing document [https://github.com/hyperledger/composer/blob/master/CONTRIBUTING.md].

 Ask a question

layout: default
title: Support
category: start
sidebar: sidebars/accordion-toc0.md
excerpt: Get support with Hyperledger Composer
section: support
index-order: 1100

#Community

Ask a question

Hyperledger Rocket.Chat

You will need a Linux Foundation ID [https://identity.linuxfoundation.org/] , or alternatively you can log in with Facebook, GitHub, Google, or OpenStack.

Let's chat

 <no title>

 {% assign sorted = site.pages | sort: 'index-order' %}
{% for page in sorted %}
{% if page.index-order %}
{% capture mods %}{{ page.index-order | modulo:100 }}{% endcapture %}
{% if mods == "0" and page.exception == nil %}

	{{ page.title }}

 Developing Applications

layout: default
title: Developing Applications
section: applications
category: start
index-order: 600
sidebar: sidebars/accordion-toc0.md
excerpt: Writing a node.js application

Developing Applications

{{site.data.conrefs.composer_full}} supports creating web, mobile or native Node.js applications. It includes the composer-rest-server (itself based on LoopBack technology) to automatically generate a REST API for a business network, and the hyperledger-composer code generation plugin for the Yeoman framework to generate a skeleton Angular application.

In addition it includes a rich set of JavaScript APIs to build native Node.js applications.

{% assign sorted = site.pages | sort: 'index-order' %}
{% for page in sorted %}
{% if page.section == 'applications' and page.title != "Developing Applications" %}

{{ page.title }}

{{ page.excerpt }}
{% endif %}
{% endfor %}

References

	Yeoman Code Generator [http://yeoman.io]

	Angular Framework [https://angular.io]

 Writing Node.js Applications

layout: default
title: Writing a Node.js application
section: applications
category: start
index-order: 601
sidebar: sidebars/accordion-toc0.md
excerpt: "Developing Node.js applications to work with Hyperledger Composer allows you to programmatically connect to a deployed business network, create, read, update and delete assets and participants and to submit transactions."

Writing Node.js Applications

Application developers use the composer-client npm module to programmatically connect to a deployed business network, create, read, update and delete assets and participants and to submit transactions. If applications need to be able to deploy or administer business networks, then the composer-admin npm module can be used.

The sample landregistry.js [https://github.com/hyperledger/composer-sample-applications/blob/master/packages/digitalproperty-app/lib/landRegistry.js] file contains a class to the represent the land registry and contains methods for listing the land titles, adding default titles, and submitting the transaction. This has been implemented using a JavaScript class; however you are free to structure your code as you wish.

It's worth highlighting that the style of the API is to use promises. Typically {{site.data.conrefs.composer_full}} APIs will return a promise that is resolved when the operation has been successfully completed or with the result of the operation if applicable.

If you're not familiar with Promise based development it's worth reviewing some of the tutorials online to get an idea. Further to this, in node 8, async/await is now supported making it easier to develop asynchronous applications. The examples shown here make use of await and assume that the code is contained within a function that has async attribute

Modules required

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

For a {{site.data.conrefs.composer_full}} client application this is the only npm module required.

Connecting to the {{site.data.conrefs.composer_full}} Runtime

A BusinessNetworkConnection instance is created and then used to connect to a runtime:

this.bizNetworkConnection = new BusinessNetworkConnection();

The first {{site.data.conrefs.composer_full}} API call that we are going to make here, is the connect() API, to establish the connection to the {{site.data.conrefs.composer_full}} runtime on the {{site.data.conrefs.hlf_full}}.
An appropriate cardName needs to be provided for connection, for example admin@digitalproperty-network may be a valid card name depending on how the digitalproperty-network was deployed. This API returns a Promise to the businessNetworkDefinition if successful:

let this.businessNetworkDefinition = await this.bizNetworkConnection.connect(cardName);

For a client application this is all the essential setup that is required, from this point on it's up to what the application wants to do as to what APIs are called.

Adding assets to a registry

The {{site.data.conrefs.composer_full}} runtime will create a default registry for each type of modeled asset. So in this example, a LandTitle registry will have been created. What we want to do here is get access to that registry and then add some assets. The getAssetRegistry() method takes the fully qualified asset name as defined in the CTO model file (that is the namespace plus the name of the asset type). It returns a promise that is resolved with the asset registry:

this.titlesRegistry = await this.bizNetworkConnection.getAssetRegistry('net.biz.digitalPropertyNetwork.LandTitle');

Next step is to create some assets (look for the method _bootstrapTitles in the code)

A factory style pattern is used to create assets. A factory is obtained from the businessNetworkDefinition and used to create instances of all the types defined in the business network. Note the use of the namespace and asset name. Then we can set the properties of this asset. The identifiers here (firstName lastName) matches with the properties defined in the model.

let factory = this.businessNetworkDefinition.getFactory();
owner = factory.newResource('net.biz.digitalPropertyNetwork', 'Person', 'PID:1234567890');
owner.firstName = 'Fred';
owner.lastName = 'Bloggs';

We now have a Person! Now we need a land title. Note how the owner is specified as being the person we just created. (In the actual sample code we do this code twice to create landTitle1 and landTitle2).

let landTitle2 = factory.newResource('net.biz.digitalPropertyNetwork', 'LandTitle', 'LID:6789');
landTitle2.owner = owner;
landTitle2.information = 'A small flat in the city';

We now have a land title created that needs to be stored in the registry.

await this.titlesRegistry.addAll([landTitle1, landTitle2]);

This is using an API to add multiple titles, which returns a promise that is resolved when the assets are added. The last thing we need to do is add the Person, Fred Bloggs. As this is a 'participant', the getParticipantRegistry API is used.

let personRegistry = await this.bizNetworkConnection.getParticipantRegistry('net.biz.digitalPropertyNetwork.Person');
await personRegistry.add(owner);

##Listing assets in a regsitry
In the sample application this is handled in a different method list(). The same setup as for putting assets is required, so as before we need to get the asset registry but this tile we call the getAll() API. This returns an array of objects.

let registry = await this.bizNetworkConnection.getAssetRegistry('net.biz.digitalPropertyNetwork.LandTitle');
let aResources = await registry.getAll();
let table = new Table({
 head: ['TitleID', 'OwnerID', 'First Name', 'Surname', 'Description', 'ForSale']
});
let arrayLength = aResources.length;
for (let i = 0; i < arrayLength; i++) {
 let tableLine = [];
 tableLine.push(aResources[i].titleId);
 tableLine.push(aResources[i].owner.personId);
 tableLine.push(aResources[i].owner.firstName);
 tableLine.push(aResources[i].owner.lastName);
 tableLine.push(aResources[i].information);
 tableLine.push(aResources[i].forSale ? 'Yes' : 'No');
 table.push(tableLine);
}
 // Put to stdout - as this is really a command line app
return table;

Most of this isn't {{site.data.conrefs.composer_full}} API code - but it shows how to access the details of the objects that have been returned. At this point it's worth just looking again at the model.

asset LandTitle identified by titleId {
 o String titleId
 o Person owner
 o String information
 o Boolean forSale optional
}

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

You can see how the owner and title information are being accessed in a very simple manner.

Submitting a transaction

The last thing that we need to do is submit a transaction. This is the definition of the transaction in the model file:

transaction RegisterPropertyForSale identified by transactionId{
 o String transactionId
 --> LandTitle title
}

The transaction has two fields here, a trandsactionId, and a reference to the land title that should be submitted for sale. The first step is get access to the registry for the landtitle, and get back the specific land title we want to submit for sale.

let registry = await this.bizNetworkConnection.getAssetRegistry('net.biz.digitalPropertyNetwork.LandTitle');
await registry.get('LID:1148');

The getAssetRegistry call should now be looking a bit familiar, the get API is used to get a specific land title.
The next step is to create the transaction we want to submit.

let serializer = this.businessNetworkDefinition.getSerializer();

let resource = serializer.fromJSON({
 '$class': 'net.biz.digitalPropertyNetwork.RegisterPropertyForSale',
 'title': 'LID:1148'
});

await this.bizNetworkConnection.submitTransaction(resource);

What we need to do here is create a 'serializer'. This is able to create a resource - this resource is then passed to the submitTransaction API. Note that the transaction JSON matches the structure specified in the model file.

References

	JavaScript API Documentation

	Promises tutorial [https://scotch.io/tutorials/understanding-javascript-promises-pt-i-background-basics]

	async/await tutorial [https://codeburst.io/javascript-es-2017-learn-async-await-by-example-48acc58bad65]

 Subscribing to events

layout: default
title: Subscribing to events
category: tasks
section: applications
index-order: 603
sidebar: sidebars/accordion-toc0.md
excerpt: Node.js applications can subscribe to events from a business network by using the composer-client.BusinessNetworkConnection.on API call. Events are defined in the business network model file and are emitted by specified transactions in the transaction processor function file.

Subscribing to events

Node.js applications can subscribe to events from a business network by using the composer-client.BusinessNetworkConnection.on API call. Events are defined in the business network model file and are emitted by specified transactions in the transaction processor function file. For more information on publishing events, see publishing events.

Before you begin

Before an application can subscribe to events, you must have defined some events and the transactions which will emit them. The business network must also be deployed and you must have a connection profile that can connect to it.

Procedure

	An application must send a specific API call to subscribe to events emitted transactions in a business network. Currently, an application which subscribes to events will receive all events which are emitted. The API call should take the following format:

businessNetworkConnection.on('event', (event) => {
 // event: { "$class": "org.namespace.BasicEvent", "eventId": "0000-0000-0000-000000#0" }
 console.log(event);
});

This includes an event called BasicEvent which was created in the publishing events documentation. The eventId property is always the same as the transactionId of the transaction which emitted the event, with an appended number in the form "transactionId": "<transactionId>#number".

What next?

The application will now receive all of the events emitted by the business network, and it's up to the application to choose to what extent those events are integrated.

 Writing Web Applications

layout: default
title: Writing Web applications
category: start
section: applications
index-order: 602
sidebar: sidebars/accordion-toc0.md
excerpt: Web applications that need to interact with deployed business networks should make calls to a REST API. The easiest way to create the REST API is to use the composer-rest-server to dynamically generate a REST API from the deployed business network.

Writing Web Applications

To interact with a deployed business network, web applications should make REST API calls. To create a custom REST API for a business network, use the composer-rest-server command.

To create a skeleton Angular application that can interact with the REST API, use the yo hyperledger-composer command.

Please follow the Developer Tutorial for an example of how to use the composer-rest-server and the Angular generator.

Generating an Angular application from a Business Network Archive (.BNA)

The flow for building an Angular application is as follows:

[image: Angular Generator Flow]

 Installing the development environment

layout: default
title: Installing the development environment
category: start
section: installing
sidebar: sidebars/accordion-toc0.md
excerpt: To install the full development environment click Installing the development environment here or in the table of contents on the left.
index-order: 202

Installing the development environment

Follow these instructions to obtain the {{site.data.conrefs.composer_full}} development tools (primarily used to create Business Networks) and stand up a {{site.data.conrefs.hlf_full}} (primarily used to run/deploy your Business Networks locally).
Note that the Business Networks you create can also be deployed to {{site.data.conrefs.hlf_full}} runtimes in other environments e.g. on a cloud platform.

Before you begin

Make sure you have installed the required pre-requisites, following the instructions in Installing pre-requisites.

These instructions assume that you've not installed the tools and used them before. If this is not the case, you might want to check that your previous setup is completely destroyed before you start following this guide. To learn how to do this, skip to the Appendix.

To provide flexibility and enable the maximum number of dev, test and deployment scenarios, {{site.data.conrefs.composer_short}} is delivered as a set of components you can install with npm and control from the CLI. These instructions will tell you how to install everything first, then how to control your development environment.

Installing components

Please note the @next in the npm install commands. This is important to ensure you install the appropriate version to work with {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}.

Step 1: Install the CLI tools

There are a few useful CLI tools for {{site.data.conrefs.composer_short}} developers. The most important one is composer-cli, which contains all the essential operations, so we'll install that first. Next, we'll also pick up generator-hyperledger-composer, composer-rest-server and Yeoman plus the generator-hyperledger-composer. Those last 3 are not core parts of the development environment, but they'll be useful if you're following the tutorials or developing applications that interact with your Business Network, so we'll get them installed now.

	Essential CLI tools:

 npm install -g composer-cli@next

	Utility for running a REST Server on your machine to expose your business networks as RESTful APIs:

 npm install -g composer-rest-server@next

	Useful utility for generating application assets:

 npm install -g generator-hyperledger-composer@next

	Yeoman is a tool for generating applications, which utilises generator-hyperledger-composer:

 npm install -g yo

Step 2: Install Playground

If you've already tried {{site.data.conrefs.composer_short}} online, you'll have seen the browser app "Playground". You can run this locally on your development machine too, giving you a UI for viewing and demonstrating your business networks.

	Browser app for simple editing and testing Business Networks:

 npm install -g composer-playground@next

Step 3: Set up your IDE

Whilst the browser app can be used to work on your Business Network code, most users will prefer to work in an IDE. Our favourite is VSCode, because a {{site.data.conrefs.composer_short}} extension is available.

	Install VSCode from this URL: https://code.visualstudio.com/download

	Open VSCode, go to Extensions, then search for and install the Hyperledger Composer extension from the Marketplace.

Step 4: Install {{site.data.conrefs.hlf_full}}

This step gives you a local {{site.data.conrefs.hlf_full}} runtime to deploy your business networks to.

	In a directory of your choice (we will assume ~/fabric-tools), get the .tar.gz file that contains the tools to install {{site.data.conrefs.hlf_full}}:

 mkdir ~/fabric-tools && cd ~/fabric-tools

 curl -O https://raw.githubusercontent.com/hyperledger/composer-tools/master/packages/fabric-dev-servers/fabric-dev-servers.tar.gz
 tar -xvf fabric-dev-servers.tar.gz

A zip is also available if you prefer: just replace the .tar.gz file with fabric-dev-servers.zip and the tar -xvf command with a unzip command in the preceding snippet.

	Use the scripts you just downloaded and extracted to download a local {{site.data.conrefs.hlf_full}} runtime:

 cd ~/fabric-tools
 ./downloadFabric.sh

Congratulations, you've now installed everything required for the typical Developer Environment.
Read on to learn some of the most common things you'll do with this environment to develop and test your Blockchain Business Networks.

Controlling your dev environment

Starting and stopping {{site.data.conrefs.hlf_full}}

You control your runtime using a set of scripts which you'll find in ~/fabric-tools if you followed the suggested defaults.

The first time you start up a new runtime, you'll need to run the start script, then generate a PeerAdmin card:

 cd ~/fabric-tools
 ./startFabric.sh
 ./createPeerAdminCard.sh

You can start and stop your runtime using ~/fabric-tools/stopFabric.sh, and start it again with ~/fabric-tools/startFabric.sh.

At the end of your development session, you run ~/fabric-tools/stopFabric.sh and then ~/fabric-tools/teardownFabric.sh. Note that if you've run the teardown script, the next time you start the runtime, you'll need to create a new PeerAdmin card just like you did on first time startup.

The local runtime is intended to be frequently started, stopped and torn down, for development use. If you're looking for a runtime with more persistent state, you'll want to run one outside of the dev environment, and deploy Business Networks to it. Examples of this include running it via Kubernetes, or on a managed platform such as IBM Cloud. For further details, see

 Installing {{site.data.conrefs.composer_full}}

layout: default
title: Installing
category: tasks
sidebar: sidebars/accordion-toc0.md
section: installing
index-order: 200
excerpt: Tutorials

Installing {{site.data.conrefs.composer_full}}

 Installing pre-requisites

layout: default
title: Installing pre-requisites
category: start
section: installing
sidebar: sidebars/accordion-toc0.md
excerpt: Make sure you have the required pre-requisites by following Installing pre-requisites.
index-order: 201

Installing pre-requisites

The {{site.data.conrefs.composer_full}} pre-requisites can be installed on Ubuntu or MacOS. Choose your operating system to jump to the appropriate section, or scroll down to find the instructions:

 Create a Business Network Definition

layout: default
title: Create a Business Network Definition
category: tasks
section: business-network
index-order: 502
sidebar: sidebars/accordion-toc0.md
excerpt: How to create a business network definition

Create a Business Network Definition

A business network definition has the following layout:

models/ (optional)
lib/
permissions.acl (optional)
package.json
README.md (optional)

The easiest way to create a new business network definition is to either git clone an example, or to use the {{site.data.conrefs.composer_full}} Yeoman generator to create a skeleton business network.

README.md

A description of the purpose of the business network using the Markdown mark-up language.

Package.json

A Business Network Definition has a name (limited to basic ASCII alphanumeric characters and -), a human-readable description and a version number. The version number for the network should take the form Major.Minor.Micro and
Semantic Versioning [http://semver.org] principles should be used when incrementing the version number.

The identifier of the network is formed from its name, the - character and its version number. A valid identifier (and example) is therefore mybusinessnetwork-1.0.3.

The metadata for a business network definition is read from package.json, meaning that business network definitions may also be valid npm packages.

Models

The set of domain models for a business network definition define the types that are valid within the network and outside the network when it is integrated with external systems (for example systems that submit transactions to the network).

A domain model may either be packaged within the business network definition (typically stored under the models directory), or may be declared in package.json as an external dependency. You refer to models via an npm dependency if you wanted to share them across business network definitions.

Scripts

The scripts for a business network definition are typically stored under the lib directory and are packaged within the business network definition. The scripts are written in ES 5 JavaScript and refer to the types that are defined in the domain models for the business network.

Permissions.acl

The permissions for the business network expressed are expressed in an optional permissions.acl file.

Cloning an Example Business Network Definition

The sample business network definitions are stored on GitHub at https://github.com/hyperledger/composer-sample-networks. You can git clone this repository to pull down all the sample networks. Each sample network is stored under the packages directory.

Generating a Business Network Definition

Generation

	yo hyperledger-composer

Welcome to the Hyperledger Composer Skeleton Application Generator
? Please select the type of Application: (Use arrow keys)
❯ CLI Application
 Angular 2 Application
 Skeleton Business Network

And select Skeleton Business Netork

	Answer all of the questions

? Please select the type of Application: Skeleton Business Network
You can run this generator using: 'yo hyperledger-composer:businessnetwork'
Welcome to the business network skeleton generator
? Do you only want to generate a model? Yes
? What is the business network's name? mynetwork
? What is the business network's namespace? org.example
? Describe the business network This is my test network
? Who is the author? Dan Selman
? Which license do you want to use? Apache-2
 create index.js
 create package.json
 create README.md
 create models/org.example.cto
 create .eslintrc.yml

This generates a skeleton business network with an asset, participant and transaction defined, as well as a mocha unit test.

Also included, is a 'best practice' eslint config file which defines sample linting rules for JS code.

References

	Modeling Language

	Access Control Language

	Transaction Processor Functions

 Deploying Business Networks

layout: default
title: Deploying Business Networks
category: tasks
section: business-network
index-order: 503
sidebar: sidebars/accordion-toc0.md
excerpt: How to deploy a business network

Deploying Business Networks

Before a business network definition can be deployed it must be packaged into a Business Network Archive (.bna) file. The composer archive create command is used to create a business network archive file from a business network definition folder on disk.

Once the business network archive file has been created it can be deployed to a runtime using the composer network install command followed by a composer network start command.

For example:

composer network install --archiveFile tutorial-network@1.0.0.bna --card PeerAdmin@fabric-network
composer network start --networkName tutorial-network --networkVersion 1.0.0 --card PeerAdmin@Fabric-network --networkAdmin admin --networkAdminEnrollSecret adminpw

To upgrade the business network definition for an already deployed business network use the composer network upgrade CLI command.

Deploying business networks to {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}

In {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}, peers enforce the concepts of administrators and members. Administrators have permission to install {{site.data.conrefs.hlf_full}} chaincode for a new business network onto peers. Members do not have permission to install chaincode. In order to deploy a business network to a set of peers, you must provide an identity that has administrative rights to all of those peers.

To make that identity and its certificates available, you must create a Peer Admin business network card using the certificate and private key associated with the peer admin identity.
{{site.data.conrefs.composer_full}} provides a sample {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} network. The peer administrator for this network is called PeerAdmin, and the identity is automatically imported for you when you use the sample scripts for starting the network. Please note that the peer administrator may be given a different name for other {{site.data.conrefs.hlf_full}} networks.

Important: When deploying a business network to {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} a bootstrap registrar is defined in the {{site.data.conrefs.hlf_full}} Certificate Authority (CA) configuration. The {{site.data.conrefs.composer_full}} development environment contains a preconfigured instance of {{site.data.conrefs.hlf_full}} with a specific enrollment ID and enrollment secret for the bootstrap registrar.

Business network administrators

When you deploy a business network, access controls are enforced as per the access control rules specified in the business network definition. Each business network must have at least one participant, and that participant must have a valid identity for accessing the business network. Otherwise, client applications cannot interact with the business network.

A business network administrator is a participant who is responsible for configuring the business network for their organisation after the business network is deployed, and is responsible for on-boarding other participants from their organisation. Because business networks include multiple organisations, there should be multiple business network administrators for any given business network.

A built-in participant type, org.hyperledger.composer.system.NetworkAdmin, representing a business network administrator is provided by {{site.data.conrefs.composer_full}}. This built-in participant type does not have any special permissions; they are still subject to the access control rules specified in the business network definition. For this reason, it is recommended that you start with the following sample access control rules that grant business network administrators full access to a business network:

rule NetworkAdminUser {
 description: "Grant business network administrators full access to user resources"
 participant: "org.hyperledger.composer.system.NetworkAdmin"
 operation: ALL
 resource: "**"
 action: ALLOW
}

rule NetworkAdminSystem {
 description: "Grant business network administrators full access to system resources"
 participant: "org.hyperledger.composer.system.NetworkAdmin"
 operation: ALL
 resource: "org.hyperledger.composer.system.**"
 action: ALLOW
}

By default, {{site.data.conrefs.composer_full}} will automatically create a single business network administrator participant during deployment. The identity that is used for deploying the business network will also be bound to that business network administrator participant, so that identity can be used to interact with the business network after deployment.

{{site.data.conrefs.hlf_full}} peer administrators may not have permission to issue new identities using the {{site.data.conrefs.hlf_full}} Certificate Authority (CA). This may restrict the ability of the business network administrator to on-board other participants from their organisation. For this reason, it may be preferable to create a business network administrator that does have permission to issue new identities using the {{site.data.conrefs.hlf_full}} Certificate Authority (CA).

You can use additional options to the composer network start command to specify the business network administrators that should be created during the deployment of the business network.

If the business network administrator has an enrollment ID and enrollment secret, you can use the -A (business network administrator) and -S (business network administrator uses enrollment secret) flags. For example, the following command will create a business network administrator for the existing admin enrollment ID:

composer network start --networkName tutorial-network --networkVersion 1.0.0 --c PeerAdmin@Fabric-network -A admin -S adminpw

Deploying business networks using Playground locally

Please note: When using a local Playground instance to deploy a business network to {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}, as part of the deployment process you must choose how to provide credentials for the initial business network participant. The initial participant will be a NetworkAdmin [https://github.com/hyperledger/composer/blob/master/packages/composer-common/lib/system/org.hyperledger.composer.system.cto].

When deploying a business network using playground, you will be prompted to enter the credentials for the initial participant. Credentials can be provided either as a certificate or as a pre-defined enrollment ID and enrollment secret. If you are using the instance of {{site.data.conrefs.hlf_full}} set up in the {{site.data.conrefs.composer_full}} development environment, the bootstrap registrar enrollment ID is admin and the bootstrap registrar enrollment secret is adminpw. This initial participant uses the credentials set for the bootstrap registrar in the {{site.data.conrefs.hlf_full}} Certificate Authority (CA), and will be a NetworkAdmin [https://github.com/hyperledger/composer/blob/master/packages/composer-common/lib/system/org.hyperledger.composer.system.cto].

When deploying a business network using Playground locally, you must have at least one business network card with the PeerAdmin role and at least one business network card with the ChannelAdmin role. Each of these business network cards must contain the correct admin certificates.

Errors deploying a business network to a local fabric using the {{site.data.conrefs.composer_full}} Playground

When deploying a business network to an instance of {{site.data.conrefs.hlf_full}} by using a locally installed {{site.data.conrefs.composer_full}} Playground, you may encounter the following error:

Error: error trying to list instantiated chaincodes. Error: chaincode error (status 500, message: Authorization for GETCHAINCODES on channel getchaincodes has been denied with error Failed verifying that proposal's creator satisfies local MSP principal during channelless check policy with policy [Admins]:[This identity is not an admin])

Once this error has occurred, you must delete your local browser storage to restore normal function. Please note: Deleting local browser storage will delete your Web Browser Connection business network cards (but not your real fabric connection business network cards that are in the card store). For more information on this error, see the specific error page

References

	Composer CLI commands

 Publish Models or Business Network Definitions for use by applications

layout: default
title: Publish Models or Business Network Definitions
category: tasks
section: business-network
index-order: 506
sidebar: sidebars/accordion-toc0.md
excerpt: How to publish a model or business network definition for use by applications

Publish Models or Business Network Definitions for use by applications

{{site.data.conrefs.composer_full}} can optionally use the npm package manager to publish both business networks, and models. By publishing business networks to npm applications that need to reference the business networks (for example to introspect them, or deploy them) can declare a binary package dependency on the published npm package. Using semantic versioning of the npm package for the business network also allows applications to specify their tolerance for accepting incompatible changes to the business network.

The npm package manager is a powerful (Internet scale) mechanism to distribute any binaries, along with metadata expressed in a package.json file.

Similarly, a set of {{site.data.conrefs.composer_short}} domain models (CTO files) may be packaged into an npm package for publication. The ability to publish models allows the models to be reused across multiple business networks (by declaring a package.json dependency), as well as ensures that semantic versioning can be used to control the evolution of the models themselves.

However, publication to npm is not required to use {{site.data.conrefs.composer_short}}. You may bundle a business network inside an application, and simply manage its source files using version control software, such as git.

The easiest way to publish a model or business network definition for use by applications it to push the business network definition to the npm package manager using the npm publish command. This will allow the applications that would like to use the business network definition (for example to deploy it via API) to reference the business network definition as a dependency in their package.json file.

References

	Example business network published to npm [https://www.npmjs.com/package/perishable-network]

	Example model published to npm [https://www.npmjs.com/package/animaltracking-model]

 Developing Business Networks

layout: default
title: Developing Business Networks
category: concepts
section: business-network
index-order: 500
sidebar: sidebars/accordion-toc0.md
excerpt: Overview of Developing Business Networks

Developing Business Networks

Developers use {{site.data.conrefs.composer_full}} to digitize business networks. The business network is accessed by multiple participants in the network, some of which may be responsible for the maintenance (hosting) of the network itself, referred to as maintainers of the network.

Typically each maintainer of the network will run several peer nodes (for crash fault tolerance) and {{site.data.conrefs.hlf_full}} replicates the distributed ledger across the set of peer nodes.

Model

Developers work with business analysts to define the domain data model for the business network. The data model is expressed using the {{site.data.conrefs.composer_short}} Modeling Language and defines the structure of the resources that will be stored on the ledger, or processed as transactions.

Once the domain model is in place, developers can capture smart contracts as executable transaction processor functions, written in JavaScript.

Access Control

In parallel developers or technical analysts can define the access control rules for the business network, to enforce which participants have access to the data on the ledger and under which conditions.

Deploy

Developers package the models, scripts and access control rules into a deployable Business Network Archive and use command line tools to deploy the archive to a runtime for testing.

Test

Like all business logic, it is important to create unit and system tests for business networks. Developers can use popular JavaScript testing frameworks such as Mocha and Chai to run unit tests (against the Node.js embedded runtime) or run system tests against a {{site.data.conrefs.hlf_full}}.

Integrate

Once the business network is tested and in place, front-end applications need to be created. Use the {{site.data.conrefs.hlf_short}} REST Server to automatically generate a REST API for a business network, and then a skeleton generate Angular application using the Yeoman code generator.

The REST Server can be configured to authenticate the participants in the business network, ensuring that credentials and permissions are enforced.

References

	Modeling Language

	Access Control Language

	Transaction Processor Functions

 Business Network Definition

layout: default
title: Business Network Definitions
category: concepts
section: business-network
index-order: 501
sidebar: sidebars/accordion-toc0.md
excerpt: Overview of the Business Network Definition

Business Network Definition

The Business Network Definition is a key concept of the {{site.data.conrefs.composer_full}} programming model. They are represented by the BusinessNetworkDefinition class, defined in the composer-common module and exported by both composer-admin and composer-client.

[image: Business Network Definitions Diagram]

 Customising the card store

layout: default
title: Customising card stores
category: concepts
section: business-network
index-order: 512
sidebar: sidebars/accordion-toc0.md
excerpt: "{{site.data.conrefs.composer_full}} Performance"

Customising the card store

The default card store is the /home/username/.composer directory on the host machine. Local wallets can be problematic for applications running in cloud environments, and it may be desired to have the card store at different directory location. By using custom wallets, users can control where business network cards and the certificates and private keys used for {{site.data.conrefs.hlf_full}} authentication are stored.

Architecture

Whenever a BusinessNetworkConnection or AdminConnection is made, it has an associated CardStore. Each connection can be configured to use a specific CardStore. In the {{site.data.conrefs.composer_full}} repository, there are two pre-configured options for stores:

	composer-wallet-filesystem

	composer-wallet-inmemory

Custom implementations can be written for any given backend database or object store, enabling the specification of a CardStore that is in a non-default file location, a separate docker container, or hosted in a cloud based data store. The store configuration can be completed using either a configuration file, or by using environment variables.

	composer-tools/composer-wallet-redis [https://github.com/hyperledger/composer-tools/tree/master/packages/composer-wallet-redis] - provides a backing store using a Redis server

	@ampretia/composer-wallet-ibmcos [https://github.com/ampretia/composer-wallet-ibmcos] - provides a backing store using the IBM Cloud Object Store. This has an S3 compatible API

Multiple cloud wallet implementations can be installed using global npm installs.

For more details of the writing a new cloud wallet implementation, see the following README [https://github.com/hyperledger/composer-tools/tree/master/packages/composer-wallet-redis].

Configuring a custom wallet

There are two ways to define the configuration for a custom wallet: by using a .json configuration file, or by defining environment variables.

Please note: any custom wallet implementation must include the composer-wallet prefix in the module name.

Using a configuration file

For production deployments, it is more useful to be able to configure the card store outside of the application,
{{site.data.conrefs.composer_full}} uses the standard configuration module config. The configuration file is loaded from a sub-directory of the current working directory called config. The default configuration file is called default.json, the configuration file name can be changed using the NODE_ENV environment variable.

The following configuration file uses the Redis format as an example:

{
 "composer": {
 "wallet": {
 "type": "@ampretia/composer-wallet-redis",
 "desc": "Uses a local redis instance,
 "options": {

 }
 }
 }
}

	type is the name of this module

	desc is some text for the humans

Please note: Each connection will have a new instance of the card store specified. If these resolve to the same backend store, cards can be shared.

Using an environment variable

Specifying the details of a custom wallet on the command line via environment variables may be achieved by setting an environment variable containing the same information as the configuration file.

The following environment variable example uses the same format and data as the preceding configuration file.

export NODE_CONFIG={"composer":{"wallet":{"type":"@ampretia/composer-wallet-redis","desc":"Uses a local redis instance,"options":{}}}}

Any application that is in this shell will use the cloud wallets.

Configuring file system custom card stores

The location of the file system card store can be changed using a configuration file, through specification of a storePath as one of the wallet options.

{
 "composer": {
 "wallet" : {
 "type": "composer-wallet-filesystem",
 "options" : {
 "storePath" : "/my/network/location"
 }
 }
}

The same .json snippet may be exported as an environment variable.

Configuring cloud based custom card stores

The following GitHub repositories contain implementations of cloud custom wallets using Redis and the IBM Cloud Object Store, respectively.

	composer-tools/composer-wallet-redis [https://github.com/ampretia/composer-wallet-redis] - provides a backing store using a Redis server

	@ampretia/composer-wallet-ibmcos [https://github.com/ampretia/composer-wallet-ibmcos] - provides a backing store using the IBM Cloud Object Store. This has an S3 compatible API.

Multiple cloud custom wallet implementations can be installed using global npm installs.

For more details of the writing a new cloud based custom wallet implementation, see the following README [https://github.com/hyperledger/composer-tools/tree/master/packages/composer-wallet-redis].

To migrate to either the Redis or IBM Cloud Object Store cloud custom wallet solutions, refer to the README files of the relevant GitHub repository.

In a general sense, migrating to a cloud wallet implementation has three steps.

	Export the business network cards you wish to use in the cloud custom wallet.

	Change configuration to specify the cloud custom wallet.

	Import the business network cards into the cloud custom wallet.

The composer-wallet-filesystem is the default card store and follows the same layout on disc, and by default is in the same location.

Some samples and test cases show the card stores being created programmatically. This is still possible and but is slightly different in terms of initial creation of the card store.

Using custom wallets with APIs

API CardStore configuration

Using the default location file system card store remains the default option within API calls. For instance:

 adminConnection = new AdminConnection();
 clientConnection = new BusinessNetworkConnection();

will use the file system card store at the location /home/username/.composer, or pick up on the exported custom wallet specified within NODE_CONFIG if and only if executing within the same shell instance.

To specify a custom wallet within the API, without the use of a globally exported value, it must be included as an option passed to the connection:

 const connectionOptions = {
 wallet : {
 type: 'composer-wallet-filesystem',
 options : {
 storePath :'/my/network/location'
 }
 }
 };
 adminConnection = new AdminConnection(connectionOptions);
 clientConnection = new BusinessNetworkConnection(connectionOptions);

In the above, the wallet type may be that of a new file location, or a cloud based location.

API MemoryCardStore configuration

Previously to use the in MemoryCardStore, the code would have been written

 cardStore = new MemoryCardStore();
 const adminConnectionOptions = {
 cardStore : cardStore
 };
 adminConnection = new AdminConnection(adminConnectionOptions);
 // or more concisely
 clientConnection = new BusinessNetworkConnection({cardStore});

This has now changed and Card stores must now be specified differently:

 const NetworkCardStoreManager= require('composer-common').NetworkCardStoreManager;
 const cardStore = NetworkCardStoreManager.getCardStore({ type: 'composer-wallet-inmemory' });
 let adminConnection = new AdminConnection({ cardStore });

 {{site.data.conrefs.composer_full}} Historian

layout: default
title: Hyperledger Composer Historian
category: concepts
section: business-network
index-order: 511
sidebar: sidebars/accordion-toc0.md
excerpt: The Hyperledger Composer Historian is a registry that is populated with records of transactions, the participant submitting the transaction, and the identity used.

{{site.data.conrefs.composer_full}} Historian

The {{site.data.conrefs.composer_full}} Historian is a specialised registry which records successful transactions, including the participants and identities that submitted them. The historian stores transactions as HistorianRecord assets, which are defined in the {{site.data.conrefs.composer_full}} system namespace.

The historian registry is a {{site.data.conrefs.composer_full}} system-level entity. To refer to the historian registry as a resource for access control the historian must be referenced as: org.hyperledger.composer.system.HistorianRecord.

Please note: All participants must have the permission to create HistorianRecord assets. If a transaction is submitted by a participant who does not have the permission to create HistorianRecord assets, the transaction will fail.

HistorianRecord assets

The historian registry stores successful transactions as HistorianRecord assets. Whenever a transaction successfully completes, a HistorianRecord asset is created and added to the historian registry. Record assets are defined in the system namespace, and have the following definition:

asset HistorianRecord identified by transactionId {
 o String transactionId
 o String transactionType
 --> Transaction transactionInvoked
 --> Participant participantInvoking optional
 --> Identity identityUsed optional
 o Event[] eventsEmitted optional
 o DateTime transactionTimestamp
}

	String transactionId The transactionId of the transaction that caused the HistorianRecord asset to be created.

	String transactionType The class of transaction that caused the HistorianRecord asset to be created.

	Transaction transactionInvoked A relationship to the transaction which caused the HistorianRecord asset to be created.

	Participant participantInvoking A relationship to the participant who submitted the transaction.

	Identity identityUsed A relationship to the identity used to submit the transaction.

	Event[] eventsEmitted An optional property containing any events which were emitted by the transaction.

	DateTime transactionTimestamp The timestamp of the transaction which caused the HistorianRecord asset to be created.

All HistorianRecord assets have relationships to the transaction that created them, the invoking participant of that transaction, and the identity used when the transaction was submitted. Applications that wish to obtain these attributes must resolve this relationship.

System transactions

Several operations that the {{site.data.conrefs.composer_full}} runtime makes are classed as transactions. These 'system transactions' are defined in the {{site.data.conrefs.composer_full}} system model. The following will add HistorianRecord assets:

	Adding, removing and updating assets

	Adding, removing and updating participants

	Issuing, binding, activating and revoking identities

	Updating the business network definition

Securing historian data

As a registry, access to the historian data can be controlled with access control rules. However, as a system-level entity the resource name for the historian registry is always org.hyperledger.composer.system.HistorianRecord.

The following access control rule allows members to only see historian data if it references transactions they submitted.

rule historianAccess{
 description: "Only allow members to read historian records referencing transactions they submitted."
 participant(p): "org.example.member"
 operation: READ
 resource(r): "org.hyperledger.composer.system.HistorianRecord"
 condition: (r.participantInvoking.getIdentifier() == p.getIdentifier())
 action: ALLOW

}

Retrieving historian data

Data from the historian registry can be retrieved using either an API call, or queries. All examples that follow make use of the async/await feature and assume that the code is encapsulated in a function with the async attribute.

Using the client and REST APIs with historian

HistorianRecord assets can be returned using the system/historian and system/historian/{id} calls using the REST API.

When using the REST API, a GET call of system/historian will return ALL historian data. This call should be used with care, the return is not limited and may result in large volumes of data being returned.

A GET call of system/historian/{id} using the REST API will return the HistorianRecord asset specified.

Querying the Historian

Historian can be queried in the same manner as other registries. For example, a typical query to return all HistorianRecord assets would be as follows:

 let historian = await businessNetworkConnection.getHistorian();
 let historianRecords = await historian.getAll();
 console.log(prettyoutput(historianRecords));

As this is a 'getAll' call it will potentially return high volume of data. Therefore the query capability is vital in being able to select a subset of records. A typical example would be to select records based on a time. This uses the query capability to select records where the transaction timestamp is past a certain point. The returned records can be processed in the same way.

 let now = new Date();
 now.setMinutes(10); // set the date to be time you want to query from

 let q1 = businessNetworkConnection.buildQuery('SELECT org.hyperledger.composer.system.HistorianRecord ' +
 'WHERE (transactionTimestamp > _$justnow)');

 await businessNetworkConnection.query(q1,{justnow:now});

More advanced queries can be used; for example, the following query selects and returns the Add, Update, and Remove asset system transactions.

 // build the special query for historian records
 let q1 = businessNetworkConnection.buildQuery(
 `SELECT org.hyperledger.composer.system.HistorianRecord
 WHERE (transactionType == 'AddAsset' OR transactionType == 'UpdateAsset' OR transactionType == 'RemoveAsset')`
);

 await businessNetworkConnection.query(q1);

What next?

	Applying queries to a business network.

	Emitting events from transactions.

	{{site.data.conrefs.composer_full}} API documentation.

 Programmatic access control

layout: default
title: Programmatic access control
category: tasks
section: business-network
sidebar: sidebars/accordion-toc0.md
excerpt: Transaction processor functions can be used to implement participant-based access control by checking the participant type and identifier.
index-order: 509

Programmatic access control

It is recommended that you use declarative access control to implement access control rules in your business network definition.
However, you can implement programmatic access control in your transaction processors by retrieving and testing either the current participant or the current identity.
You can run tests against the properties of the current participant or the current identity to permit or reject the execution of a transaction processor function.

A transaction processor function can call the getCurrentParticipant function to get the current participant:

let currentParticipant = getCurrentParticipant();

The current participant is an instance of a modelled participant from the business network definition, or an instance of the system type org.hyperledger.composer.system.NetworkAdmin.

A transaction processor function can call the getCurrentIdentity function to get the current identity:

let currentIdentity = getCurrentIdentity();

The current identity is an instance of the system type org.hyperledger.composer.system.Identity, which represents an identity within a deployed business network.

Before you start

Before you follow these steps, you must have modeled a participant in a business
network definition and deployed it as a business network. You must have created
some instances of those participants, and issued those participants with identities.

The procedure below shows an example using the following participant models:

namespace net.biz.digitalPropertyNetwork

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

participant PrivilegedPerson extends Person {

}

Procedure

	In your transaction processor function, verify the type of the current participant
meets the requirements by using the getCurrentParticipant function:

async function onPrivilegedTransaction(privilegedTransaction) {
 let currentParticipant = getCurrentParticipant();
 if (currentParticipant.getFullyQualifiedType() !== 'net.biz.digitalPropertyNetwork.PrivilegedPerson') {
 throw new Error('Transaction can only be submitted by a privileged person');
 }
 // Current participant must be a privileged person to get here.
}

	In your transaction processor function, verify the participant ID of the current
participant by using the getCurrentParticipant function:

async function onPrivilegedTransaction(privilegedTransaction) {
 let currentParticipant = getCurrentParticipant();
 if (currentParticipant.getFullyQualifiedIdentifier() !== 'net.biz.digitalPropertyNetwork.Person#PERSON_1') {
 throw new Error('Transaction can only be submitted by person 1');
 }
 // Current participant must be person 1 to get here.
}

The participant ID of the current participant can be compared to a participant
that is linked to an asset (by a relationship) to verify that the current
participant has the authority to access or modify an asset:

async function onPrivilegedTransaction(privilegedTransaction) {
 // Get the owner of the asset in the transaction.
 let assetOwner = privilegedTransaction.asset.owner;
 let currentParticipant = getCurrentParticipant();
 if (currentParticipant.getFullyQualifiedIdentifier() !== asset.owner.getFullyQualifiedIdentifier()) {
 throw new Error('Transaction can only be submitted by the owner of the asset');
 }
 // Current participant must be the owner of the asset to get here.
}

	In your transaction processor function, verify the certificate of the current identity
meets the requirements by using the getCurrentIdentity function:

async function onPrivilegedTransaction(privilegedTransaction) {
 let currentIdentity = getCurrentIdentity();
 // Get the PEM encoded certificate from the current identity.
 let certificate = currentIdentity.certificate;
 // Perform testing on the PEM encoded certificate.
 if (!certificate.match(/^----BEGIN CERTIFICATE----/)) {
 throw new Error('Transaction can only be submitted by a person with a valid certificate');
 }
 // Current identity must have a valid certificate to get here.
}

 Emitting Events

layout: default
title: Emitting Events
category: tasks
section: business-network
index-order: 504
sidebar: sidebars/accordion-toc0.md
excerpt: Emitting Events from Transaction Processor Functions

Emitting Events

Events can be emitted by {{site.data.conrefs.composer_full}} and subscribed to by external applications. Events are defined in the model file of a business network definition, and are emitted by transaction JavaScript in the transaction processor functions file.

Before you begin

Before you begin adding events to your business network, you should have a good understanding of the modeling language for business networks, and what makes up a full business network definition.

Procedure

	Events are defined in the model file (.cto) of your business network definition, in the same way as assets and participants. Events use the following format:

 event BasicEvent {
 }

	In order for the event to be published the transaction which creates the event must call three functions, the first is the getFactory function. The getFactory allows events to be created as part of a transaction. Next, an event must be created by using factory.newEvent('org.namespace', 'BasicEvent'). This creates a BasicEvent defined in a specified namespace. Then the required properties on the event must be set. Lastly, the event must be emitted by using emit(BasicEvent). A simple transaction which calls this event would look like this:

 /**
 * @param {org.namespace.BasicEventTransaction} basicEventTransaction
 * @transaction
 */
 async function basicEventTransaction(basicEventTransaction) {
 let factory = getFactory();

 let basicEvent = factory.newEvent('org.namespace', 'BasicEvent');
 emit(basicEvent);
 }

This transaction creates and emits an event of the BasicEvent type as defined in the business network's model file. For more information on the getFactory function, see the {{site.data.conrefs.composer_short}} API documentation [https://hyperledger.github.io/composer/jsdoc/module-composer-runtime.html#getFactory].

What next?

	Subscribing to events

	Developing applications

 Querying and filtering business network data

layout: default
title: Using Queries and Filters with Business Network Data
category: tasks
section: business-network
index-order: 508
sidebar: sidebars/accordion-toc0.md
excerpt: Queries are used to return data about the blockchain world-state; for example, you could write a query to return all drivers over a defined age parameter, or all drivers with a specific name.

Querying and filtering business network data

Queries are used to return data about the blockchain world-state; for example, you could write a query to return all drivers over a specified age, or all drivers with a specific name. The composer-rest-server component exposes named queries via the generated REST API.

Queries are an optional component of a business network definition, written in a single query file (queries.qry).

Note: When using the {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} runtime {{site.data.conrefs.hlf_full}} must be configured to use CouchDB persistence.

Filters are similar to queries, but use the LoopBack filter syntax, and can only be sent using the {{site.data.conrefs.composer_full}} REST API. Currently, only the WHERE LoopBack filter is supported. The supported operators within WHERE are: =, and, or, gt, gte, lt, lte, neq. Filters are submitted using a GET call against an asset type, participant type, or transaction type; the filter is then supplied as a parameter. Filters return the results from the specified class, and will not return results from classes extending the specified class.

Types of Queries

{{site.data.conrefs.composer_full}} supports two types of queries: named queries and dynamic queries. Named queries are specified in the business network definition and are exposed as GET methods by the composer-rest-server component. Dynamic queries may be constructed dynamically at runtime within a Transaction Processor function, or from client code.

Writing Named Queries

Queries must contain a description and a statement. Query descriptions are a string that describe the function of the query. Query statements contain the operators and functions that control the query behavior.

Query descriptions can be any descriptive string. A query statement must include the SELECT operator and can optionally include FROM, WHERE, AND, ORDER BY, SKIP, and LIMIT.

Queries should take the following format:

query Q1{
 description: "Select all drivers older than 65."
 statement:
 SELECT org.acme.Driver
 WHERE (age>65)
}

Query Parameters

Queries may embed parameters using the _$ syntax. Note that query parameters must be primitive types (String, Integer, Double, Long, Boolean, DateTime), a Relationship or an Enumeration.

The named query below is defined in terms of 3 parameters:

query Q18 {
 description: "Select all drivers aged older than PARAM"
 statement:
 SELECT org.acme.Driver
 WHERE (_$ageParam < age)
 ORDER BY [lastName ASC, firstName DESC]
 LIMIT _$limitParam
 SKIP _$skipParam
}

Query parameters are automatically exposed via the GET method created for named queries by the composer-rest-server.

For more information on the specifics of the {{site.data.conrefs.composer_full}} query language, see the query language reference documentation.

Queries using the API

Queries can be invoked by calling the buildQuery or query APIs. The buildQuery API requires the entire query string to be specified as part of the API input. The query API requires you to specify the name of the query you wish to run.

For more information on the query APIs, see the API documentation.

Access Control for Queries

When returning the results of a query, your access control rules are applied to the results. Any content which the current user does not have authority to view is stripped from the results.

For example, if the current user sends a query that would return all assets, if they only have authority to view a limited selection of assets, the query would return only that limited set of assets.

Using filters

Filters can only be submitted using the {{site.data.conrefs.composer_full}} REST API, and must use the LoopBack syntax [https://loopback.io/doc/en/lb2/Where-filter.html]. To submit a query, a GET REST call must be submitted against an asset type, participant type, or transaction type with the filter supplied as a parameter. The supported data types for parameters to be filtered are numbers, Boolean, DateTime, and strings. A basic filter takes the following format, where op indicates an operator:

{"where": {"field1": {"op":"value1"}}}

Please note: Only the top level WHERE operator can have more than two operands.

Currently, only the WHERE LoopBack filter is supported. The supported operators within WHERE are: =, and, or, gt, gte, lt, lte, neq. Filters can combine multiple operators, in the following example, an and operator is nested within an or operator.

{"where":{"or":[{"and":[{"field1":"foo"},{"field2":"bar"}]},{"field3":"foobar"}]}}

The between operator returns values between the given range. It accepts numbers, datetime values, and strings. If supplied with strings, the between operator returns results between the supplied strings alphabetically. In the example below, the filter will return all resources where the driver property is alphabetically between a and c, inclusively.

{"where":{"driver":{"between": ["a","c"]}}}

 Testing Business Networks

layout: default
title: Testing Business Networks
category: tasks
section: business-network
index-order: 505
sidebar: sidebars/accordion-toc0.md
excerpt: How to test business networks

Testing Business Networks

{{site.data.conrefs.composer_full}} supports three types of testing: interactive testing, automated unit testing and automated system testing. All three serve different purposes and are vital to ensuring the success of your blockchain projects.

After you have deployed a business network definition it is often useful to run an interative "smoke test" to ensure that the deployment was successful. The composer CLI exposes several commands for running such smoke tests.

At the other end of the spectrum you can write full-blown system tests using Docker Compose and Mocha/Chai, that start a runtime, deploy your business network definition and then programmatically creates assets, submits transactions and inspect the state of asset registries.

Unit tests focus on ensuring that the correct changes to the world-state take place when a transaction is processed.

The execution of both unit tests and system tests may be automated using a CI/CD build pipeline, such as Jenkins, Travis CI, or Circle CI or alternatives.

Interactive Testing

You can use the Playground to interactively test creating participants, assets and submitting transactions.

Testing from the Command Line

The command line can be used to inspect the state of the runtime and to submit transactions. Use the composer network list command to see the state of asset and participant registries. Use the composer transaction submit command to submit transactions.

Creating Unit Tests

The business logic in transaction processor functions should have unit tests, ideally with 100% code coverage. This will ensure that you do not have typos or logic errors in the business logic.

You can use standard JavaScript testing libraries, such as Mocha, Chai, Sinon and Istanbul to unit test the logic in your transaction processor functions.

The embedded runtime is very useful for unit testing, as it allows you to quickly test business logic in a simulated Node.js blockchain environment, without having to stand-up a {{site.data.conrefs.hlf_full}}.

Please refer to the sample networks for examples of unit tests. For example:
https://github.com/hyperledger/composer-sample-networks/blob/master/packages/bond-network/test/Bond.js

References

	Composer CLI commands

	Mocha [https://mochajs.org]

	Chai [http://chaijs.com]

	Sinon [http://sinonjs.org]

	Istanbul [https://istanbul.js.org]

 Upgrading a deployed business network

layout: default
title: Upgrading a deployed business network
category: tasks
section: business-network
index-order: 507
sidebar: sidebars/accordion-toc0.md
excerpt: Upgrading a deployed business network

Upgrading a deployed business network

After a business network has been successfully deployed to a blockchain it may be necessary to upgrade the business network definition. To upgrade a business network definition, first make the updates you wish to deploy to your local copy of the business network component files (model, script, query, access control, and transaction processor files), then update the version of your local business network files. After updating the version install the new version of the .bna to your blockchain, and use the composer network upgrade command to switch to using your new version.

Before you begin

Before upgrading a deployed business network definition:

	Ensure your business network has successfully deployed.

	Make any required updates to your business network you wish to deploy.

Step One: Updating the business network version

It is important that the package.json file is updated before installing a new version of your business network to your blockchain.

	Open the package.json file in your business network directory.

	Update the version property. The version property must be a . separated number, for example, 0.0.2 or 1.16.4. Make sure to take note of the version number you are setting as it is required for the following steps.

Step Two: Package your business network

After updating the version number, the business network must be packaged into a business network archive (.bna). The .bna can then be installed on the blockchain and started. The composer archive create command can package either a directory or an npm module, for this example we'll use the directory command.

	From your business network directory run the composer archive create command:

 composer archive create -t dir -n .

Step Three: Installing the new business network

When the business network has been packaged, it must be installed to the blockchain. It is installed using the same process as when the original business network was installed.

	Install the business network to your blockchain using the following command:

 composer network install -a NETWORK-FILENAME.bna -c peeradmin@hlfv1

The business network card used in the command must be a peer admin card in order to install the business network to the blockchain peers.

Step Four: Upgrading to the new business network

Now that the business network has been installed to the peers, it must be started. The composer network upgrade command will instruct the peers to stop using the older version of the business network and begin using the version specified in the command.

	Upgrade to the business network that was installed using the following command:

 composer network upgrade -c peeradmin@hlfv1 -n NETWORK-NAME -V NETWORK-VERSION

The network name and network version must match the contents of the package.json in the installed business network.

Your business network should now be successfully upgraded.

 {{site.data.conrefs.hlf_full}}

layout: default
title: Interacting with Hyperledger Fabric
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer is designed to be platform-agnostic. This section is about specifics in relation to interacting with Hyperledger Fabric.
index-order: 810

{{site.data.conrefs.hlf_full}}

There are several cases where information specific to {{site.data.conrefs.hlf_full}} must be included in {{site.data.conrefs.composer_full}} commands, including composer network install, composer network start and composer identity issue. The --option, -o option and the --optionsFile, -O option allow connector specific information to be sent.

Multiple options can be specified using the --option, -o by repeating the tag, for example:

composer somecmd -o thisOpt=value2 -o thatOpt=value2

Alternatively you can create a single file to contain multiple options, for example a file called someCmdOpts.txt could contain:

thisOpt=value1
thatOpt=value2

To reference an options file, use the following format:

composer somecmd --optionsFile=someCmdOpts.txt

Some API's will also include the option to pass a generic options object including AdminConnection.start() and AdminConnection.install()

Providing npm config settings for install

CLI

The npmrcFile option is available on the composer network install command.

The npmrcFile option allows you to specify npm configuration information when {{site.data.conrefs.hlf_full}} builds the chaincode image for the {{site.data.conrefs.composer_full}} runtime.

For example rather than using the default npm registry, you can specify an internal registry within your organization by including the registry option in an options file:

registry=http://mycompanynpmregistry.com:4873

Supply the fully qualified filename as part of an install command, for example if the file was called npmConfig
in your /home/user1/config directory:

composer network install -c PeerAdmin@hlfv1 -n digitalproperty-network -o npmrcFile=/home/user1/config/npmConfig

The file contents can be anything that permitted in the .npmrc configuration files of npm.

Admin API

You can supply the name of the file as part of the AdminConnection api on the install method by specifying the npmrcFile property on the installOptions object. For example to pass the name of the npm configuration options file to be provided on install:

await AdminConnection.install(businessNetworkDefinition, {npmrcFile: '/tmp/npmrc'});

{{site.data.conrefs.hlf_full}} Endorsement Policies

You can provide {{site.data.conrefs.hlf_full}} endorsement policies to both network start and network upgrade requests. The examples that follow show start but the approach is identical to upgrade as well.

composer network start/upgrade CLI

{{site.data.conrefs.hlf_full}} endorsement policies can be sent using the -o and -O options in several ways.

	Using the -o option, the endorsement policy can be sent either as a single-line JSON string or as a fully qualified file path:

composer network start ... -o endorsementPolicy='{"identities": [.... }'

composer network start ... -o endorsementPolicyFile=/path/to/file/endorsementPolicy.json

When a file path is specified, the endorsement policy file should follow this format:

 {"identities":[...],
 "policy": {...}}

	Using the -O option, the endorsement policy must be sent as a file path as follows:

 composer network start ... -O /path/to/file/options.json

In this case, the options file should follow this format:

 {"endorsementPolicy": {"Identities": [...].
 "policy: {...}"
 },
 "someOtherOption": "A Value"
 }

For more information on writing {{site.data.conrefs.hlf_full}} endorsement policies, see the {{site.data.conrefs.hlf_full}} Node.js SDK documentation [https://fabric-sdk-node.github.io/global.html#ChaincodeInstantiateUpgradeRequest] which provides examples of endorsement policies.

Admin API

To send an endorsement policy via the Admin API, the endorsement policy file must be included as part of the startOptions or deployOptions objects when calling start or deploy respectively. To pass an endorsement policy file it must be specified in the object property endorsementPolicyFile. To supply the policy as a JSON object, the endorsementPolicy object property must be specified.

await adminConnection.start('tutorial-network', '0.0.1', { networkAdmins: networkAdmins, endorsementPolicyFile: 'endorsement-policy.json'});

Identity Issue

When a new identity is issued, the -o option can be used to specify whether the issued identity has the authority to register new identities with a {{site.data.conrefs.hlf_full}} certificate authority server.

CLI

To grant an identity the authority to register new identities with a certificate authority from the command line, the issuer option must be supplied after the -o option in the following format:

composer identity issue -p hlfv1 -n digitalproperty-network -i admin -s adminpw -u MyUser -o issuer=true -a net.biz.digitalPropertyNetwork.Person#P1

API

To specify the issuer property you set it in an object and pass this object as part of the issueOptions on issueIdentity.
For example to issue an identity that has issuer authority

await businessNetworkConnection.issueIdentity(participantId, newUserId, {issuer: true});

Next steps

	Learn more about connection profiles.

 Creating, Exporting, and Importing Business Network Cards

layout: default
title: Creating, Exporting, and Importing Business Network Cards
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: Business network cards combine a connection profile, identity, and certificates to allow a connection to a business network in Hyperledger Composer Playground. Business network cards can be created, exported and imported from the My Wallet page in Hyperledger Composer Playground.
index-order: 803

Creating, Exporting, and Importing Business Network Cards

Business network cards are represented by .card files containing a metadata.JSON file, a connection profile, and optional certificates.

Business network cards can be used in the {{site.data.conrefs.composer_full}} Playground to manage identities for different business networks and connection profiles.

Creating Business Network Cards

Business network cards can be created in the wallet screen, created from the component files, or created within a business network.

Please note: If cards are created from the wallet screen, or created from the component files, there must be a corresponding identity already created in the business network.

Creating a business network card within a business network

	From the My Wallet screen, select an identity to use to connect to your business network. Click Connect Now. Please note: You must use an identity with the permission to create new identities.

	Optional: To create a participant to assign to the identity, click the Test tab, and click Create New Participant.

	Click the name of your identity in the upper right, and click ID Registry.

	Click Issue New ID.

	Choose an ID Name, and select a Participant to associate the new identity with.

	Click Create New.

	Click Add to My Wallet. Adding the business network card to your wallet allows you to use it to connect to the business network, or export it for someone else to use.

The My Wallet screen should now show the new business network card.

Creating a business network card from the Wallet

A business network card can be created from the My Wallet page, however, a corresponding identity must already have been created in the business network. Creating a business network card from the My Wallet page requires that you use the same User ID, User Secret and the correct Business network name credentials as when the identity was created within the business network.

To create a business network card from the My Wallet page:

	After receiving a valid User ID and User Secret, click the Create Business Network Card button in the upper right of the My Wallet page.

	Select a connection profile and click Next.

	Enter the User ID and User Secret that were generated when the identity was created.

	Enter the correct Business Network Name and click Create.

The business network card should now be displayed in the My Wallet page.

Creating a business network card from component files

business network cards are composite files containing up to three elements:

	A connection profile. (connection.json)

	A metadata file containing the data for the identity to use to connect to the business network. (metadata.json)

	An optional credentials directory containing a certificate and private key for the identity in files named certificate and privateKey respectively.

Please note: If there is no credentials directory, the metadata file must contain the enrollment secret required to obtain the credentials with the property name enrollmentSecret. If an enrollmentSecret is specified and the business network card is used to connect to a business network, a credentials directory with certificates will be created and populated if the business network card is exported.

The metadata file should take the following format:

{
 "version": 1,
 "userName": "alice",
 "description": "Alice's identity for basic-sample-network",
 "businessNetwork": "basic-sample-network",
 "enrollmentSecret": "UserSecret",
 "roles": [
]
}

The businessNetworkName, description, enrollmentSecret, and roles properties are optional. The available roles are PeerAdmin and ChannelAdmin.

To create the business network card file, run the composer card create command.

This business network card can now be imported using the {{site.data.conrefs.composer_full}} Playground.

Importing and Exporting business network cards

Importing and exporting business network cards is the simplest way to grant access to other users of the business network in Playground. Valid business network cards must be created using one of the methods above, but can then be exported and sent to other users.

Exporting Business Network Cards

	To export a business network card create an identity by using a business network and add the business network card to your wallet.

	On the My Wallet page, click the Export icon on the business network card you wish to export. The business network card should download as a .card file.

Please note: If you export a business network card that has never been used, for example to send to a new participant, it will contain the enrollment ID and enrollment secret required to obtain the certificate and public key which are then used to identify participants. Alternatively, if you export a business network card that has been used before, it will already contain the certificate and public key.

Important: Exported identity cards should be handled with care since they contain unprotected credentials. For example, you should never send identity cards via email or other unencrypted means of communication.

Importing Business Network Cards

Importing a business network card allows you to connect to a business network without creating a connection profile, identity, and certificates. Members of a business network can create business network cards and export them to give others access to a business network.

	On the My Wallet screen, click Import business network card in the upper right.

	Drag and drop, or browse, to select a business network card (.card) file to import. Click Import.

The business network card should now be visible in your wallet.

 Binding an existing identity to a participant

layout: default
title: Binding an existing identity to a participant
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: "An existing identity can be bound to a participant using either the API or the command line. Once an existing identity has been bound, the identity can then be used by the participant to interact with the business network in the context of that participant."
index-order: 805

Binding an existing identity to a participant

An existing identity can be issued to a participant using either the API or the command line.
Once the existing identity has been bound, the identity can then be used by the participant
to interact with the business network in the context of that participant.

When using {[site.data.conrefs.hlf_full}}, you can bind existing certificates that have been created
by using the {[site.data.conrefs.hlf_full}} certificate authority (CA) or by using other tooling such
as cryptogen. The existing certificates must be valid for use for submitting transactions
on the {[site.data.conrefs.hlf_full}} network.

Before you start

Before you follow these steps, you must have added a participant to a participant
registry. You must have an existing certificate in the PEM format to bind to the
participant. The binder of the existing identity (whether using command line or
using the Javascript APIs below) must have ACLs that permit them to bind the identity
(to be associated with the participant) in {{site.data.conrefs.composer_full}}.

The procedure below shows an example using the following model of a participant
from the Digital Property sample Business Network Definition: digitalproperty-network [https://www.npmjs.com/package/digitalproperty-network]

namespace net.biz.digitalPropertyNetwork

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

The example assumes that an instance, net.biz.digitalPropertyNetwork#mae@biznet.org,
of that participant has been created and placed into a participant registry.

Procedure

	Connect to the business network and bind an existing identity to a participant

	JavaScript API

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

async function bind() {
 let businessNetworkConnection = new BusinessNetworkConnection();
 let certificate = `-----BEGIN CERTIFICATE-----
 MIIB8DCCAZegAwIBAgIURanHh55fqrUecvHNHtcMKiHJRkwwCgYIKoZIzj0EAwIw
 czELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNh
 biBGcmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMT
 E2NhLm9yZzEuZXhhbXBsZS5jb20wHhcNMTcwNzI3MTc0MzAwWhcNMTgwNzI3MTc0
 MzAwWjAQMQ4wDAYDVQQDEwVhZG1pbjBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IA
 BAANIGFIrXXr5+h0NfUNJhx5YFQ4w6r182eZYRhc9KvYQhYo5D0ZbecfR9sGX2b6
 0aW+C7bUaXc6DU3pJSD4fNijbDBqMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8E
 AjAAMB0GA1UdDgQWBBRwuAyWrGlzVQFqRf0OqoTNuoq7QDArBgNVHSMEJDAigCAZ
 q2WruwSAfa0S5MCpqqZknnCGjjq9AhejItieR+GmrjAKBggqhkjOPQQDAgNHADBE
 AiBcj/JvxmKHel4zQ3EmjITEFhdYku5ijIZEDuR5v9HK3gIgTUbVEfq3MuasVZKx
 rkM5DH3e5ECM7T+T1Ovr+1AK6bs=
 -----END CERTIFICATE-----`
 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 await businessNetworkConnection.bindIdentity('net.biz.digitalPropertyNetwork.Person#mae@biznet.org', certificate);
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.error(error);
 process.exit(1);
 }
}

bind();

	Command line

 composer identity bind -c admin@digitalPropertyNetwork -a "resource:net.biz.digitalPropertyNetwork.Person#mae@biznet.org"

	As the participant, test the connection to the business network

	JavaScript API

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

async function testConnection() {
 let businessNetworkConnection = new BusinessNetworkConnection();

 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 let result = await businessNetworkConnection.ping();
 console.log(`participant = ${result.participant ? result.participant : '<no participant found>'}`);
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.error(error);
 process.exit(1);
 }
}

testConnection();

	Command line

 composer network ping -c admin@digitalPropertyNetwork

The participant ID will be printed to the console, and should match the participant
ID that was specified in the composer identity bind command.

 Issuing a new identity to a participant

layout: default
title: Issuing a new identity to a participant
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: "A new identity can be issued to a participant using either the API or the command line. Once a new identity has been issued, the identity can then be used by the participant to interact with the business network in the context of that participant."
index-order: 804

Issuing a new identity to a participant

A new identity can be issued to a participant using either the API, the command line, or by using ID cards in the {{site.data.conrefs.composer_full}} Playground. Once a new identity has been issued, the identity can then be used by the participant to interact with the business network in the context of that participant.

When using {{site.data.conrefs.hlf_full}}, {{site.data.conrefs.composer_full}} issues new identities by using the {{site.data.conrefs.hlf_full}} certificate authority (CA) to register new enrollment certificates. The {{site.data.conrefs.hlf_full}} certificate authority generates an enrollment secret that can be given to the participant, who can then use the enrollment secret to request their enrollment certificate and private keys from the {{site.data.conrefs.hlf_full}} certificate authority.

Before you start

Before you follow these steps, you must have added a participant to a participant registry. The issuer of a new identity (whether using command line or using the Javascript APIs below) must itself have 'issuer' authority and as appropriate, ACLs that permit them to issue the identity (to be associated with the participant) in {{site.data.conrefs.composer_full}}.

The procedure below shows an example using the following model of a participant from the Digital Property sample Business Network Definition: digitalproperty-network [https://www.npmjs.com/package/digitalproperty-network]

namespace net.biz.digitalPropertyNetwork

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

The example assumes that an instance, net.biz.digitalPropertyNetwork#mae@biznet.org, of that participant has been created and placed into a participant registry.

Procedure

	Connect to the business network and issue a new identity to a participant

	JavaScript API

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

async function identityIssue() {
 let businessNetworkConnection = new BusinessNetworkConnection();
 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 let result = await businessNetworkConnection.issueIdentity('net.biz.digitalPropertyNetwork.Person#mae@biznet.org', 'maeid1')
 console.log(`userID = ${result.userID}`);
 console.log(`userSecret = ${result.userSecret}`);
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.log(error);
 process.exit(1);
 }
}

identityIssue();

	Command line

composer identity issue -c admin@network -f maeid1.card -u maeid1 -a "resource:net.biz.digitalPropertyNetwork.Person#mae@biznet.org"

This will issue card for the user maeid1 and export a card file in your current directory.

	As the participant, test the connection to the business network

	JavaScript API

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

async function testConnection() {
 let businessNetworkConnection = new BusinessNetworkConnection();
 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 let result = await businessNetworkConnection.ping();
 console.log(`participant = ${result.participant ? result.participant : '<no participant found>'}`);
 await businessNetworkConnection.disconnect();
 } catch((error) {
 console.error(error);
 process.exit(1);
 }
}

testConnection();

	Command line

composer card import -f maeid1@network.card
composer network ping -c maeid1@network

You need to make sure to import the card into business network before pinging.

 Listing all identities in a business network

layout: default
title: Listing all identities in a business network
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: "A new identity can be issued to a participant using either the API or the command line. Once a new identity has been issued, the identity can then be used by the participant to interact with the business network in the context of that participant."
index-order: 806

Listing all identities in a business network

When a new identity is issued to a participant, or an existing identity is bound to a
participant, a mapping between the identity and the participant is created in the identity
registry in the deployed business network. When that participant uses that identity to
submit transactions to the deployed business network, the Composer runtime looks for a
valid mapping for that identity in the identity registry. This lookup is done using
the public key signature or fingerprint, essentially a hash of the certificate contents
that is unique to that certificate and identity.

In order to perform identity management operations in a deployed business network, you
will need to list and review the set of identities in the identity registry.

Before you start

Before you follow these steps, you should have added a participant to a participant
registry, and issued a new identity or bound an existing identity to that participant.
Otherwise the identity registry will be empty and you will not see any results.

Procedure

	Connect to the business network and list the identities in the identity registry

	JavaScript API

const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

async function identityList() {
 let businessNetworkConnection = new BusinessNetworkConnection();
 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 let identityRegistry = await businessNetworkConnection.getIdentityRegistry();
 let identities = await identityRegistry.getAll();
 identities.forEach((identity) => {
 console.log(`identityId = ${identity.identityId}, name = ${identity.name}, state = ${identity.state}`);
 });
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.log(error);
 process.exit(1);
 }
}

	Command line

composer identity list -c admin@digitalPropertyNetwork

 Revoking an identity from a participant

layout: default
title: Revoking an identity from a participant
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: "An identity can be revoked from a participant using either the API or the command line. Once an identity has been revoked, the identity can no longer be used by the participant to interact with the business network in the context of that participant."
index-order: 807

Revoking an identity from a participant

An identity can be revoked from a participant using either the API or the command line.
Once an identity has been revoked, the identity can no longer be used by the participant
to interact with the business network in the context of that participant.

When using Hyperledger Fabric, {{site.data.conrefs.composer_full}} does not currently
attempt to revoke the identity by using the Hyperledger Fabric certificate authority (CA)
APIs. The identity can still be used to submit transactions to the underlying Blockchain
network, but the transactions will be rejected by the deployed business network.

Before you start

Before you follow these steps, you must have added a participant to a participant
registry, and issued or bound an identity to that participant. You must also find
the unique identifier for that identity in the identity registry. For more information
on finding the unique identifiers for identities, look at Listing all identities in a business network.

The procedure below shows an example using the following model of a participant
from the Digital Property sample Business Network Definition: digitalproperty-network [https://www.npmjs.com/package/digitalproperty-network]

namespace net.biz.digitalPropertyNetwork

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

The example assumes that an instance, net.biz.digitalPropertyNetwork#mae@biznet.org,
of that participant has been created and placed into a participant registry.

The example also assumes that an identity maeid1 has been issued to that participant,
and the unique identifier for that identity is 'f1c5b9fe136d7f2d31b927e0dcb745499aa039b201f83fe34e243f36e1984862'.

Procedure

	Connect to the business network and revoke an existing identity from a participant

	JavaScript API

 const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

 async function revoke() {
 let businessNetworkConnection = new BusinessNetworkConnection();

 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 await businessNetworkConnection.revokeIdentity('f1c5b9fe136d7f2d31b927e0dcb745499aa039b201f83fe34e243f36e1984862')
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.log(error);
 process.exit(1);
 }
 }
 revoke();

	Command line

composer identity revoke -c admin@digitalPropertyNetwork -u f1c5b9fe136d7f2d31b927e0dcb745499aa039b201f83fe34e243f36e1984862

 Managing your {{site.data.conrefs.composer_full}} Solution

layout: default
title: Managing a Deployed Business Network
category: concepts
section: managing
index-order: 800
sidebar: sidebars/accordion-toc0.md
excerpt: "Managing your {{site.data.conrefs.composer_full}}"

Managing your {{site.data.conrefs.composer_full}} Solution

{% assign sorted = site.pages | sort: 'index-order' %}
{% for page in sorted %}
{% if page.section == 'managing' and page.title != "Managing a Deployed Business Network" %}

{{ page.title }}

{{ page.excerpt }}
{% endif %}
{% endfor %}

What next?

	You might want to integrate your existing systems with {{site.data.conrefs.composer_full}} using LoopBack.

	Applications which consume data from your business network can subscribe to events.

 Adding participants

layout: default
title: Adding participants
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: "Participants must be added to a business network before they can make transactions. Participants can create assets, and also exchange assets with other participants. A participant works with assets by submitting transactions."
index-order: 802

Adding participants

A participant can be added to a participant registry using either the API or the command line.

Before you start

Before you follow these steps, you must have modeled a participant in a Business Network Definition and deployed it as a Business Network.

The procedure below shows an example using the following model of a participant from the Digital Property sample Business Network Definition: digitalproperty-network [https://www.npmjs.com/package/digitalproperty-network]

Please note: If you are adding the participant using the composer participant add command, ensure that the JSON representation of the participant is wrapped in single quotes.

namespace net.biz.digitalPropertyNetwork

participant Person identified by personId {
 o String personId
 o String firstName
 o String lastName
}

Procedure

	Add the participant to a participant registry

	JavaScript API

 const BusinessNetworkConnection = require('composer-client').BusinessNetworkConnection;

 async function addParticipant() {
 let businessNetworkConnection = new BusinessNetworkConnection();

 try {
 await businessNetworkConnection.connect('admin@digitalPropertyNetwork');
 let participantRegistry = await businessNetworkConnection.getParticipantRegistry('net.biz.digitalPropertyNetwork');
 let factory = businessNetworkConnection.getFactory();
 let participant = factory.newResource('net.biz.digitalPropertyNetwork', 'Person', 'mae@biznet.org');
 participant.firstName = 'Mae';
 participant.lastName = 'Smith';
 await participantRegistry.add(participant);
 await businessNetworkConnection.disconnect();
 } catch(error) {
 console.error(error);
 process.exit(1);
 }
 }

 addParticipant();

	Command line

composer participant add -c admin@network -d '{"$class":"net.biz.digitalPropertyNetwork.Person","personId":"mae@biznet.org","firstName":"Mae","lastName":"Smith"}'

 Participants and identities

layout: default
title: Participants and identities
category: concepts
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: Participants and identities are core concepts of Hyperledger Composer. A participant is a member of business networks and might represent individuals or organizations. Participants have identity documents which can be validated to prove their identity. For more information, see participants and identities.
index-order: 801

Participants and identities

Concepts

A Participant is an actor in a business network. A participant might be an individual an organization. A participant can create assets, and also exchange assets with other participants. A participant works with assets by submitting transactions.

A participant has a set of Identity documents that can be validated to prove the identity of that participant. For example, an individual may have one or more of the following identity documents that prove who they are:

	Passport

	Driving license

	Fingerprints

	Retina scan

	SSL certificate

In {{site.data.conrefs.composer_full}}, participants are separated from the set of identity documents that they can use to interact with a business network.

In order for a new participant to join a business network, a new instance of that participant must be created in the business network. The participant instance stores all of the required information about that participant, but it does not give that participant access to interact with the business network.

In order to grant the participant access to interact with the business network, an identity document must then be Issued to that participant. The new participant can then use that identity document to interact with the business network.

A participant may have an existing identity document that they use to interact with other business networks or other external systems. These identity documents can be reused and Bound to that participant. The new participant can then use their existing identity document to interact with the business network.

Identity documents usually expire after a set period of time. Identity documents may also be lost or stolen. If the identity document expires, or if it needs to be replaced, then it must be Revoked so it can no longer be used to interact with the business network.

However, revoking an identity document does not remove the information about that participant and any assets that they own. Revoking the identity document simply removes the participants ability to interact with the business network using that identity document. Access to the business network can be restored by issuing the participant with a new identity document.

These participant and identity management actions are performed by an existing participant in the business network, for example a regulatory body, or a participant in the same organization who has been trusted to manage participants/identities in
that organization.

Participants and identities in {{site.data.conrefs.composer_full}}

In {{site.data.conrefs.composer_full}}, the structure of a participant is modeled in a model file. This structure may include various information about the participant, for example the participants name, address, e-mail address, date of birth, etc. New instances of that modeled participant can then be created and added to a participant registry.

{{site.data.conrefs.composer_full}} requires the use Blockchain identities as the form of identity documents. For example, when deploying a business network to {{site.data.conrefs.hlf_full}}, enrollment certificates are used as the form of identity document. These enrollment certificates are used to cryptographically sign the transactions that are submitted to the deployed business network.

A deployed business network maintains a set of mappings of identities to participants in the Identity Registry. When an identity is Issued or Bound to a participant, a new mapping is added to the identity registry. When that participant uses that identity to submit transactions to the deployed business network, the Composer runtime looks for a valid mapping for that identity in the identity registry. This lookup is done using the public key signature or fingerprint, essentially a hash of the certificate contents that is unique to that certificate and identity.

Once a mapping is found in the identity registry, the participant for that identity is retrieved from that mapping. That participant becomes the Current Participant, the participant who submitted the transaction. All access control in {{site.data.conrefs.composer_full}} is based around the current participant. Access control rules that define which participants can perform which operations on which resources all operate on the current participant.

When a participant uses an identity to submit a transaction to the deployed business network for the first time, that identity is Activated. This means that the entry in the identity registry is updated to record the fact that the identity was used for the first time. Additional information about the identity, such as the certificate, may also be recorded in the identity registry during activation if it was not available when the identity was issued or bound to the participant.

If and when an identity is revoked, the entry in the identity registry for that identity is updated to change the status to Revoked. After an identity is revoked, if a participant tries to use that identity to submit a transaction to the deployed business network, that transaction will be rejected.

Identities and Business network cards in the {{site.data.conrefs.composer_full}} Playground

In the {{site.data.conrefs.composer_full}} Playground, there is a wallet containing locally stored Business network cards. A Business network card is an access card to a business network, comprising identity data, a connection profile, and the correct certificates for business network access. ID cards can be exported to allow the assignment of identities to others.

Performing identity management tasks in {{site.data.conrefs.composer_full}}

The {{site.data.conrefs.composer_full}} Node.js client APIs, REST APIs, and command line interfaces can all be used to perform identity management operations. For example, the following identity management operations are available through all {{site.data.conrefs.composer_full}} interfaces:

	Adding a new participant to a participant registry

	Issuing a new identity to a participant

	Binding an existing identity to a participant

	Revoking an identity from a participant

	Listing all identities in a deployed business network

For more information, see the related tasks and reference material at the bottom of this document.

Related Concepts

Business Network

Related Tasks

Create a Business Network DefinitionAdding participantsIssuing an new identity to a participantBinding an existing identity to a participantListing all identities in a business networkRevoking an identity from a participant

Related Reference

composer participant addcomposer identity issuecomposer identity bindcomposer identity revokecomposer identity list

 Updating {{site.data.conrefs.composer_full}} Runtime

layout: default
title: Updating the Hyperledger Composer Runtime
category: tasks
section: managing
sidebar: sidebars/accordion-toc0.md
excerpt: To update Hyperledger Composer to a new version, the Hyperledger Composer components must be uninstalled and reinstalled using npm.
index-order: 809

Updating {{site.data.conrefs.composer_full}} Runtime

After deploying {{site.data.conrefs.composer_full}} you may wish to update to a new version. To update your installed version of {{site.data.conrefs.composer_full}} you must uninstall the client, admin, and runtime CLI components and reinstall them by using npm.

Procedure

	Uninstall the {{site.data.conrefs.composer_full}} components by using the following commands:

 npm uninstall -g composer-cli
 npm uninstall -g composer-rest-server
 npm uninstall -g generator-hyperledger-composer

	Install the latest version of the {{site.data.conrefs.composer_full}} components by using the following commands:

 npm install -g composer-cli@next
 npm install -g composer-rest-server@next
 npm install -g generator-hyperledger-composer@next

What next?

	Defining a business network

	Modeling language

	Managing your solution

 Hyperledger Composer API

layout: default
title: API Documentation
sidebar: sidebars/accordion-toc0.md
excerpt: The Client, Admin, and Runtime components of Hyperledger Composer contain JavaScript APIs for application integration.

Hyperledger Composer API

Hyperledger Composer is an application development framework for building Blockchain applications based on Hyperledger. This is the JavaScript documentation for the Hyperledger Composer Client, Admin, and Runtime JavaScript APIs.

Overview

The major components of Hyperledger Composer are:

	The Hyperledger Composer language for describing the structure of resources (assets, participants
and transactions) that participate in a blockchain backed business network.

	JavaScript APIs to query, create, update and delete resources and submit transactions
from client applications. Hyperledger Composer resources are stored on the Blockchain.

	JavaScript transaction processor functions that runs on Hyperledger Fabric when transactions are
submitted for processing. These functions may update the state of resources
stored on the Blockchain via server-side Hyperledger Composer APIs.

Resources

	Documentation [https://hyperledger.github.io/composer/]

	npm modules [https://www.npmjs.com/search?q=hyperledger-composer]

	GitHub repositories [https://github.com/hyperledger/composer]

Contributing

To read more about the community and guidelines for submitting pull requests,
please read the Contributing document [https://github.com/hyperledger/composer/blob/master/CONTRIBUTING.md].

 {{site.data.conrefs.composer_full}} npm Modules

layout: default
title: Hyperledger Composer npm Modules
section: reference
sidebar: sidebars/accordion-toc0.md
index-order: 1001
excerpt: "Hyperledger Composer contains a number of npm modules which provide the APIs and command line tools necessary for developing a solution with Hyperledger Composer."

{{site.data.conrefs.composer_full}} npm Modules

{{site.data.conrefs.composer_full}} has 3 main modules for application developers. If you are writing an application this is your entry point.

	composer-client

	composer-admin

	composer-cli

composer-client and composer-admin are the two modules that provide APIs for applications. node.js applications should only use APIs that come from these modules. If there are other APIs that are need please contact us.

Details of all the APIs have been documented in JSDocs (see reference).

composer-client

This module would usually be installed as a local dependency of an application. It provides the API that is used by business applications to connect to a business network to access assets, participants and submitting transactions. When in production this is only module that needs to be added as a direct dependency of the application.

npm install --save composer-client

composer-admin

This module would usually be installed as a local dependency of administrative applications. This API permits the creation of and deployment of business network definitions.

npm install --save composer-admin

composer-cli

This provides command line tools to provide the ability to deploy and managed business network definitions. This would normally be installed as a global module

npm install -g composer-cli

If you wish however you can instgall this as a local dependancy, but you could need to access the cli.js node class directly rather than used the composer command.

composer-report

This provides a basic command line tool to collect diagnostic reports. This would normally only be required if composer-cli could not be installed for any reason.

See the composer report command for more information.

 {{site.data.conrefs.composer_full}} Access Control Language

layout: default
title: Access Control Language
section: reference
index-order: 1003
sidebar: sidebars/accordion-toc0.md
excerpt: The Hyperledger Composer access control language provides declarative access control over the elements of the domain model. Access control rules define actions that individual participants or participant groups can perform on resources in the business network, including conditional actions.

{{site.data.conrefs.composer_full}} Access Control Language

{{site.data.conrefs.composer_full}} includes an access control language (ACL) that provides declarative access control over the elements of the domain model. By defining ACL rules you can determine which users/roles are permitted to create, read, update or delete elements in a business network's domain model.

Network Access Control

{{site.data.conrefs.composer_full}} differentiates between access control for resources within a business network (business access control) and access control for network administrative changes (network access control). Business access control and network access control are both defined in the access control file (.acl) for a business network.

Network access control uses the system namespace, which is implicitly extended by all resources in a business network; and grants or denies access to specific actions as defined below, and is intended to allow for more nuanced access to certain network-level operations.

What does network access control allow or disallow?

Network access control affects the following CLI commands:

Composer Network

composer network deploy

Network access is required to use the CREATE operation for registries and networks.

composer network download

Network access is required to use the READ operation for registries and networks.

composer network list

Network access is required to use the READ operation for registries and networks.

composer network loglevel

Network access is required to use the UPDATE operation for networks.

composer network ping

Network access is required to use the READ operation on registries and networks.

composer network update

Network access is required to use the UPDATE or CREATE operation on registries, or the UPDATE operation on networks.

Composer Identity

composer identity import

Network access is required to use the UPDATE operation on identity registries or the CREATE operation on identities.

composer identity issue

Network access is required to use the UPDATE operation on identity registries or the CREATE operation on identities.

composer identity revoke

Network access is required to use the UPDATE operation on identity registries or the DELETE operation on identities.

Composer Participant

composer participant add

Network access is required to use the CREATE operation on participants or the UPDATE operation on participant registries.

Granting network access control

Network access is granted using the system namespace. The system namespace is always org.hyperledger.composer.system.Network for network access, and org.hyperledger.composer.system for all access. The following access control rules gives the networkControl participant the authority to use all operations with network commands.

rule networkControlPermission {
 description: "networkControl can access network commands"
 participant: "org.acme.vehicle.auction.networkControl"
 operation: ALL
 resource: "org.hyperledger.composer.system.Network"
 action: ALLOW
}

The following access control rule will give all participants access to all operations and commands in the business network, including network access and business access.

rule AllAccess {
 description: "AllAccess - grant everything to everybody"
 participant: "org.hyperledger.composer.system.Participant"
 operation: ALL
 resource: "org.hyperledger.composer.system.**"
 action: ALLOW
}

Evaluation of Access Control Rules

Access control for a business network is defined by an ordered set of ACL rules. The rules are evaluated in order, and the first rule whose condition matches determines whether access is granted or denied. If no rule match then access is denied.

ACL rules are defined in a file called permissions.acl in the root of the business network. If this file is missing from the business network then all access is permitted.

Access Control Rule Grammar

There are two types of ACL rules: simple ACL rules and conditional ACL rules. Simple rules are used to control access to a namespace, asset or property of an asset by a participant type or participant instance.

For example, the rule below states that any instance of the org.example.SampleParticipant type can perform ALL operations on all instances of org.example.SampleAsset.

rule SimpleRule {
 description: "Description of the ACL rule"
 participant: "org.example.SampleParticipant"
 operation: ALL
 resource: "org.example.SampleAsset"
 action: ALLOW
}

Conditional ACL rules introduce variable bindings for the participant and the resource being accessed, and a Boolean JavaScript expression, which, when true, can either ALLOW or DENY access to the resource by the participant.

For example, the rule below states that any instance of the org.example.SampleParticipant type can perform ALL operations on all instances of org.example.SampleAsset IF the participant is the owner of the asset.

rule SampleConditionalRule {
 description: "Description of the ACL rule"
 participant(m): "org.example.SampleParticipant"
 operation: ALL
 resource(v): "org.example.SampleAsset"
 condition: (v.owner.getIdentifier() == m.getIdentifier())
 action: ALLOW
}

Conditional ACL rules can also specify an optional transaction clause. When the transaction clause is specified, the ACL rule only allows access to the resource by the participant if the participant submitted a transaction, and that transaction is of the specified type.

For example, the rule below states that any instance of the org.example.SampleParticipant type can perform ALL operations on all instances of org.example.SampleAsset IF the participant is the owner of the asset AND the participant submitted a transaction of the org.example.SampleTransaction type to perform the operation.

rule SampleConditionalRuleWithTransaction {
 description: "Description of the ACL rule"
 participant(m): "org.example.SampleParticipant"
 operation: READ, CREATE, UPDATE
 resource(v): "org.example.SampleAsset"
 transaction(tx): "org.example.SampleTransaction"
 condition: (v.owner.getIdentifier() == m.getIdentifier())
 action: ALLOW
}

Multiple ACL rules may be defined that conceptually define a decision table. The actions of the decision tree define access control decisions (ALLOW or DENY). If the decision table fails to match then by default access is denied.

Resource defines the things that the ACL rule applies to. This can be a class, all classes within a namespace, or all classes under a namespace. It can also be an instance of a class.

Resource Examples:

	Namespace: org.example.*

	Namespace (recursive): org.example.**

	Class in namespace: org.example.Car

	Instance of a class: org.example.Car#ABC123

Operation identifies the action that the rule governs. Four actions are supported: CREATE, READ, UPDATE, and DELETE. You can use ALL to specify that the rule governs all supported actions. Alternatively, you can use a comma separated list to specify that the rule governs a set of supported actions.

Participant defines the person or entity that has submitted a transaction for processing. If a Participant is specified they must exist in the Participant Registry. The PARTICIPANT may optionally be bound to a variable for use in a PREDICATE. The special value 'ANY' may be used to denote that participant type checking is not enforced for a rule.

Transaction defines the transaction that the participant must have submitted in order to perform the specified operation against the specified resource. If this clause is specified, and the participant did not submit a transaction of this type - for example, they are using the CRUD APIs - then the ACL rule does not allow access.

Condition is a Boolean JavaScript expression over bound variables. Any JavaScript expression that is legal with the an if(...) expression may be used here. JavaScript expressions used for the condition of an ACL rule can refer to JavaScript utility functions in a script file. This allows a user to easily implement complex access control logic, and re-use the same access control logic functions across multiple ACL rules.

Action identifies the action of the rule. It must be one of: ALLOW, DENY.

Examples

Example ACL rules (in evaluation order):

rule R1 {
 description: "Fred can DELETE the car ABC123"
 participant: "org.example.Driver#Fred"
 operation: DELETE
 resource: "org.example.Car#ABC123"
 action: ALLOW
}

rule R2 {
 description: "regulator with ID Bill can not update a Car if they own it"
 participant(r): "org.example.Regulator#Bill"
 operation: UPDATE
 resource(c): "org.example.Car"
 condition: (c.owner == r)
 action: DENY
}

rule R3 {
 description: "regulators can perform all operations on Cars"
 participant: "org.example.Regulator"
 operation: ALL
 resource: "org.example.Car"
 action: ALLOW
}

rule R4 {
 description: "Everyone can read all resources in the org.example namespace"
 participant: "ANY"
 operation: READ
 resource: "org.example.*"
 action: ALLOW
}

rule R5 {
 description: "Everyone can read all resources under the org.example namespace"
 participant: "ANY"
 operation: READ
 resource: "org.example.**"
 action: ALLOW
}

Rules are evaluated from top (most specific) to bottom (least specific). As soon as the Participant, Operation and Resource match for a rule then subsequent rules are not evaluated.

This ordering makes the decision table faster to scan for both humans and computers. If no ACL rule fires then the access control decision is DENY.

 {{site.data.conrefs.composer_full}} Command Line

layout: default
title: Hyperledger Composer CLI Commands
section: reference
index-order: 1008
sidebar: sidebars/accordion-toc0.md
excerpt: The list of all Hyperledger Composer CLI commands for performing multiple administrative, operational, and development tasks.

{{site.data.conrefs.composer_full}} Command Line

The {{site.data.conrefs.composer_full}} command line application, composer, can be used to perform multiple
administrative, operational, and development tasks.

The {{site.data.conrefs.composer_full}} command line application can be installed using npm:

npm install -g composer-cli

Please note: When using Ubuntu this command will fail when running in a root user shell.

Business Network Archives

composer archive create

Create a Business Network Archive from a directory on disk: composer archive create

composer archive list

Verify the contents of a Business Network Archive on disk: composer archive list

Business Network Card Management

composer card create

Creates a business network card from a connection profile, business network name, and certificates: composer card create

composer card delete

Deletes a business network card which you have imported locally: composer card delete

composer card import

Imports a created card into your local wallet: composer card import

composer card export

Exports and packages a card from your wallet: composer card export

composer card list

Lists all cards currently in your wallet: composer card list

Business Network management

composer network install

Install a business network archive to a {{site.data.conrefs.hlf_full}} peer: composer network install

composer network start

Start a business network on a {{site.data.conrefs.hlf_full}} peer that already has the business network installed: composer network start

composer network list

List the contents of a deployed Business Network: composer network list

composer network loglevel

Return or update the log level for the composer runtime: composer network loglevel

composer network ping

Test the connection to a deployed a Business Network: composer network ping

composer network upgrade

Upgrade the {{site.data.conrefs.composer_full}} runtime of a specific deployed business network: composer network upgrade

Participant and Identity management

composer participant add

Adds a participant to a participant registry: composer participant add

composer identity issue

Issue a new identity to a participant: composer identity issue

composer identity bind

Bind an existing identity to a participant: composer identity bind

composer identity list

List all identities in a business network: composer identity list

composer identity revoke

Revoke an identity from a participant: composer identity revoke

Support diagnostics

composer report

Create a diagnostic report: composer report

Transaction execution

composer transaction submit

Submit a transaction for execution: composer transaction submit

{{site.data.conrefs.composer_short}} Generator

composer generator create

Create files useful for application development: composer generator create

composer generator docs

Create documentation for a business network definition: composer generator docs

 {{site.data.conrefs.composer_full}} Archive Create

layout: default
title: Hyperledger Composer Archive Create CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Archive Create CLI

{{site.data.conrefs.composer_full}} Archive Create

The composer archive create utility is used to create a business network archive from the contents of a directory.

To create an archive from source files (ie business network definition project files) present in the current 'working' directory:

composer archive create -a <business-network-archive>

or

to specify paths (to a source business network definition, and a destination directory for the archive file (.bna file)):

composer archive create --sourceType dir --sourceName <dirpath> -a digitalproperty-network.bna

Options

composer archive create --archiveFile digitialPropertyNetwork.zip --sourceType module --sourceName digitalproperty-network

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --archiveFile, -a Business network archive file name. Default is based on the Identifier of the BusinessNetwork [string]
 --sourceType, -t The type of the input containg the files used to create the archive [module | dir] [required]
 --sourceName, -n The Location to create the archive from e.g. NPM module directory or Name of the npm module to use [required]
Only one of either inputDir or moduleName must be specified.

Example Command and Output

$ pwd
/Users/dselman/dev/temp

composer archive create --sourceType dir --sourceName . -a dist/digitalproperty-network.bna

Creating Business Network Archive
Looking for package.json of Business Network Definition in /Users/dselman/dev/temp/dist

Description:Digital Property Network
Name:digitalproperty-network
Identifier:digitalproperty-network@0.0.1

Written Business Network Definition Archive file to digitalproperty-network@0.0.1.bna
Command completed successfully.

 {{site.data.conrefs.composer_full}} Archive List

layout: default
title: Hyperledger Composer Archive List CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Archive List CLI

{{site.data.conrefs.composer_full}} Archive List

The composer archive list utility is used to verify the structure of a business network archive on disk and print metdata.

composer archive list -a <business-network-archive file>

Options

--help Show help [boolean]
 -v, --version Show version number [boolean]
 --archiveFile, -a Business network archive file name. [string]

Example Output

composer archive list -a digitalPropertyNetwork.bna
Listing Business Network Archive from digitalPropertyNetwork.bna
Identifier:digitalproperty-network@0.0.1
Name:digitalproperty-network
Version:0.0.1

Command succeeded

 Composer Card Create

layout: default
title: Hyperledger Composer Card Create
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Card Create

Composer Card Create

Creates a business network card from individual components. When creating a business network card, you will need either an enrollSecret, both a certificate and privateKey or just a certificate if your private keys are managed by a HSM (Hardware Security Module).

composer card create --file conga.card --businessNetworkName penguin-network --connectionProfileFile connection.json --user conga --enrollSecret supersecret

Syntax

Card options
 --file, -f File name of the card archive to be created [string]
 --businessNetworkName, -n The business network name [string]
 --connectionProfileFile, -p Filename of the connection profile json file [string] [required]
 --user, -u The name of the identity for the card [string] [required]
 --enrollSecret, -s The enrollment secret of the user [string]
 --certificate, -c File containing the user's certificate. [string]
 --privateKey, -k File containing the user's private key [string]
 --role, -r The role for this card can, specify as many as needed [choices: "PeerAdmin", "ChannelAdmin"]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]

 Composer Card Delete

layout: default
title: Hyperledger Composer Card Delete
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Card Delete

Composer Card Delete

Deletes a business network card.

composer card delete --card admin@tutorial-network

Syntax

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c The name of the card to delete [string] [required]

 Composer Card Export

layout: default
title: Hyperledger Composer Card Export
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Card Export

Composer Card Export

Exports a card from your local wallet and packages it so it can be transferred or used elsewhere.

composer card export --file dan.card --card dan@penguin-network

Syntax

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --file, -f The packaged card file name [string]
 --card, -c The name of the card to export [string] [required]

 Composer Card Import

layout: default
title: Hyperledger Composer Card Import
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Card Import

Composer Card Import

Imports a card which has already been created into your local wallet.

composer card import --file admin.card --card admin@tutorial-network

Syntax

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --file, -f The card file name [string] [required]
 --card, -c The name to identify the imported card [string]

 Composer Card List

layout: default
title: Hyperledger Composer Card List
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Card List

Composer Card List

List all business network cards stored in the local wallet, or if a card is specified, display details of that business network card.

composer card list --card admin@tutorial-network

Syntax

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c The name of the card to list [string]
 --quiet, -q Only display the card name [boolean]

 Name

layout: default
title: Hyperledger Composer Generator CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Archive List CLI

Name

composer generator create - create code artifacts based on a business network definition

Synopsis

composer generator create <options>

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --archiveFile, -a Business network archive file name. Default is based on the Identifier of the BusinessNetwork [string] [required]
 --format, -f Format of code to generate: Go (beta), PlantUML, Typescript (beta), JSONSchema. [required]
 --outputDir, -o Output Location [required]

Description

This will take the {{site.data.conrefs.composer_full}} business network definition as input and create artifacts related to writing new applications.

Options

	-a --archiveFileThe path to the business network archive file. This will be the source that is used to create the artifacts

	-f --formatThe format of the artifacts that will be created.

	go Generates class definitions in the go language for the assets and participants

	Typescript Generates class definitions in the Typescript language for the assets and participants

	JSONSchema Generates the equivalent to the model in JSONSchema

	PlantUML Generates a description of the model suitable for use with PlantUML to generate diagrams

	--helpShows the help text

	-v --versionShows the version number

	-o, --outputDir
The output directory for the generated files.

Example Usage

composer generator create --archiveFile digitalPropertyNetwork.bna --format Go --outputDir ./dev/go-app

 Name

layout: default
title: Hyperledger Composer Generator CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Archive List CLI

Name

composer generator docs - create documentation for a Business Network

Synopsis

composer generator docs <options>

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --archive, -a Business network archive file name. Default is based on the Identifier of the BusinessNetwork [string] [required]
 --config, -c Path to the configuration file to use, default is one specificaly for BNA files [default: ""]
 --outdir, -o Output Location [default: "./out"]

Description

This will take the Composer business network definition as input and create html based documentation for all aspects.

Options

	-a --archiveFileThe path to the business network archive file. This will be the source that is used to create the artifacts

	-c --configThe configuration that controls how the documentation is produced. An existing template is in-built and this does not need to specified.
Reserved for future expansion

	-o --output
The output directory with the html. index.html is the starting point.

	--helpShows the help text

	-v --versionShows the version number

Example Usage

composer generator docs --archiveFile digitalPropertyNetwork.bna

 Composer Identity Bind

layout: default
title: Hyperledger Composer Identity Bind Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Identity Bind Command

Composer Identity Bind

The composer identity bind command binds an existing identity to a participant in a
participant registry. See the task Binding an existing identity to a participant
for a walkthrough of using this command or the API.

Syntax

$ composer identity bind
composer identity bind [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c Name of the network card to use [string] [required]
 --participantId, -a The particpant to issue the new identity to [string] [required]
 --certificateFile, -c File containing the certificate [string] [required]

Options

--card, -c

Name of the business network card to use.
Example: admin@sample-network

--certificateFile, -c

The path a file containing the certificate for the existing identity in PEM format.Example: /tmp/cert.pem

--participantId, -a

The fully qualified identifier of the participant that the identity should be issued to.Example: resource:net.biz.digitalPropertyNetwork.Person#lenny@biznet.org

 Composer Identity Issue

layout: default
title: Hyperledger Composer Identity Issue Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Identity Issue Command

Composer Identity Issue

The composer identity issue command issues a new identity to a participant in a participant registry relating to a business network. See the task Issuing a new identity to a participant for a walkthrough of using this command or the API.

Considerations

This command creates a new card file. The connection profile in this card file comes from the card defined in the -c|--card option used to perform the request and the connection profile defines whether an identity in a card should be HSM managed or not. If the card used for the request is not HSM managed (as defined in the connection profle) then the card file created will not be HSM managed. Conversely if the card used for the request is HSM managed then the card file created will also be HSM managed.

Syntax

$ composer identity issue

Business Network Cards
 --card, -c Name of the network card to use for issuing [string]
 --file, -f The card file name for the new identity [string]

Identity Options
 --newUserId, -u The user ID for the new identity [string]
 --participantId, -a The participant to issue the new identity to [string] [required]
 --issuer, -x If the new identity should be able to issue other new identities [boolean]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --option, -o Options that are specific specific to connection. Multiple options are specified by repeating this option [string]
 --optionsFile, -O A file containing options that are specific to connection [string]

Options

--card, -c

The name of the business network card to use to issue the identity.
Example: admin@tutorial-network

--file, -f

The file name of the card file to be created, note this is not the name of the identity to be created.
Example: DanSelman

--newUserId, -u
The user ID for the new identity, this is the name of the new identity.
Example: Dan

--participantId, -a
The fully qualified identifier (in URI form) of the participant that the identity should be issued to.Example: resource:net.biz.tutorial-network.Person#DanSelman@biznet.org

--issuer, -x
Whether the new identity will be able to issue other new identities.

 Composer Identity List

layout: default
title: Hyperledger Composer Identity List Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Identity List Command

Composer Identity List

The composer identity list command lists all of the identities in a business network.
See the task Listing all identities in a business network
for a walkthrough of using this command or the API.

Syntax

$ composer identity list
composer identity list [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 -c, --card The business network card to use [string] [required]

Options

--card, -c
The business network card to use when listing identities.
Example: admin@tutorial-network

 composer identity revoke

layout: default
title: Hyperledger Composer Identity Revoke Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Identity Revoke Command

composer identity revoke

The composer identity revoke command revokes an existing identity from a participant in a
participant registry. See the task Revoke an Identity from a Participant
for a walkthrough of using this command or the API.

Syntax

$ composer identity revoke
composer identity revoke [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c Name of the network card to use [string] [required]
 --identityId, -u, --userId The unique identifier of the identity to revoke [string] [required]

Options

--card, -c
The business network card to use to revoke the specified identity.
Example: admin@tutorial-network

--identityId, -u

The unique identifier of the existing identity that should be revoked.Example: f1c5b9fe136d7f2d31b927e0dcb745499aa039b201f83fe34e243f36e1984862

 {{site.data.conrefs.composer_full}} Network Install

layout: default
title: Hyperledger Composer Runtime Start CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Runtime Install

{{site.data.conrefs.composer_full}} Network Install

The composer network install command is used to install a business network archive on the {{site.data.conrefs.hlf_full}} peers of the blockchain network you are connecting to. This command must be run before the composer network start command.

composer network install --archiveFile <business-network-archive> --card <peer-admin-card>

Options

composer network install [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --archiveFile, -a The business network archive file name [string] [required]
 --card, -c The cardname to use to install the network [string] [required]
 --option, -o Options that are specific specific to connection. Multiple options are specified by repeating this option [string]
 --optionsFile, -O A file containing options that are specific to connection [string]

 {{site.data.conrefs.composer_full}} Network List

layout: default
title: Hyperledger Composer Network List CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Network List CLI

{{site.data.conrefs.composer_full}} Network List

The composer network list utility is used to connect to a business network and retrieve metadata and asset information.

composer network list -c admin@tutorial-network

Options

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --registry, -r List specific registry [string]
 --asset, -a List specific asset [string]
 --card, -c The card name used to list the network [string]

Example Output

composer network list -c admin@tutorial-network

✔ List business network digitalproperty-network
name: digitalproperty-network
models:
 - org.hyperledger.composer.system
 - net.biz.digitalPropertyNetwork
scripts:
 - lib/DigitalLandTitle.js
registries:
 net.biz.digitalPropertyNetwork.LandTitle:
 id: net.biz.digitalPropertyNetwork.LandTitle
 name: Asset registry for net.biz.digitalPropertyNetwork.LandTitle
 registryType: Asset
 assets:
 LID:1148:
 $class: net.biz.digitalPropertyNetwork.LandTitle
 titleId: LID:1148
 owner: resource:net.biz.digitalPropertyNetwork.Person#PID:1234567890
 information: A nice house in the country
 forSale: true
 LID:6789:
 $class: net.biz.digitalPropertyNetwork.LandTitle
 titleId: LID:6789
 owner: resource:net.biz.digitalPropertyNetwork.Person#PID:1234567890
 information: A small flat in the city
 net.biz.digitalPropertyNetwork.SalesAgreement:
 id: net.biz.digitalPropertyNetwork.SalesAgreement
 name: Asset registry for net.biz.digitalPropertyNetwork.SalesAgreement
 registryType: Asset
 net.biz.digitalPropertyNetwork.Person:
 id: net.biz.digitalPropertyNetwork.Person
 name: Participant registry for net.biz.digitalPropertyNetwork.Person
 registryType: Participant
 assets:
 PID:1234567890:
 $class: net.biz.digitalPropertyNetwork.Person
 personId: PID:1234567890
 firstName: Fred
 lastName: Bloggs

Command succeeded

 {{site.data.conrefs.composer_full}} Network loglevel

layout: default
title: Hyperledger Composer Network loglevel
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Network loglevel

{{site.data.conrefs.composer_full}} Network loglevel

The composer network loglevel command is used to return or define the log level of the composer runtime. If the newlevel option is specified it will change the current level to the specified value. If newlevel is not specified, this command will return the current logging level.

composer network loglevel -c admin@tutorial-network

Options

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --newlevel, -l the new logging level [choices: "INFO", "WARNING", "ERROR", "DEBUG"]
 --card, -c The cardname to use to change the log level the network [string]

 {{site.data.conrefs.composer_full}} Network Ping

layout: default
title: Hyperledger Composer Network Ping CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Network Ping CLI

{{site.data.conrefs.composer_full}} Network Ping

The composer network ping utility is used to verify the connection to a business network deployed to a Hyperledger Fabric.
Note that ping also returns the participant information for the identity that was used to connect to the network, if
an identity has been issued for the participant.

composer network ping --card admin@tutorial-network

Options

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c The cardname to use to ping the network [string]

Example Output

composer network ping --card admin@tutorial-network
The connection to the network was successfully tested: tutorial-network
 version: 0.15.0-20171108090428
 participant: org.hyperledger.composer.system.NetworkAdmin#admin

Command succeeded

 {{site.data.conrefs.composer_full}} Network Start

layout: default
title: Hyperledger Composer Network Start CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Network Start

{{site.data.conrefs.composer_full}} Network Start

The composer network start utility is used to start a specific version of a business network that has been previously installed to a {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} network.
Before using this command, read the topic Deploying and Updating Business Networks.

Please Note: You must first install the business network to the {{site.data.conrefs.hlf_full}} peers by using the composer network install command.

composer network start --networkName <business-network-name> --networkVersion <business-network-version> --networkAdmin <admin-name> --networkAdminEnrollSecret adminpw --card <peer-admin-card> --file <admin-card-file-name>

Considerations

This command creates a new card file. The connection profile in this card file comes from the card defined in the -c|--card option used to perform the request and the connection profile defines whether an identity in a card should be HSM managed or not. If the card used for the request is not HSM managed (as defined in the connection profle) then the card file created will not be HSM managed. Conversely if the card used for the request is HSM managed then the card file created will also be HSM managed.

Options

composer network start [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --networkName, -n Name of the business network to start [required]
 --networkVersion, -V Version of the business network to start [required]
 --loglevel, -l The initial loglevel to set [choices: "INFO", "WARNING", "ERROR", "DEBUG"]
 --option, -o Options that are specific specific to connection. Multiple options are specified by repeating this option [string]
 --optionsFile, -O A file containing options that are specific to connection [string]
 --networkAdmin, -A The identity name of the business network administrator [string] [required]
 --networkAdminCertificateFile, -C The certificate of the business network administrator [string]
 --networkAdminEnrollSecret, -S The enrollment secret for the business network administrator [string]
 --card, -c The cardname to use to start the network [string] [required]
 --file, -f File name of the card to be created [string]

Please refer to Connector specific information for more information about connector specific options.

 {{site.data.conrefs.composer_full}} Network Upgrade

layout: default
title: Hyperledger Composer Network Upgrade CLI
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Composer Network Update CLI

{{site.data.conrefs.composer_full}} Network Upgrade

The composer network upgrade utility is used to upgrade the {{site.data.conrefs.composer_full}} business network to a new version.

composer network upgrade -n <business-network-name> -V <business-network-version> -c <business-network-card>

composer network upgrade upgrades the named {{site.data.conrefs.composer_full}} business network. Before running the composer network upgrade command, a new version of the {{site.data.conrefs.composer_full}} business network must have been installed to a blockchain node by using the composer network install command.

Options

composer network upgrade [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 --card, -c The cardname to use to upgrade the network [string] [required]
 --networkName, -n Name of the business network to upgrade [required]
 --networkVersion, -V Version of the business network to upgrade to [required]
 --option, -o Options that are specific specific to connection. Multiple options are specified by repeating this option [string]
 --optionsFile, -O A file containing options that are specific to connection [string]

Please refer to Connector specific information for more information about connector specific options.

 Composer participant add

layout: default
title: Hyperledger Composer Participant Add Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Participant Add Command

Composer participant add

The composer participant add command adds a new instance of a participant to a participant registry. See the task Add a Participant for a walkthrough of using this command or the API.

The data option must contain a serialized JSON representation of the participant to add, and must be wrapped in single quotes.

Syntax

$ composer participant add
composer participant add [options]

Participant options
 --card, -c The cardname to use to add the participant [string] [required]
 --data, -d Serialized participant JSON object as a string [string] [required]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]

Options

--card, -c
The business network card, defining the business network and identity to use.
Example: admin@tutorial-network

--data, -d
The serialized JSON representation of the participant to add to the participant registry. The data must be valid according to the model of the participant.

Example: '{"$class":"net.biz.digitalPropertyNetwork.Person","personId":"mae@biznet.org","firstName":"Mae","lastName":"Smith"}'

 Composer Report

layout: default
title: Hyperledger Composer Report
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Report

Composer Report

The composer report command creates a compressed archive file in the directory where the command was issued. The archive file contains details of the current composer environment.

Syntax

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]

Stand-alone command

An alternative stand-alone command is available for situations where the composer command is not working, or the composer-cli module could not be installed for any reason.

This would normally be installed as a global module

npm install -g composer-report

Once installed, running composer-report will create a report archive in the current directory in the same way as the full composer report command.

 composer transaction submit

layout: default
title: Hyperledger Composer Transaction Submit Command
section: reference-command
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer Transaction Submit Command

composer transaction submit

The composer transaction submit command submits a transaction to a business network.

Syntax

$ composer transaction submit
composer transaction submit [options]

Options:
 --help Show help [boolean]
 -v, --version Show version number [boolean]
 -c, --card The name of the business network card to use [string] [required]
 --data, -d Transactions JSON object as a string [string] [required]

Options

--card, -c
The name of the business network card to use. The business network card is used to determine connection and business network details.
Example: admin@tutorial-network

--data, -d

The serialized JSON representation of the transaction to send to the business network. The data must be valid according to the model of the transaction.Example: {"$class":"net.biz.digitalPropertyNetwork.RegisterPropertyForSale","transactionId":"TRANSACTION_001","seller":"mae@biznet.org","title":"TITLE_001"}

Example command

This command submits a transaction on the connection profile defaultProfile to the business network digitalproperty-network with the user identity maeid1, the user secret Xurw3yU9zI0l. The transaction submitted is '{"$class":"net.biz.digitalPropertyNetwork.RegisterPropertyForSale","transactionId":"TRANSACTION_001","seller":"mae@biznet.org","title":"TITLE_001"}'.

Here is the entire command:

composer transaction submit -p defaultProfile -n digitalproperty-network -i maeid1 -s Xurw3yU9zI0l -d '{"$class":"net.biz.digitalPropertyNetwork.RegisterPropertyForSale","transactionId":"TRANSACTION_001","seller":"mae@biznet.org","title":"TITLE_001"}'

 Connection Profiles

layout: default
title: Connection Profiles
section: reference
index-order: 1006
sidebar: sidebars/accordion-toc0.md
excerpt: In order to connect your business network to a fabric, you must define a connection profile. Connection profiles contain the information necessary to connect to a fabric. This topic contains example connection profiles for Hyperledger Fabric v1.1.

Connection Profiles

A Connection Profile is used by {{site.data.conrefs.composer_full}} to connect to a runtime.

Creating a Connection Profile for {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}

{{site.data.conrefs.hlf_full}} defines the format of the connection profile. The following is an example of a single organization fabric network

{
 "name": "hlfv1",
 "x-type": "hlfv1",
 "x-commitTimeout": 300,
 "version": "1.0.0",
 "client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 },
 "channels": {
 "composerchannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": {
 "peer0.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "ledgerQuery": true,
 "eventSource": true
 }
 }
 }
 },
 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com"
],
 "certificateAuthorities": [
 "ca.org1.example.com"
]
 }
 },
 "orderers": {
 "orderer.example.com": {
 "url": "grpc://orderer.example.com:7050"
 }
 },
 "peers": {
 "peer0.org1.example.com": {
 "url": "grpc://peer0.org1.example.com:7051",
 "eventUrl": "grpc://peer0.org1.example.com:7053"
 }
 },
 "certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "http://ca.org1.example.com:7054",
 "caName": "ca.org1.example.com"
 }
 }
}

Official documentation for this structure can be found here: https://fabric-sdk-node.github.io/tutorial-network-config.html.

The {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} connection profile is significantly different to the connection profiles used by previous versions of {{site.data.conrefs.composer_full}}. The {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} connection profile defines all the servers that exist, not only in your organization but all organizations as well as all defined channels.

The full capability of the connection profile is not given here and not all of it is supported but this will be discussed in the sections.

The following sections define the server details:

	Orderers

	Peers

	Certificate Authorities

Organizational details are defined in:

	Organizations

	Channels

	Client section

General information

"name": "hlfv1",
"x-type": "hlfv1",
"x-commitTimeout": 300,
"version": "1.0.0",

	name is a name used to refer to the connection profile, and is required.

	x-type defines the version of {{site.data.conrefs.hlf_full}} that you will connect to. To connect to {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}}, x-type must be hlfv1.

	x-commitTimeout defines the number of seconds to wait for a commit response to be received for a transaction.

	version defines the version of a connection profile and currently only a version of 1.0.0 is supported.

Orderers

Here we define all the orderers that are part of the network. The name "orderer.example.com" is a label allowing us to reference this definition later.

"orderers": {
 "orderer.example.com": {
 "url": "grpc://orderer.example.com:7050"
 }
},

This section defines all the available orderers, the example here provides a basic configuration for a non-tls orderer. To configure an orderer to use TLS, use the following format:

"orderers": {
 "orderer.example.com": {
 "url": "grpcs://orderer.example.com:7050",
 "grpcOptions": {
 "ssl-target-name-override": "orderer.example.com"
 },
 "tlsCACerts": {
 "pem": "-----BEGIN CERTIFICATE----- <etc> "
 }
 }
},

In order to guarantee portability it is highly recommended to embed required certificate(s) into the connection profile using the pem option.

Certificates can also be defined using a file path, but this is not recommended.

Peers

Here we define all the peers in all organizations in the network. Each has a unique label so it can be referenced later. In the example the label is peer0.org1.example.com.

"peers": {
 "peer0.org1.example.com": {
 "url": "grpc://peer0.org1.example.com:7051",
 "eventUrl": "grpc://peer0.org1.example.com:7053"
 }
},

Peer definitions are similar to orderer definitions in structure, but you should define both the url and eventUrl of a peer. Older connection profile formats required that you only define the eventUrl for peers in your organization. Defining TLS for a peer is similar to orderers

"peers": {
 "peer0.org1.example.com": {
 "url": "grpc://peer0.org1.example.com:7051",
 "eventUrl": "grpc://peer0.org1.example.com:7053"
 "grpcOptions": {
 "ssl-target-name-override": "peer.org1.example.com"
 },
 "tlsCACerts": {
 "pem": "-----BEGIN CERTIFICATE----- <etc> "
 }
 }
},

To define multiple peers, use the following format:

"peers": {
 "peer0.org1.example.com": {
 "url": "grpc://peer0.org1.example.com:7051",
 "eventUrl": "grpc://peer0.org1.example.com:7053"
 },
 "peer1.org1.example.com": {
 "url": "grpc://peer1.org1.example.com:7051",
 "eventUrl": "grpc://peer1.org1.example.com:7053"
 },
 "peer0.org2.example.com": {
 "url": "grpc://peer0.org2.example.com:7051",
 "eventUrl": "grpc://peer0.org2.example.com:7053"
 },
},

Certificate Authorities

Here you define all the certificate authorities

"certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "http://ca.org1.example.com:7054",
 "caName": "ca.org1.example.com"
 }
}

	url defines the url of a {{site.data.conrefs.hlf_full}} certificate authority to connect to. If your certificate authority requires a name, it must be defined in caName.

	trustedRoots and verify options for the Certificate Authority are described here https://fabric-sdk-node.github.io/global.html#TLSOptions

Organizations

Here you define the servers that are part of your organization as well as your MSPid and provide it with a name which can be referenced.
In the example our MSPid is Org1MSP and we have a single peer and a single certificate authority and label our organization Org1. Note the referencing of the peer and certificate authority.

 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com"
],
 "certificateAuthorities": [
 "ca.org1.example.com"
]
 }
 },

	mspid is the Membership Service Provider ID of your organization. It is associated with the enrolment id that you will use to interact with the business network.

Channels

This defines the various {{site.data.conrefs.hlf_full}} peers and orderers that are participating on a specific channel as well as the role of the peers.
IMPORTANT {{site.data.conrefs.composer_full}} can only work with 1 channel, so you need to ensure that only a single channel is defined in this section even though the document can support multiple channel definitions.

"channels": {
 "composerchannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": {
 "peer0.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "ledgerQuery": true,
 "eventSource": true
 }
 }
 }
},

A peer has 4 possible roles. If a role is not specified then it is assumed to be true.

	endorsingPeer means that peer is there to endorse transactions and must have chaincode instantiated.

	chaincodeQuery means that peer is able to handle chaincode query requests and must have chaincode instantiated.

	ledgerQuery means that peer is able to perform a ledger query. This does not require chaincode to be instantiated on that peer.

	eventSource means that this peer will generate events.

Client

This section will be unique for each organization and defines configuration information specific to your client application.

"client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
},

In this section you define the organization you belong to, in the example this is Org1 which references the Org1 organization in the profile. You also define timeouts in seconds for each of the possible interactions.

Common properties

When defining a peer or orderer there are some common options you can use. These are:

	grpcOptions

	tlsCACerts

For example a peer definition might look like:

"peer0.org1.example.com": {
 "url": "grpcs://peer0.org1.example.com:7051",
 "eventUrl": "grpcs://peer0.org1.example.com:7053"
 "grpcOptions": {
 "ssl-target-name-override": "peer.org1.example.com",
 "grpc-max-send-message-length": 15
 },
 "tlsCACerts": {
 "pem": "-----BEGIN CERTIFICATE----- <etc> "
 }
}

A similar thing could be done for an orderer definition:

"orderer.example.com": {
 "url": "grpcs://orderer.example.com:7050",
 "grpcOptions": {
 "ssl-target-name-override": "peer.org1.example.com",
 "grpc-max-send-message-length": 15
 },
 "tlsCACerts": {
 "pem": "-----BEGIN CERTIFICATE----- <etc> "
 }
}

There are other grpcOptions available, please refer to the https://fabric-sdk-node.github.io/tutorial-network-config.html for more information

HSM Support

Support for HSM (Hardware Security Module)is now possible so long as you have PKCS#11 support for your HSM and the PKCS#11 module is configured as per the vendor documentation. To drive management of identities through a HSM you need to provide the connection profile with information about your HSM setup. This information needs to go into the client section, for example

"client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 },
 "x-hsm": {
 "library": "/usr/local/lib/myhsm.so",
 "slot": 0,
 "pin": 98765432
 }
},

	library is the absolute path to the pkcs#11 library required for communication with your specific HSM

	slot is the configured slot number for the HSM

	pin is the pin defined for access to that slot.

To be able to ensure connection profiles remain portable as well as not hard coding the slot and pin in the connection profile, each of the hsm properties can be referenced from an environment variable. For example if you define environment variables on your system called PKCS_LIBRARY, PKCS_SLOT and PKCS_PIN to hold the hsm information, for example

 export PKCS_LIBRARY=/usr/local/lib/myhsm.so
 export PKCS_SLOT=0
 export PKCS_PIN=98765432

then you can reference these in the connection profile as follows

 "x-hsm": {
 "library": "{PKCS_LIBRARY}",
 "slot": "{PKCS_SLOT}",
 "pin": "{PKCS_PIN}"
 }

 {{site.data.conrefs.composer_full}} Modeling Language

layout: default
title: Modeling Language
section: reference
index-order: 1002
sidebar: sidebars/accordion-toc0.md
excerpt: The Hyperledger Composer modeling language is an object-oriented language which defines the business network model containing assets, participants, and transactions.

{{site.data.conrefs.composer_full}} Modeling Language

{{site.data.conrefs.composer_full}} includes an object-oriented modeling language that is used to define the domain model for a business network definition.

A {{site.data.conrefs.composer_full}} CTO file is composed of the following elements:

	A single namespace. All resource declarations within the file are implicitly in this namespace.

	A set of resource definitions, encompassing assets, transactions, participants, and events.

	Optional import declarations that import resources from other namespaces.

Organization and {{site.data.conrefs.composer_full}} System Namespaces

Your organization namespace is defined in the namespace line of your model (.cto) file, and all resources created are implicitly part of this namespace.

As well as defining new classes of asset, participant, event, and transaction, there is a system namespace [https://github.com/hyperledger/composer/blob/master/packages/composer-common/lib/system/org.hyperledger.composer.system.cto] which contains the base definitions of asset, event, participant, and transaction. These base definitions are abstract types which are implicitly extended by all assets, events, participants, and transactions.

In the system namespace definitions, asset and participant have no required values. Events and transactions are defined by an eventId or transactionId and a timestamp. The system namespace also includes definitions of registries, historian records, identities, and a number of system transactions.

If you have defined an event or transaction including an eventId, transactionId, or timestamp, you must delete the eventId, transactionId, or timestamp properties.

Declarations of resources

Resources in {{site.data.conrefs.composer_full}} include:

	Assets, Participants, Transactions, and Events.

	Enumerated Types.

	Concepts.

Assets, Participants and Transactions are class definitions. The concepts of Asset, Participant and Transaction may be considered to be different stereotypes of the class type.

A class in {{site.data.conrefs.composer_full}} is referred to as a Resource Definition, therefore an asset instance has an Asset Definition.

A resource definition has the following properties:

	A namespace defined by the namespace of its parent file. The namespace of a .cto file implicitly applies to all resources created in it.

	A name, for example Vehicle, and an identifying field, for example, vin. If the resource is an asset or participant, the name is followed by the identifying field, if the resource is an event or transaction, the identifying field is set automatically. In this example, the asset is named Vehicle and the identifying field is vin.

 /**
 * A vehicle asset.
 */
 asset Vehicle identified by vin {
 o String vin
 }

	An optional super-type, which the resource definition extends. The resource will take all properties and fields required by the super-type and add any additional properties or fields from its own definition.

 /**
 * A car asset. A car is related to a list of parts
 */
 asset Car extends Vehicle {
 o String model
 --> Part[] Parts
 }

	An optional 'abstract' declaration, to indicate that this type cannot be created. Abstract resources can be used as a basis for other classes to extend. Extensions of abstract classes do not inherit the abstract status. For example, the asset Vehicle defined above should never be created, as there should be more specific asset classes defined to extend it.

 /**
 * An abstract Vehicle asset.
 */
 abstract asset Vehicle identified by vin {
 o String vin
 }

	A set of named properties. The properties must be named, and the primitive data type defined.The properties and their data are owned by each resource, for example, a Car asset has a vin, and a model property, both of which are strings.

	A set of relationships to other Composer types that are not owned by the resource but that may be referenced from the resource. Relationships are unidirectional.

 /**
 * A Field asset. A Field is related to a list of animals
 */
 asset Field identified by fieldId {
 o String fieldId
 o String name
 --> Animal[] animals
 }

Declarations of enumerated types

Enumerated types are used to specify a type that may have 1 or N possible values. The example below defines the ProductType enumeration, which may have the value DAIRY or BEEF or VEGETABLES.

/**
 * An enumerated type
 */
enum ProductType {
 o DAIRY
 o BEEF
 o VEGETABLES
}

When another resource is created, for example, a participant, a property of that resource can be defined in terms of an enumerated type.

participant Farmer identified by farmerId {
 o String farmerId
 o ProductType primaryProduct

Concepts

Concepts are abstract classes that are not assets, participants or transactions. They are typically contained by an asset, participant or transaction.

For example, below an abstract concept Address is defined, and then specialized into a UnitedStatesAddress. Note that concepts do not have an identified by field as they cannot be directly stored in registries or referenced in relationships.

abstract concept Address {
 o String street
 o String city default ="Winchester"
 o String country default = "UK"
 o Integer[] counts optional
}

concept UnitedStatesAddress extends Address {
 o String zipcode
}

Primitive types

Composer resources are defined in terms of the following primitive types:

	String: a UTF8 encoded String.

	Double: a double precision 64 bit numeric value.

	Integer: a 32 bit signed whole number.

	Long: a 64 bit signed whole number.

	DateTime: an ISO-8601 compatible time instance, with optional time zone and UTZ offset.

	Boolean: a Boolean value, either true or false.

Arrays

All types in Composer may be declared as arrays using the [] notation.

Integer[] integerArray

Is an array of Integers stored in a field called 'integerArray'. While

--> Animal[] incoming

Is an array of relationships to the Animal type, stored in a field called
'incoming'.

Relationships

A relationship in the Composer language is a tuple composed of:

	The namespace of the type being referenced

	The type name of the type being referenced

	The identifier of the instance being referenced

Hence a relationship could be to:
org.example.Vehicle#123456

This would be a relationship to the Vehicle type declared in the org.example
namespace with the identifier 123456.

Relationships are unidirectional and deletes do not cascade, ie. removing the relationship has no impact on the thing that is being pointed to. Removing the thing being pointed to does not invalidate the relationship.

Relationships must be resolved to retrieve an instance of the object being
referenced. The act of resolution may result in null, if the object no longer
exists or the information in the relationship is invalid.

Field Validators

String fields may include an optional regular expression, which is used to validate the contents of the field. Careful use of field validators allows Composer to perform rich data validation, leading to fewer errors and less boilerplate code.

The example below declares that the Farmer participant contains a field postcode that must conform to the regular expression for valid UK postcodes.

participant Farmer extends Participant {
 o String firstName default="Old"
 o String lastName default="McDonald"
 o String address1
 o String address2
 o String county
 o String postcode regex=/(GIR 0AA)|((([A-Z-[QVf]][0-9][0-9]?)|(([A-Z-[QVf]][A-Z-[IJZ]][0-9][0-9]?)|(([A-Z-[QVf]][0-9][A-HJKPSTUW])|([A-Z-[QVf]][A-Z-[IJZ]][0-9][ABEHMNPRVWfY])))) [0-9][A-Z-[CIKMOV]]{2})/
}

Double, Long or Integer fields may include an optional range expression, which is used to validate the contents of the field.

The example below declared that the Vehicle asset has an Integer field year which defaults to 2016 and must be 1990, or higher. Range expressions may omit the lower or upper bound if checking is not required.

asset Vehicle extends Base {
 // An asset contains Fields, each of which can have an optional default value
 o String model default="F150"
 o String make default="FORD"
 o String reg default="ABC123"
 // A numeric field can have a range validation expression
 o Integer year default=2016 range=[1990,] optional // model year must be 1990 or higher
 o Integer[] integerArray
 o State state
 o Double value
 o String colour
 o String V5cID regex=/^[A-z][A-z][0-9]{7}/
 o String LeaseContractID
 o Boolean scrapped default=false
 o DateTime lastUpdate optional
 --> Participant owner //relationship to a Participant, with the field named 'owner'.
 --> Participant[] previousOwners optional // Nary relationship
 o Customer customer
}

Imports

Use the import keyword with a fully-qualified type name to import a type from another namespace. Alternatively use the .* notation to import all the types from another namespace.

import org.example.MyAsset
import org.example2.*

Decorators

Resources and properties of resources may have decorators attached. Decorators are used to annotate a model with metadata. The example below adds the foo decorator to the Buyer participant, with "arg1' and 2 passed as arguments to the decorator.

Similarly decorators can be attached to properties, relationships and enumerated values.

@foo("arg1", 2)
participant Buyer extends Person {
}

Resource definitions and properties may be decorated with 0 or more decorations. Note that only a single instance of a decorator is allowed on each element type. I.e. it is invalid to have the @bar decorator listed twice on the same element.

Decorator Arguments

Decorators may have an arbitrary list of arguments (0 or more items). Argument values must be strings, numbers or booleans.

Decorator APIs

Decorators are accessible at runtime via the ModelManager introspect APIs. This allows external tools and utilities to use the Composer Modelling Language (CTO) file format to describe a core model, while decorating it with sufficient metadata for their own purposes.

The example below retrieves the 3rd argument to the foo decorator attached to the myField property of a class declaration:

const val = myField.getDecorator('foo').getArguments()[2];

 Glossary and definition of terms

layout: default
title: Hyperledger Composer Glossary of Terms
section: reference
index-order: 1011
sidebar: sidebars/accordion-toc0.md
excerpt: The glossary contains definitions of all Hyperledger Composer terms for developing a solution with Hyperledger Composer.

Glossary and definition of terms

From Wikipedia [https://en.wikipedia.org/wiki/Blockchain_(database)]

A blockchain— originally block chain — is a distributed database that maintains a continuously-growing list of records called blocks. Each block contains a timestamp and a link to a previous block. The data in a block cannot be altered retrospectively. Blockchains are an example of a distributed computing system with high byzantine fault tolerance.

Access Control File: Access Control Files (.acl) are optional files within a business network definition. They describe assets or groups of assets and define the participants who can perform operations which affect those assets.

Asset: An asset can be anything of value. A house is an example of a physical asset, and a mortgage is an example of non-physical asset. Assets within {{site.data.conrefs.composer_full}} can be defined to encompass any physical or non-physical asset.

Blockchain: A blockchain is a shared and replicated ledger that can record asset transfers and changes. An implemented blockchain platform is often referred to as a Blockchain Fabric.

Business Network Archive: A business network archive (.bna) is a compressed business network definition which contains at least a business network model and transaction processor functions and may optionally contain an access control file. Business network archives can be deployed to a Hyperledger fabric.

Business Network Definition: A business network definition is made up of the business network model, transaction processor functions and optionally an access control file. The business network definition describes all assets, participants, transactions, and operations for a given solution, and can be interacted with by using a command line interface or an API.

Business Network Model: The business network model describes the assets, participants, and transactions in the business network. The model is in effect the static object structure of the overall business network.

Connection Profile: Connection profiles are .json files used by {{site.data.conrefs.composer_full}} to connect to an instance of {{site.data.conrefs.hlf_full}}.

{{site.data.conrefs.composer_short}} Playground: The {{site.data.conrefs.composer_full}} Playground is an open toolset allowing business networks to be rapidly modelled and tested. Sample business networks can be imported to learn more about {{site.data.conrefs.composer_full}} and business network archives can be exported for local editing or later use.

Events: Events are defined in the business network definition in the same way as assets or participants. Once events have been defined, they can be included in the transaction processor functions to be emitted as part of a transaction. Applications can subscribe to emitted events through the composer-client API.

Fabric: A fabric is a blockchain platform that user applications connect to in order to interact with a ledger. Examples of blockchain fabrics include Bitcoin, Ethereum, Open Blockchain and Hyperledger.

Hyperledger: Hyperledger is a Linux Foundation project to produce an open blockchain platform that is ready for business. It provides an implementation of the shared ledger, smart contracts, privacy and consensus mechanisms.

{{site.data.conrefs.composer_full}} Admin API is an administrative API to build administrative applications. This API can install, start and upgrade business network definitions on the {{site.data.conrefs.composer_full}} fabric runtime.

{{site.data.conrefs.composer_full}} Client API The Client API is used by applications to connect to a business network and submit transactions. These applications could be command line, web applications, or end-user applications. The Client API permits CRUD operations on the assets that have been defined in the model. It also permits the submission of the transactions to be executed to update assets.

Identity: An identity is a distinct unique identifier associated with a participant. When joining a business network, an identity is issued to a participant which is used by the participant to interact with the business network. Identity documents normally expire after a given length of time, but can be issued or revoked maunally. {{site.data.conrefs.composer_full}} uses {{site.data.conrefs.hlf_full}} enrollment certificates as identity documents.

Modelling language: The {{site.data.conrefs.composer_full}} modelling language is used in the business network definition to describe the assets, participants, and transactions in the business network. For a more in-depth explanation of the modelling language, see modelling language documentation.

Participant: Participants represent the organizations or people who take part in the digital business network. Participants are defined in the business network model.

Registry: Registries are a stores of assets held on the blockchain. The contents of the registry are validated using the blockchain consensus mechanism.

Transaction: Transactions are submitted by a participant to affect the assets held in the asset registries on the Hyperledger blockchain. Transactions with a business network are defined in the business network model, and their operations are defined in the transaction processor function file.

Transaction Processor Functions: Transaction processor functions act on assets and participants to either create, update or delete properties on assets and participants. Transactions processor functions are written in JavaScript and contained in a script file as part of a business network definition.

 {{site.data.conrefs.composer_full}} Historian

layout: default
title: Historian
section: reference
index-order:
sidebar: sidebars/accordion-toc0.md
excerpt: The Hyperledger Composer Historian provides a registry that contains information about historical transactions

{{site.data.conrefs.composer_full}} Historian

Warning: This is the first part of the implementation of functionality to track the transactions and asset updates. There are additional use cases that are not a covered by this implementation. Details are being tracked in GitHub issue 55. There may be changes to the HistorianRecord (documented below) as a result.

The Historian is a registry populated with HistorianRecords that contains information about historical transactions. When a transaction is submitted, the HistorianRecord is updated, and over time, maintains a history of transactions within a business network, and the participants and identities involved in submitting those transactions. HistorianRecord assets can be queried using Composer Queries to extract specific records or data. An example would be tracking the lifecycle of an asset such as a Land Title, from creation (with a Land Title ID) through update, through ownership changes carried out by different identities and/or participants. The transactions associated with this example can be queried in Historian, say, over a given time period.

Historian Record

A HistorianRecord is an 'asset' defined in the {{site.data.conrefs.composer_full}} system namespace. HistorianRecords are defined as follows.

asset HistorianRecord identified by transactionId {
 o String transactionId
 o String transactionType
 --> Transaction transactionInvoked
 --> Participant participantInvoking optional
 --> Identity identityUsed optional
 o Event[] eventsEmitted optional
 o DateTime transactionTimestamp
}

	String transactionId Using the transaction id as the uuid

	String transactionType Type of the transaction that was submitted

	Transaction transactionInvoked Relationship to transaction

	Participant participantInvoking Participant who invoked this transaction

	Identity identityUsed The identity that was used by the participant

	Event[] eventsEmitted The events that where emitted by this transactionId

	DateTime transactionTimestamp Use the transaction's timestamp

It's important to note that the Transaction, Participant and Identity are relationships. Applications that wish to obtain these attributes must resolve this relationship.

Tracking Transactions

The historian registry is updated for each successful transaction, transactions which fail are not recorded. In addition, several operations that the {{site.data.conrefs.composer_full}} runtime makes are classed as transactions. These 'system transactions' are defined in the {{site.data.conrefs.composer_full}} system model. The following will add HistorianRecord assets.

	Add, Remove and Update of Assets

	Add, Remove and Update of Participants

	Issue, Bind, Activate and Revoke of Identities

Note that the retrieval of assets and participants is not tracked.

Querying the Historian

The established APIs for querying and working with resources and relationship are applicable. The historian is a registry containing assets (HistorianRecords) so can be queried.

For example to get all the HistorianRecord assets a typical promise chain would be as follows.

 let historian = await businessNetworkConnection.getHistorian();
 let historianRecords = historian.getAll();
 console.log(prettyoutput(historianRecords));

As this is a 'getAll' call it will potentially return high volume of data. Therefore the query capability is vital in being able to select a subset of records. A typical example would be to select records based on a time. This uses the query capability to select records where the transaction timestamp is past a certain point. The returned records can be processed in exactly the same way.

 let now = new Date();
 now.setMinutes(10); // set the date to be time you want to query from

 let q1 = businessNetworkConnection.buildQuery('SELECT org.hyperledger.composer.system.HistorianRecord ' +
 'WHERE (transactionTimestamp > _$justnow)');

 await businessNetworkConnection.query(q1,{justnow:now});

More advanced queries can be used; for example, the following query selects and returns the Add, Update, and Remove asset system transactions.

 // build the special query for historian records
 let q1 = businessNetworkConnection.buildQuery(
 `SELECT org.hyperledger.composer.system.HistorianRecord
 WHERE (transactionType == 'AddAsset' OR transactionType == 'UpdateAsset' OR transactionType == 'RemoveAsset')`
);

 await businessNetworkConnection.query(q1);

What next?

	Applying queries to a business network.

	Emitting events from transactions.

	{{site.data.conrefs.composer_full}} API documentation.

 Transaction Processor Functions

layout: default
title: Transaction Processor Functions
section: reference
index-order: 1007
sidebar: sidebars/accordion-toc0.md
excerpt: "A Hyperledger Composer business network must include one or more script files to implement transaction logic. The transaction logic is automatically invoked by the runtime whenever the relevant transactions are submitted."

Transaction Processor Functions

A {{site.data.conrefs.composer_full}} Business Network Definition is composed of a set of model files and a set of scripts. The scripts may contain transaction processor functions that implement the transactions defined in the Business Network Definition's model files.

Transaction processor functions are automatically invoked by the runtime when transactions are submitted using the BusinessNetworkConnection API.

Decorators within documentation comments are used to annotate the functions with metadata required for runtime processing.

Each transaction type has an associated registry storing the transactions.

Transaction processor structure

The structure of transaction processor functions includes decorators and metadata followed by a JavaScript function, both parts are required for a transaction processor function to work.

The first line of comments above a transaction processor function contains a human readable description of what the transaction processor function does. The second line must include the @param tag to indicate the parameter definition. The @param tag is followed by the resource name of the transaction which triggers the transaction processor function, this takes the format of the namespace of the business network, followed by the transaction name. After the resource name, is the parameter name which will reference the resource, this parameter must be supplied to the JavaScript function as an argument. The third line must contain the @transaction tag, this tag identifies the code as a transaction processor function and is required.

/**
* A transaction processor function description
* @param {org.example.sampleTransaction} parameter-name A human description of the parameter
* @transaction
*/

After the comments is the JavaScript function which powers the transaction. The function can have any name, but must include the parameter name defined in the comment as an argument.

function transactionProcessor(parameter-name) {
 //Do some things.
}

A complete transaction processor function as detailed above would take the following format:

/**
* A transaction processor function description
* @param {org.example.sampleTransaction} parameter-name A human description of the parameter
* @transaction
*/
function transactionProcessor(parameter-name) {
 //Do some things.
}

Writing a transaction processor function

A transaction processor function is the logical operation of a transaction defined in a model file. For example, a transaction processor function of a Trade transaction, might use JavaScript to change the owner property of an asset from one participant to another.

Here's an example from the basic-sample-network, the following SampleAsset definition includes a property called value, which is defined as a string. The SampleTransaction transaction requires a relationship to an asset, the asset to be changed, the new value of the value property must be supplied as part of the transaction as a property called newValue.

asset SampleAsset identified by assetId {
 o String assetId
 --> SampleParticipant owner
 o String value
}

transaction SampleTransaction {
 --> SampleAsset asset
 o String newValue
}

The transaction processor function relating to the SampleTransaction transaction is what makes the change both to the asset and to the registry where the asset is stored.

The transaction processor function defines the SampleTransaction type as the associated transaction, and defines it as the parameter tx. It then saves the original value of the asset to be changed by the transaction, replaces it with the value passed in during the submission of the transaction (the newValue property in the transaction definition), updates the asset in the registry, and then emits an event.

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
async function sampleTransaction(tx) {

 // Save the old value of the asset.
 let oldValue = tx.asset.value;

 // Update the asset with the new value.
 tx.asset.value = tx.newValue;

 // Get the asset registry for the asset.
 let assetRegistry = getAssetRegistry('org.acme.sample.SampleAsset');

 // Update the asset in the asset registry.
 await assetRegistry.update(tx.asset);

 // Emit an event for the modified asset.
 let event = getFactory().newEvent('org.acme.sample', 'SampleEvent');
 event.asset = tx.asset;
 event.oldValue = oldValue;
 event.newValue = tx.newValue;
 emit(event);
}

Error handling in transaction processor functions

Transaction processor functions will fail and roll back any changes already made an error is thrown. The whole transaction fails, not just the transaction processing, and anything changed by the transaction processor function before the error occurred will be rolled back.

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
async function sampleTransaction(tx) {
 // Do something.
 throw new Error('example error');
 // Execution stops at this point; the transaction fails and rolls back.
 // Any updates made by the transaction processor function are discarded.
 // Transaction processor functions are atomic; all changes are committed,
 // or no changes are committed.
}

Changes made by transactions are atomic, either the transaction is successful and all changes are applied, or the transaction fails and no changes are applied.

Resolving relationships in transactions

When assets, transactions, or participants involved in a transaction have a property which includes a relationship, the relationships are resolved automatically. All relationships, including nested relationships, are resolved before the transaction processor functions runs.

The following example includes nested relationships, the transaction has a relationship with an asset, which has a relationship with a participant, because all relationships are resolved, the owner property of the asset is resolved to the specific participant.

Model file:

namespace org.acme.sample

participant SampleParticipant identified by participantId {
 o String participantId
}

asset SampleAsset identified by assetId {
 o String assetId
 --> SampleParticipant owner
}

transaction SampleTransaction {
 --> SampleAsset asset
}

Script file:

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
async function sampleTransaction(tx) {
 // The relationships in the transaction are automatically resolved.
 // This means that the asset can be accessed in the transaction instance.
 let asset = tx.asset;
 // The relationships are fully or recursively resolved, so you can also
 // access nested relationships. This means that you can also access the
 // owner of the asset.
 let owner = tx.asset.owner;
}

In this example, not only can the specific asset referenced by the relationship in the transaction be referenced using tx.asset, the specific participant referenced by the owner relationship can be referenced using tx.asset.owner. In this case, tx.asset.owner would resolve to reference a specific participant.

Promise returns in transaction processor functions

Similarly to relationships, transaction processor functions will wait for promises to be resolved before committing the transaction. If a promise is rejected, the transaction will fail.

In the example code below there are several promises, the transaction will not be completed until each promise has returned.

Model file:

namespace org.acme.sample

transaction SampleTransaction {

}

Node 8 syntax is now supported which means that you can now use async/await syntax instead which is far
more concise than using promise chains. This is the recommended style.

Script file:

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
async function sampleTransaction(tx) {
 let assetRegistry = await getAssetRegistry(...);
 await assetRegistry.update(...);
}

however if you so wish you can still use old style promise chains

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
function sampleTransaction(tx) {
 // Transaction processor functions can return promises; Composer will wait
 // for the promise to be resolved before committing the transaction.
 // Do something that returns a promise.
 return Promise.resolve()
 .then(function () {
 // Do something else that returns a promise.
 return Promise.resolve();
 })
 .then(function () {
 // Do something else that returns a promise.
 // This transaction is complete only when this
 // promise is resolved.
 return Promise.resolve();
 });
}

Using APIs in transaction processor functions

The {{site.data.conrefs.composer_full}} and {{site.data.conrefs.hlf_full}} APIs can be called within transaction processor functions.

Calling the {{site.data.conrefs.composer_full}} APIs in transaction processor functions

The {{site.data.conrefs.composer_full}} API can be called simply by calling API functions with the appropriate arguments in the transaction processor function.

In the code example below, the getAssetRegistry call returns a promise which is resolved before the transaction is complete.

Model file:

namespace org.acme.sample

asset SampleAsset identified by assetId {
 o String assetId
 o String value
}

transaction SampleTransaction {
 --> SampleAsset asset
 o String newValue
}

Script file:

/**
 * Sample transaction processor function.
 * @param {org.acme.sample.SampleTransaction} tx The sample transaction instance.
 * @transaction
 */
async function sampleTransaction(tx) {
 // Update the value in the asset.
 let asset = tx.asset;
 asset.value = tx.newValue;
 // Get the asset registry that stores the assets. Note that
 // getAssetRegistry() returns a promise, so we have to await for it.
 let assetRegistry = await getAssetRegistry('org.acme.sample.SampleAsset');

 // Update the asset in the asset registry. Again, note
 // that update() returns a promise, so so we have to return
 // the promise so that Composer waits for it to be resolved.
 await assetRegistry.update(asset);
}

Calling {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} APIs in transaction processor functions

To call the {{site.data.conrefs.hlf_full}} API in a transaction processor function, the function getNativeAPI must be called, followed by a function from the {{site.data.conrefs.hlf_full}} API. Using the {{site.data.conrefs.hlf_full}} API gives you access to functionality which is not available in the {{site.data.conrefs.composer_full}} API.

Please note: The getState and putState {{site.data.conrefs.hlf_full}} API functions will bypass the {{site.data.conrefs.composer_full}} access control rules.

In the example below, the {{site.data.conrefs.hlf_full}} API function getHistoryForKey is called, which returns the history of a specified asset as an iterator. The transaction processor function then stores the returned data in an array.

For more information on the {{site.data.conrefs.hlf_full}} APIs you can call in a transaction processor function, see the {{site.data.conrefs.hlf_full}} API documentation [https://fabric-shim.github.io/ChaincodeStub.html].

async function simpleNativeHistoryTransaction (transaction) {
 const id = transaction.assetId;
 const nativeSupport = transaction.nativeSupport;

 const nativeKey = getNativeAPI().createCompositeKey('Asset:systest.transactions.SimpleStringAsset', [id]);
 const iterator = await getNativeAPI().getHistoryForKey(nativeKey);
 let results = [];
 let res = {done : false};
 while (!res.done) {
 res = await iterator.next();

 if (res && res.value && res.value.value) {
 let val = res.value.value.toString('utf8');
 if (val.length > 0) {
 results.push(JSON.parse(val));
 }
 }
 if (res && res.done) {
 try {
 iterator.close();
 }
 catch (err) {
 }
 }
 }
}

What next?

Transaction processor functions can also be used to:

	Define queries for retrieving information about the blockchain world-state from a couchDB database.

	Define events for sending event data to applications.

 Model Compatibility

layout: default
title: Model Compatibility
category: reference
section: reference
sidebar: sidebars/accordion-toc0.md
excerpt: Composer models are expected to change and evolve over time. However some care and discipline must be applied when making model changes to ensure that existing instances are still valid with respect to the new model.
index-order: 1005

Model Compatibility

Composer models are expected to change and evolve over time. However some care and discipline must be applied when making model changes to ensure that existing instances are still valid with respect to the new model.

A model M' is compatible with model M if instances created with model M are valid with respect to model M'. If the instances are valid, then they may be deserialized using the Serializer.

The following terms are used throughout this document:

	Class : the declaration of the structure of an asset, participant, transaction, concept or event

	Instance : an instance of a class, for example if org.example.Vehicle is an asset (class), then org.example.Vehicle#ABC123 is an instance of an org.acme.Vehicle

	Property : a member (or field) defined by a class, including a relationship. For example the class org.example.Vehicle may have a property called model of type string.

A class (the asset SampleAsset):

namespace org.acme.sample

asset SampleAsset identified by assetId {
 o String assetId
 --> SampleParticipant owner
 o String value
}

An instance of the class:

{
 "$class": "org.acme.sample.SampleAsset",
 "assetId": "assetId:6463",
 "owner": "resource:org.acme.sample.SampleParticipant#participantId:8091",
 "value": "secret plant frequently ruler"
}

Evolution of Namespaces

A new class may be added to a namespace without breaking compatibility with pre-existing instances.

Evolution of Classes

This section describes the effects of changes to the declaration of a class and its properties on pre-existing instances.

Renaming

Renaming a class will break compatibility with any pre-existing instances of the class, or relationships to the class.

abstract Classes

If a class that was not declared abstract is changed to be declared abstract, then attempts to create new instances of that class will throw an error at runtime; such a change is therefore not recommended for widely distributed classes.

Changing a class that is declared abstract to no longer be declared abstract does not break compatibility with pre-existing instances.

Superclasses

An error is thrown at load time if a class would be a superclass of itself. Changes to the class hierarchy that could result in such a circularity when instances are loaded are not recommended for widely distributed classes.

Changing the direct superclass of a class type will not break compatibility with pre-existing instances, provided that the total set of superclasses of the class type loses no properties.

If a change to the direct superclass results in any class no longer being a superclass respectively, then errors may result if pre-existing instances have relationships to the modified class. Such changes are not recommended for widely distributed classes.

Class Properties

No incompatibility with pre-existing instances is caused by adding a property to a class if the property is either declared as optional or is assigned a default value. Adding new properties that are neither optional nor have a default will break compatibility with any pre-existing instances of the class.

Changing the cardinality of a property (changing an array [] to a non-array or vice-a-versa) will break compatibility with any pre-existing instances of the class.

Deleting a property from a class will break compatibility with any pre-existing instances that reference this field.

Changing the type of a property may cause an error if the property is used by a pre-existing instance.

Changing the validation expression of a property may cause an error if the property is used by a pre-existing instance.

Properties that are relationships follow the same rules as for other types.

Evolution of Enums

Adding or reordering constants in an enum type will not break compatibility with pre-existing instances.

If a pre-existing instance attempts to access an enum constant that no longer exists, an error will occur. Therefore such a change is not recommended for widely distributed enums.

In all other respects, the model evolutions rules for enums are identical to those for classes.

 {{site.data.conrefs.composer_full}} Query Language

layout: default
title: Query Language
section: reference
index-order: 1004
sidebar: sidebars/accordion-toc0.md
excerpt: The Hyperledger Composer query language defines queries to run and return data from business networks.

{{site.data.conrefs.composer_full}} Query Language

Queries in {{site.data.conrefs.composer_full}} are written in a bespoke query language. Queries are defined in a single query file called (queries.qry) within a business network definition.

Query Syntax

All queries must contain the description and statement properties.

Description

The description property is a string which describes the function of the query. It must be included but can contain anything.

Statement

The statement property contains the defining rules of the query, and can have the following operators:

	SELECT is a mandatory operator, and by default defines the registry and asset or participant type that is to be returned.

	FROM is an optional operator which defines a different registry to query.

	WHERE is an optional operator which defines the conditions to be applied to the registry data.

	AND is an optional operator which defines additional conditions.

	OR is an optional operator which defines alternative conditions.

	CONTAINS is an optional operator that defines conditions for array values

	ORDER BY is an optional operator which defines the sorting or results.

	SKIP is an optional operator which defines the number of results to skip.

	LIMIT is an optional operator which defines the maximum number of results to return from a query, by default limit is set at 25.

Note: If you're using {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} or below, the LIMIT and SKIP won't work as there is an issue passing the params to couchdb from fabric. Reference to {{site.data.conrefs.hlf_full}} issue : FAB-2809 [https://jira.hyperledger.org/browse/FAB-2809]

Example Query

This query returns all drivers from the default registry whose age is less than the supplied parameter or whose firstName is "Dan", as long as their lastName is not "Selman".

In practical terms, this query returns all drivers who do not have the lastName "Selman", as long as they are under a defined age, or have the firstName Dan, and orders the results by lastName ascending and firstName descending.

query Q20{
 description: "Select all drivers younger than the supplied age parameter or who are named Dan and whose lastName is not Selman, ordered from A-Z by firstName"
 statement:
 SELECT org.acme.Driver
 WHERE ((age < _$ageParam OR firstName == 'Dan') AND (lastName != 'Selman'))
 ORDER BY [lastName ASC, firstName ASC]
}

Parameters in queries

Queries can be written with undefined parameters that must be supplied when running the query. For example, the following query returns all drivers where the age property is greater than the supplied parameter:

query Q17 {
 description: "Select all drivers aged older than PARAM"
 statement:
 SELECT org.acme.Driver
 WHERE (_$ageParam < age)
}

Sample Contains queries

The CONTAINS filter is used to search a array field in a node. The below query returns all the drivers who earned the punctual and steady-driving badges. Considering that the badges is of array type in driver participant.

query Q18 {
 description: "Select all drivers who has the following interests"
 statement:
 SELECT org.acme.Driver
 WHERE (badges CONTAINS ['punctual', 'steady-driving'])
}

What next?

	Applying queries to a business network.

	Emitting events from transactions.

	{{site.data.conrefs.composer_full}} API documentation.

 Reference material for {{site.data.conrefs.composer_full}}

layout: default
title: Reference
section: reference
index-order: 1000
sidebar: sidebars/accordion-toc0.md
excerpt: Reference section index page.

Reference material for {{site.data.conrefs.composer_full}}

The {{site.data.conrefs.composer_full}} reference material contains a number of topics including reference information for the npm modules, CLI commands, modeling language, APIs, connection profiles, and a glossary of common terms.

{% assign sorted = site.pages | sort: 'index-order' %}
{% for page in sorted %}
{% if page.section == 'reference' and page.title != "Reference" or page.exception == 'API' %}

{{ page.title }}

{{ page.excerpt }}
{% endif %}
{% endfor %}

 Hyperledger Composer REST Server

layout: default
title: Hyperledger Composer REST Server
section: reference
index-order: 1010
sidebar: sidebars/accordion-toc0.md
excerpt: Reference documentation for the Hyperledger Composer REST server.

Hyperledger Composer REST Server

The Hyperledger Composer REST server, composer-rest-server, can be used to generate a REST API from a deployed blockchain business network that can be easily consumed by HTTP or REST clients.

Configuring the REST server using environment variables

The REST server can be configured using environment variables, instead of supplying configuration options via the command line. The REST server supports the following environment variables:

	COMPOSER_CARD

You can use the COMPOSER_CARD environment variable to specify the name of the discovery business network card that the REST server should use to connect to the business network.

For example:

 COMPOSER_CARD=admin@my-network

	COMPOSER_NAMESPACES

You can use the COMPOSER_NAMESPACES environment variable to specify if the REST server should generate a REST API with namespaces or not. Valid values are always, required, and never.

For example:

 COMPOSER_NAMESPACES=never

	COMPOSER_AUTHENTICATION

You can use the COMPOSER_AUTHENTICATION environment variable to specify if the REST server should enable REST API authentication or not. Valid values are true and false.

For example:

 COMPOSER_AUTHENTICATION=true

For more information, see Enabling authentication for the REST server.

	COMPOSER_MULTIUSER

You can use the COMPOSER_MULTIUSER environment variable to specify if the REST server should enable multiple user mode or not. Valid values are true and false.

For example:

 COMPOSER_MULTIUSER=true

For more information, see Enabling multiple user mode for the REST server.

	COMPOSER_PROVIDERS

You can use the COMPOSER_PROVIDERS environment variable to specify the Passport strategies that the REST server should use to authenticate clients of the REST API.

For example:

 COMPOSER_PROVIDERS='{
 "github": {
 "provider": "github",
 "module": "passport-github",
 "clientID": "REPLACE_WITH_CLIENT_ID",
 "clientSecret": "REPLACE_WITH_CLIENT_SECRET",
 "authPath": "/auth/github",
 "callbackURL": "/auth/github/callback",
 "successRedirect": "/",
 "failureRedirect": "/"
 }
 }'

	COMPOSER_DATASOURCES

You can use the COMPOSER_DATASOURCES environment variable to specify the LoopBack data sources and the connection information required by the selected LoopBack connector.

For example:

 COMPOSER_DATASOURCES='{
 "db": {
 "name": "db",
 "connector": "mongodb",
 "host": "mongo"
 }
 }'

	COMPOSER_TLS

You can use the COMPOSER_TLS environment variable to specify if the REST server should enable HTTPS and TLS. Valid values are true and false.

For example:

 COMPOSER_TLS=true

For more information, see Securing the REST server using HTTPS and TLS.

	COMPOSER_TLS_CERTIFICATE

You can use the COMPOSER_TLS_CERTIFICATE environment variable to specify the certificate file that the REST server should use when HTTPS and TLS are enabled.

For example:

 COMPOSER_TLS_CERTIFICATE=/tmp/cert.pem

	COMPOSER_TLS_KEY

You can use the COMPOSER_TLS_KEY environment variable to specify the private key file that the REST server should use when HTTPS and TLS are enabled.

For example:

 COMPOSER_TLS_KEY=/tmp/key.pem

 Calling an HTTP or REST API from Transaction Processor Functions

layout: default
title: "Calling external HTTP or REST services"
category: start
section: integrating
status: experimental
index-order: 708
sidebar: sidebars/accordion-toc0.md
excerpt: "Transaction processor functions can be used to call external REST services. This allows you to move complex computation off the blockchain."

Calling an HTTP or REST API from Transaction Processor Functions

In some cases it is desirable to be able to call HTTP or REST APIs from transaction processor functions. This allows you to move complex or expensive computation from the blockchain to a centrally or peer hosted service.

Alternatively, a transaction processor function may wish to call third party HTTP or REST APIs that provides external data. For example, a third party API may provide data about the current price of a stock, or the current weather and temperature, which can be used to determine whether or not the conditions of a contract have been fulfilled.

{{site.data.conrefs.composer_full}} allows a transaction processor function developer to call an HTTP or REST API from within a transaction processor function.

Please note that using this function can lead to errors that are caused by consensus failures, and should only be used with care. For more information, see Consensus considerations below.

Using the request module

The request module (https://github.com/request/request), is a popular HTTP client used by many Node.js applications. {{site.data.conrefs.composer_full}} embeds the request module, so that transaction processor functions can use it to make calls to HTTP or REST APIs.

The standard request module uses a callback oriented API. However, transaction processor functions are promise based, and callback oriented APIs result in a lot of unnecessary code to wrap the callbacks in promises. To make the experience easier for transaction processor function developers, we have exposed the promise based request-promise module (https://github.com/request/request-promise) instead.

The request-promise module is automatically available to all transaction processor functions via the request global variable. You do not need to add the request or request-promise modules to your package.json file, nor do you need to use the require function to load the modules.

The global request method and all of the convenience methods for the various HTTP methods (request.get, request.post, etc.) are available to transaction processor functions. These methods provide a full set of options for handling request bodies, response bodies, HTTP headers, authentication, cookies, proxies, and TLS/SSL.

For detailed information on these methods and the options available, please review the documentation for the request and request-promise modules.

Examples

Make an HTTP GET request to an HTTP server that returns the current stock price as a string:

/**
 * Buy a given amount of CONGA stocks.
 * @param {org.example.BuyStocks} transaction The transaction.
 * @transaction
 */
async function buyStocks(transaction) {

 // Look up the current price of the CONGA stock, and parse it into a float.
 const priceAsStr = await request.get('http://stocks.org/CONGA');
 const price = parseFloat(priceAsStr);

 // Get the current participant, and update their stock and balance.
 const participant = getCurrentParticipant();
 const units = transaction.units;
 participant.stockUnits += units;
 participant.balance -= price * units;

 // Update the current participant in the participant registry.
 const participantRegistry = await getParticipantRegistry('org.example.Trader');
 await participantRegistry.update(participant);

}

Make an HTTP GET request to an HTTP server that returns the current stock price as a JSON structure:

/**
 * Buy a given amount of CONGA stocks.
 * @param {org.example.BuyStocks} transaction The transaction.
 * @transaction
 */
async function buyStocks(transaction) {

 // Look up the current price of the CONGA stock, and extract the price.
 // The option "json: true" automatically parses JSON from the HTTP response.
 const stock = await request.get({ uri: 'http://stocks.org/CONGA', json: true });
 const price = stock.price;

 // Get the current participant, and update their stock and balance.
 const participant = getCurrentParticipant();
 const units = transaction.units;
 participant.stockUnits += units;
 participant.balance -= price * units;

 // Update the current participant in the participant registry.
 const participantRegistry = await getParticipantRegistry('org.example.Trader');
 await participantRegistry.update(participant);

}

Make an HTTP POST request to an HTTP server that includes the current participant as the HTTP request body, and returns the current stock price as a string:

/**
 * Buy a given amount of CONGA stocks.
 * @param {org.example.BuyStocks} transaction The transaction.
 * @transaction
 */
async function buyStocks(transaction) {

 // Get the current participant, and serialize them into a JavaScript object.
 const participant = getCurrentParticipant();
 const serializer = getSerializer();
 const json = serializer.toJSON(participant);
 const units = transaction.units;

 // Look up the current price of the CONGA stock, and extract the price.
 // The option "json" sends the serialized participant as the HTTP request body,
 // and automatically parses JSON from the HTTP response.
 const stock = await request.post({ uri: 'http://stocks.org/CONGA', json });
 const price = stock.price;

 // Get the current participant, and update their stock and balance.
 const participant = getCurrentParticipant();
 const units = transaction.units;
 participant.stockUnits += units;
 participant.balance -= price * units;

 // Update the current participant in the participant registry.
 const participantRegistry = await getParticipantRegistry('org.example.Trader');
 await participantRegistry.update(participant);

}

Make an HTTP POST request to an HTTP server that returns a serialized instance of a stock asset:

/**
 * Buy a given amount of CONGA stocks.
 * @param {org.example.BuyStocks} transaction The transaction.
 * @transaction
 */
async function buyStocks(transaction) {

 // Look up the current price of the CONGA stock, and extract the price.
 // The option "json: true" automatically parses JSON from the HTTP response.
 const json = await request.get({ uri: 'http://stocks.org/CONGA', json: true });

 // Parse the JavaScript object into the stock asset.
 const serializer = getSerializer();
 const stock = serializer.fromJSON(json);
 const price = stock.price;

 // Get the current participant, and update their stock and balance.
 const participant = getCurrentParticipant();
 const units = transaction.units;
 participant.stockUnits += units;
 participant.balance -= price * units;

 // Update the current participant in the participant registry.
 const participantRegistry = await getParticipantRegistry('org.example.Trader');
 await participantRegistry.update(participant);

}

Consensus considerations

In {{site.data.conrefs.hlf_full}}, consensus in a business network is achieved by having peer nodes in multiple organisations endorse transactions. Transactions are endorsed by executing chaincode, and signing the results of that execution. In order for the transaction to be committed by the blockchain network, all peer nodes endorsing the transaction must produce the same results from executing chaincode.

When a business network makes an HTTP request using the APIs described above, those HTTP requests will be executed on all peer nodes endorsing the transaction. This will result in n HTTP requests, where n is the number of peer nodes endorsing the transaction.

In order for consensus to be achieved when business networks make HTTP requests, you must be careful to ensure that transaction processor functions make the same HTTP requests on all peer nodes, and then perform the same processing on the HTTP responses on all peer nodes.

For example, consider a business network that uses an HTTP request to look up a stock price from an external symbol. The business network then uses the stock price to adjust the balance on a participants account. If different peer nodes receive different stock prices, then they will attempt to make different adjustments to the balance on the participants account. This will result in a consensus failure, and the transaction being rejected.

HTTP requests may result in different responses for multiple reasons:

	Peer nodes in different organisations may run in different data centers, in different countries, in different time zones.

	Peer nodes in different organisations may not have access to the HTTP server depending on public internet access and firewall restrictions.

	Peer nodes in different organisations may authenticate to the HTTP server as different users, resulting in different HTTP responses.

In order to minimize the risks of consensus failures when making HTTP requests from a transaction processor function, it is recommended you use make HTTP requests that are either:

	Safe, in that the HTTP request does not modify any state on the HTTP server.

	Idempotent, in that the same HTTP request can be made many times without different outcomes.

CORS (Cross-Origin Resource Sharing)

Business networks deployed to the Web Browser connection from the {{site.data.conrefs.composer_full}} Playground run inside the web browser. When transaction processor functions inside these business networks make HTTP requests using the APIs described above, those HTTP requests are handled using the HTTP client built into the web browser.

HTTP clients built into the web browser require that the HTTP server is CORS (Cross-Origin Resource Sharing) compliant. If you deploy business networks to the Web Browser connection, then you must ensure that the HTTP server has been configured to be CORS compliant. For more information, see: https://enable-cors.org

Docker Network Resolution

Business networks deployed to {{site.data.conrefs.hlf_full}} run within a chaincode Docker container. This means that the business networks are subject to the DNS resolution and network services provided by Docker, instead of those services provided by the host machine. Additionally, the chaincode Docker container has its own IP address.

This means that localhost resolves to the chaincode Docker container, rather than the host machine. Any HTTP requests made to localhost, for example http://localhost:3000/api/Vehicle, will not work as expected. The easiest workaround is to use a DNS name for your REST server that is publicly resolvable.

 Deploying the REST server for a business network

layout: default
title: Deploying the REST server for a business network
category: start
section: integrating
index-order: 706
sidebar: sidebars/accordion-toc0.md
excerpt: By deploying a REST server for a business network, you can integrate existing systems and data with your Hyperledger Composer business network, allowing you to create, update, or delete assets and participants, as well as get and submit transactions.

Deploying the REST server for a business network

When deploying the {{site.data.conrefs.composer_full}} REST server in a production environment, for example using Docker Swarm or Kubernetes, the REST server should be configured to be highly available. This means that you must deploy multiple instances of the REST server, and those instances should be configured to share data. For example, data such as business network cards, Blockchain identities, and REST API authentication settings should be shared so that a REST API client can make a request to any of the instances without having to reauthenticate.

Business network cards and the business network card store

The REST server uses a business network card specified during startup to connect to and discover the assets, participants, and transactions within a deployed business network. This information is required in order to generate the REST API. This business network card is known as the discovery business network card. By default, the discovery business network card is also used to handle all requests to the REST API. However the REST server can also be configured to multiple user mode, which allows authenticated users to supply their own business network cards for handling requests to the REST API.

In order to use a discovery business network card, that business network card must first be imported into a business network card store available to the REST server. The default business network card store is a local file system directory with the path ~/.composer (where ~ is the current users home directory). When using the Docker image for the REST server, you must mount a volume into place of the default business network card store that contains an imported discovery business network card. In the Docker image for the REST server, the business network card store used by the REST server is in the directory /home/composer/.composer (because the REST server in the Docker image always runs under the composer user).

A business network card contains a connection profile that describes how to connect to the {{site.data.conrefs.hlf_full}} network where the deployed business network is running. Note that the connection profile must be valid for use within the Docker image for the REST server, and the hostnames must be correct and accessible by this Docker image.

Configuring the REST server with a persistent data store

All information regarding authenticated users and their wallets (containing that users business network cards when multiple user mode is enabled) is persisted in a LoopBack data source by using a LoopBack connector. By default, the REST server uses the LoopBack "memory" connector to persist user information, which is lost when the REST server is terminated. The REST server should be configured with a LoopBack connector that stores data in a highly available data source, for example a database.

You should be able to use any LoopBack connector, but we recommend that you use a LoopBack connector for a NoSQL database. For example, MongoDB or Apache CouchDB.

The LoopBack connector needs to be installed in order for the REST server to locate and use it. You can install additional LoopBack connectors by using npm, for example:

npm install -g loopback-connector-mongodb

Finally, you need to supply the REST server with the connection information required by the LoopBack connector. This connection information should be supplied by using the COMPOSER_DATASOURCES environment variable. For more information on the environment variables that can be used to configure the REST server, see the reference documentation: Hyperledger Composer REST Server

Extending the Docker image for the REST server with additional Node.js modules

In order to deploy the REST server as a Docker container with additional LoopBack connectors and Passport strategies, you must extend the hyperledger/composer-rest-server Docker image.

Here is an example Dockerfile that adds the LoopBack connector for MongoDB and the Passport strategy for GitHub to the Docker image:

FROM hyperledger/composer-rest-server:next
RUN npm install --production loopback-connector-mongodb passport-github && \
 npm cache clean --force && \
 ln -s node_modules .node_modules

You can build this Docker image by placing the Dockerfile above into a directory and using the docker build command, for example:

docker build -t myorg/my-composer-rest-server .

You may need to publish this Docker image to a Docker image repository, for example Docker Hub, in order to use it with cloud based Docker deployment services.

Deploying a persistent and secured REST server using Docker

The following example will demonstrate how to deploy the REST server using Docker. The deployed REST server will persist data using MongoDB, and will be secured using GitHub authentication.

The examples are based on the business network that is deployed to {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} as part of the Developer Tutorial, and may need adjusting for your configuration, for example if the Docker network name does not match.

	Ensure that a valid business network card for your business network is in your local business network card store by running the following composer network ping command. This example uses a business network card for the admin user on the my-network business network:

composer network ping -c admin@my-network

Note that you must use the composer network ping command to test the connection to the business network before proceeding. If the business network card only contains a user ID and enrollment secret, then the composer network ping command will trigger the enrollment process to occur and certificates to be stored in the business network card. It is not advisable to use a business network card with only a user ID and enrollment secret when using the Docker image for the REST server.

	Start an instance of the Docker image for MongoDB named mongo. This MongoDB instance will be used to persist all information regarding authenticated users and their wallets (containing that users business network cards when multiple user mode is enabled) for the REST server.

docker run -d --name mongo --network composer_default -p 27017:27017 mongo

Note that the MongoDB instance is attached to the Docker network named composer_default. This means that the MongoDB instance will be available on the Docker network named composer_default using the hostname mongo. We will use the hostname mongo to configure the REST server in a subsequent step. Depending on your Docker networking configuration, you may need to specify a different Docker network name. The MongoDB port 27017 is also exposed on the host network using port 27017, so you can use other MongoDB client applications to interact with this MongoDB instance if desired.

	Extend the Docker image for the REST server by adding the LoopBack connector for MongoDB and the Passport strategy for GitHub authentication. Create a new, empty directory on your local file system, and create a new file named Dockerfile in the new directory, with the following contents:

FROM hyperledger/composer-rest-server:next
RUN npm install --production loopback-connector-mongodb passport-github && \
 npm cache clean --force && \
 ln -s node_modules .node_modules

Build the extended Docker image by running the following docker build command in the directory containing the file named Dockerfile that you just created:

docker build -t myorg/my-composer-rest-server .

If this command completes successfully, a new Docker image called myorg/my-composer-rest-server has been built and stored in the local Docker registry on your system. If you wish to use this Docker image on other systems, you may need to push the Docker image into a Docker registry, such as Docker Hub.

	The Docker image for the REST server is configured using environment variables rather than command line options. Create a new file named envvars.txt to store the environment variables for our REST server, with the following contents:

COMPOSER_CARD=admin@my-network
COMPOSER_NAMESPACES=never
COMPOSER_AUTHENTICATION=true
COMPOSER_MULTIUSER=true
COMPOSER_PROVIDERS='{
 "github": {
 "provider": "github",
 "module": "passport-github",
 "clientID": "REPLACE_WITH_CLIENT_ID",
 "clientSecret": "REPLACE_WITH_CLIENT_SECRET",
 "authPath": "/auth/github",
 "callbackURL": "/auth/github/callback",
 "successRedirect": "/",
 "failureRedirect": "/"
 }
}'
COMPOSER_DATASOURCES='{
 "db": {
 "name": "db",
 "connector": "mongodb",
 "host": "mongo"
 }
}'

Note that the name of the discovery business network card admin@my-network has been set as the value of the COMPOSER_CARD environment variable. We have disabled namespaces in the generated REST API by specifying never as the value of the COMPOSER_NAMESPACES environment variable. We have enabled authentication of REST API clients by setting the COMPOSER_AUTHENTICATION environment variable to true, and also enabled multi-user mode by setting the COMPOSER_MULTIUSER environment variable to true.

We have configured our REST server to use GitHub authentication by configuring the Passport strategy for GitHub in the COMPOSER_PROVIDERS environment variable. Note that you must replace both REPLACE_WITH_CLIENT_ID and REPLACE_WITH_CLIENT_SECRET with the appropriate configuration from GitHub in order for this configuration to work successfully.

We have configured our REST server to use our MongoDB instance by configuring the LoopBack connector for MongoDB in the COMPOSER_DATASOURCES environment variable. Note that the host name of the MongoDB instance, mongo, has been specified in the host property of the LoopBack data source named db.

Load the environment variables into your current shell by running the following command:

source envvars.txt

If you open a new shell, for example a new terminal window or tab, then you must run the same source command again to load the environment variables into the new shell.

For more information on the environment variables that can be used to configure the REST server, see the reference documentation: Hyperledger Composer REST Server

	Start a new instance of the extended Docker image for the REST server that you created in step 3 by running the following docker run command:

docker run \
 -d \
 -e COMPOSER_CARD=${COMPOSER_CARD} \
 -e COMPOSER_NAMESPACES=${COMPOSER_NAMESPACES} \
 -e COMPOSER_AUTHENTICATION=${COMPOSER_AUTHENTICATION} \
 -e COMPOSER_MULTIUSER=${COMPOSER_MULTIUSER} \
 -e COMPOSER_PROVIDERS="${COMPOSER_PROVIDERS}" \
 -e COMPOSER_DATASOURCES="${COMPOSER_DATASOURCES}" \
 -v ~/.composer:/home/composer/.composer \
 --name rest \
 --network composer_default \
 -p 3000:3000 \
 myorg/my-composer-rest-server

Note that we have passed through all of the environment variables that we set in previous steps by using multiple -e options. If you need to add or remove any additional environment variables to configure the REST server, then you must add or remove the appropriate -e options as well.

We have mounted our local business network card store into the REST server Docker container by specifying -v ~/.composer:/home/composer/.composer. This permits the REST server to access and use our local business network card store when trying to load the discovery business network card specified using the COMPOSER_CARD environment variable.

We have also specified the Docker network name composer_default, and name of the Docker container as rest. This means that the REST server instance will be available on the Docker network named composer_default using the hostname rest. The REST server port 3000 is also exposed on the host network using port 3000.

You can check that the REST server has started successfully by using the docker logs command, for example:

docker logs -f rest

If the REST server has started successfully, then you will see it output a log message similar to Browse your REST API at http://localhost:3000/explorer.

Now that the REST server has started successfully, you can access the REST server running inside the Docker container by using the following URL: http://localhost:3000/explorer/.

Final notes

In this guide, you have seen how to start a single instance of the REST server using Docker, where that single instance is configured to use MongoDB as a persistent data store. For a true highly available, production deployment of the REST server, you will need to:

	Configure a highly available instance of the persistent data store, for example a MongoDB replica set.

	Run multiple instances of the REST server Docker image. This is easy to do by changing the name of the Docker container using the --name argument, and updating or removing the host port mapping for subsequent REST server instances using the -p 3000:3000 argument.

	Deploy a load balancer, for example Nginx, to distribute REST requests from clients across all of the instances of the REST server.

Once you have performed these three tasks, you should be able to stop, restart, or remove any of the REST server instances (but not all!) without losing access to the deployed business network over REST.

 Enabling multiple user mode for the REST server

layout: default
title: Enabling multiple user mode for the REST server
category: start
section: integrating
index-order: 704
sidebar: sidebars/accordion-toc0.md
excerpt: The REST server can be configured to multiple user mode. Multiple user mode permits clients of the REST server to provide their own Blockchain identities for digitally signing transactions. This enables the business network to differentiate between different clients of the REST server.

Enabling multiple user mode for the REST server

By default, the {{site.data.conrefs.composer_full}} REST server services all requests by using the Blockchain identity specified on the command line at startup. For example, when using the following command, all requests made to the REST server will be serviced by using the Blockchain identity alice1 to digitally sign all transactions:

composer-rest-server -c alice1@my-network

This means that the business network cannot distinguish between different clients of the REST server. This may be acceptable in certain use cases, for example if the Blockchain identity only has read-only access and the REST server is secured using an API management gateway.

The REST server can be configured to multiple user mode. Multiple user mode permits clients of the REST server to provide their own Blockchain identities for digitally signing transactions. This enables the business network to differentiate between different clients of the REST server.

Multiple user mode requires that REST API authentication is enabled, and will automatically enable REST API authentication if it is not explicitly specified. You must select and configure a Passport strategy for authenticating users. REST API authentication is required so that clients can be identified.

Once a client has authenticated to the REST API, that client can add Blockchain identities to a wallet. The wallet is private to that client, and is not accessible to other clients. When a client makes a request to the REST server, a Blockchain identity in the clients wallet is used to digitally sign all transactions made by that client.

Please note that this feature requires that clients trust the REST server. This trust is required because this feature requires that the REST server stores the clients Blockchain identities, including the private keys. Therefore, it is strongly recommended that clients only use REST servers that are managed by a trusted party, such as an administrator within their organization.

Starting the REST server with multiple user mode enabled

You must configure the environment variable COMPOSER_PROVIDERS before continuing. For instructions on how to perform this task, read the following topic before continuing: Enabling authentication for the REST server

You can use the -m true argument to start the REST server with multiple user mode enabled. Once multiple user mode is enabled, clients will have to authenticate before they can make any requests to the business network.

For example, here is the command for the business network that is deployed as part of the Developer Tutorial, however you may need to modify the command for your business network:

composer-rest-server -c admin@my-network -m true

The -m true argument automatically enables REST API authentication. You can alternatively supply both arguments, -a true -m true, if you wish to be explicit. Before continuing, you must authenticate to the REST API using the configured authentication mechanism.

Now, navigate to the REST API explorer at http://localhost:3000/explorer/. If multiple user mode has been successfully enabled, any attempts to call one of the business network REST API operations using the REST API explorer should be rejected with an A business network card has not been specified error message.

If you see a HTTP 401 Authorization Required error message, you have not authenticated correctly to the REST API.

Adding a business network card to the wallet

First, you must issue a Blockchain identity to a participant in the business network. This example will assume that you have issued the Blockchain identity alice1 to the participant org.acme.mynetwork.Trader#alice@email.com, and that you have created a business network card for this Blockchain identity stored in the file alice1@my-network.card.

Follow these steps to add a business network card to the wallet:

	Navigate to the REST API explorer at http://localhost:3000/explorer/, and then navigate to the wallet APIs by expanding the Wallet category.

	Check that the wallet does not contain any business network cards by calling the GET /wallet operation. The response from the operation should be:

[]

	Import the business network card into the wallet by calling the POST /wallet/import operation. You must specify the business network card file alice1@my-network.card by clicking the Choose File button. The response from the operation should be:

no content

The business network card alice1@my-network has now been imported into the wallet.

	Check that the wallet does contain the business network card alice1@my-network by calling the GET /wallet operation. The response from the operation should be:

[
 {
 "name": "alice1@my-network",
 "default": true
 }
]

The business network card alice1@my-network is displayed. The value of the default property is true, which means that this business network card will be used by default when interacting with the business network.

Now, navigate to the REST API explorer at http://localhost:3000/explorer/. Attempt to call one of the business network REST API operations again using the REST API explorer. This time, the calls should succeed.

You can test that the Blockchain identity is being used by calling the GET /system/ping operation. This operation returns the fully qualified identifier for the participant that the Blockchain identity was issued to:

{
 "version": "0.8.0",
 "participant": "org.acme.mynetwork.Trader#alice@email.com"
}

Final notes

When the REST server is started with multiple user mode enabled, all REST API requests made by clients use a Blockchain identity stored in the clients wallet. The Blockchain identity specified on the command line at startup is not used to service any requests; it is only used to initially connect to the business network and download the business network definition, which is required to generate the REST API. Therefore, the Blockchain identity specified on the command line only requires minimal permissions - the ability to connect, and the ability to download the business network definition - it does not need permission for any assets, participants, or transactions.

All user information is persisted in a LoopBack data source by using a LoopBack connector. By default, the REST server uses the LoopBack "memory" connector to persist user information, which is lost when the REST server is terminated. The REST server should be configured with a LoopBack connector that stores data in a highly available data source, for example a database. For more information, see Deploying the REST server.

 Enabling authentication for the REST server

layout: default
title: Enabling authentication for the REST server
category: start
section: integrating
index-order: 703
sidebar: sidebars/accordion-toc0.md
excerpt: The REST server can be configured to authenticate clients. When this option is enabled, clients must authenticate to the REST server before they are permitted to call the REST API.

Enabling authentication for the REST server

The REST server can be configured to authenticate clients. When this option is enabled, clients must authenticate to the REST server before they are permitted to call the REST API.

Selecting an authentication strategy

The REST server uses the open source Passport [http://passportjs.org] authentication middleware. Administrators of the REST server must select Passport strategies to authenticate clients. Multiple Passport strategies can be selected, allowing clients of the REST server to select a preferred authentication mechanism. Passport includes a wide range of strategies (300+ at the time of writing), including a mix of social media (Google, Facebook, Twitter) and enterprise (SAML, LDAP) strategies.

The rest of this document will demonstrate how to use the passport-github strategy to authenticate users using their GitHub ID. Install the passport-github strategy by executing the following command:

npm install -g passport-github

Configuring the REST server to use an authentication strategy

The REST server must be configured with a list of Passport strategies to use before REST API authentication can be enabled. This configuration includes both the names of the strategies to use and the individual configuration for each strategy.

In order to configure the passport-github strategy, we will need to register an OAuth application on GitHub and retrieve the client ID and client secret. Follow these steps to register an OAuth application on GitHub:

	Navigate to GitHub [https://github.com] and log in with your user ID and password.

	Click on your profile picture on the top right, and click on Settings from the drop down menu.

	Click on OAuth applications under Developer settings on the left hand bar.

	Click on Register a new application.

	Specify the following settings:

	Application name: Composer

	Homepage: http://localhost:3000/

	Application description: OAuth application for Composer

	Authorization callback URL: http://localhost:3000/auth/github/callback

	Click on Register application.

	Note down the values for Client ID and Client Secret.

The configuration for the REST server should be specified using the environment variable COMPOSER_PROVIDERS. Set the configuration for the REST server by replacing the values of REPLACE_WITH_CLIENT_ID and REPLACE_WITH_CLIENT_SECRET with the values retrieved from step 7, and executing the following command:

export COMPOSER_PROVIDERS='{
 "github": {
 "provider": "github",
 "module": "passport-github",
 "clientID": "REPLACE_WITH_CLIENT_ID",
 "clientSecret": "REPLACE_WITH_CLIENT_SECRET",
 "authPath": "/auth/github",
 "callbackURL": "/auth/github/callback",
 "successRedirect": "/",
 "failureRedirect": "/"
 }
}'

Starting the REST server with REST API authentication enabled

Once the environment variable COMPOSER_PROVIDERS has been set, you can use the -a true argument to start the REST server with authentication enabled. Once authentication is enabled, clients will have to authenticate before they can make any requests to the business network.

For example, here is the command for the business network that is deployed as part of the Developer Tutorial, however you may need to modify the command for your business network:

composer-rest-server -c admin@my-network -a true

Now, navigate to the REST API explorer at http://localhost:3000/explorer/. If authentication has been successfully enabled, any attempts to call one of the business network REST API operations using the REST API explorer should be rejected with an HTTP 401 Authorization Required message.

Authenticating to the REST server using a web browser

This step is dependent on the configuration and behaviour of the Passport strategies being used by the REST server.

	Authenticate to the REST server by navigating to the value of the authPath property specified in the environment variable COMPOSER_PROVIDERS. In the example above, this is http://localhost:3000/auth/github.

	The REST server will redirect you to GitHub to perform the OAuth web server authentication flow. GitHub will ask you if you want to authorize the Composer application to access your account. Click the Authorize button.

	If successful, GitHub will redirect you back to the REST server.

Now, navigate to the REST API explorer at http://localhost:3000/explorer/. Attempt to call one of the business network REST API operations again using the REST API explorer. This time, the calls should succeed.

Authenticating to the REST server using an HTTP or REST client

When a user authenticates to the REST server, a unique access token is generated and assigned to the authenticated user. When the user authenticates using a web browser, the access token is stored in a cookie in the local storage of the users web browser. When the authenticated user makes a subsequent request, the access token is retrieved from the cookie, and the access token is validated instead of reauthenticating the user.

The access token can be used to authenticate any HTTP or REST client that wishes to call the REST server. This is required when the HTTP or REST client cannot perform the authentication flow required by the configured Passport strategy. For example, all OAuth2 web authentication flows require the use of a web browser to navigate to the authentication providers website.

In order to use the access token, the access token must first be retrieved using a web browser. When you authenticate to the REST server, the REST API explorer at http://localhost:3000/explorer/ will show the access token at the top of the page. By default the access token is hidden, but it can be displayed by clicking the Show button. The access token is a long alphanumeric string, for example: e9M3CLDEEj8SDq0Bx1tkYAZucOTWbgdiWQGLnOxCe7K9GhTruqlet1h5jsw10YjJ

Once the access token has been retrieved, the access token can be passed into any HTTP or REST request to authenticate the HTTP or REST client. There are two options for passing the access token - using either a query string parameter, or an HTTP header. For both of the following examples, replace the string xxxxx with the value of the access token.

Query string - add the access_token query string parameter to all HTTP or REST requests:

curl -v http://localhost:3000/api/system/ping?access_token=xxxxx

HTTP header - add the X-Access-Token header to all HTTP or REST requests:

curl -v -H 'X-Access-Token: xxxxx' http://localhost:3000/api/system/ping

 Generating a REST API

layout: default
title: Generating a REST API
category: start
section: integrating
index-order: 701
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer includes a standalone Node.js process that exposes a business network as a REST API. The LoopBack framework is used to generate an Open API, described by a Swagger document.

Generating a REST API

Installing the REST server

The {{site.data.conrefs.composer_full}} REST server can be installed either using npm or Docker.

To install with npm, run the following command:

npm install -g composer-rest-server

To install the REST server using Docker see deploying the REST server.

Running the REST server

{{site.data.conrefs.composer_full}} includes a standalone Node.js process that exposes a business network as a REST API. The LoopBack framework is used to generate an Open API, described by a Swagger document.

To launch the REST Server simply type:

composer-rest-server

You will then be asked to enter a few simple details about your business network. An example of consuming a deployed business network is shown below.

? Enter the name of the business network card to use: admin@basic-sample-network
? Specify if you want namespaces in the generated REST API: always use namespaces
? Specify if you want to enable authentication for the REST API using Passport: No
? Specify if you want to enable event publication over WebSockets: Yes
? Specify if you want to enable TLS security for the REST API: No

To restart the REST server using the same options, issue the following command:
 composer-rest-server -c admin@basic-sample-network -n always -w true

Discovering types from business network definition ...
Discovered types from business network definition
Generating schemas for all types in business network definition ...
Generated schemas for all types in business network definition
Adding schemas for all types to Loopback ...
Added schemas for all types to Loopback
Web server listening at: http://localhost:3000
Browse your REST API at http://localhost:3000/explorer

The composer-rest-server command

The composer-rest-server command has a number of options used to define security and authentication:

Options:
 -c, --card The name of the business network card to use [string]
 -n, --namespaces Use namespaces if conflicting types exist [string] [choices: "always", "required", "never"] [default: "always"]
 -p, --port The port to serve the REST API on [number]
 -a, --authentication Enable authentication for the REST API using Passport [boolean] [default: false]
 -m, --multiuser Enable multiple user and identity management using wallets (implies -a) [boolean] [default: false]
 -w, --websockets Enable event publication over WebSockets [boolean] [default: true]
 -t, --tls Enable TLS security for the REST API [boolean] [default: false]
 -e, --tlscert File containing the TLS certificate [string] [default: "/usr/local/lib/node_modules/composer-rest-server/cert.pem"]
 -k, --tlskey File containing the TLS private key [string] [default: "/usr/local/lib/node_modules/composer-rest-server/key.pem"]
 -h, --help Show help [boolean]
 -v, --version Show version number [boolean]

Looking at the generated APIs

Launch your browser and go to the URL given (http://0.0.0.0:3000/explorer). You'll see a screen similar to this.

[image: LoopBack-1]

Updating the REST server

After updating a business network definition, the REST server can be updated to generate new APIs reflecting the updates to the business network definition.

To update the REST server, first the REST server must be stopped using ctrl-C. Then the REST server can be restarted using composer-rest-server.

Summary

Using the Loopback framework on top of the {{site.data.conrefs.composer_full}} runtime has allowed us to generate a business domain specific REST API based on the deployed business network model!

 Integrating existing systems

layout: default
title: Integrating Existing Systems
category: concepts
section: integrating
index-order: 700
sidebar: sidebars/accordion-toc0.md
excerpt: How to integrate existing systems

Integrating existing systems

{{site.data.conrefs.composer_full}} can be integrated with existing systems by using a Loopback API. Integrating existing systems allows you to pull data from existing business systems and convert it to assets or participants in a {{site.data.conrefs.composer_short}} business network.

{% assign sorted = site.pages | sort: 'index-order' %}
{% for page in sorted %}
{% if page.section == 'integrating' and page.title != "Integrating Existing Systems" %}

{{ page.title }}

{{ page.excerpt }}
{% endif %}
{% endfor %}

For instructions on setting up a Loopback API, see Generating a REST API.

 Integrating with Node-RED

layout: default
title: Integrating with Node-RED
category: integrating
section: integrating
index-order: 707
sidebar: sidebars/accordion-toc0.md
excerpt: "Node-RED [http://nodered.org] includes a number of Hyperledger Composer nodes allowing you to submit transactions, read, update and delete assets and participants, and subscribe to events."

Integrating with Node-RED

Node-RED [http://nodered.org] is a lightweight Open Source integration technology, written in JavaScript. It uses a graphical flow to integrate different nodes, where nodes can receive data, transform data and output data.

Node-RED is commonly used to rapidly prototype Internet of Things style applications, or to wire existing Internet services together.

You can use the {{site.data.conrefs.composer_full}} Node-RED contribution to:

	Submit transactions

	Read and update assets and participants

	Subscribe to events

	Delete assets and participants

The {{site.data.conrefs.composer_full}} Node-RED nodes are distributed as a standalone npm package, published here:

	https://www.npmjs.com/package/node-red-contrib-composer

{{site.data.conrefs.composer_full}} Node-RED Nodes

Hyperledger-Composer-out

A node red output node that allows you to create, update or delete assets or participants and submit transactions. For example, combining the hyperledger-composer-out node with an inject node allows you to create participants by submitting JSON definitions of those participants.

Hyperledger-Composer-Mid

A node red mid flow node that allows you to create, retrieve, update, or delete assets and participants from a registry. For example, combining hyperledger-composer-mid with an inject node allows you to retrieve assets or participants by submitting the correct registry and identifying field as a JSON object.

Hyperledger-Composer-In

A Node-RED input node that subscribes to events from a blockchain.

 Publishing events from the REST server

layout: default
title: Publishing events from the REST server
category: start
section: integrating
index-order: 702
sidebar: sidebars/accordion-toc0.md
excerpt: The REST server can be configured to subscribe to events emitted from a deployed business network, and publish those events to client applications.

Publishing events from the REST server

The REST server can be configured to subscribe to events emitted from a deployed business network, and publish those business events for consumption by client applications. Currently, the REST server supports publishing events to client applications over WebSockets.

Client applications can use a WebSocket client to subscribe to the business events that are published by the REST server. There are WebSocket clients available for all major programming languages and application types - for example, client side web user interfaces, backend server processes, mobile applications, and integration tools.

Enabling WebSockets

You can enable WebSockets using the -w argument on the command line:

composer-rest-server -c alice1@my-network -w

Alternatively, you can enable WebSockets by using the COMPOSER_WEBSOCKETS environment variable:

export COMPOSER_WEBSOCKETS=true
composer-rest-server -c alice1@my-network

When you have successfully enabled WebSockets, you will be able to connect a WebSocket client to the base URL displayed in the output of the REST server:

Web server listening at: http://localhost:3000
Browse your REST API at http://localhost:3000/explorer

In this example, the base URL to use is http://localhost:3000. You must convert this into a WebSocket URL by changing the protocol from http to ws. In this example, the WebSocket URL to use is ws://localhost:3000.

Testing that WebSockets has been enabled

You can test that WebSockets has been enabled by using a WebSocket client to subscribe to events. The open source command line application wscat can be used for this purpose.

To install wscat, you can use npm. You may need to run this command with sudo, or as root, if you do not have the correct permissions to globally install npm modules:

npm install -g wscat

You can then use wscat to connect to and subscribe to business events published by the REST server. Any business events received will be printed to the console:

$ wscat -c ws://localhost:3000
connected (press CTRL+C to quit)
< {"$class":"org.acme.sample.SampleEvent","asset":"resource:org.acme.sample.SampleAsset#assetId:1","oldValue":"","newValue":"hello world","eventId":"a80d220b-09db-4812-b04b-d5d03b663671#0","timestamp":"2017-08-23T12:47:17.685Z"}
>

 Securing the REST server using HTTPS and TLS

layout: default
title: Securing the REST server using HTTPS and TLS
category: start
section: integrating
index-order: 705
sidebar: sidebars/accordion-toc0.md
excerpt: When deploying Hyperledger Composer REST server in a production environment, the REST server should be configured to be secured with HTTPS and TLS (Transport Layer Security). Once the REST server has been configured with HTTPS and TLS, all data transferred between the REST server and all of the REST clients is encrypted.

Securing the REST server using HTTPS and TLS

When deploying {{site.data.conrefs.composer_full}} REST server in a production environment, the REST server should be configured to be secured with HTTPS and TLS (Transport Layer Security). Once the REST server has been configured with HTTPS and TLS, all data transferred between the REST server and all of the REST clients is encrypted.

You must provide both a certificate and a private key pair to configure the REST server. The REST server includes a sample certificate and private key pair that can be used to easily get going, but this configuration is only recommended for ease of use during initial development. Do not use the sample certificate and private key pair in a production environment.

Enabling HTTPS and TLS by using the sample certificate and private key pair

You can enable HTTPS and TLS using the sample certificate and private key pair by using the -t argument to the command line:

composer-rest-server -c alice1@my-network -t

Alternatively, you can enable HTTPS and TLS using the sample certificate and private key pair by using the COMPOSER_TLS environment variable:

export COMPOSER_TLS=true
composer-rest-server -c alice1@my-network

When you have successfully enabled HTTPS and TLS, you will see that the output of the REST server specifies an https:// URL instead of a http:// URL:

Web server listening at: https://localhost:3000
Browse your REST API at https://localhost:3000/explorer

This configuration is only recommended for ease of use during initial development. For a test, QA, or production deployment, you should provide your own certificate and private key to enable HTTPS and TLS.

Enabling HTTPS and TLS by providing a certificate and private key pair

You can enable HTTPS and TLS by providing your own certificate and private key pair. The certificate and private key pair must be provided as two separate files in the PEM format. The files must be available on the file system of the system running the REST server, and the REST server must have read access to those files.

You can configure the THE REST server to use your certificate and private key pair files by using the '-e' (certificate file) and '-k' (private key file) arguments to the command line:

composer-rest-server -c alice1@my-network -t -e /tmp/cert.pem -k /tmp/key.pem

Alternatively, you can configure the THE REST server to use your certificate and private key pair files by using the COMPOSER_TLS_CERTIFICATE and COMPOSER_TLS_KEY environment variables:

export COMPOSER_TLS=true
export COMPOSER_TLS_CERTIFICATE=/tmp/cert.pem
export COMPOSER_TLS_KEY=/tmp/key.pem
composer-rest-server -c alice1@my-network

 Access Control in {{site.data.conrefs.composer_full}} - Tutorial

layout: default
title: Access Control Tutorial - Commodity Trading
category: tutorials
section: tutorials
index-order: 307
sidebar: sidebars/accordion-toc0.md
excerpt: "The ACL tutorial enables you to get familiar with Access Control rules in {{site.data.conrefs.composer_full}}."

Access Control in {{site.data.conrefs.composer_full}} - Tutorial

Access control and authorization are a very important part of {{site.data.conrefs.composer_full}} and the security architecture of a business network shared by member organisations on the blockchain. {{site.data.conrefs.composer_full}} enables an administrator control what resources or data a participant, or indeed participant role - is authorized to see or do, in a business network. These participants will typically operate or transact from inside their respective member organisations and each will have their own access control requirements on the ledger, whilst at the same time allowing controlled access to shared data or data that may be common to all member organisations - or specific members interacting on the same business network.

This tutorial explores one such business network - the Commodity Trading network - seen elsewhere in our tutorials and sample networks [https://github.com/hyperledger/composer-sample-networks/tree/master/packages/trade-network] and shows examples of ACLs in action in this sample network.

[image: Overview of Commodity Trading Rules]

Access control rules (the language that defines ACLs) fall into two main areas:

	authority to access system, network or administrative resources and operations in the System namespace (governing Network and System operations) ; and

	authority to access resources or perform operations within a given business network itself (like Create, Read, Update assets), via domain specific business network ACLs.

The tutorial uses the online Playground to try out some simple and conditional access rules. In doing so, you will interact with the sample network as various identities - ultimately, it is the users of the blockchain that we want to apply access control to. We'll also see how a Participant role can be used to control access, where multiple identities can be mapped to a designated Participant role (such as a Regulator). Its important to note that in a real blockchain network, all operations, whether from a Node JS application, CLI or indeed REST operations are subject to and controlled by the ACLs that govern a business network. Accountability is seen at an identity level.

If you wish, you can also apply the rules in this tutorial against an existing {{site.data.conrefs.composer_full}} you've deployed. You just need to grab and deploy the sample Commodity Trading business network used in the Developer Tutorial [https://hyperledger.github.io/composer/tutorials/developer-tutorial.html] - remembering to remove the global trading network ACL rule mentioned earlier - and you're ready to start working with that environment.

Prerequisites

None - just an internet connection, which you have right now :-)

Step One: Access the Online Playground and select your business network

We'll use the sample business network (trade-network) sourced from the Composer sample networks repository.

	Go to the Online Playground [https://composer-playground.mybluemix.net/login] and if necessary clear local storage when prompted. Accept the Welcome logo, you are ready to start.

	Click on the Deploy a new business network modal / icon.

	Scroll down and click on the trade-network sample - when you scroll back up, it should populate name, description and network admin card fields for you.

	With the Deploy button active (confirm that the name is trade-network) - click on Deploy to deploy the business network.

	Lastly, click on 'Connect Now' to connect to the deployed business network (the default id - its shown top right).

	The 'Trade Network' README file should be active and you can see the components of the business network listed in the left column - one of these is the ACLs file permissions.acl which controls the access to resources. Out of the box, the sample business networks have 'all access' turned on, which would of course, ultimately be different to that for a production style environment.

Create Trader Participants

	Click on the 'Test' tab near the top of the screen. This is where we create sample Trader participants.

	Click on Trader on the left - Create New Participant (top right) as follows - the example below is 'TRADER1':

1st record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER1",
 "firstName": "Jenny",
 "lastName": "Jones"
}

	Repeat step 2 and create 5 additional Trader participants ('TRADER2' through 'TRADER6') using the sample data above (change the names as appropriate). We have provided 'TRADER2', and 'TRADER3' as an example below.

2nd record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER2",
 "firstName": "Jack",
 "lastName": "Sock"
}

3rd record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER3",
 "firstName": "Rainer",
 "lastName": "Valens"
}

4th record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER4",
 "firstName": "Davor",
 "lastName": "Dolittle"
}

5th record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER5",
 "firstName": "Steve",
 "lastName": "Alonso"
}

6th record:

{
 "$class": "org.acme.trading.Trader",
 "tradeId": "TRADER6",
 "firstName": "Lars",
 "lastName": "Graf"
}

[image: Six Trader records added]

Create Commodity Assets

	Still in the 'Test' panel, create some Commodity records by selecting 'Commodity' on the left - the ownership (owner field) relates back to the 'Trader' participant for the purposes of this tutorial. Note that owner is a relationship field.

1st record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "EMA",
 "description": "Corn",
 "mainExchange": "EURONEXT",
 "quantity": 10,
 "owner": "resource:org.acme.trading.Trader#TRADER1"
}

2nd record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "CC",
 "description": "Cocoa",
 "mainExchange": "ICE",
 "quantity": 80,
 "owner": "resource:org.acme.trading.Trader#TRADER2"
}

3rd record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "HO",
 "description": "Heating Oil",
 "mainExchange": "NYMEX",
 "quantity": 40,
 "owner": "resource:org.acme.trading.Trader#TRADER3"
}

4th record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "HG",
 "description": "Copper",
 "mainExchange": "COMEX",
 "quantity": 100,
 "owner": "resource:org.acme.trading.Trader#TRADER4"
}

5th record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "SM",
 "description": "Soybean Meal",
 "mainExchange": "CBOT",
 "quantity": 70,
 "owner": "resource:org.acme.trading.Trader#TRADER5"
}

6th record:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "AG",
 "description": "Silver",
 "mainExchange": "CBOT",
 "quantity": 60,
 "owner": "resource:org.acme.trading.Trader#TRADER6"
}

Create Identities to test ACLs

Next, let's create some trader identities - we need to issue identities for the Traders (TRADER1 - 6) so that we can test those identities' access (each being mapped to their respective Trader participant record)

	Click on admin (top right) and select 'ID Registry' from the drop-down

	Click 'Issue new ID' top right and it will present an 'Issue New Identity' dialog

	In the ID Name field - enter tid1 as the identity we'll use for TRADER1

	In the Participant field - enter TRADER1 to search for the Participant - and select the fully-qualified participant name

	Click on 'Create New' to continue.

Repeat the 'Issue new ID' sequence (step 2 through 5 above) for identities tid2, tid3, tid4, tid5 and tid6 respectively, mapping these to their respective TRADER participants.

Now we're ready to start creating our access control rules.

Important: if you are issuing new identities for a {{site.data.conrefs.composer_full}} based environment (as opposed to the online environment), be sure to add each issued identity to your wallet using the 'Add to Wallet' option.

Add Commodity Trading network access control rules

The standard 'Commodity Trade network' sample network you deployed comes with standard System and Network ACL rules, that govern the participants of the business network to enable accessing registries like asset registries or ability to reviewing historical records in the ledger.

But we want to add some Trading-specific access control rules - let's start by defining what we want to achieve first ! The golden rule with ACLs is that access to resources inside a business network are by default implicitly 'DENIED' to Participants, unless explicitly ALLOWED.

You will note from reviewing the current ACLs in permissions.acl that certain 'system' or 'administrator' type rules are defined in the ACLs file - this is to allow participants to be able to use Composer system operations such as being able to write to the Composer system Historian registry.

Before we begin, we will need to remove one 'global' rule in permissions.acl for our trading network which, because its ordinarily used as a sample network, must now be removed. This is the rule to REMOVE (up to - and including - the final curly bracket):

rule Default {
 description: "Allow all participants access to all resources"
 participant: "ANY"
 operation: ALL
 resource: "org.acme.trading.*"
 action: ALLOW
}

Having removed this from the permissions.acl file (leaving the 'system' or 'administrator' rules behind, click on the UPDATE button (bottom left) for the changes to take effect.

In terms of our rule objectives - these are the policies we want to apply:

Everyday activities - rule objectives:

1a. Traders can see and update their own profile only (participant record)

1b. Allow Traders access to all operations on their own assets (Commodities)

	Restrict Participants of type 'Trader' such that only they can submit Trade transactions (as there may be several transactions defined in the model, over time, in an 'live'/operational business network)

Historical records - rule objectives:

	Ensure Traders can only see the history of transactions they have created.

	Allow a Participant of type REG (Regulator) the authority to see the history of all historical transactions committed by Traders (as well as working with their own participant profile) - there are two rule subsets for this - 4a and 4b.

It is important to note at this point that the namespace org.acme.trading (our Commodity Trading business network) has no business network ACLS defined (just has system ones) and therefore access to resources inside that business network are implicity 'denied' by default.

Rule 1a - Trader profile restriction rule

First up - rule to restrict Traders to only see and update their own record.

	Switch identity to tid1 (click the current identity top right and choose ID Registry, select to 'use now' for tid1) - and click on the 'Test' tab

	Confirm that you do not see any Trader records.

	Switch identity to the 'admin' user (top right, 'ID Registry'), then go to the 'Define' tab and click on 'Access Control' (permissions.acl) on the left.

	Paste the following rule into the top of your edit session, after the comment lines and ensure you have pasted above, the existing 3 'System' and 'Network' system rules:

Rule:

rule R1a_TraderSeeUpdateThemselvesOnly {
 description: "Trader can see and update their own record only"
 participant(t): "org.acme.trading.Trader"
 operation: READ, UPDATE
 resource(v): "org.acme.trading.Trader"
 condition: (v.getIdentifier() == t.getIdentifier())
 action: ALLOW
}

Then click on the UPDATE button on the bottom left to update the business network.

This rule will allow the current Trader Participant (mapped to the current identity whether in playground (here) or indeed in your application) to READ and UPDATE their own target Trader record.

	TEST THE ACL: Switch user to identity tid1 (top right, 'ID Registry') and click on the 'Test' tab - check that TRADER1 record only, is visible to this identity.

Rule 1b - Trader Asset Ownership - allow update by owners only

By default, a Trader cannot see or update any of the Commodities created earlier.

We need a rule to enable a Trader access Commodities for which they are the designated 'owner'.

	Switch identity to tid1 (click the current identity top right and choose ID Registry, select to 'use now' for tid1) - and click on the 'Test' tab

	Confirm that you do not see any Commodity records.

	Switch identity back to the 'admin' user (top right, 'ID Registry'), then go to the 'Define' tab and click on 'Access Control' (permissions.acl) on the left.

	Paste the following rule in line 1 in your edit session, pasted above the existing rules:

Rule:

rule R1b_TraderSeeTheirCommodities {
 description: "Trader can see/work with their own Commodities"
 participant(t): "org.acme.trading.Trader"
 operation: ALL
 resource(c): "org.acme.trading.Commodity"
 condition: (c.owner.getIdentifier() == t.getIdentifier())
 action: ALLOW
}

Then click on the UPDATE button on the bottom left to update the business network.

This rule will allow the current Trader Participant all operations on target Commodity resources that it 'owns'.

	TEST THE ACL: Switch user to identity tid1 (top right, 'ID Registry') and click on the 'Test' tab - confirm that there is one Commodity owned by TRADER1 participant and is visible/editable (icon) to this identity.

Implicitly, this Trader TRADER1 has no ability to see or update other Trader's assets (Commodities) at this point - we don't need a rule for this, but there may in the real world be a business policy to allow specific senior Traders to 'see' other Commodities, albeit they are not owners for same.

Rule 2 - Restrictive rule: Only 'Trader' participants can submit Trade smart contract transactions

By default, a Trader cannot submit a Trade transaction (defined in our model and for which we have smart contract logic written in our Script file) to update a Commodity he owns.

We need a rule to enable a Trader to submit Trade transactions for which they are the designated 'owner'. The Trade transaction enables the current owner to change the ownership of a Commodity to another Trader.

	Switch identity to tid1 (click the current identity top right and choose ID Registry, select to 'use now' for tid1) - and click on the 'Test' tab

	Confirm that you cannot submit a Trade transaction ('Submit Transaction' - copy and paste the transaction below) to try change the ownership of a Commodity - you will get a message that you do not have CREATE ability to do submit the transaction.

JSON to copy:

{
 "$class": "org.acme.trading.Trade",
 "commodity": "resource:org.acme.trading.Commodity#EMA",
 "newOwner": "resource:org.acme.trading.Trader#TRADER2"
}

[image: Insufficient authority to submit Trade transactions]

	Switch identity back to the 'admin' user (top right, 'ID Registry'), then go to the 'Define' tab and click on 'Access Control' (permissions.acl) on the left.

	Paste the following rule in line 1 in your edit session, pasted above the existing rules:

Rule:

rule R2_EnableTradeTxn {
 description: "Enable Traders to submit transactions"
 participant: "org.acme.trading.Trader"
 operation: ALL
 resource: "org.acme.trading.Trade"
 action: ALLOW
}

Then click on the UPDATE button on the bottom left to update the business network.

That's it. We know already that the participant can only work with their own Commodity(ies). This will allow only Trader participants to submit transactions of type Trade (we could have many different participant types in a business network).

	TEST THE ACL: Switch user to identity tid1 (top right, 'ID Registry') - the owner of Commodity with id EMA

a. Click on the 'Test' tab. Submit a Trade Transaction copying and pasting this transaction, replacing current contents with the transaction provided below:

JSON to copy:

{
 "$class": "org.acme.trading.Trade",
 "commodity": "resource:org.acme.trading.Commodity#EMA",
 "newOwner": "resource:org.acme.trading.Trader#TRADER2"
}

b. Confirm that the transaction has now been submitted by going to 'All Transactions' (on the left) and the first record in the Historian shows a TRADE transaction confirms the transfer. Participant TRADER1 no longer owns the commodity. By contrast, a switch to identity tid2 will reveal it has two Commodity records as TRADER2 was the recipient owner.

Rule 3 - Enabling rule: Allow Traders to see their own historical records only

By default, due to the System ACLs (a part of which is the registry for the Historian records), each Trader (eg. and related tid1, tid2 etc identities) can see the history of all Transactions - an example is the UpgradeBusinessNetwork performed by admin.

We will lock down access to the Historian such that Traders only see transactions they submitted in Historian.

	Switch identity to tid3 (click the current identity top right and choose ID Registry, select to 'use now' for tid3) - and click on the 'Test' tab

	Confirm that you can see transactions relating to 'system' activities, but also the other traders (TRADER1 and TRADER2).

	Switch identity back to the 'admin' user (top right, 'ID Registry'), then go to the 'Define' tab and click on 'Access Control' (permissions.acl) on the left.

	Paste the following rule in line 1 in your edit session, pasted above the existing rules:

Rule:

rule R3_TradersSeeOwnHistoryOnly {
 description: "Traders should be able to see the history of their own transactions only"
 participant(t): "org.acme.trading.Trader"
 operation: READ
 resource(v): "org.hyperledger.composer.system.HistorianRecord"
 condition: (v.participantInvoking.getIdentifier() != t.getIdentifier())
 action: DENY
}

This rule restricts the current Trader participant to seeing only transactions he/she invoked on the blockchain.

Then click on the UPDATE button on the bottom left to update the business network.

	TEST THE ACL:

a. Switch user to identity tid3 (top right, 'ID Registry') - you will only see 'Identity Activation' type entries but nothing about the history of transactions that were submitted relating to TRADER1 and TRADER2. This is what we would expect.

b. Next, switch to identity tid1 - you will see the history of transactions (including the 'TRADE' transaction submitted earlier) relating to tid1 only - in particular the transfer of Commodity 'CC' ownership to TRADER2 (By contrast, identity tid2 , the transferee, will not see the historial 'TRADE' transaction submitted by tid1 - only the Commodity asset, that was transferred).

Rule 4a & 4b - Enabling rule: Allow Regulators to see their own profile and all historical activity, including Trades

It stands to reason that a regulator would want to review/audit historical transactions carried out in the business network. They won't necessarily need access to things like Participants or Assets per se (depending on the use case or policy), but rather, the activities relating to these.

We don't yet have a 'Regulator' in our 'Commodity Trading' business network model, so we will add this as a separate participant type and then proceed to define rules that allow someone that has the regulator 'role', to access historical records. Remember that one or more identities can be mapped to a participant instance, and 'Regulator' is a good example of that.

	Switch identity to admin if you haven't already done so - and then click on 'Define' (top)

	Click on the Model file and add a new Participant type (add it below the Trader participant) as follows:

Model:

participant Regulator identified by regId {
 o String regId
 o String firstName
 o String lastName
}

	Ensure you click on the UPDATE button to update the network.

	Switch to the 'Test' tab (still as 'admin') and create a participant Regulator as follows:

Create the record:

{
 "$class": "org.acme.trading.Regulator",
 "regId": "Reg101",
 "firstName": "Jon",
 "lastName": "Doe"
}

	Create an Identity in the ID registry for an identity with ID 101 and map it to the Participant regulator 'Reg101' created above.

At this point, the Regulator can now see the history of system transactions in Composer's Historian, due to the system ACL rules defined earlier. But at this point, he cannot see his own participant profile.

	Add the following rule:

Rule:

rule R4a_RegulatorSeeThemselves {
 description: "Regulators can see and update their own record"
 participant: "org.acme.trading.Regulator"
 operation: READ, UPDATE
 resource: "org.acme.trading.Regulator"
 action: ALLOW
}

This rule merely allows a Regulator participant to update their own profile record (should they wish to update it - you can test this out if you wish; we had done something similar earlier).

Then click on the UPDATE button on the bottom left to update the business network with the new rule.

	Next, switch identity (in the Id Registry) to the Regulator identity 101 and click 'Use Now'

	Check you can indeed see the Historical records (which shows our previous transactions - then click on 'view record' for any system type transaction activity such as AddAsset or AddParticipant - as someone that is a Regulator, you should be able to see this activity.

	Next click 'view record' for a TRADE transaction- there's an issue - nothing happens. You (regulator) currently do not have authority (via ACLs) able to view the transaction record

	Switch identity back to 'admin' as good practice for rule changes.

	Add the following Regulator authorisation rule (insert the rule in the permissions.acl file at the top):

Rule:

rule R4b_RegTransView {
 description: "Grant Regulator full access to Trade Transactions"
 participant: "org.acme.trading.Regulator"
 operation: ALL
 resource: "org.acme.trading.Trade"
 action: ALLOW
}

Then click on the UPDATE button on the bottom left to update the business network.

This rule enables a Regulator to access the Trade transaction resources, such that it can view the Trade transactions from Historian's 'view record').

This rule also applies to any subsequent identity mapped to the regulator role and in the Regulator participant registry.

	TEST the ACL - now go to a trade transaction again and check that you can indeed now view the record

In this tutorial, you have experimented with creating ACL rules incrementally, only permitting the requisite access controls that should be accorded to participants of this example Commodity Trading business network. We have seen how ACL rules provide authorisation and access control to resources as applied to participants (or indeed participant roles). ACLs govern the access control to resources and transactions, whether that's the ability to create, delete or update resources or execute transactions. We have also the power of the Access Control Language and rules, in defining the conditions or criteria as to: 'who' has the ability to do 'what' on the ledger.

 Deploying a {{site.data.conrefs.composer_full}} blockchain business network to {{site.data.conrefs.hlf_full}} (multiple organizations)

layout: default
title: Deploying to a multi-organization Hyperledger Fabric
category: tutorials
section: tutorials
index-order: 305
sidebar: sidebars/accordion-toc0.md

Deploying a {{site.data.conrefs.composer_full}} blockchain business network to {{site.data.conrefs.hlf_full}} (multiple organizations)

This tutorial provides an insight into the process for configuring a blockchain network, spanning multiple organizations.

It outlines the steps you need configure an {{site.data.conrefs.hlf_full}} based multi-organisation blockchain network. The two-organisation blockchain network is based on a sample network provided by {{site.data.conrefs.hlf_full}}. Furthermore, it describes the steps to generate the necessary security artifacts and secure the network in either organization.

Once the blockchain network is configured, we show how to deploy a business network (eg. a Commodity trading business network from our sample networks), which runs in its own chaincode container and which is instantiated on the ledger shared across both organizations. We then show interactions with the shared ledger as different participants / identities, as generated by an Identity provider in each organization.

It is recommended that you first follow the accompanying singie organization tutorial first ; this tutorial demonstrates how to deploy a blockchain network to an instance of {{site.data.conrefs.hlf_full}} for a single organization, and will explain some of the concepts in more detail.

The {site.data.conrefs.hlf_full}} blockchain network (for two organizations) in this tutorial is configured using docker containers, with both organizations' fabric networks, on the same machine - obviously, in the real world, they'll be in separate IP networks or domains, or secure Cloud environments.

The tutorial has colour-coded steps for convenience, to indicate 'which organization' should follow a particular step or sequence - or indeed, if steps are needed for both Orgs.

The first kind of step is for both organizations to follow:

Example Step: A step for Org1 and Org2 to follow
The organization Org1 is represented by Alice, the Green Conga Block:

Example Step: A step for Org1 to follow
The organization Org2 is represented by Bob, the Violet Conga Block:

Example Step: A step for Org2 to follow
You can follow these steps by yourself, or pair with a friend or colleague and follow the steps together.

Let's get started!

Prerequisites
If you have previously installed the Composer development environment, you will need to first tear down the {{site.data.conrefs.hlf_full}} containers provided by the development environment:

cd ~/fabric-tools
./stopFabric.sh
./teardownFabric.sh

Next, clone the following GitHub Fabric Samples repository using the command line (do not use the samples from the Fabric site: [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html] as it is missing some changes that are required for this tutorial)

git clone -b issue-6978 https://github.com/sstone1/fabric-samples.git

We are using the Building Your First Network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html] Fabric sample network for this multi-org tutorial. We will refer to this {{site.data.conrefs.hlf_full}} network as the 'BYFN' (Building Your First Network) network henceforth. If you choose to split your organisations across separate physical machines or separate virtual machines running on different IP networks, it is outside the scope of this particular tutorial.

Step One: Starting a {{site.data.conrefs.hlf_full}} network
In order to follow this tutorial, you must start up a fresh {{site.data.conrefs.hlf_full}} network. This tutorial will assume that you use the {{site.data.conrefs.hlf_full}} network provided in the {{site.data.conrefs.hlf_full}} Building Your First Network tutorial [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	change directory to fabric-samples

 cd fabric-samples

	Download the platform binaries, including cryptogen :

 curl -sSL https://goo.gl/6wtTN5 | bash -s 1.1.0

Verify the list of docker images downloaded without issues

	change directory into first-network sample

 cd first-network

	Next, start the BYFN network - additional flags (to the byfn.sh script below) must be specified, as we're using CouchDB as the world state database (different to that specified on the Fabric BYFN page) - we also want to start a Certificate Authority (CA) for each organization.

	Execute the following commands in sequence from the first-network directory:

 ./byfn.sh -m generate

 ./byfn.sh -m up -s couchdb -a

If the command works successfully, the first command will generate Fabric network / security artifacts(see this [link](http://hyperledger-fabric.readthedocs.io/en/release/build_network.html#generate-network-artifacts for more info). Following the second command (above), the BYFN network is started, and verify that you see the following output before proceeding:

========= All GOOD, BYFN execution completed ===========

_____ _ _ ____
| ____| | \ | | | _ \
| _| | \| | | | | |
| |___ | |\ | | |_| |
|_____| |_| _| |____/

Next, delete any 'old' business network cards that may exist in your wallet from previous Fabric environments. It is safe to ignore any errors that state that the business network cards cannot be found:

composer card delete -c PeerAdmin@byfn-network-org1
composer card delete -c PeerAdmin@byfn-network-org2
composer card delete -c alice@trade-network
composer card delete -c bob@trade-network
composer card delete -c admin@trade-network
composer card delete -c PeerAdmin@fabric-network

However any other types of failure could indicate you have cards in the card store which are from an older version of {{site.data.conrefs.composer_full}} and you will then have to delete your file system card store in your HOME directory as follows:

rm -fr $HOME/.composer

Step Two: Exploring the {{site.data.conrefs.hlf_full}} network
This step will explore the BFYN network configuration and components. The configuration details are required to complete the subsequent steps.

Organizations

The BYFN network is made up of two organizations: Org1 and Org2. The organization Org1 uses the domain name org1.example.com. The Membership Services Provider (MSP) for Org1 is called Org1MSP. The organization Org2 uses the domain name org2.example.com. The MSP for Org2 is called Org2MSP. In this tutorial, you will deploy a blockchain business network that both of the organizations Org1 and Org2 can interact with.

Network components

The {{site.data.conrefs.hlf_full}} network is made up of several components:

	Two peer nodes for Org1, named peer0.org1.example.com and peer1.org1.example.com.

	The request port for peer0 is 7051.

	The event hub port for peer0 is 7053.

	The request port for peer1 is 8051.

	The event hub port for peer1 is 8053.

	A single CA (Certificate Authority) for Org1, named ca.org1.example.com.

	The CA port is 7054.

	Two peer nodes for Org2, named peer0.org2.example.com and peer1.org2.example.com.

	The request port for peer0 is 9051.

	The event hub port for peer0 is 9053.

	The request port for peer1 is 10051.

	The event hub port for peer1 is 10053.

	A single CA (Certificate Authority) for Org2, named ca.org2.example.com.

	The CA port is 8054.

	A single orderer node, named orderer.example.com.

	The orderer port is 7050.

These components are running inside Docker containers. When running {{site.data.conrefs.composer_full}} within a Docker container, the names above (for example, peer0.org1.example.com) can be used to interact with the {{site.data.conrefs.hlf_full}} network.

This tutorial will run {{site.data.conrefs.composer_full}} commands on the Docker host machine, rather than from inside the Docker network. This means that the {{site.data.conrefs.composer_full}} commands must interact with the {{site.data.conrefs.hlf_full}} network using localhost as the host name and the exposed container ports.

All of the network components are secured using TLS to encrypt communications. You will need the Certificate Authority (CA) certificates for all of the network components in order to connect to those network components. The CA certificates can be found in the directory containing the byfn.sh script.

CA certificate for the orderer node:

crypto-config/ordererOrganizations/example.com/orderers/orderer.example.com/tls/ca.crt

CA certificate for Org1:

crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

CA certificate for Org2:

crypto-config/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt

You will use these files later on to interact with the {{site.data.conrefs.hlf_full}} network.

Users

The organization Org1 is configured with a user named Admin@org1.example.com. This user is an administrator.

The user Admin@org1.example.com has a set of certificates and private key files stored in the directory:

crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

The organization Org2 is configured with a user named Admin@org2.example.com. This user is an administrator.

The user Admin@org2.example.com has a set of certificates and private key files stored in the directory:

crypto-config/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

You will use some of these files later on to interact with the {{site.data.conrefs.hlf_full}} network.

In addition to the administrator, the CAs (Certificate Authorities) for Org1 and Org2 have been configured with a default user. This default user has an enrolment ID of admin and an enrolment secret of adminpw. However, this user does not have permission to deploy a blockchain business network.

It is recommended to create a temporary working directory (and subdirectories) to manage the Composer connection profiles and key/certificate files that we will work with later on in the tutorial.

mkdir -p /tmp/composer/org1

mkdir -p /tmp/composer/org2

Channel

A channel named mychannel has been created. All four peer nodes - peer0.org1.example.com, peer1.org1.example.com, peer0.org2.example.com, and peer1.org2.example.com have been joined to this channel.

Connection Profiles

We need a base connection profile that describes this fabric network which can then be given to alice and bob to customize for their organization.

{
 "name": "byfn-network",
 "x-type": "hlfv1",
 "version": "1.0.0",
 "channels": {
 "mychannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": {
 "peer0.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 },
 "peer1.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 },
 "peer0.org2.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 },
 "peer1.org2.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 }
 }
 }
 },
 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com",
 "peer1.org1.example.com"
],
 "certificateAuthorities": [
 "ca.org1.example.com"
]
 },
 "Org2": {
 "mspid": "Org2MSP",
 "peers": [
 "peer0.org2.example.com",
 "peer1.org2.example.com"
],
 "certificateAuthorities": [
 "ca.org2.example.com"
]
 }
 },
 "orderers": {
 "orderer.example.com": {
 "url": "grpcs://localhost:7050",
 "grpcOptions": {
 "ssl-target-name-override": "orderer.example.com"
 },
 "tlsCACerts": {
 "pem": "INSERT_ORDERER_CA_CERT"
 }
 }
 },
 "peers": {
 "peer0.org1.example.com": {
 "url": "grpcs://localhost:7051",
 "eventUrl": "grpcs://localhost:7053",
 "grpcOptions": {
 "ssl-target-name-override": "peer0.org1.example.com"
 },
 "tlsCACerts": {
 "pem": "INSERT_ORG1_CA_CERT"
 }
 },
 "peer1.org1.example.com": {
 "url": "grpcs://localhost:8051",
 "eventUrl": "grpcs://localhost:8053",
 "grpcOptions": {
 "ssl-target-name-override": "peer1.org1.example.com"
 },
 "tlsCACerts": {
 "pem": "INSERT_ORG1_CA_CERT"
 }
 },
 "peer0.org2.example.com": {
 "url": "grpcs://localhost:9051",
 "eventUrl": "grpcs://localhost:9053",
 "grpcOptions": {
 "ssl-target-name-override": "peer0.org2.example.com"
 },
 "tlsCACerts": {
 "pem": "INSERT_ORG2_CA_CERT"
 }
 },
 "peer1.org2.example.com": {
 "url": "grpcs://localhost:10051",
 "eventUrl": "grpcs://localhost:10053",
 "grpcOptions": {
 "ssl-target-name-override": "peer1.org2.example.com"
 },
 "tlsCACerts": {
 "pem": "INSERT_ORG2_CA_CERT"
 }
 }
 },
 "certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "https://localhost:7054",
 "caName": "ca-org1",
 "httpOptions": {
 "verify": false
 }
 },
 "ca.org2.example.com": {
 "url": "https://localhost:8054",
 "caName": "ca-org2",
 "httpOptions": {
 "verify": false
 }
 }
 }
}

Copy this base file (above) into a new file byfn-network.json under the new directory /tmp/composer and save it.

Open byfn-network.json and replace all instances of the text INSERT_ORG1_CA_CERT with the CA certificate for the peer nodes for Org1: - use the following command to get the certificate from the .pem file so that it can be embedded into the above connection profile.

awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt > /tmp/composer/org1/ca-org1.txt

Copy the contents of the file /tmp/composer/org1/ca-org1.txt and replace the text INSERT_ORG1_CA_CERT in the .json file. It should now look something like this (must be a single line in the profile file as shown)

"pem": "-----BEGIN CERTIFICATE-----\nMIICNTCCAdygAwIBAgIRAMNvmQpnXi7uM19BLdha3MwwCgYIKoZIzj0EAwIwbDEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xFDASBgNVBAoTC2V4YW1wbGUuY29tMRowGAYDVQQDExF0bHNjYS5l\neGFtcGxlLmNvbTAeFw0xNzA2MjYxMjQ5MjZaFw0yNzA2MjQxMjQ5MjZaMGwxCzAJ\nBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1TYW4gRnJh\nbmNpc2NvMRQwEgYDVQQKEwtleGFtcGxlLmNvbTEaMBgGA1UEAxMRdGxzY2EuZXhh\nbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASJn3QUVcKCp+s6lSPE\nP5KlWmE9rEG0kpECsAfW28vZQSIg2Ez+Tp1alA9SYN/5BtL1N6lUUoVhG3lz8uvi\n8zhro18wXTAOBgNVHQ8BAf8EBAMCAaYwDwYDVR0lBAgwBgYEVR0lADAPBgNVHRMB\nAf8EBTADAQH/MCkGA1UdDgQiBCB7ULYTq3+BQqnzwae1RsnwQgJv/HQ5+je2xcDr\nka4MHTAKBggqhkjOPQQDAgNHADBEAiB2hLiS8B1g4J5Qbxu15dVWAZTAXX9xPAvm\n4l25e1oS+gIgBiU/aBwSxY0uambwMB6xtQz0ZE/D4lyTZZcW9SODlOE=\n-----END CERTIFICATE-----\n"

In the same .json file - you need to replace all instances of the text INSERT_ORG2_CA_CERT with the CA certificate for the peer nodes for Org2: - use the following command to convert the .pem file to something that can be embedded into the above connection profile.

awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' crypto-config/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt > /tmp/composer/org2/ca-org2.txt

Copy the contents of the file /tmp/composer/org2/ca-org2.txt and replace the text called INSERT_ORG2_CA_CERT. Once again, all on the same line.

Replace all instances of the text INSERT_ORDERER_CA_CERT with the CA certificate for the orderer node: use the following command to convert the .pem file to something that can be embedded into the above connection profile json file.

awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' crypto-config/ordererOrganizations/example.com/orderers/orderer.example.com/tls/ca.crt > /tmp/composer/ca-orderer.txt

Copy the contents of the file /tmp/composer/ca-orderer.txt and replace the text INSERT_ORDERER_CA_CERT. Once again, all on the same line.

Once done, save this file as /tmp/composer/byfn-network.json.

This connection profile now describes the fabric network setup, all the peers, orderers and certificate authorities that are part of the network, it defines all the organizations that are participating in the network and also defines the channel's on this network. {{site.data.conrefs.composer_full}} can only interact with a single channel so only one channel should be defined.

Step Three: Customizing the connection profile for Org1
This is just a case of specifying the organization that alice belongs to, in a client section with optional timeouts, add the following block into the above connection profile /tmp/composer/byfn-network.json, between the version property and just before the channel property - once done, save it as a NEW file called /tmp/composer/org1/byfn-network-org1.json.

 "client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 },

So the section of the profile should look like

 ...
 "version": "1.0.0",
 "client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 },
 "channel": {
 ...

Step Four: Building a connection profile for Org2
Repeat the same process for bob - but this time specify the organization as Org2 and then save the file as /tmp/composer/byfn-network-org2.json - so the section of the profile should look like:

 ...
 "version": "1.0.0",
 "client": {
 "organization": "Org2",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 },
 "channel": {
 ...

Step Five: Locating the certificate and private key for the {{site.data.conrefs.hlf_full}} administrator for Org1
The administrator for our {{site.data.conrefs.hlf_full}} Org1 network is a user called Admin@org1.example.com. The certificates and private key files for this user are stored in the directory:

crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

You must first locate the certificate file for this user. The certificate is the public part of the identity. The certificate file can be found in the signcerts subdirectory and is named Admin@org1.example.com-cert.pem.

Next, you must locate the private key file for this user. The private key is used to sign transactions as this identity. The private key file can be found in the keystore subdirectory. The name of the private key file is a long hexadecimal string, with a suffix of _sk, for example: 78f2139bfcfc0edc7ada0801650ed785a11cfcdef3f9c36f3c8ca2ebfa00a59c_sk. The name will change every time the configuration is generated, hence the wildcard below.

Remember the path to both of these files - or copy them into the same directory as the connection profile file /tmp/composer/org1/byfn-network-org1.json that you created in 'Step Three'. You will need these files in the next steps.

Use the following commands to do this:

export ORG1=crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

cp -p $ORG1/signcerts/A*.pem /tmp/composer/org1

cp -p $ORG1/keystore/*_sk /tmp/composer/org1

Step Six: Locating the certificate and private key for the {{site.data.conrefs.hlf_full}} administrator for Org2
The administrator for our {{site.data.conrefs.hlf_full}} network is a user called Admin@org2.example.com. The certificates and private key files for this user are stored in the directory:

crypto-config/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

You must first locate the certificate file for this user. The certificate is the public part of the identity. The certificate file can be found in the signcerts subdirectory and is named Admin@org2.example.com-cert.pem.

Next, you must locate the private key file for this user. The private key is used to sign transactions as this identity. The private key file can be found in the keystore subdirectory. The name of the private key file is a long hexadecimal string, with a suffix of _sk, for example d4889cb2a32e167bf7aeced872a214673ee5976b63a94a6a4e61c135ca2f2dbb_sk. The name will change every time the configuration is generated.

Remember the path to both of these files, or copy them into the same directory as the connection profile file /tmp/composer/byfn-network-org2.json that you created in step four. You will need these files in the next steps.

Use the following commands to do this:

export ORG2=crypto-config/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

cp -p $ORG2/signcerts/A*.pem /tmp/composer/org2

cp -p $ORG2/keystore/*_sk /tmp/composer/org2

Step Seven: Creating business network cards for the {{site.data.conrefs.hlf_full}} administrator for Org1
In this step you will create business network cards for the administrator to use to deploy the blockchain business network to the {{site.data.conrefs.hlf_full}} network.

Run the composer card create command to create a business network card using the connection profile for Org1. You must specify the path to all three files that you either created or located in the previous steps: (note: the sk file will differ.)

composer card create -p /tmp/composer/org1/byfn-network-org1.json -u PeerAdmin -c /tmp/composer/org1/Admin@org1.example.com-cert.pem -k /tmp/composer/org1/*_sk -r PeerAdmin -r ChannelAdmin -f PeerAdmin@byfn-network-org1.card

If the command works successfully, a business network card file called PeerAdmin@byfn-network-org1.card will have been written to the current directory.

Step Eight: Creating business network cards for the {{site.data.conrefs.hlf_full}} administrator for Org2
In this step you will create business network cards for the administrator to use to deploy the blockchain business network to the {{site.data.conrefs.hlf_full}} network.

Run the composer card create command to create a business network card using the connection profile for Org2. You must specify the path to all three files that you either created or located in the previous steps:

composer card create -p /tmp/composer/org2/byfn-network-org2.json -u PeerAdmin -c /tmp/composer/org2/Admin@org2.example.com-cert.pem -k /tmp/composer/org2/*_sk -r PeerAdmin -r ChannelAdmin -f PeerAdmin@byfn-network-org2.card

If the command works successfully, a business network card file called PeerAdmin@byfn-network-org2.card will have been written to the current directory.

Step Nine: Importing the business network cards for the {{site.data.conrefs.hlf_full}} administrator for Org1
Run the composer card import command to import the business network card for Org1 into the wallet:

composer card import -f PeerAdmin@byfn-network-org1.card --card PeerAdmin@byfn-network-org1

If the command works successfully, a business network card called PeerAdmin@byfn-network-org1 will have been imported into the wallet.

Step Ten: Importing the business network cards for the {{site.data.conrefs.hlf_full}} administrator for Org2
Run the composer card import command to import the business network card for Org2 into the wallet:

composer card import -f PeerAdmin@byfn-network-org2.card --card PeerAdmin@byfn-network-org2

If the command works successfully, a business network card called PeerAdmin@byfn-network-org2 will have been imported into the wallet.

Step Eleven: Installing the {{site.data.conrefs.composer_full}} runtime onto the {{site.data.conrefs.hlf_full}} peer nodes for Org1
Run the composer network install command to install the business network onto all of the {{site.data.conrefs.hlf_full}} peer nodes for Org1 that you specified in the connection profile file you created in 'Step Three':

composer network install --card PeerAdmin@byfn-network-org1 --archiveFile trade-network.bna

As you can see from the above, we are using a {{site.data.conrefs.composer_full}} business network called trade-network to test our multi-org environment. You will need a file trade-network.bna (business network archive, from our sample networks) to do the test. If you don't have this, just go to https://composer-playground.mybluemix.net/ and deploy the trade-network sample in the online Playground, then 'connect' to the business network as 'admin', change the version number to 0.1.14 in the lower left, and export it to the current directory as trade-network.bna. The business network has a version property specified in a package.json file. That version must be specified when the business network is started using the composer start command in Step Seventeen. If you are using the trade-network sample network, the version is 0.1.14. (Note: If you are planning on using a different network, such as the Composer tutorial network tutorial-network as your business network, you would need to specify that file in the network install command above and thereafter, as the business network archive in this tutorial, as well as the correct version number for this business network).

Step Twelve: Installing the {{site.data.conrefs.composer_full}} runtime onto the {{site.data.conrefs.hlf_full}} peer nodes for Org2
Run the composer network install command to install the {{site.data.conrefs.composer_full}} runtime onto all of the {{site.data.conrefs.hlf_full}} peer nodes for Org2 that you specified in the connection profile file you created in step four:

composer network install --card PeerAdmin@byfn-network-org2 --archiveFile trade-network.bna

Step Thirteen: Defining the endorsement policy for the business network
A running business network has an endorsement policy, which defines the rules around which organizations must endorse transactions before they can be committed to the blockchain. By default, a business network is deployed with an endorsement policy that states that only one organization has to endorse a transaction before it can be committed to the blockchain.

In real world blockchain business networks, multiple organizations will want to ensure that they endorse transactions before they can be committed to the blockchain, and so the default endorsement policy is not suitable. Instead, you can specify a custom endorsement policy when you start a business network.

You can find more information on endorsement policies in the {{site.data.conrefs.hlf_full}} documentation, in Endorsement policies [https://hyperledger-fabric.readthedocs.io/en/release/endorsement-policies.html].

Please note that the endorsement policies used for a business network must be in the JSON format used by the {{site.data.conrefs.hlf_full}} Node.js SDK. This is a different format to the simple endorsement policy format used by the {{site.data.conrefs.hlf_full}} CLI, which you will see in the {{site.data.conrefs.hlf_full}} documentation.

Create an endorsement policy file called /tmp/composer/endorsement-policy.json with the following contents and save it to disk. You will use this file in later steps, so remember where you place it!

{
 "identities": [
 {
 "role": {
 "name": "member",
 "mspId": "Org1MSP"
 }
 },
 {
 "role": {
 "name": "member",
 "mspId": "Org2MSP"
 }
 }
],
 "policy": {
 "2-of": [
 {
 "signed-by": 0
 },
 {
 "signed-by": 1
 }
]
 }
}

The endorsement policy you have just created states that both Org1 and Org2 must endorse transactions in the business network before they can be committed to the blockchain. If Org1 or Org2 do not endorse transactions, or disagree on the result of a transaction, then the transaction will be rejected by the business network.

Step Fourteen: Understanding and selecting the business network administrators
When a business network is started, the business network must be configured with a set of initial participants. These participants will be responsible for bootstrapping the business network and onboarding other participants into the business network. In {{site.data.conrefs.composer_full}}, we call these initial participants the business network administrators.

In our business network, the organizations Org1 and Org2 have equal rights. Each organization will provide a business network administrator for the business network, and those business network administrators will onboard the other participants in their organizations. The business network administrator for Org1 will be Alice, and the business network administrator for Org2 will be Bob.

When the business network is started, the certificates (the public part of the identity) for all of the business network administrators must be passed to the organization performing the commands to start the business network. After the business network has been started, all of the business network administrators can use their identities to interact with the business network.

You can find more information on business network administrators in Deploying Business Networks.

Step Fifteen: Retrieving business network administrator certificates for Org1
Run the composer identity request command to retrieve certificates for Alice to use as the business network administrator for Org1:

composer identity request -c PeerAdmin@byfn-network-org1 -u admin -s adminpw -d alice

The -u admin and the -s adminpw options to this command correspond to the default user registered with the {{site.data.conrefs.hlf_full}} CA (Certificate Authority).

The certficates will be placed into a directory called alice in the current working directory. There are three certificate files created, but only two are important. These are admin-pub.pem, the certificate (including the public key), and admin-priv.pem, the private key. Only the admin-pub.pem file is suitable for sharing with other organizations. The admin-priv.pem file must be kept secret as it can be used to sign transactions on behalf of the issuing organization.

Step Sixteen: Retrieving business network administrator certificates for Org2
Run the composer identity request command to retrieve certificates for Bob to use as the business network administrator for Org2:

composer identity request -c PeerAdmin@byfn-network-org2 -u admin -s adminpw -d bob

The -u admin and the -s adminpw options to this command correspond to the default user registered with the {{site.data.conrefs.hlf_full}} CA (Certificate Authority).

The certficates will be placed into a directory called bob in the current working directory. There are three certificate files created, but only two are important. These are admin-pub.pem, the certificate (including the public key), and admin-priv.pem, the private key. Only the admin-pub.pem file is suitable for sharing with other organizations. The admin-priv.pem file must be kept secret as it can be used to sign transactions on behalf of the issuing organization.

Step Seventeen: Starting the business network
Run the composer network start command to start the business network. Only Org1 needs to perform this operation. This command uses the /tmp/composer/endorsement-policy.json file created in step thirteen, and the admin-pub.pem files created by both Alice and Bob in step fifteen and step sixteen, so you must ensure that all of these files are accessible to this command:

composer network start -c PeerAdmin@byfn-network-org1 -n trade-network -V 0.1.14 -o endorsementPolicyFile=/tmp/composer/endorsement-policy.json -A alice -C alice/admin-pub.pem -A bob -C bob/admin-pub.pem

Once this command completes, the business network will have been started. Both Alice and Bob will be able to access the business network, start to set up the business network, and onboard other participants from their respective organizations. However, both Alice and Bob must create new business network cards with the certificates that they created in the previous steps so that they can access the business network.

Step Eighteen: Creating a business network card to access the business network as Org1
Run the composer card create command to create a business network card that Alice, the business network administrator for Org1, can use to access the business network:

composer card create -p /tmp/composer/org1/byfn-network-org1.json -u alice -n trade-network -c alice/admin-pub.pem -k alice/admin-priv.pem

Run the composer card import command to import the business network card that you just created:

composer card import -f alice@trade-network.card

Run the composer network ping command to test the connection to the blockchain business network:

composer network ping -c alice@trade-network

If the command completes successfully, then you should see the fully qualified participant identifier org.hyperledger.composer.system.NetworkAdmin#alice in the output from the command. You can now use this business network card to interact with the blockchain business network and onboard other participants in your organization.

Lets create a participant, issue an identity (mapped to that participant) and create an asset on the blockchain network as that identity.

Run the composer participant add command below, copying it to the command line to execute:

composer participant add -c alice@trade-network -d '{"$class":"org.acme.trading.Trader","tradeId":"trader1-org1", "firstName":"Jo","lastName":"Doe"}'

Next create the identity for trader1-org1 with the composer issue identity command below:

composer identity issue -c alice@trade-network -f jo.card -u jdoe -a "resource:org.acme.trading.Trader#trader1-org1"

Import the card and test it

composer card import -f jo.card

composer network ping -c jdoe@trade-network

Next we will create an asset - From the command line, submit a transaction to create a Commodity asset, as participant jdoe (or alternatively, if you already have Composer Playground installed, connect as jdoe@trade-network to trade-network to create the asset 'EMA' - the JSON snippet is shown below).

To create the asset using the CLI - copy the transaction submit sequence below - it creates a Commodity asset for you:

composer transaction submit --card jdoe@trade-network -d '{"$class": "org.hyperledger.composer.system.AddAsset","registryType": "Asset","registryId": "org.acme.trading.Commodity", "targetRegistry" : "resource:org.hyperledger.composer.system.AssetRegistry#org.acme.trading.Commodity", "resources": [{"$class": "org.acme.trading.Commodity","tradingSymbol":"EMA", "description":"Corn commodity","mainExchange":"EURONEXT", "quantity":"10","owner":"resource:org.acme.trading.Trader#trader1-org1"}]}'

Or alternatively, to create in Playground - copy the following:

{
 "$class": "org.acme.trading.Commodity",
 "tradingSymbol": "EMA",
 "description": "Corn commodity",
 "mainExchange": "EURONEXT",
 "quantity": 10,
 "owner": "resource:org.acme.trading.Trader#trader1-org1"
}

Finally, do a composer network list to confirm the generated artifacts in the business network:

composer network list -c jdoe@trade-network

Step Nineteen: Creating a business network card to access the business network as Org2
Run the composer card create command to create a business network card that Bob, the business network administrator for Org2, can use to access the business network:

composer card create -p /tmp/composer/org2/byfn-network-org2.json -u bob -n trade-network -c bob/admin-pub.pem -k bob/admin-priv.pem

Run the composer card import command to import the business network card that you just created:

composer card import -f bob@trade-network.card

Run the composer network ping command to test the connection to the blockchain business network:

composer network ping -c bob@trade-network

If the command completes successfully, then you should see the fully qualified participant identifier org.hyperledger.composer.system.NetworkAdmin#bob in the output from the command. Let's onboard another Trader, this time for Org 2:

Once again, create a participant, issue an identity (mapped to that participant) - as we already have an asset on the blockchain network, we will use a transaction to change the ownership (from Org1 trader to an Org2 trader):

Run the composer participant add command below, copying it to the command line to execute:

composer participant add -c bob@trade-network -d '{"$class":"org.acme.trading.Trader","tradeId":"trader2-org2", "firstName":"Dave","lastName":"Lowe"}'

Next create the identity for trader2-org2 with the composer issue identity command below:

composer identity issue -c bob@trade-network -f dave.card -u dlowe -a "resource:org.acme.trading.Trader#trader2-org2"

Import the card and test it

composer card import -f dave.card

composer network ping -c dlowe@trade-network

Lastly, submit a transaction to change ownership of the Commodity asset created earlier. We will submit the transaction as the asset owner Jon Doe and transfer it to trader 'Dave Lowe'. We will then verify the ownership change has occurred as the Org 2 trader participant mapped to the dlowe identity: Perform the step below.

composer transaction submit --card jdoe@trade-network -d '{"$class":"org.acme.trading.Trade","commodity":"resource:org.acme.trading.Commodity#EMA","newOwner":"resource:org.acme.trading.Trader#trader2-org2"}'

Finally, do a composer network list as the Org 2 trader participant to confirm the change of ownership on the asset:

composer network list -c dlowe@trade-network

Conclusion
In this tutorial you have seen how to configure a blockchain network based on {{site.data.conrefs.composer_full}} in a multi-organizational setup. You've also learned how to deploy a business network (such as our Commodities trading network) to that blockchain network and perform some simple transactions as participants in each organization, using identities that were issued by the Certificate of Authorities in either organization.

 Deploying a {{site.data.conrefs.composer_full}} blockchain business network to {{site.data.conrefs.hlf_full}} for a single organization

layout: default
title: Deploying to a single organization Hyperledger Fabric
category: tutorials
section: tutorials
index-order: 304
sidebar: sidebars/accordion-toc0.md
excerpt: "This tutorial will walk you through the steps required to configure Composer for connection with a running Hyperledger Fabric instance."

Deploying a {{site.data.conrefs.composer_full}} blockchain business network to {{site.data.conrefs.hlf_full}} for a single organization

In the development environment, a simple {{site.data.conrefs.hlf_full}} network is created for you (fabric-dev-servers), along with all of the {{site.data.conrefs.composer_full}} configuration that you need in order to deploy a blockchain business network.

This tutorial will demonstrate the steps that an administrator needs to take in order to deploy a blockchain business network to an instance of {{site.data.conrefs.hlf_full}} for a single organization, including how to generate the necessary {{site.data.conrefs.composer_full}} configuration. A subsequent tutorial will demonstrate how to deploy a blockchain business network to an instance of {{site.data.conrefs.hlf_full}} for multiple organizations.

During this tutorial, you may wish to refer to the {{site.data.conrefs.hlf_full}} documentation [http://hyperledger-fabric.readthedocs.io].

Prerequisites

	Before you continue, ensure that you have followed the steps in installing a development environment.

Step One: Starting a {{site.data.conrefs.hlf_full}} network

In order to follow this tutorial, you must start a {{site.data.conrefs.hlf_full}} network. You can use the simple {{site.data.conrefs.hlf_full}} network provided in the development environment, or you can use your own {{site.data.conrefs.hlf_full}} network that you have built by following the {{site.data.conrefs.hlf_full}} documentation.

The tutorial will assume that you use the simple {{site.data.conrefs.hlf_full}} network provided in the development environment. If you use your own {{site.data.conrefs.hlf_full}} network, then you must map between the configuration detailed below and your own configuration.

	Start a clean {{site.data.conrefs.hlf_full}} by running the following commands:

 cd ~/fabric-tools
 ./stopFabric.sh
 ./teardownFabric.sh
 ./downloadFabric.sh
 ./startFabric.sh

	Delete any business network cards that may exist in your wallet. It is safe to ignore any errors that state that the business network cards cannot be found:

 composer card delete -c PeerAdmin@fabric-network
 composer card delete -c admin@tutorial-network

If these commands fail, then you have network cards from a previous version and you will have to delete the file system card store.

 rm -fr ~/.composer

Step Two: Exploring the {{site.data.conrefs.hlf_full}} network

This step will explore the {{site.data.conrefs.hlf_full}} network that you have just started, so that you can understand how it has been configured, and what components it consists of. You will use all of the information in this section to configure {{site.data.conrefs.composer_full}} in subsequent steps.

Configuration files

The simple {{site.data.conrefs.hlf_full}} network provided in the development environment has been configured using the {{site.data.conrefs.hlf_full}} configuration tools cryptogen and configtxgen.

The configuration for cryptogen is stored in the file:

~/fabric-tools/fabric-scripts/hlfv11/composer/crypto-config.yaml

The configuration for configtxgen is stored in the file:

~/fabric-tools/fabric-scripts/hlfv11/composer/configtx.yaml

You can find more information about these configuration tools, what they do, and how to use them by reading the {{site.data.conrefs.hlf_full}} documentation.

Organizations

The simple {{site.data.conrefs.hlf_full}} network is made up of a single organization called Org1. The organization uses the domain name org1.example.com. Additionally, the Membership Services Provider (MSP) for this organization is called Org1MSP. In this tutorial, you will deploy a blockchain business network that only the organization Org1 can interact with.

Network components

The {{site.data.conrefs.hlf_full}} network is made up of several components:

	A single peer node for Org1, named peer0.org1.example.com.

	The request port is 7051.

	The event hub port is 7053.

	A single Certificate Authority (CA) for Org1, named ca.org1.example.com.

	The CA port is 7054.

	A single orderer node, named orderer.example.com.

	The orderer port is 7050.

The {{site.data.conrefs.hlf_full}} network components are running inside Docker containers. When running {{site.data.conrefs.composer_full}} within a Docker container, the names above (for example, peer0.org1.example.com) can be used to interact with the {{site.data.conrefs.hlf_full}} network.

This tutorial will run {{site.data.conrefs.composer_full}} commands on the Docker host machine, rather than from inside the Docker network. This means that the {{site.data.conrefs.composer_full}} commands must interact with the {{site.data.conrefs.hlf_full}} network using localhost as the host name and the exposed container ports.

Users

The organization Org1 is configured with a user named Admin@org1.example.com. This user is an administrator. Administrators for an organization have the permission to install the code for a blockchain business network onto their organization's peers, and can also have the permission to start the blockchain business network, depending on configuration. In this tutorial, you will deploy a blockchain business network by acting as the user Admin@org1.example.com.

The user Admin@org1.example.com has a set of certificates and private key files stored in the directory:

~/fabric-tools/fabric-scripts/hlfv11/composer/crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

You will use some of these files later on to interact with the {{site.data.conrefs.hlf_full}} network.

In addition to the administrator, the CA (Certificate Authority) for Org1 has been configured with a default user. This default user has an enrollment ID of admin and an enrollment secret of adminpw. However, this user does not have permission to deploy a blockchain business network.

Channel

Finally, a channel named composerchannel has been created. The peer node peer0.org1.example.com has been joined to this channel. You can only deploy {{site.data.conrefs.composer_full}} blockchain business networks into existing channels, but you can create additional channels by following the {{site.data.conrefs.hlf_full}} documentation.

Step Three: Building a connection profile

A connection profile specifies all of the information required to locate and connect to the {{site.data.conrefs.hlf_full}} network, for example the host names and ports of all of the {{site.data.conrefs.hlf_full}} network components. In this step, you will create a connection profile for {{site.data.conrefs.composer_full}} to use to connect to the {{site.data.conrefs.hlf_full}} network.

	Create a connection profile file called connection.json.

	Give the connection profile name, version and x-type properties by adding the following three lines to the top of connection.json:

 {
 "name": "fabric-network",
 "x-type": "hlfv1",
 "version": "1.0.0",

The name property in a connection profile gives a name to the {{site.data.conrefs.hlf_full}} network, so we can reference it later on. In the connection profile you have just created, the name is fabric-network. You can use any name you like for the {{site.data.conrefs.hlf_full}} network.

{{site.data.conrefs.composer_full}} is designed to be compatible with different types blockchain networks. Currently, only {{site.data.conrefs.hlf_full}} v1.x is supported, but you must specify the type of blockchain network to use. The x-type for {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} is hlfv1.

The version number is the version of this connection profile format. Currently there is only 1 version of 1.0.0.

There is also an optional property x-commitTimeout which can also be specified with defines how long {{site.data.conrefs.composer_full}} should wait for a submitted transaction to be committed to your organization's peer before
giving up waiting. The default if not specified is 300 seconds.

	We must specify the host names and ports of all of the peer nodes in the {{site.data.conrefs.hlf_full}} network. There is only 1 peer and we give it a label of peer0.org1.example.com.

 "peers": {
 "peer0.org1.example.com": {
 "url": "grpc://localhost:7051",
 "eventUrl": "grpc://localhost:7053"
 }
 },

Here, we have specified our single peer node peer0.org1.example.com (using the host name localhost), the request port 7051, and the event hub port 7053.

The peers array can contain multiple peer nodes. If you have multiple peer nodes, you should add them all to the peers object.

	We must specify the host name and port of the certificate authority (CA) in the {{site.data.conrefs.hlf_full}} network that we want to use for enrolling existing users and registering new users.

 "certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "http://localhost:7054",
 "caName": "ca.org1.example.com"
 }
 },

Here we have specified our single CA ca.org1.example.com (using the hostname localhost) and the CA port 7054, and we also label this entry as ca-org1.example.com

	We must specify the host names and ports of all of the ordering nodes in the {{site.data.conrefs.hlf_full}} that we want to connect to.

 "orderers": {
 "orderer.example.com": {
 "url": "grpc://localhost:7050"
 }
 },

Here, we have specified our single orderer node `orderer.example.com` (using the hostname `localhost`) and the orderer port 7050 and we also label this as `orderer.example.com`.

The `orderers` object can contain multiple orderer nodes. If you have multiple orderer nodes, you should add them all to the `orderers` object.

	We now must specify all the organizations in the network. In this tutorial there is only 1 organization, Org1.

 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com"
],
 "certificateAuthorities": [
 "ca.org1.example.com"
]
 }
 },

Here we are describing the owners of the peers and who their certificate authority is plus we also declare the MSP id that has been defined for this organisation. In this tutorial it has been defined as Org1MSP.

	We must specify the name of an existing channel. We will deploy our blockchain business network into the channel composerchannel. This is defined in the channels object.

 "channels": {
 "composerchannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": {
 "peer0.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 }
 }
 }
 },

Here we are defined the channel composerchannel and also the orderers and peers that are part of that channel. We also specify the roles the peer will perform in this channel. In this tutorial we have added the single orderer and single peer defined earlier referenced using their labels. The peer will have the business network installed so will be a transaction endorser, able to handle chaincode queries and also generate events.
The blockchain business network will be deployed to all of the specified peer nodes. Once the blockchain business network has been deployed, the specified peer nodes will be used for querying the blockchain business network, endorsing transactions, and subscribing to events.

	The final section this is required is the client section. This is used by client applications (such as {{site.data.conrefs.composer_full}}) to know what organization it is representing when interacting and also some extra optional timeouts.

 "client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 }
 }

Here we are specifying that we are in Org1. The timeouts are used to determine how long to wait for a response when interacting with a peer or orderer and the values are specified in seconds. If you don't specify anything then the default is 45 seconds.

	Save your changes to connection.json. The completed connection profile should look like the following:

 {
 "name": "fabric-network",
 "x-type": "hlfv1",
 "version": "1.0.0",
 "peers": {
 "peer0.org1.example.com": {
 "url": "grpc://localhost:7051",
 "eventUrl": "grpc://localhost:7053"
 }
 },
 "certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "http://localhost:7054",
 "caName": "ca.org1.example.com"
 }
 },
 "orderers": {
 "orderer.example.com": {
 "url": "grpc://localhost:7050"
 }
 },
 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com"
],
 "certificateAuthorities": [
 "ca.org1.example.com"
]
 }
 },
 "channels": {
 "composerchannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": {
 "peer0.org1.example.com": {
 "endorsingPeer": true,
 "chaincodeQuery": true,
 "eventSource": true
 }
 }
 }
 },
 "client": {
 "organization": "Org1",
 "connection": {
 "timeout": {
 "peer": {
 "endorser": "300",
 "eventHub": "300",
 "eventReg": "300"
 },
 "orderer": "300"
 }
 }
 }
 }

Step Four: Locating the certificate and private key for the {{site.data.conrefs.hlf_full}} administrator

In order to deploy a blockchain business network to this {{site.data.conrefs.hlf_full}} network, we must identify ourselves as an administrator with the permissions to perform this operation. In this step, you locate the files required to identify yourself as an administrator.

The administrator for our {{site.data.conrefs.hlf_full}} network is a user called Admin@org1.example.com. The certificates and private key files for this user are stored in the directory:

~/fabric-tools/fabric-scripts/hlfv11/composer/crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

You must first locate the certificate file for this user. The certificate is the public part of the identity. The certificate file can be found in the signcerts subdirectory and is named Admin@org1.example.com-cert.pem. If you look at the contents of this file, then you will find a PEM encoded certificate similar to the following:

-----BEGIN CERTIFICATE-----
MIICGjCCAcCgAwIBAgIRANuOnVN+yd/BGyoX7ioEklQwCgYIKoZIzj0EAwIwczEL
MAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG
cmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh
Lm9yZzEuZXhhbXBsZS5jb20wHhcNMTcwNjI2MTI0OTI2WhcNMjcwNjI0MTI0OTI2
WjBbMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN
U2FuIEZyYW5jaXNjbzEfMB0GA1UEAwwWQWRtaW5Ab3JnMS5leGFtcGxlLmNvbTBZ
MBMGByqGSM49AgEGCCqGSM49AwEHA0IABGu8KxBQ1GkxSTMVoLv7NXiYKWj5t6Dh
WRTJBHnLkWV7lRUfYaKAKFadSii5M7Z7ZpwD8NS7IsMdPR6Z4EyGgwKjTTBLMA4G
A1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1UdIwQkMCKAIBmrZau7BIB9
rRLkwKmqpmSecIaOOr0CF6Mi2J5H4aauMAoGCCqGSM49BAMCA0gAMEUCIQC4sKQ6
CEgqbTYe48az95W9/hnZ+7DI5eSnWUwV9vCd/gIgS5K6omNJydoFoEpaEIwM97uS
XVMHPa0iyC497vdNURA=
-----END CERTIFICATE-----

Next, you must locate the private key file for this user. The private key is used to sign transactions as this identity. The private key file can be found in the keystore subdirectory. The name of the private key file is a long hexadecimal string, with a suffix of _sk, for example 114aab0e76bf0c78308f89efc4b8c9423e31568da0c340ca187a9b17aa9a4457_sk. The name will change every time the configuration is generated. If you look at the contents of this file, then you will find a PEM encoded private key similar to the following:

-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg00IwLLBKoi/9ikb6
ZOAV0S1XeNGWllvlFDeczRKQn2uhRANCAARrvCsQUNRpMUkzFaC7+zV4mClo+beg
4VkUyQR5y5Fle5UVH2GigChWnUoouTO2e2acA/DUuyLDHT0emeBMhoMC
-----END PRIVATE KEY-----

Remember the path to both of these files, or copy them into the same directory as the connection profile file connection.json that you created in the previous step. You will need these files in the next step.

Step Five: Creating a business network card for the {{site.data.conrefs.hlf_full}} administrator

A business network card contains all of the information required to connect to a blockchain business network and the underlying {{site.data.conrefs.hlf_full}} network. This information includes the connection profile created in step three, and the certificate and private key for the administrator located in step four.

In this step you will create a business network card for the administrator to use to deploy the blockchain business network to the {{site.data.conrefs.hlf_full}} network.

Run the composer card create command to create a business network card. You must specify the path to all three files that you either created or located in the previous steps:

composer card create -p connection.json -u PeerAdmin -c Admin@org1.example.com-cert.pem -k 114aab0e76bf0c78308f89efc4b8c9423e31568da0c340ca187a9b17aa9a4457_sk -r PeerAdmin -r ChannelAdmin

A business network card file called PeerAdmin@fabric-network.card will have been written to the current directory. Let's explore the options that we passed to the composer card create command.

-p connection.json

This is the path to the connection profile file that we created in step three.

-u PeerAdmin

This is a name that we use to refer to the administrator user. Instead of using Admin@org1.example.com everywhere, which is quite lengthy to type, we have given a name of PeerAdmin so we can easily refer to this user.

-c Admin@org1.example.com-cert.pem

This is the path to the certificate file for the user Admin@org1.example.com that we located in step four.

-k 114aab0e76bf0c78308f89efc4b8c9423e31568da0c340ca187a9b17aa9a4457_sk

This is the path to the private key file for the user Admin@org1.example.com that we located in step four.

-r PeerAdmin -r ChannelAdmin

Here, we specify which roles the user has. This information is required so that {{site.data.conrefs.composer_full}} knows which users are able to perform which operations. The user Admin@org1.example.com is an administrator for the {{site.data.conrefs.hlf_full}} network, and has the roles PeerAdmin (ability to install chaincode) and ChannelAdmin (ability to instantiate chaincode).

Step Six: Importing the business network card for the {{site.data.conrefs.hlf_full}} administrator

{{site.data.conrefs.composer_full}} can only use business network cards that are placed into a wallet. The wallet is a directory on the file system that contains business network cards. In this step, you will import the business network card created in step five into the wallet so that you can use the business network card in subsequent steps.

Run the composer card import command to import the business network card into the wallet:

composer card import -f PeerAdmin@fabric-network.card

Let's explore the options that we passed to the composer card import command.

-f PeerAdmin@fabric-network.card

This is the path to the business network card file that we created in step five.

You can now use this business network card by specifying the name PeerAdmin@fabric-network. You are now all set to deploy the blockchain business network to the {{site.data.conrefs.hlf_full}} network.

We are going to deploy the blockchain business network tutorial-network that is created by following the Developer Tutorial. If you haven't created a business network archive (.bna) file by following the developer tutorial, follow steps 1, 2, and 3 of the developer tutorial.

Step Seven: Installing the {{site.data.conrefs.composer_full}} business network onto the {{site.data.conrefs.hlf_full}} peer nodes

{{site.data.conrefs.composer_full}} includes a component called the {{site.data.conrefs.composer_full}} runtime that provides all of the functionality to host and support a business network archive, for example data validation, error handling, transaction processor function execution, and access control. In {{site.data.conrefs.hlf_full}} terms, the {{site.data.conrefs.composer_full}} runtime is a standard chaincode.

In this step, you will install the {{site.data.conrefs.composer_full}} runtime onto all of the {{site.data.conrefs.hlf_full}} peer nodes. In {{site.data.conrefs.hlf_full}} terms, this is a chaincode install operation.

Run the composer network install command to install the {{site.data.conrefs.composer_full}} runtime onto all of the {{site.data.conrefs.hlf_full}} peer nodes that you specified in the connection profile file you created in step three:

composer network install -c PeerAdmin@fabric-network -a tutorial-network@0.0.1.bna

Let's explore the options that we passed to the composer network install command.

-c PeerAdmin@fabric-network

This is the name of the business network card that we imported into the wallet in step six.

-a tutorial-network@0.0.1.bna

You must install a copy of the business network. Here we specify the file name of the blockchain business network that we are deploying, tutorial-network@0.0.1.bna.

Step Eight: Starting the blockchain business network

In this step, you will start the blockchain business network. In {{site.data.conrefs.hlf_full}} terms, this is a chaincode instantiate operation.

Run the composer network start command to start the blockchain business network:

composer network start --networkName tutorial-network --networkVersion 0.0.1 -A admin -S adminpw -c PeerAdmin@fabric-network

Let's explore the options that we passed to the composer network start command.

-c PeerAdmin@fabric-network

This is the name of the business network card that we imported into the wallet in step six.

--networkName tutorial-network

This is the name of blockchain business network called tutorial-network.

--networkVersion 0.0.1

This is the version of blockchain business network called tutorial-network, defined in the version property of the package.json for the business network

-A admin

When a blockchain business network is deployed, you must create at least one participant who will be a blockchain business network administrator. This participant is responsible for onboarding other participants into the blockchain business network. Here, we are specifying that we want to create a single blockchain business network administrator called admin.

-S adminpw

This specifies that our blockchain business network administrator admin will use an enrollment secret of adminpw to request a certificate and private key from the CA (Certificate Authority). When you specify this option, the name specified for the business network administrator must be an existing enrollment ID for a user that is already registered with the CA.

Now that our blockchain business network has been started, we can interact with it using the business network card file admin@tutorial-network.card that was created.

Step Nine: Importing the business network card for the business network administrator

Run the composer card import command to import the business network card into the wallet:

composer card import -f admin@tutorial-network.card

You can now use this business network card by specifying the name admin@tutorial-network. You are now all set to interact with the running blockchain business network!

Step Ten: Testing the connection to the blockchain business network

Run the composer network ping command to test the connection to the blockchain business network:

composer network ping -c admin@tutorial-network

Check that the test result was successful, and there is a single participant listed for the business network with the name NetworkAdmin.

Conclusion

In this tutorial you have seen how to configure {{site.data.conrefs.composer_full}} with all of the information required to connect to a {{site.data.conrefs.hlf_full}} network, and how to deploy a blockchain business network to that {{site.data.conrefs.hlf_full}} network.

If you used the simple {{site.data.conrefs.hlf_full}} network provided in the development environment, why not try building your own {{site.data.conrefs.hlf_full}} network by following the {{site.data.conrefs.hlf_full}} documentation and see if you can successfully deploy a blockchain business network to it?

 Developer tutorial for creating a {{site.data.conrefs.composer_full}} solution

layout: default
title: Developer Tutorial
category: tutorials
section: tutorials
index-order: 302
sidebar: sidebars/accordion-toc0.md
excerpt: "The developer tutorial will walk you through the steps required to build a Hyperledger Composer blockchain solution from scratch. In the space of a day or so you should be able to go from an idea for a disruptive blockchain innovation to a complete business network, running on {{site.data.conrefs.hlf_full}}."

Developer tutorial for creating a {{site.data.conrefs.composer_full}} solution

This tutorial will walk you through building a {{site.data.conrefs.composer_full}} blockchain solution from scratch. In the space of a few hours you will be able to go from an idea for a disruptive blockchain innovation, to executing transactions against a real {{site.data.conrefs.hlf_full}} blockchain network and generating/running a sample Angular 2 application that interacts with a blockchain network.

This tutorial gives an overview of the techniques and resources available to apply to your own use case.

Note: This tutorial was written against the latest {{site.data.conrefs.composer_full}} build on Ubuntu Linux running with {{site.data.conrefs.hlf_full}} {{site.data.conrefs.hlf_latest}} where referenced below and also tested for a Mac environment.

Prerequisites

Before beginning this tutorial:

	Set up your development environment

	Install an editor e.g. VSCode or Atom

Step One: Creating a business network structure

The key concept for {{site.data.conrefs.composer_full}} is the business network definition (BND). It defines the data model, transaction logic and access control rules for your blockchain solution. To create a BND, we need to create a suitable project structure on disk.

The easiest way to get started is to use the Yeoman generator to create a skeleton business network. This will create a directory containing all of the components of a business network.

	Create a skeleton business network using Yeoman. This command will require a business network name, description, author name, author email address, license selection and namespace.

 yo hyperledger-composer:businessnetwork

	Enter tutorial-network for the network name, and desired information for description, author name, and author email.

	Select Apache-2.0 as the license.

	Select org.acme.mynetwork as the namespace.

Step Two: Defining a business network

A business network is made up of assets, participants, transactions, access control rules, and optionally events and queries. In the skeleton business network created in the previous steps, there is a model (.cto) file which will contain the class definitions for all assets, participants, and transactions in the business network. The skeleton business network also contains an access control (permissions.acl) document with basic access control rules, a script (logic.js) file containing transaction processor functions, and a package.json file containing business network metadata.

Modelling assets, participants, and transactions

The first document to update is the model (.cto) file. This file is written using the {{site.data.conrefs.composer_full}} Modelling Language. The model file contains the definitions of each class of asset, transaction, participant, and event. It implicitly extends the {{site.data.conrefs.composer_full}} System Model described in the modelling language documentation.

	Open the org.acme.mynetwork.cto model file.

	Replace the contents with the following:

 /**
 * My commodity trading network
 */
 namespace org.acme.mynetwork
 asset Commodity identified by tradingSymbol {
 o String tradingSymbol
 o String description
 o String mainExchange
 o Double quantity
 --> Trader owner
 }
 participant Trader identified by tradeId {
 o String tradeId
 o String firstName
 o String lastName
 }
 transaction Trade {
 --> Commodity commodity
 --> Trader newOwner
 }

	Save your changes to org.acme.mynetwork.cto.

Adding JavaScript transaction logic

In the model file, a Trade transaction was defined, specifying a relationship to an asset, and a participant. The transaction processor function file contains the JavaScript logic to execute the transactions defined in the model file.

The Trade transaction is intended to simply accept the identifier of the Commodity asset which is being traded, and the identifier of the Trader participant to set as the new owner.

	Open the logic.js script file.

	Replace the contents with the following:

 /**
 * Track the trade of a commodity from one trader to another
 * @param {org.acme.mynetwork.Trade} trade - the trade to be processed
 * @transaction
 */
 async function tradeCommodity(trade) {
 trade.commodity.owner = trade.newOwner;
 let assetRegistry = await getAssetRegistry('org.acme.mynetwork.Commodity');
 await assetRegistry.update(trade.commodity);
 }

	Save your changes to logic.js.

Adding access control

	Create a permissions.acl file in the tutorial-network directory.

	Add the following access control rules to permissions.acl:

 /**
 * Access control rules for tutorial-network
 */
 rule Default {
 description: "Allow all participants access to all resources"
 participant: "ANY"
 operation: ALL
 resource: "org.acme.mynetwork.*"
 action: ALLOW
 }

 rule SystemACL {
 description: "System ACL to permit all access"
 participant: "ANY"
 operation: ALL
 resource: "org.hyperledger.composer.system.**"
 action: ALLOW
 }

	Save your changes to permissions.acl.

Step Three: Generate a business network archive

Now that the business network has been defined, it must be packaged into a deployable business network archive (.bna) file.

	Using the command line, navigate to the tutorial-network directory.

	From the tutorial-network directory, run the following command:

 composer archive create -t dir -n .

After the command has run, a business network archive file called tutorial-network@0.0.1.bna has been created in the tutorial-network directory.

Step Four: Deploying the business network

After creating the .bna file, the business network can be deployed to the instance of {{site.data.conrefs.hlf_full}}. Normally, information from the Fabric administrator is required to create a PeerAdmin identity, with privileges to install chaincode to the peer as well as start chaincode on the composerchannel channel. However, as part of the development environment installation, a PeerAdmin identity has been created already.

After the business network has been installed, the network can be started. For best practice, a new identity should be created to administer the business network after deployment. This identity is referred to as a network admin.

Retrieving the correct credentials

A PeerAdmin business network card with the correct credentials is already created as part of development environment installation.

Deploying the business network

Deploying a business network to the {{site.data.conrefs.hlf_full}} requires the {{site.data.conrefs.composer_full}} business network to be installed on the peer, then the business network can be started, and a new participant, identity, and associated card must be created to be the network administrator. Finally, the network administrator business network card must be imported for use, and the network can then be pinged to check it is responding.

	To install the business network, from the tutorial-network directory, run the following command:

 composer network install --card PeerAdmin@hlfv1 --archiveFile tutorial-network@0.0.1.bna

The composer network install command requires a PeerAdmin business network card (in this case one has been created and imported in advance), and the the file path of the .bna which defines the business network.

	To start the business network, run the following command:

 composer network start --networkName tutorial-network --networkVersion 0.0.1 --networkAdmin admin --networkAdminEnrollSecret adminpw --card PeerAdmin@hlfv1 --file networkadmin.card

The composer network start command requires a business network card, as well as the name of the admin identity for the business network, the name and version of the business network and the name of the file to be created ready to import as a business network card.

	To import the network administrator identity as a usable business network card, run the following command:

 composer card import --file networkadmin.card

The composer card import command requires the filename specified in composer network start to create a card.

	To check that the business network has been deployed successfully, run the following command to ping the network:

 composer network ping --card admin@tutorial-network

The composer network ping command requires a business network card to identify the network to ping.

Step Five: Generating a REST server

{{site.data.conrefs.composer_full}} can generate a bespoke REST API based on a business network. For developing a web application, the REST API provides a useful layer of language-neutral abstraction.

	To create the REST API, navigate to the tutorial-network directory and run the following command:

 composer-rest-server

	Enter admin@tutorial-network as the card name.

	Select never use namespaces when asked whether to use namespaces in the generated API.

	Select No when asked whether to secure the generated API.

	Select Yes when asked whether to enable event publication.

	Select No when asked whether to enable TLS security.

The generated API is connected to the deployed blockchain and business network.

Step Six: Generating an application

{{site.data.conrefs.composer_full}} can also generate an Angular 4 application running against the REST API.

	To create your Angular 4 application, navigate to tutorial-network directory and run the following command:

yo hyperledger-composer:angular

	Select Yes when asked to connect to running business network.

	Enter standard package.json questions (project name, description, author name, author email, license)

	Enter admin@tutorial-network for the business network card.

	Select Connect to an existing REST API

	Enter http://localhost for the REST server address.

	Enter 3000 for server port.

	Select Namespaces are not used

The Angular generator will then create the scaffolding for the project and install all dependencies. To run the application, navigate to your angular project directory and run npm start. This will fire up an Angular 4 application running against your REST API at http://localhost:4200.

 Using OAUTH2.0 with a {{site.data.conrefs.full}} REST server

layout: default
title: Using OAUTH2.0 with a Composer REST server
category: tutorials
section: tutorials
index-order: 308
sidebar: sidebars/accordion-toc0.md

Using OAUTH2.0 with a {{site.data.conrefs.full}} REST server

This tutorial provides an insight into configuring the OAUTH2.0 authentication strategy (eg. for Google, Facebook, Twitter authentication providers etc) to authorize access to resources in a configured REST Server instance - and allow end users of a blockchain network to interact with a deployed smart contract/business network - the Commodity Trading network in this tutorial (an overview diagram is shown below - a more detailed diagram showing the authentication flow is shown further down). You will run the REST server in multi user mode [https://hyperledger.github.io/composer/next/integrating/enabling-multiuser.html] and test interacting with the network as different blockchain identities, accessing resources through the REST APIs. Ideally, you will need to set up your own Google account / authorization scheme to do this (see appendix on the steps to do this - doesn't take long), or minimally, use the ID/metadata provided in this tutorial. Suffice to say, it uses {{site.data.conrefs.composer_full}} as the underlying blockchain network.

[image: Google Authentication and REST Server Overview]

Note: we have set up the standard 'Development Fabric' network as instructed in Step 3 'Setting up your IDE' described here [https://hyperledger.github.io/composer/next/installing/development-tools.html]

There are many Passport strategies one can choose from. In a business organisational sense, enterprise strategies such as SAML, JSON Web Tokens (JWT) or LDAP are more appropriate obviously - eg an organisational Active Directory server. We use/enable Google+ APIs as the authentication provider for this tutorial, as its easy for anyone to setup a Google account (see Appendix on how to achieve this) and configure the service / do the tutorial without worrying about middleware prereqs to be installed.

OAUTH2.0 is really an 'authorization protocol' but can be used as a 'delegated authentication scheme' - authentication normally means identifying a user by his or her own credentials, whereas the OAUTH2.0 authentication, as used here, is used as a 'delegate' authentication scheme. There are a number of 'roles' to expand on here by way of background. The Composer REST server's role is to provide access to business network resources, which are protected by the Google+ API OAuth2.0 scheme. The resource owner is the Google+ API user account we set up (described in the appendix) its role is to grant consent (or otherwise) to the client application. The Google+ authorization server requests consent of the resource owner and issues access tokens to REST clients (eg web client apps) to enable them to access the protected resources. Smaller API providers may use the same application and URL space in Google+ for both the authorization server and resource server. The idea is that, when a web application user (consuming REST APIs to access a business network) comes along, he/she doesn't have to pre-register anything ; the application user is granted consent by virtue of the configured client application (although that does depend on the OAUTH2.0 flow set up). In our tutorial, we are using a browser to consume the REST APIs and see how this authentication flow actually works.

[image: Google+ Authentication and Authorization]

An access key is granted following consent ; the token allows a client to access the APIs protected by OAuth2.0. In OAuth 2.0, these access tokens are called “bearer tokens”, and can be used alone, with no signature or cryptography, to access the information. Furthermore, the access token is stored in a cookie in the local storage of the user's web browser. When the user makes a subsequent request, the access token is retrieved from the cookie, and the access token is validated, instead of reauthenticating the user.

The REST Server itself is configured to persist the business network cards (required to connect to the network) using the MongoDB store. Typically an organisation would run multiple instances of the REST server Docker image described below and configure a highly available instance of the persistent data store, for example a MongoDB replica set. Configuring the components for high availability allows an administrator to stop, restart, or remove REST server instances without the application users losing access to the deployed business network over REST.

You should carry out this tutorial as a non-privileged user (sudo or elevated privileges are not required).

 Step 1: Set up the Persistent DB Credentials Data Store using MongoDB
As mentioned, we will store credentials in a persistent data store once the appropriate business network cards are imported to the REST Wallet.

Start the MongoDB Instance

	Open a terminal window and enter the following command:

docker run -d --name mongo --network composer_default -p 27017:27017 mongo

It should output that a docker image has been downloaded and provide a SHA256 message. An instance of the MongoDB docker container has been started. It is important to use the --network composer_default here, to enable simple network connectivity with the REST server.

 Step 2: Build the REST Server Docker Image with OAUTH2.0 module

	In your $HOME directory, create a temporary directory called dockertmp and cd into it:

cd $HOME ; mkdir dockertmp

cd dockertmp

	In the temporary directory, create a docker file called Dockerfile in an editor and paste into the following sequence (including special backslash \ characters below needed after the RUN and npm lines below - ie the continuation character):

 FROM hyperledger/composer-rest-server:next

 RUN npm install --production loopback-connector-mongodb passport-google-oauth2 && \
 npm cache clean --force && \
 ln -s node_modules .node_modules

This Docker file will pull the Docker image located at /hyperledger/composer-rest-server and additionally install two more npm modules:

• loopback-connector-mongodb – This module provides a MongoDB connector for the LoopBack framework and allows our REST server to use MongoDB as a data source. For more information: https://www.npmjs.com/package/loopback-connector-mongodb

• passport-google-oauth2 – This module lets us authenticate using a Google+ account with our REST server. For more information: https://www.npmjs.com/package/passport-google-oauth-2

	From the same directory where the Dockerfile resides, build the custom Docker REST Server image:

docker build -t myorg/composer-rest-server .

The parameter given the –t flag is the name you want to give to this Docker image, this can be up to you to name - but for this guide the image will be called ‘myorg/composer-rest-server’.

You should see output similar to the following with the bottom 2 lines indicating it was 'Successfuly built':

docker build -t myorg/composer-rest-server .
Sending build context to Docker daemon 4.203GB
Step 1/2 : FROM hyperledger/composer-rest-server:next
 ---> e682b4374837
Step 2/2 : RUN npm install --production loopback-connector-mongodb passport-google-oauth2 && npm cache clean --force && ln -s node_modules .node_modules
 ---> Running in 7a116240be21
npm WARN saveError ENOENT: no such file or directory, open '/home/composer/package.json'
npm WARN enoent ENOENT: no such file or directory, open '/home/composer/package.json'
npm WARN composer No description
npm WARN composer No repository field.
npm WARN composer No README data
npm WARN composer No license field.

+ passport-google-oauth2@0.1.6
+ loopback-connector-mongodb@3.4.1
added 114 packages in 7.574s
npm WARN using --force I sure hope you know what you are doing.
 ---> a16cdea42dac
Removing intermediate container 7a116240be21
Successfully built a16cdea42dac
Successfully tagged myorg/composer-rest-server:latest

INFO: Don’t worry about seeing the 'npm warn messages' as shown on the console as per above. This can be ignored.

	Lastly, for this section, go back up one level in your directory structure:

cd ..

 Step 3: Define Environment variables for REST Server instance configuration

	Create a file called envvars.txt in your $HOME directory and paste in the following configuration settings - note that you will need to replace the client ID and clientSecret with your own Google API + client information below (as shown in the Appendix)

 COMPOSER_CARD=restadmin@trade-network
 COMPOSER_NAMESPACES=never
 COMPOSER_AUTHENTICATION=true
 COMPOSER_MULTIUSER=true
 COMPOSER_PROVIDERS='{
 "google": {
 "provider": "google",
 "module": "passport-google-oauth2",
 "clientID": "312039026929-t6i81ijh35ti35jdinhcodl80e87htni.apps.googleusercontent.com",
 "clientSecret": "Q4i_CqpqChCzbE-u3Wsd_tF0",
 "authPath": "/auth/google",
 "callbackURL": "/auth/google/callback",
 "scope": "https://www.googleapis.com/auth/plus.login",
 "successRedirect": "/",
 "failureRedirect": "/"
 }
 }'
 COMPOSER_DATASOURCES='{
 "db": {
 "name": "db",
 "connector": "mongodb",
 "host": "mongo"
 }
 }'

The environment variables defined here will indicate that we want a multi user server with authentication using Google OAuth2 along with MongoDB as the persistent data source.

The first line indicates the name of the business network card we will start the network with - a specific REST Administrator against a defined business network. You will also see that in this configuration we also define the data source the REST server will use and the authentication provider we are using. These can be seen with the COMPOSER_DATASOURCES and COMPOSER_PROVIDERS variables respectively.

 Step 4: Load environment variables in current terminal and launch the persistent REST Server instance

	From the same directory as the envvars.txt file you created containing the environment variables, run the following command:

source envvars.txt

INFO No output from command? - this is expected. If you did have a syntax error in your envvars.txt file then this will be indicated by an error, after running this command.

	Let’s now confirm that environment variables are indeed set by checking a couple of them using “echo” command as shown below

echo $COMPOSER_CARD

echo $COMPOSER_PROVIDERS

 Step 5: Deploy the sample Commodities Trading Business network to query from REST client

	If you've not already done so - download the trade-network.bna for the Trade-network from https://composer-playground.mybluemix.net/. Ensure you note down the version number displayed above the About page.

	In Playground, connect to the network as admin and export the trade-network.bna and copy it to your home directory.

[image: Export BNA file]

	To deploy it, run the following sequence:

composer network install --card PeerAdmin@hlfv1 --archiveFile trade-network.bna

composer network start --card PeerAdmin@hlfv1 --networkName trade-network --networkVersion version --networkAdmin admin --networkAdminEnrollSecret adminpw --file networkadmin.card

[image: Deploy Business Network]

You should get confirmation that the Commodities Trading Business Network has been started and an 'admin' networkadmin.card file has been created.

	Next, import the business network card, and connect with the card to download the certs to the wallet:

composer card import -f networkadmin.card

composer network ping -c admin@trade-network

You should get confirmation that the connectivity was successfully tested. We're now ready to work with the deployed business network.

 Step 6: Create the REST server Administrator for the Composer REST server instance

	Create a REST Adninistrator identity restadmin and an associated business network card (used to launch the REST server later).

composer participant add -c admin@trade-network -d '{"$class":"org.hyperledger.composer.system.NetworkAdmin", "participantId":"restadmin"}'

composer identity issue -c admin@trade-network -f restadmin.card -u restadmin -a "resource:org.hyperledger.composer.system.NetworkAdmin#restadmin"

	Import and test the card:

composer card import -f restadmin.card

composer network ping -c restadmin@trade-network

	Because we are hosting our REST server in another location with its own specific network IP information, we need to update the connection.json - so that the docker hostnames (from within the persistent REST server instance) can resolve each other's IP addresses.

The one liner below will substitute the 'localhost' addresses with docker hostnames and create a new connection.json - which goes into the card of our REST administrator. We will also use this custom connection.json file for our 'test' authenticated user later on in the OAUTH2.0 REST authentication sequence, nearer the end of this tutorial. To quickly change the hostnames - copy-and-paste then run this one-liner (below) in the command line from the $HOME directory.

sed -e 's/localhost:/orderer.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/ca.org1.example.com:/' < $HOME/.composer/cards/restadmin@trade-network/connection.json > /tmp/connection.json && cp -p /tmp/connection.json $HOME/.composer/cards/restadmin@trade-network/

 Step 7: Launch the persistent REST server instance

	Run the following docker command to launch a REST server instance (with the restadmin business network card)

docker run -d -e COMPOSER_CARD=${COMPOSER_CARD} -e COMPOSER_NAMESPACES=${COMPOSER_NAMESPACES} -e COMPOSER_AUTHENTICATION=${COMPOSER_AUTHENTICATION} -e COMPOSER_MULTIUSER=${COMPOSER_MULTIUSER} -e COMPOSER_PROVIDERS="${COMPOSER_PROVIDERS}" -e COMPOSER_DATASOURCES="${COMPOSER_DATASOURCES}" -v ~/.composer:/home/composer/.composer --name rest --network composer_default -p 3000:3000 myorg/composer-rest-server

This will output the ID of the Docker container eg . 690f2a5f10776c15c11d9def917fc64f2a98160855a1697d53bd46985caf7934 and confirm that the REST server has been indeed started.

	Check that all is ok with our ocontainer - you can see that it is running using the following commands:

docker ps |grep rest

docker logs rest

 Step 8: Test the REST APIs are protected and require authorization

	Open a browser window and launch the REST API explorer by going to http://localhost:3000/explorer to view and use the available APIs.

INFO Admin identity restadmin is used as an initial default - The REST server uses restadmin identity until a specific identity e.g. jdoe is set as a default identity in the REST client wallet.

	Go to the “System: general business network methods” section

[image: REST Server]

	Go to the “/system/historian” API and click on “Try it out!” button as shown below:

[image: Authorization error]

You should get an Authorized error and that is because we have configured a Google+ passport OAUTH2.0 authentication strategy to protect access to the REST server. Once authentication via the OAUTH2.0 authentication pa has been achieved, the REST APIs in the browser can interact with the Trade Commodity business network (ie. once a business card has been imported).

 Step 9: Create some Participants and Identities for testing OAUTH2.0 authentication

	You need to create a set participant and identities for testing you can interact with the business network. This is because the REST server can handle multiple REST clients in multi-user mode. We will be using the composer CLI commands to add participants and identities as follows - first name is Jo Doe:

composer participant add -c admin@trade-network -d '{"$class":"org.acme.trading.Trader","tradeId":"trader1", "firstName":"Jo","lastName":"Doe"}'

composer identity issue -c admin@trade-network -f jdoe.card -u jdoe -a "resource:org.acme.trading.Trader#trader1"

composer card import -f jdoe.card

	Once again, because we will use this identity to test inside the persistent REST docker container - we will need to change the hostnames to represent the docker resolvable hostnames - once again run this one-liner to carry out those changes quickly:

sed -e 's/localhost:/orderer.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/ca.org1.example.com:/' < $HOME/.composer/cards/jdoe@trade-network/connection.json > /tmp/connection.json && cp -p /tmp/connection.json $HOME/.composer/cards/jdoe@trade-network

	We need to export the card to a file - to use for importing elsewhere - ie the card that we will use to import to the wallet in our browser client - and therefore at this point, we can discard the initial business network card file for jdoe.

composer card export -f jdoe_exp.card -c jdoe@trade-network ; rm jdoe.card

	Repeat the above steps for participant Ken Coe (kcoe) - creating a trader2 participant and issuing the identity kcoe - the sequence of commands are:

composer participant add -c admin@trade-network -d '{"$class":"org.acme.trading.Trader","tradeId":"trader2", "firstName":"Ken","lastName":"Coe"}'

composer identity issue -c admin@trade-network -f kcoe.card -u kcoe -a "resource:org.acme.trading.Trader#trader2"

composer card import -f kcoe.card

sed -e 's/localhost:/orderer.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/peer0.org1.example.com:/' -e 's/localhost:/ca.org1.example.com:/' < $HOME/.composer/cards/kcoe@trade-network/connection.json > /tmp/connection.json && cp -p /tmp/connection.json $HOME/.composer/cards/kcoe@trade-network

composer card export -f kcoe_exp.card -n kcoe@trade-network ; rm kcoe.card

These cards can now be imported, then used into the REST client (ie the browser) in the next section.

 Step 10: Authenticating from the REST API Explorer and testing using specific identities

	Go to http://localhost:3000/auth/google - this will direct you to the Google Authentication consent screen.

[image: Google Authentication]

	Login using the following credentials: (example - as advised, you should set up your own per the instructions in the appendix section of this tutorial):

Email: composeruser01@gmail.com
Password: composer00

	You will be authenticated by Google and be redirected back to the REST server (http://localhost:3000/explorer) which shows the access token message in the top left-hand corner - click on 'Show' to view the token.

[image: REST Server with Access Token]

While our REST server has authenticated to Google+ OAUTH2.0 service - defined by its project/client scope and using the client credentials set up in the Appendix for our OAUTH2.0 service - we have not actually done anything yet in terms of blockchain identity or using business network cards to interact with our Trade Commodity business network - we will do that next, using the jdoe identity we created earlier.

 Step 11: Check the Default Wallet and Import the card and set a default Identity

	Firstly, go to the REST endpoint under Wallets and do a GET operation (and 'Try it Out') to get the contents of the Wallet - check that the wallet does not contain any business network cards - it should show as empty []:

GET /wallets

	You need to add an identity to the REST client wallet and then set this identity as the default one to use for making API calls. Go to the POST system operation under /Wallets - its called the /Wallets/Import endpoint

	Choose to import the file jdoe_exp.card - and provide the name of the card as jdoe@trade-network and click 'Try it Out'

[image: Import jdoe Wallet]

	Scroll down - you should you should get an HTTP Status code 204 (request was successful)

	Next, go back to

GET /wallets

You should see that jdoe@trade-network is imported into the wallet. Note also that the value of the default property is true, which means that this business network card will be used by default when interacting with the Commodity Trading business network (until such time as you change it to use another).

[image: Get Wallet Listing]

 Step 12: Test interaction with the Business Network as the default ID jdoe

	Go to System REST API Methods section and expand the /GET System/Historian section

[image: System Historian /GET]

	Click on 'Try It Out' - you should now see results from the Historian Registry, as the blockchain identity 'jdoe' and a set of transactions

[image: Get Auth Historian Listing]

	Go to the Trader methods and expand the /GET Trader endpoint then click 'Try it Out'

It should confirm that we are able to interact with the REST Server as jdoe in our authenticated session.

[image: Get Trader Listing]

You should now be able to see all Trader participants currently created. If any ACLs have been set then restrictions on what he can see may apply (they haven't been applied for this current sample network, but examples of ACL rules can be seen in the ACL tutorial FYI). Suffice to say that REST APIs accessing a business network are subject to access control - like any other interaction with the business network (such as Playground, JS APIs, CLI etc).

	Next, return to the POST /wallet/import operation and import the card file kcoe_exp.card with the card name set to kcoe@trade-network and click on 'Try it Outto import it - it should return a successful (204) response.

[image: Import kcoe to Wallet]

	However, to use this card, we need to set it as the default card name in our Wallet - go to the POST /wallet/name/setDefault/ method and choose kcoe@trade-network as the default card name and click on Try it Out. This is now the default card.

[image: Set new Default identity]

	Return to the Trader methods and expand the /GET Trader endpoint then click 'Try it Out' . It should confirm that we are now using a different card name and still be able to interact with the REST Server as we are still authenticated.

[image: Get Trader Listing]

Conclusion
This concludes the tutorial section - you've seen how to configure a client-based Google OAUTH2.0 authentication service that can be used to authorize client applications and provide consent to interact with a protected resource server (namely an REST Server instance) without the need to authenticate on every request. Furthermore, the REST Server is running in multi-user mode and so, allows multiple blockchain identities to interact with the deployed Commodity Trading business network from the same REST client session, subject to token expiration times etc etc.

The appendix below describes how the Google Authentication scheme in this tutorial was set up, in advance of this tutorial.

Appendix - Google+ Authentication Configuration & Setup

The appendix below describes how to create an OAUTH2.0 authentication service for authenticating client applications. These steps at a high-level overview consist of:

	Create Google API+ Project

	Create Credentials Service Account

	Create OAuth2.0 Consent

	Create OAuth2.0 Client ID credentials for the Credentials Service Account

Step A1: Create Google API+ Project

	Login to your Google account - if you don't have one - create one at google.com and sign in to Google

	Link for the page https://console.developers.google.com/apis/

You should see the following page on arrival. Search for ‘Google+’ in the search bar and select the Google+ APIs icon when presented.

[image: Google+ APIs]

	Once selected - click to Enable the Google+ APIs - it is important that you do this.

	As you don’t have a 'project' yet, you will be prompted to create a project as it is needed to enable the APIs. Click ‘Create Project’

	You will be prompted to give it a name - call it 'GoogleAuth' and take a note of the Project ID in our case it is shown as proven-caster-195417 - this will be used later on.

	After creating the project, you will be redirected to the Google+ API page again. You should now see the project name selected and the option to ‘Enable’ the service. Click ‘Enable’.

Step A2: Create Credentials Service Account

	Once you have enabled the service you will be prompted to create Service Account Credentials so that you can use the service. Click ‘Create Credentials’.

	You will be asked a series of questions to determine what kind of credentials you will need. Give the answers shown in the screenshot below. Choose 'Google+ API' for the API, Web Server (e.g. Node js, Tomcat) and Application data and 'No' for the Engine question at the bottom.

	Click on What credentials do I need and hit Continue

[image: Setup Credentials]

	Next, setup a Credentials service account - with the name 'GoogleAuthService' - select 'Project' in the dropdown and select a role of Owner and a type of JSON and

	Click on 'Get your Credentials' - it should download (or prompt to download) the service credentials in JSON format - save these to a safe location.

[image: Setup Credentials]

[image: Download Credentials]

	Save a JSON file with the application credentials. After downloading the credentials, the site will take you back to the credentials homepage and you will see a new service account key.

[image: Credentials Service Keys]

Step A3: Create OAUTH2.0 Consent

	Go to the ‘OAuth consent screen' tab = you will need to give a 'product name' like 'Google Auth REST OAUTH2 service' - a banner that is shown when consent to authorize a request is requested (ie when we test it on the REST client in the main tutorial) and an email address, click ‘Save’.

The OAuth consent screen is what the user (in the tutorial) will see when they are authenticating themselves against the Google Auth REST Service

[image: Consent Name for Authentication]

Step A4: Create OAuth2.0 Client ID credentials for the Credentials Service Account

	Go back to the ‘Credentials’ tab and click the ‘Create Credentials’ dropdown and select ‘OAuth Client ID’.

	Choose 'Web Application' and give it a simple name like 'Web Client 1'

	Under the 'Authorised Javascript Origins' section add a line with the following URI - this is the client application (the REST Server):

http://localhost:3000

	We will need to add 'Authorized Redirect URIs' at the bottom - this is where the authenticated session is redirected back to after getting consent from the Google+ OAUTH2.0 authentication service. The callback will match what we will configure in our Composer REST Server environment variables (specifically the variable COMPOSER_PROVIDERS, in the envvars.txt when performing this instruction in the main tutorial).

Under 'Authorized Redirect URIs' add the following URIs as authorised URIs. Note: it is best to copy/paste each URI below, then hit ENTER in the browser after each line entry- as the URI line editor can sometimes truncate your entry whilst typing .e.g. if you happen to pause when typing the URI.

http://localhost:3000/auth/google
http://localhost:3000/auth/google/callback

Then click on the 'Create' button at the bottom.

[image: Create Client ID]

You will be prompted to save the Client ID and Client Secret - copy these two and save these for later.

[image: Client ID and Secret]

You're all set - you can now return to the main tutorial to set up your REST Server Authentication using Google's OAUTH2.0 client authentication service.

A word on Google Authentication OAUTH2.0 setup and scope of Authentication

When an application uses OAuth 2.0 for authorization, it acts on a user's behalf to request an OAuth 2.0 access token for access to a resource, which it identifies by one or more scope strings. Normally, of course - the user itself is asked to approve the access.

When a user (eg. an admin) grants access to the app for a particular scope, in Google at least, a project-level consent 'branding'is setup in the Google+ API Console to challenge for the initial consent. Thereafter, once consented, Google considers that user (through the Google account he/she has set up) has granted access to a particular scope to any configured client IDs in a API+ project ; the grant indicates the trust in the whole application - for the scope as defined in the Google+ API configuration.

The effect is that the application provider is not be prompted to approve access to any resource more than once for the same logical client application.

Fortunately, the Google authorization infrastructure can use information about user approvals for a client ID within a given project set up in Google+ API console, when evaluating whether to authorize others in the same project. It also requires you to set up the authorized URIs that can be granted consent (such as the application call back URL after successful authentication).

The Google Authorization module will observe that the calling application and the web client ID are in the same project, and without user approval, return an ID token to the application, signed by Google. The ID token will contain several data fields, of which the following are particularly relevant:

iss: always accounts.google.com

aud: the client ID and secret of the web component of the project

email: the email that identifies the user requesting the token

This ID token is designed to be transmitted over HTTPS. Before using it, the web component must do the following:

Validate the cryptographic signature. Because the token takes the form of a JSON web token or JWT and there are libraries to validate JWTs available in most popular programming languages, this is straightforward and efficient.

Ensure that the value of the aud field is identical to its own client ID.

Once this is accomplished, the REST server can have a high degree of certainty that - the token was issued by Google.

 Invoking a {{site.data.conrefs.composer_full}} business network from another business network

layout: default
title: Invoking a Composer business network from another business network using Hyperledger Fabric
category: tutorials
section: tutorials
index-order: 306
sidebar: sidebars/accordion-toc0.md

Invoking a {{site.data.conrefs.composer_full}} business network from another business network

{{site.data.conrefs.composer_full}} includes functionality that can be used by a business network to access an asset, participant, or transaction that is recorded in another business network.

This tutorial will demonstrate the steps that a business network developer needs to take in order to invoke a {{site.data.conrefs.composer_full}} business network from a different business network. As part of the tutorial you will deploy the same business network twice. The business networks in this tutorial will be on the same channel, but they can be on different channels. The business network used in this example will be the tutorial network that is outlined in the developer tutorial. This tutorial will refer to the business networks as "A" and "B"

Prerequisites

	Before you continue, ensure that you have followed the steps in installing a development environment.

Step One: Starting a {{site.data.conrefs.hlf_full}} network

In order to follow this tutorial, you must start a {{site.data.conrefs.hlf_full}} network. You can use the simple {{site.data.conrefs.hlf_full}} network provided in the development environment, or you can use your own {{site.data.conrefs.hlf_full}} network that you have built by following the {{site.data.conrefs.hlf_full}} documentation.

The tutorial will assume that you use the simple {{site.data.conrefs.hlf_full}} network provided in the development environment. If you use your own {{site.data.conrefs.hlf_full}} network, then you must map between the configuration detailed below and your own configuration.

	Start a clean {{site.data.conrefs.hlf_full}} by running the following commands:

 cd ~/fabric-tools
 ./stopFabric.sh
 ./teardownFabric.sh
 ./downloadFabric.sh
 ./startFabric.sh

	Delete any business network cards that may exist in your wallet. It is safe to ignore any errors that state that the business network cards cannot be found:

 composer card delete -c PeerAdmin@hlfv1

If these commands fail, then you have business network cards from a previous version and you will have to delete the file system card store.

 rm -fr ~/.composer

	Create the Peer Admin Card by running the following command

 ./createPeerAdminCard.sh

Step Two: Define the business networks

	Follow steps one and two in the developer tutorial. This will be network A.

	Follow steps one and two again but create a business network called other-tutorial-network. This will be network B.

	The transaction logic needs to be updated in network A and to query an asset in business network B and then update the quantity property of an asset in business network A.

Replace the contents of the logic.js script file to update the transaction processor function to be the following.

 /**
 * Track the trade of a commodity from one trader to another
 * @param {org.acme.mynetwork.Trade} trade - the trade to be processed
 * @transaction
 */
 async function tradeCommodity(trade) {
 trade.commodity.owner = trade.newOwner;

 const otherNetworkData = await getNativeAPI().invokeChaincode('other-tutorial-network', ['getResourceInRegistry', 'Asset', 'org.acme.mynetwork.Commodity', trade.commodity.tradingSymbol], 'composerchannel');
 const stringAsset = new Buffer(otherNetworkData.payload.toArrayBuffer()).toString('utf8');
 const asset = getSerializer().fromJSON(JSON.parse(stringAsset));

 trade.commodity.quantity = asset.quantity;

 const assetRegistry = await getAssetRegistry('org.acme.mynetwork.Commodity');
 await assetRegistry.update(trade.commodity);
 }

	Follow step three in the developer tutorial.

Step Three: Deploy the business networks

	Install and start business network A using the following commands

 composer network install --card PeerAdmin@hlfv1 --archiveFile tutorial-network@0.0.1.bna
 composer network start --networkName tutorial-network --networkVersion 0.0.1 --networkAdmin admin --networkAdminEnrollSecret adminpw --card PeerAdmin@hlfv1 --file networkA.card
 composer card import --file networkA.card --card networkA

	Install and start business network B using the following commands

 composer network install --card PeerAdmin@hlfv1 --archiveFile other-tutorial-network@0.0.1.bna
 composer network start --networkName other-tutorial-network --networkVersion 0.0.1 --networkAdmin admin --networkAdminEnrollSecret adminpw --card PeerAdmin@hlfv1 --file networkB.card
 composer card import --file networkB.card --card networkB

	To check that the business networks have been deployed successfully run the following commands to ping the business networks

 composer network ping --card networkA
 composer network ping --card networkB

Step Four: Create the assets

	Create a participant in business network A. Run the following command.

 composer participant add --card networkA -d '{"$class": "org.acme.mynetwork.Trader", "tradeId": "bob@example.com", "firstName": "Bob", "lastName": "Jones"}'

	Create an asset in business network A

 composer transaction submit --card networkA -d '{"$class": "org.hyperledger.composer.system.AddAsset","registryType": "Asset","registryId": "org.acme.mynetwork.Commodity", "targetRegistry" : "resource:org.hyperledger.composer.system.AssetRegistry#org.acme.mynetwork.Commodity", "resources": [{"$class": "org.acme.mynetwork.Commodity","tradingSymbol": "Ag","owner": "resource:org.acme.mynetwork.Trader#bob@example.com","description": "a lot of gold", "mainExchange": "exchange", "quantity" : 250}]}'

	Create a participant in business network B. Run the following command.

 composer participant add --card networkB -d '{"$class": "org.acme.mynetwork.Trader", "tradeId": "fred@example.com", "firstName": "Fred", "lastName": "Bloggs"}'

	Create an asset in business network B. Run the following command. Note the different quantity property.

 composer transaction submit --card networkB -d '{"$class": "org.hyperledger.composer.system.AddAsset","registryType": "Asset","registryId": "org.acme.mynetwork.Commodity", "targetRegistry" : "resource:org.hyperledger.composer.system.AssetRegistry#org.acme.mynetwork.Commodity", "resources": [{"$class": "org.acme.mynetwork.Commodity","tradingSymbol": "Ag","owner": "resource:org.acme.mynetwork.Trader#fred@example.com","description": "a lot of gold", "mainExchange": "exchange", "quantity" : 500}]}'

Step Five: Bind the identity on network A to the participant on network B

	Export the networkA card to get the credentials

 composer card export -c networkA

	Unzip the card, you may need to rename networkA.card to networkA.zip.

	Bind the identity to the participant. Run the following command.

 composer identity bind --card networkB --participantId resource:org.hyperledger.composer.system.NetworkAdmin#admin --certificateFile ./networkA/credentials/certificate

	Create a card with the bound identity.

 composer card create -p ~/.composer/cards/networkB/connection.json --businessNetworkName other-tutorial-network -u admin -c ./networkA/credentials/certificate -k ./networkA/credentials/privateKey -f newNetworkB.card

	Import the card

 composer card import --file newNetworkB.card --card newNetworkB

	Ping the network to activate the identity

 composer network ping --card newNetworkB

Step Six: Review the asset data

View the asset to see that the quantity is 250.

 composer network list --card networkA -r org.acme.mynetwork.Commodity -a Ag

Step Seven: Submit a transaction

Submit a transaction to see the effect of querying an asset on a different business network

 composer transaction submit --card networkA -d '{"$class": "org.acme.mynetwork.Trade", "commodity": "resource:org.acme.mynetwork.Commodity#Ag", "newOwner": "resource:org.acme.mynetwork.Trader#bobId"}'

Step Eight: Check the updated asset

View the updated asset to check that the quantity was correctly updated to 500.

 composer network list --card networkA -r org.acme.mynetwork.Commodity -a Ag

 Playground Tutorial

layout: default
title: Playground Tutorial
category: playground
section: playground
index-order: 301
sidebar: sidebars/accordion-toc0.md
excerpt: The Playground tutorial runs through creating your first business network. In this tutorial, you'll create participants, assets, and transactions; and verify that the transactions worked correctly.

Playground Tutorial

In this step by step tutorial we'll walk through setting up a business network, defining our assets, participants and transactions, and testing our network by creating some participants and an asset, and submitting transactions to change the ownership of the asset from one to another. This tutorial is intended to act as an introduction to {{site.data.conrefs.composer_full}} concepts using the online playground environment.

Step One: Open the {{site.data.conrefs.composer_full}} Playground

Open

 Queries Tutorial using the Composer Query language and REST APIs

layout: default
title: Queries Tutorial
category: tutorials
section: tutorials
index-order: 303
sidebar: sidebars/accordion-toc0.md
excerpt: "This tutorial will walk you through the steps required to create, then try out Composer Queries, adding to the Developer tutorial that precedes this. It connects to the running {{site.data.conrefs.hlf_full}} whence the user started up for the Developer tutorial."

Queries Tutorial using the Composer Query language and REST APIs

In this tutorial, we will build on the developer tutorial, extending it to demonstrate {{site.data.conrefs.composer}} queries. The native {{site.data.conrefs.composer}} query language can filter results returned using criteria and can be invoked in transactions to perform operations, such as updating or removing assets on result sets.

Queries are defined in a query file (.qry) in the parent directory of the business network definition. Queries contain a WHERE clause, which defines the criteria by which assets or participants are selected.

This tutorial uses the tutorial-network business network developed and deployed in the Developer-Tutorial.

Prerequisites

Before beginning this tutorial:

	Complete the development environment installation.

	Complete the developer tutorial.

Step One: Updating the business network

The business network created in the developer tutorial must be updated. The updated business network contains two events and an additional transactions.

Update the model file

The model file must be updated to contain events and a new transaction.

	Open the model (.cto) file for the tutorial-network.

	Add the following events and transaction to the model:

 event TradeNotification {
 --> Commodity commodity
 }

 transaction RemoveHighQuantityCommodities {
 }

 event RemoveNotification {
 --> Commodity commodity
 }

	Save the changes to your model.

Update transaction logic to use queries and events

Now that the domain model has been updated, we can write the additional business logic that gets executed when a transaction is submitted for processing. In this tutorial we have added events and queries to the business logic below.

	Open the transaction processor function file lib/logic.js.

	Replace the transaction logic with the following JavaScript:

 /**
 * Track the trade of a commodity from one trader to another
 * @param {org.acme.mynetwork.Trade} trade - the trade to be processed
 * @transaction
 */
 async function tradeCommodity(trade) {

 // set the new owner of the commodity
 trade.commodity.owner = trade.newOwner;
 let assetRegistry = await getAssetRegistry('org.acme.mynetwork.Commodity');

 // emit a notification that a trade has occurred
 let tradeNotification = getFactory().newEvent('org.acme.mynetwork', 'TradeNotification');
 tradeNotification.commodity = trade.commodity;
 emit(tradeNotification);

 // persist the state of the commodity
 await assetRegistry.update(trade.commodity);
 }

 /**
 * Remove all high volume commodities
 * @param {org.acme.mynetwork.RemoveHighQuantityCommodities} remove - the remove to be processed
 * @transaction
 */
 async function removeHighQuantityCommodities(remove) {

 let assetRegistry = await getAssetRegistry('org.acme.mynetwork.Commodity');
 let results = await query('selectCommoditiesWithHighQuantity');

 for (let n = 0; n < results.length; n++) {
 let trade = results[n];

 // emit a notification that a trade was removed
 let removeNotification = getFactory().newEvent('org.acme.mynetwork','RemoveNotification');
 removeNotification.commodity = trade;
 emit(removeNotification);
 await assetRegistry.remove(trade);
 }
 }

	Save your changes to logic.js.

The first function tradeCommodity will change the owner property on a commodity (with a new owner Participant) on an incoming Trade transaction and emit a Notification event to that effect. It then persists the modified Commodity back into the asset registry which is used to store Commodity instances.

The second function calls a named query 'selectCommoditiesWithHighQuantity' (defined in queries.qry) which will return all Commodity asset records that have a quantity > 60 ; emit an event ; and remove the Commodity from the AssetRegistry.

Step Two: Create a query definition file

The queries used by the Transaction Processor logic are defined in a file which must be called queries.qry. Each query entry defines the resources and criteria against which the query is executed.

	In the tutorial-network directory, create a new file called queries.qry.

	Copy and paste the following code into queries.qry:

 /** Sample queries for Commodity Trading business network
 */

 query selectCommodities {
 description: "Select all commodities"
 statement:
 SELECT org.acme.mynetwork.Commodity
 }

 query selectCommoditiesByExchange {
 description: "Select all commodities based on their main exchange"
 statement:
 SELECT org.acme.mynetwork.Commodity
 WHERE (mainExchange==_$exchange)
 }

 query selectCommoditiesByOwner {
 description: "Select all commodities based on their owner"
 statement:
 SELECT org.acme.mynetwork.Commodity
 WHERE (owner == _$owner)
 }

 query selectCommoditiesWithHighQuantity {
 description: "Select commodities based on quantity"
 statement:
 SELECT org.acme.mynetwork.Commodity
 WHERE (quantity > 60)
 }

	Save your changes to queries.qry.

Step Three: Regenerate your business network archive

After changing the files in a business network, the business network must be repackaged as a business network archive (.bna) and redeployed to the {{site.data.conrefs.hlf_full}} instance. Upgrading a deployed network requires that the new version being deployed have a new version number.

	In the tutorial-network directory, open the package.json file.

	Update the version property from 0.0.1 to 0.0.2.

	Using the command line, navigate to the tutorial-network directory.

	Run the following command:

 composer archive create --sourceType dir --sourceName . -a tutorial-network@0.0.2.bna

Step Four: Deploy the updated business network definition

We need to deploy the modified network to become the latest edition on the blockchain! We are using the newly created archive business network archive file to update the existing deployed business network; this is the same business network name, that we used during the Developer Tutorial.

	Switch to the terminal, change directory to the folder containing the tutorial-network@0.0.2.bna.

	Run the following command to install the updated business network:

 composer network install --card PeerAdmin@hlfv1 --archiveFile tutorial-network@0.0.2.bna

	Run the following command to upgrade the network to the new version:

 composer network upgrade -c PeerAdmin@hlfv1 -n tutorial-network -V 0.0.2

	Check the current version of the business network before continuing by using the following command:

 composer network ping -c admin@tutorial-network | grep Business

Step Five: Regenerate the REST APIs for the updated Business Network

We will now integrate the newly updated business network with queries added, and expose the REST APIs for this business network.

	Using the command line, navigate to the tutorial-network directory.

	Use the following command to launch the REST server:

 composer-rest-server

	Enter admin@tutorial-network as the card name.

	Select never use namespaces when asked whether to use namespaces in the generated API.

	Select No when asked whether to secure the generated API.

	Select Yes when asked whether to enable event publication.

	Select No when asked whether to enable TLS security.

Step Six: Test the REST APIs and create some data

Open a web browser and navigate to http://localhost:3000/explorer . You should see the LoopBack API Explorer, allowing you to inspect and test the generated REST API.

We should be able to see that the REST Endpoint called 'Query' has been added and, upon expanding, reveals the list of REST Query operations defined in the business network tutorial-network

[image: Queries exposed as REST Endpoints]

Before we proceed, we need to create some data, to demonstrate queries adequately. Using the sample JSON data provided, create 3 Traders (Participants)and some more Commodities (Assets) using the REST APIs.

	First, click on 'Trader' in the REST Explorer, then click on the 'POST' method on /Trader, then scroll down to the Parameter section - create the following Trader instances, in turn:

 {
 "$class": "org.acme.mynetwork.Trader",
 "tradeId": "TRADER1",
 "firstName": "Jenny",
 "lastName": "Jones"
 }

	Click 'Try it out' to create the Participant. The 'Response Code' (scroll down) should be 200 (SUCCESS)

	Create another trader by copying the following JSON:

 {
 "$class": "org.acme.mynetwork.Trader",
 "tradeId": "TRADER2",
 "firstName": "Jack",
 "lastName": "Sock"
 }

	Create a third trader by coping the following JSON:

 {
 "$class": "org.acme.mynetwork.Trader",
 "tradeId": "TRADER3",
 "firstName": "Rainer",
 "lastName": "Valens"
 }

	Now scroll up to the top and click on 'Commodity' object in the REST Explorer.

	Click on the POST operation and scroll down to the Parameters section: In the same way as above, create two Commodity Asset records (see below) for owners TRADER1 and TRADER2:

{
 "$class": "org.acme.mynetwork.Commodity",
 "tradingSymbol": "EMA",
 "description": "Corn",
 "mainExchange": "EURONEXT",
 "quantity": 10,
 "owner": "resource:org.acme.mynetwork.Trader#TRADER1"
}

{
 "$class": "org.acme.mynetwork.Commodity",
 "tradingSymbol": "CC",
 "description": "Cocoa",
 "mainExchange": "ICE",
 "quantity": 80,
 "owner": "resource:org.acme.mynetwork.Trader#TRADER2"
}

Step Seven: Perform queries using the commodity trading REST API explorer

Now that we have some Assets and Participants, we can test out some queries using the generated Query REST operations.

Perform a simple REST query

Now that we have assets and participants, we can try out some queries.

The simplest REST query we can try out first is our named query selectCommodities.

Expand the 'Query' REST Endpoint and you will see the named queries we defined in our model.

These queries are now exposed as REST queries and for which a /GET operation is generated, Note that the description of the query (that we defined in our model definition) is shown on the right hand side.

[image: Commodities: REST Endpoint]

	Expand the selectCommodities query.

	Click the 'Try it Out' button.

[image: Setup REST query: select all Commodities]

It will return all existing Commodities - there should be 2 assets returned.

[image: Query Results: All Commodities]

Perform Filtered REST Queries

Let's select all Commodities by their Exchange - for example 'EURONEXT' main exchange.

	Expand query Endpoint 'selectCommoditiesByExchange' and scroll to the 'Parameters' section.

	Enter 'EURONEXT' in the 'Exchange' parameter.

	Click 'Try it Out'.

[image: Setup REST query by Exchange]

The results reveal that only those Commodities with an Exchange of 'EURONEXT' are shown in the response body

[image: Query Results: Commodities by exchange]

Perform Transaction update using results from named Query

Finally, you will recall we had defined a simple query that filters Commodities with a Quantity greater than 60 in our query file. Queries are very powerful, when used in transaction functions, as using queries allows transaction logic to set up the set of assets or participants to perform updates on, or for creating remove actions for example.

[image: Recollect Query definition]

We use the selectCommoditiesWithHighQuantity query in the removeHighQuantityCommodities transaction. If you execute this /GET operation in the REST Explorer, you'll see it selects only those assets greater than 60 in quantity.

[image: Recollect Transaction logic using query]

Now let's use the query to perform a removal of high quantity Commodities.

First check for yourself how many Commodities are present (use the 'Commodity' /GET operation) and you should see at least two Commodities, one of which (Cocoa) has a quantity > 60.

[image: Commodity REST Endpoint]
[image: Results prior to 'Removal transaction' invocation]

Let's check out the actual query, by clicking on the REST Endpoint /selectCommoditiesWithHighQuantity and click /GET then scroll down to 'Try it Out' - there should be one Commodity that meets the criteria.

[image: Query Commodities with High Quantities]

OK. Now let's execute a REST transaction, that uses our 'High Quantity' query definition to decide which Commodities to remove.

Click on the RemoveHighQuantityCommodities REST Endpoint to reveal the /POST operation for same.

[image: Show RemoveHighQuantityCommodities Endpoint]

Click on POST, scroll down to the Parameter section and click 'Try it Out' - note: you do not have to enter any data in the 'data' section.

Scroll down and you should see a transactionId which represents the 'remove' invocation (itself a blockchain transaction) inside of the transaction processor function and which will update the world state - the Response Code should be 200

[image: Carry out 'High Quantity' removal transaction]

Finally, let's verify our Commodities status. Return to the 'Commodity' REST Operations and once again perform a /GET operation....'Try it Out'.

The results should show that the Commodity asset 'Cocoa' has now gone, ie only those Commodity assets with a quantity <= 60 still remain, ie asset 'Corn' in our example. The named query fed the transaction update (to remove high quantity Commodities) and which was executed in business logic.

[image: Final results of query-driven transaction function]

Congratulations!

Well done, you've now completed this tutorial and we hope you now have a much better idea of the power of queries in Composer. You can start creating/building your own queries (or modifying the existing queries and adding associated data to this business network - note: you would need to re-deploy any query changes) to try out!

Related Links

	Developer-Tutorial

	Deploying a business network

 Tutorials

layout: default
title: Tutorials
category: tutorials
section: tutorials
sidebar: sidebars/accordion-toc0.md
index-order: 300
excerpt: Tutorials

Tutorials

We have four basic tutorial options, and two more advanced tutorials:

Playground Tutorial

The Playground tutorial runs through using the Playground to track the ownership of commodities in a business network.

This tutorial can be followed using the web Playground (no install necessary) or with your own Playground (acquired as part of the install instructions).

Start Playground Tutorial

Developer Tutorial

This tutorial presumes you have a development environment setup including the installation of the development tools.

The developer tutorial will walk you through the steps required to build a {{site.data.conrefs.composer_full}} blockchain solution from scratch. In the space of a day or so you should be able to go from an idea for a disruptive blockchain innovation to a complete business network, running on {{site.data.conrefs.hlf_full}}.

Start Developer Tutorial.

Access Control Language (ACL) Tutorial

This tutorial presumes that you have some experience using {{site.data.conrefs.composer_short}}.
In this tutorial, you will incrementally build ACL rules for a sample Commodity Trading business network, and test the ACLs as an integral step during the rules build. You can complete the tutorial in the online Playground (and you deploy the Trade sample network there) ; but you can equally complete the tutorial if you deploy that sample network to your {{site.data.conrefs.hlf_full}} runtime.

Start the ACL tutorial.

Query Tutorial

This tutorial presumes that you have some experience using {{site.data.conrefs.composer_short}}.

In this tutorial, we will build on the 'Commodity Trading' developer tutorial, extending it to show the use of queries in {{site.data.conrefs.composer_short}}. This tutorial demonstrates the power of the native {{site.data.conrefs.composer_short}} query language to filter results returned using criteria and to perform operations on result sets, such as updating or removing assets using a transaction function that uses queries.

Start the queries tutorial.

Deploying to a single organization {{site.data.conrefs.hlf_full}}

This tutorial presumes that you have experience setting up an instance of {{site.data.conrefs.hlf_full}}.

In this tutorial, {{site.data.conrefs.composer_full}} is configured for a running instance of {{site.data.conrefs.hlf_full}} and a business network is deployed using that configuration.

Start the single organization {{site.data.conrefs.hlf_full}} deployment tutorial.

Deploying to a multi-organization {{site.data.conrefs.hlf_full}}

This tutorial presumes that you have experience using {{site.data.conrefs.hlf_full}}.

In this tutorial, two organization administrators configure their instances of {{site.data.conrefs.composer_full}} to interact with the same channel in {{site.data.conrefs.hlf_full}}.

Start the multi-organization {{site.data.conrefs.hlf_full}} deployment tutorial.

Invoking a {{site.data.conrefs.composer_full}} business network from another business network

In this tutorial, we will demonstrate the steps that a business network developer needs to take in order to invoke a {{site.data.conrefs.composer_full}} business network from a different business network

Start the invoking a {{site.data.conrefs.composer_full}} business network from another business network tutorial.

 Business Network Definition

layout: default
title: Hyperledger Composer - Business Network Definition
category: concepts
sidebar: sidebars/accordion-toc0.md
excerpt: Overview of the Business Network Definition

Business Network Definition

Business Network Definitions are a key concept of the {{site.data.conrefs.composer_full}} programming model. They are represented by the BusinessNetworkDefinition class, defined in the composer-common module and exported by both composer-admin and composer-client.

Business Network Definitions are composed of:

	a set of model files

	a set of JavaScript files

The model files defined the business domain for a business network, while the JavaScript files contain transaction processor functions. The transaction processor functions run on a Hyperledger Fabric and have access to the asset registries that are stored in the world state of the Hyperledger Fabric blockchain.

The model files are typically created by business analysts, as they define the structure and relationships between model elements: assets, participants and transactions.

The JavaScript files are typically created by developers who are implementing business requirements provided by business analysts.

Once defined, a Business Network Definition can be packaged into an archive using the composer command line interface. These archives can then be deployed or updated on a Fabric, using the AdminConnection class from the composer-admin module.

 Welcome to {{site.data.conrefs.composer_full}}

layout: default
title: Introduction
category: overview
section: introduction
index-order: 100
sidebar: sidebars/accordion-toc0.md
excerpt: Hyperledger Composer overview

Welcome to {{site.data.conrefs.composer_full}}

{{site.data.conrefs.composer_full}} is an extensive, open development toolset and framework to make developing blockchain applications easier. Our primary goal is to accelerate time to value, and make it easier to integrate your blockchain applications with the existing business systems. You can use {{site.data.conrefs.composer_short}} to rapidly develop use cases and deploy a blockchain solution in weeks rather than months. {{site.data.conrefs.composer_short}} allows you to model your business network and integrate existing systems and data with your blockchain applications.

{{site.data.conrefs.composer_full}} supports the existing Hyperledger Fabric blockchain [https://hyperledger.org] infrastructure and runtime, which supports pluggable blockchain consensus protocols to ensure that transactions are validated according to policy by the designated business network participants.

Everyday applications can consume the data from business networks, providing end users with simple and controlled access points.

You can use {{site.data.conrefs.composer_full}} to quickly model your current business network, containing your existing assets and the transactions related to them; assets are tangible or intangible goods, services, or property. As part of your business network model, you define the transactions which can interact with assets. Business networks also include the participants who interact with them, each of which can be associated with a unique identity, across multiple business networks.

[image: Diagram of Hyperledger Composer]

 Key Concepts in {{site.data.conrefs.composer_full}}

layout: default
title: Key Concepts
sidebar: sidebars/accordion-toc0.md
section: introduction
index-order: 101

Key Concepts in {{site.data.conrefs.composer_full}}

{{site.data.conrefs.composer_full}} is a programming model containing a modeling language, and a set of APIs to quickly define and deploy business networks and applications that allow participants to send transactions that exchange assets.

{{site.data.conrefs.composer_full}} Components

You can experience {{site.data.conrefs.composer_full}} with our browser-based UI called {{site.data.conrefs.composer_full}} Playground. {{site.data.conrefs.composer}} Playground is available as a hosted version (no install necessary) or a local install (good for editing and testing sample business networks offline).

Developers who want to use {{site.data.conrefs.composer_full}}'s full application development capabilities should install the Developer Tools.

[image: Diagram of {{site.data.conrefs.composer_full}} components]

Key Concepts in {{site.data.conrefs.composer_full}}

Blockchain State Storage

All transactions submitted through a business network are stored on the blockchain ledger, and the current state of assets and participants are stored in the blockchain state database. The blockchain distributes the ledger and the state database across a set of peers and ensures that updates to the ledger and state database are consistent across all peers using a consensus algorithm.

Connection Profiles

{{site.data.conrefs.composer_full}} uses Connection Profiles to define the system to connect to. A connection profile is a JSON document the is part of a business network card. These profiles are usually provded by the creator of the system they refer to and should be used to create business network cards in order to be able to connect to that system.

Assets

Assets are tangible or intangible goods, services, or property, and are stored in registries. Assets can represent almost anything in a business network, for example, a house for sale, the sale listing, the land registry certificate for that house, and the insurance documents for that house may all be assets in one or more business networks.

Assets must have a unique identifier, but other than that, they can contain whatever properties you define. Assets may be related to other assets or participants.

Participants

Participants are members of a business network. They may own assets and submit transactions. Participant types are modeled, and like assets, must have an identifier and can have any other properties as required.

Identities and Business Network cards

Within a business network, participants can be associated with an identity. Business network cards are a combination of an identity, a connection profile, and metadata. Business network cards simplify the process of connecting to a business network, and extend the concept of an identity outside the business network to a 'wallet' of identities, each associated with a specifi