

Welcome to hyperchain’s documentation!

Get Started:

	Pre-requisites
	OS Recommendations

	Install Go

	Install Go vendor tool

	Install Contract Compiler(Optional)

	Quick Start
	Building from Source

	Start up Hyperchain

	Hyperchain Samples
	HyperCli

	Sample Contract 1 - Set/Get Hash

	Sample Contract 2 - Simulate Bank

	Transaction Delivery

Architecture:

	Transaction Flow

	Consensus
	1. Overview

	2. RBFT related parameters

	3. RBFT normal case

	4. RBFT ViewChange

	5. RBFT Recovery

	6. RBFT Node Management

	Ledger
	1. Overview

	2. Blockchain data

	3. World state

	Bucket tree
	Overview

	Structural analysis

	Core operation

	Smart Contract
	1. Introduction

	2. Smart contract execution engine HyperVM

	3. Usage of Smart contract

	P2P
	1. Overview

	2. Hypernet

	3. P2PManager

Privacy && Security:

	Digital Certificate
	1.Overview

	2.Certificate Introduction

	3.CA Configuration

	4.Certificate acquisition and verification process

	Namespace
	1.Overview

	2.Cluster Architecture

	3.Node Architecture

	4.Transaction Flow

	Cryptography Algorithm
	1.Overview

	2. Elliptic curve digital signature

	3.Symmetric encryption algorithm

	4.Key exchange algorithm

	5.Hash algorithm

User manual:

	JSON-RPC API
	1. JSON-RPC Overview

	2. Hyperchain JSON-RPC API Design

	3. JSON-RPC Methods

	4. JSON-RPC API Reference

	Node Operation
	1. Add Node

	2. Delete Node

Contributing:

	Developers’ Guide
	Workflow

	Building and Testing

	Contributing

Roadmap:

	Hyperchain Roadmap
	First community version

	Better smart contract

	Controllable data capacity

	Autonomous

	Protect your pricacy

	Run fast

	What is your favourite

Pre-requisites

OS Recommendations

The charts below show how Hyperchain’s requirements map onto various
platforms.

Platforms

	Distro

	Release

	Arch

	RHEL

	6 or later

	amd64, 386

	CentOS

	6 or later

	amd64, 386

	SLES

	11SP3 or later

	amd64, 386

	Ubuntu

	14.04 or later

	amd64, 386

	macOS

	10.8 or later

	amd64, 386

Install Go

Hyperchain uses the Go programming language for its components, thus we
need to install Go for developing.

Download Go

Go provides binary distributions for Mac OS X, Linux,
and Windows. If you are using a different OS, you can download the Go
source code and install from source.

Download the latest version of Go for your platform here:
Downloads [https://golang.org/dl] - version 1.7.x or above

Install Go

Follow the instructions for your platform to install the
Go tools: Install the Go
tools [https://golang.org/doc/install#install]. It is recommended to
use the default installation settings.

	On Mac OS X and Linux, by default Go is installed to directory
/usr/local/go/, and the GOROOT environment variable is set to
/usr/local/go.

export GOROOT=/usr/local/go

	Also set the GOROOT/bin variable, which is used to run Go
command.

export PATH=$PATH:$GOROOT/bin

Set GOPATH

Your Go working directory (GOPATH) is where you store
your Go code. It can be any path you choose but must be separate from
your Go installation directory (GOROOT).

The following instructions describe how to set your GOPATH. Refer to
the official Go documentation for more details:
https://golang.org/doc/code.html.

	On Mac OS X and Linux Set the GOPATH environment variable for
your workspace:

export GOPATH=$HOME/go

	Also set the GOPATH/bin variable, which is used to run compiled
Go programs.

export PATH=$PATH:$GOPATH/bin

	Since we’ll be doing a bunch of coding in Go, you might want to add
the following to your~/.bashrc:

export GOROOT=/usr/local/go
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin:$GOROOT/bin

Test Go Installation

Create and run the hello.go application
described here: https://golang.org/doc/install#testing.

If you set up your Go environment properly, you should be able to run
“hello” from any directory and see the program execute successfully.

Install Go vendor tool

Go vendor is a tool for managing Go packages and their dependencies.
This tool will copy the dependent packages to the project’s vendor
directory, and record their versions in a file named vendor.json.

Installation

go get -u github.com/kardianos/govendor

Test Go vendor Installation

To verify you setup govendor properly,
please make sure govendor version information displays correctly.

At the command prompt, type the following command and make sure you see
govendor version information:

$ govendor --version
v1.0.9

More Details

You can goto the project’s home page for more details.
- Go vendor [https://github.com/kardianos/govendor]

Install Contract Compiler(Optional)

Hyperchain supports Smart Contract which written in
Solidity [https://solidity.readthedocs.org/en/latest/] and then
compiled into bytecode to be uploaded on the blockchain.

Given that we are writing in Solidity, we need to be sure that we have
installed contract compiler named solc for compiling.

We’ve provided some general installers for some platforms in our source
code, you can use them to install solc quickly, you can also refer
to the official site - Installing
Solidity [https://solidity.readthedocs.io/en/latest/installing-solidity.html#installing-solidity]
for installation.

Quick Start

If you haven’t completed your Pre-requisites Checklist, do that
first. This Quick Start tells you how to build Hyperchain from source
code, and how to start up a Hyperchain cluster.

Building from Source

Create Your Clone

Clone the repository to a directory of your
GOPATH source path:

mkdir -p $GOPATH/src/github.com/hyperchain
cd $GOPATH/src/github.com/hyperchain
git clone https://github.com/hyperchain/hyperchain

Building

Please make sure you’ve installed Go tool properly, if you
don’t have it already, please see Pre-requisites

To build Hyperchain:

cd $GOPATH/src/github.com/hyperchain/hyperchain
govendor build

You can run go build as well.

Start up Hyperchain

Since a Hyperchain cluster needs at least 4 nodes to establish
a BFT system, we recommend starting up Hyperchain nodes in these modes:
- Local Mode - Local 4 Nodes
- Distributed Mode - Distributed 4 Nodes

Local Mode - Local 4 Nodes

We’ve provided a script named local.sh which starts all Hyperchain
nodes locally.

cd $GOPATH/src/github.com/hyperchain/hyperchain/scripts
./local.sh

You’ll see these information if all Hyperchain nodes start up properly.

$./local.sh
...
...
start up node 1 ... done
start up node 2 ... done
start up node 3 ... done
start up node 4 ... done

Distributed Mode - Distribute 4 Nodes

Enable Password Less

Since server.sh script prompts for a
password when executing ssh operations, we recommend generating SSH keys
on the deploy node and distribute the public key to each Hyperchain
node.

	Generate the SSH keys, and leave the passphrase empty:

ssh-keygen

Generating public/private key pair.
Enter file in which to save the key (/home/hyperchain/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/hyperchain/.ssh/id_rsa.
Your public key has been saved in /home/hyperchain/.ssh/id_rsa.pub.

2. Copy the key to each Hyperchain node, replacing {username} with
the user name you created.

ssh-copy-id {username}@node1
ssh-copy-id {username}@node2
ssh-copy-id {username}@node3
ssh-copy-id {username}@node4

Distribute Hyperchain

We’ve provided a script named server.sh
which distributes Hyperchain to all nodes and starts up them separately.

1. Put servers’ IP addresses into a file named serverlist.txt which
under hyperchain/scripts directory.

For instance:

cat $GOPATH/src/github.com/hyperchain/hyperchain/scripts/serverlist.txt
172.16.1.101
172.16.1.102
172.16.1.103
172.16.1.104

	Start up Hyperchain with server.sh script.

cd $GOPATH/src/github.com/hyperchain/hyperchain/scripts
./server.sh

You’ll see these information if all Hyperchain nodes start up properly.

$./server.sh
...
...
start up node 1 ... done
start up node 2 ... done
start up node 3 ... done
start up node 4 ... done

Hyperchain Samples

In this section, we will introduce some simple examples to use
Hyperchain.

HyperCli

We recommend using HyperCli for administration.

HyperCli is a CLI tool for Hyperchain administration, it has
various functions. We’ll introduce its contract and transaction related
functions in the following steps.

To build HyperCli:

cd $GOPATH/src/github.com/hyperchain/hyperchain/hypercli
govendor build

You can run go build as well.

Note

By default, HyperCli sends message to localhost:8081,
so we recommend you to run HyperCli on your Hyperchain node locally.
Otherwise you need to specify HyperCli’s --host and --port parameters
with Hyperchain node IP and JSON-RPC port for remote execution.

Sample Contract 1 - Set/Get Hash

Here is a sample contract which implements setHash and getHash
functionality.

contract Anchor{
 mapping(bytes32 => bytes32) hashMap;

 function setHash(bytes32 key,bytes32 value) returns(bool,bytes32){
 if(hashMap[key] != 0x0){
 return (false,"the key exist");
 }
 hashMap[key] = value;
 return (true,"Success");
 }

 function getHash(bytes32 key) returns(bool,bytes32,bytes32){
 if(hashMap[key] == 0x0){
 return (false,"the key is not exist",0x0);
 }
 return (true,"Success",hashMap[key]);
 }
}

Compiling Contract

You can get contract’s bytecode with a simple CLI command if you’ve
installed solc. Meanwhile, you can use the following bytecode which
is the compiled result of this contract if you’ve not installed the
solidity compiler.

bytecode

0x606060405261015c806100126000396000f3606060405260e060020a60003504633cf5040a8114610029578063d7fa10071461007b575b610002565b34610002576100ca6004356000818152602081905260408120548190819015156101055750600091507f746865206b6579206973206e6f7420657869737400000000000000000000000090508161012a565b34610002576100ea6004356024356000828152602081905260408120548190156101315750600090507f746865206b657920657869737400000000000000000000000000000000000000610155565b604080519315158452602084019290925282820152519081900360600190f35b60408051921515835260208301919091528051918290030190f35b50505060008181526020819052604090205460019060c860020a665375636365737302905b9193909250565b50506000828152602081905260409020819055600160c860020a6653756363657373025b925092905056

Assuming that your contract file named sample1.sol,
you can get the bytecode with the following command:

solc --bin sample1.sol

Deploying Contract

HyperCli provides a ‘contract deploy’ function, here’s its parameters:

$./hypercli contract deploy --help

NAME:
 hypercli contract deploy - Deploy a contract

USAGE:
 hypercli contract deploy [command options] [arguments...]

OPTIONS:
 --namespace value, -n value specify the namespace, default to global (default: "global")
 --from value, -f value specify the account (default: "000f1a7a08ccc48e5d30f80850cf1cf283aa3abd")
 --payload value, -p value specify the contract payload
 --extra value, -e value specify the extra information
 --simulate, -s simulate execute or not, default to false
 --directory value, -d value specify the contract file directory

You can specify the contract’s bytecode as the value of ‘–payload
option’ to deploy this contract, for example:

./hypercli contract deploy --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x606060405261015c806100126000396000f3606060405260e060020a60003504633cf5040a8114610029578063d7fa10071461007b575b610002565b34610002576100ca6004356000818152602081905260408120548190819015156101055750600091507f746865206b6579206973206e6f7420657869737400000000000000000000000090508161012a565b34610002576100ea6004356024356000828152602081905260408120548190156101315750600090507f746865206b657920657869737400000000000000000000000000000000000000610155565b604080519315158452602084019290925282820152519081900360600190f35b60408051921515835260208301919091528051918290030190f35b50505060008181526020819052604090205460019060c860020a665375636365737302905b9193909250565b50506000828152602081905260409020819055600160c860020a6653756363657373025b925092905056

This command means HyperCli deploys the contract from the account
address 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd. Though HyperCli has
some default values for its parameters, you can also specify them
explicitly.

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xb1b7d4f083ac65679ddd31a9b864fc8ca1ec75eee2f7a46cca1b223eae94527c","vmType":"EVM","contractAddress":"0xbbe2b6412ccf633222374de8958f2acc76cda9c9","gasUsed":69660,"ret":"0x606060405260e060020a60003504633cf5040a8114610029578063d7fa10071461007b575b610002565b34610002576100ca6004356000818152602081905260408120548190819015156101055750600091507f746865206b6579206973206e6f7420657869737400000000000000000000000090508161012a565b34610002576100ea6004356024356000828152602081905260408120548190156101315750600090507f746865206b657920657869737400000000000000000000000000000000000000610155565b604080519315158452602084019290925282820152519081900360600190f35b60408051921515835260208301919091528051918290030190f35b50505060008181526020819052604090205460019060c860020a665375636365737302905b9193909250565b50506000828152602081905260409020819055600160c860020a6653756363657373025b925092905056","log":[]}}

You can get the contract address from the result, in this case, it’s:

0xbbe2b6412ccf633222374de8958f2acc76cda9c9

It will be used later to invoke contract’s functions.

Invoking Contract

HyperCli also provides a ‘contract invoke’ function, here’s its
parameters:

$./hypercli contract invoke --help

NAME:
 hypercli contract invoke - Invoke a contract

USAGE:
 hypercli contract invoke [command options] [arguments...]

OPTIONS:
 --namespace value, -n value specify the namespace, default to global (default: "global")
 --from value, -f value specify the account (default: "000f1a7a08ccc48e5d30f80850cf1cf283aa3abd")
 --payload value, -p value specify the contract payload
 --to value, -t value specify the contract address
 --extra value, -e value specify the extra information
 --simulate, -s simulate execute or not, default to false
 --args value, -a value specify the args of invoke contract

To invoke a contract function, you need to specify at least 2 parameters
in this case:

	payload: payload of the function call

	to: the contract address which you got before

We’ve provided some function calls’ payloads, you can use them directly
for invoking.

setHash

Invoke setHash function to set key1 = value1, and here’s its payload:

0xd7fa10076b6579310076616c75653100

Here’s the contract address you got before:

0xbbe2b6412ccf633222374de8958f2acc76cda9c9

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0xd7fa10076b6579310076616c75653100 --to 0xbbe2b6412ccf633222374de8958f2acc76cda9c9

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xa28350777a964f5ab6f4ef355131c0c241388ac6e8548c191aa5b3b94af95571","vmType":"EVM","contractAddress":"0x00","gasUsed":20477,"ret":"0x00015375636365737300","log":[]}}

getHash

Invoke getHash function to get key1, and here’s its payload:

0x3cf5040a6b65793100

Here’s the contract address you got before:

0xbbe2b6412ccf633222374de8958f2acc76cda9c9

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x3cf5040a6b65793100 --to 0xbbe2b6412ccf633222374de8958f2acc76cda9c9

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0x185dba5451ace5ffcf4c11d10968e1e4ed299eb78ca6ddda65539dfca2fc56df","vmType":"EVM","contractAddress":"0x00","gasUsed":523,"ret":"0x0001537563636573730076616c75653100","log":[]}}

Sample Contract 2 - Simulate Bank

Here is another sample contract which implements asset administration.

contract SimulateBank{
 address owner;
 bytes32 bankName;
 uint bankNum;
 bool isInvalid;
 mapping(address => uint) public accounts;
 function SimulateBank(bytes32 _bankName,uint _bankNum,bool _isInvalid){
 bankName = _bankName;
 bankNum = _bankNum;
 isInvalid = _isInvalid;
 owner = msg.sender;
 }
 function issue(address addr,uint number) returns (bool){
 if(msg.sender==owner){
 accounts[addr] = accounts[addr] + number;
 return true;
 }
 return false;
 }
 function transfer(address addr1,address addr2,uint amount) returns (bool){
 if(accounts[addr1] >= amount){
 accounts[addr1] = accounts[addr1] - amount;
 accounts[addr2] = accounts[addr2] + amount;
 return true;
 }
 return false;
 }
 function getAccountBalance(address addr) returns(uint){
 return accounts[addr];
 }
}

Compiling Contract

You can get contract’s bytecode with a simple CLI command if you’ve
installed solc. Meanwhile, you can use the following bytecode which
is the compiled result of this contract if you’ve not installed the
solidity compiler.

bytecode

0x606060405260405160608061020083395060c06040525160805160a05160018390556002829055600380547f01008084020460ff19909116179055600080546c0100000000000000000000000033810204600160a060020a03199091161790555050506101728061008e6000396000f3606060405260e060020a60003504635e5c06e2811461003f578063867904b41461005c57806393423e9c146100a8578063beabacc8146100d1575b610002565b346100025761013760043560046020526000908152604090205481565b34610002576101496004356024356000805433600160a060020a039081169116141561015d5750600160a060020a03821660009081526004602052604090208054820190556001610161565b3461000257610137600435600160a060020a038116600090815260046020526040902054919050565b3461000257610149600435602435604435600160a060020a0383166000908152600460205260408120548290106101675750600160a060020a0380841660009081526004602052604080822080548590039055918416815220805482019055600161016b565b60408051918252519081900360200190f35b604080519115158252519081900360200190f35b5060005b92915050565b5060005b939250505056

Assuming that your contract file named sample2.sol, you can get the
bytecode with the following command:

solc --bin sample2.sol

Deploying Contract

As mentioned, HyperCli provides a ‘contract deploy’ function, here’s its
parameters:

$./hypercli contract deploy --help

NAME:
 hypercli contract deploy - Deploy a contract

USAGE:
 hypercli contract deploy [command options] [arguments...]

OPTIONS:
 --namespace value, -n value specify the namespace, default to global (default: "global")
 --from value, -f value specify the account (default: "000f1a7a08ccc48e5d30f80850cf1cf283aa3abd")
 --payload value, -p value specify the contract payload
 --extra value, -e value specify the extra information
 --simulate, -s simulate execute or not, default to false
 --directory value, -d value specify the contract file directory

Thus you can specify the contract’s bytecode as the value of ‘–payload
option’, for example:

./hypercli contract deploy --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x606060405260405160608061020083395060c06040525160805160a05160018390556002829055600380547f01008084020460ff19909116179055600080546c0100000000000000000000000033810204600160a060020a03199091161790555050506101728061008e6000396000f3606060405260e060020a60003504635e5c06e2811461003f578063867904b41461005c57806393423e9c146100a8578063beabacc8146100d1575b610002565b346100025761013760043560046020526000908152604090205481565b34610002576101496004356024356000805433600160a060020a039081169116141561015d5750600160a060020a03821660009081526004602052604090208054820190556001610161565b3461000257610137600435600160a060020a038116600090815260046020526040902054919050565b3461000257610149600435602435604435600160a060020a0383166000908152600460205260408120548290106101675750600160a060020a0380841660009081526004602052604080822080548590039055918416815220805482019055600161016b565b60408051918252519081900360200190f35b604080519115158252519081900360200190f35b5060005b92915050565b5060005b939250505056

This command means HyperCli deploys the contract from the account
address 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd. Though HyperCli has
some default values for its parameters, you can also specify them
explicitly.

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0x6790126ca4c072f53d1684dff9e080098db931358d8eca04c833373ae580ed9e","vmType":"EVM","contractAddress":"0xbbe2b6412ccf633222374de8958f2acc76cda9c9","gasUsed":109363,"ret":"0x606060405260e060020a60003504635e5c06e2811461003f578063867904b41461005c57806393423e9c146100a8578063beabacc8146100d1575b610002565b346100025761013760043560046020526000908152604090205481565b34610002576101496004356024356000805433600160a060020a039081169116141561015d5750600160a060020a03821660009081526004602052604090208054820190556001610161565b3461000257610137600435600160a060020a038116600090815260046020526040902054919050565b3461000257610149600435602435604435600160a060020a0383166000908152600460205260408120548290106101675750600160a060020a0380841660009081526004602052604080822080548590039055918416815220805482019055600161016b565b60408051918252519081900360200190f35b604080519115158252519081900360200190f35b5060005b92915050565b5060005b939250505056","log":[]}}

You can get the contract address from the result, in this case, it’s:

0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

It will be used later to invoke contract’s functions.

Invoking Contract

As mentioned, HyperCli provides a ‘contract invoke’ function, here’s its
parameters:

$./hypercli contract invoke --help

NAME:
 hypercli contract invoke - Invoke a contract

USAGE:
 hypercli contract invoke [command options] [arguments...]

OPTIONS:
 --namespace value, -n value specify the namespace, default to global (default: "global")
 --from value, -f value specify the account (default: "000f1a7a08ccc48e5d30f80850cf1cf283aa3abd")
 --payload value, -p value specify the contract payload
 --to value, -t value specify the contract address
 --extra value, -e value specify the extra information
 --simulate, -s simulate execute or not, default to false
 --args value, -a value specify the args of invoke contract

To invoke a contract function, you need to specify at least 2 parameters
in this case:

	payload: payload of the function call

	to: the contract address which you got before

We’ve provided some function calls’ payloads, you can use them directly
for invoking.

Issue Asset

Issue asset for user 0x1234567 with 1000000000, and here’s its payload:

0x867904b40001234567003b9aca00

Here’s the contract address you got before:

0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x867904b40001234567003b9aca00 --to 0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0x9f602fc0c4ac12d383cf765e2931978a0e5daaec666888e242485bd6314e17f9","vmType":"EVM","contractAddress":"0x00","gasUsed":20498,"ret":"0x0001","log":[]}}

Transfer Asset

Transfer from user 0x1234567 to user 0x2345678 with 1 amount, and here’s
its payload:

0xbeabacc8000123456700023456780001

Here’s the contract address you got before:

0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0xbeabacc8000123456700023456780001 --to 0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0x2d779df9db29541102e98ed9996263db42da6c13a2a6ac5c7ba9c606acecba28","vmType":"EVM","contractAddress":"0x00","gasUsed":25733,"ret":"0x0001","log":[]}}

Get Balance

Get balance of user 0x1234567, and here’s its payload:

0x93423e9c0001234567

Here’s the contract address you got before:

0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x93423e9c0001234567 --to 0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xcca7b19dde84bf174243398de4107ee0b783b6e243176e162a2239bae1f475f7","vmType":"EVM","contractAddress":"0x00","gasUsed":353,"ret":"0x003b9ac9ff","log":[]}}

Get balance of user 0x2345678, and here’s its payload:

0x93423e9c0002345678

Here’s the contract address you got before:

0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

Now you can run the command as follows:

./hypercli contract invoke --from 000f1a7a08ccc48e5d30f80850cf1cf283aa3abd --payload 0x93423e9c0002345678 --to 0x1e548137be17e1a11f0642c9e22dfda64e61fe6d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0x04b82a4fcdadcf102d559b4eb6a29030f7ef29195f40a5f9b986021b48b48552","vmType":"EVM","contractAddress":"0x00","gasUsed":353,"ret":"0x0001","log":[]}}

Transaction Delivery

HyperCli also provides transaction related functions, and here’s its
parameters:

$./hypercli tx --help
NAME:
 hypercli tx - transaction related commands

USAGE:
 hypercli tx command [command options] [arguments...]

COMMANDS:
 send send normal transactions
 info query the transaction info by hash
 receipt query the transaction receipt by hash

OPTIONS:
 --help, -h show help

There are 3 sub-commands for HyperCli tx command, we’ll introduce them
with some examples as follows.

Send Transaction

The sub-command ‘send’ is used for sending normal transactions, it has
some parameters as follows:

$./hypercli tx send --help
NAME:
 hypercli tx send - send normal transactions

USAGE:
 hypercli tx send [command options] [arguments...]

OPTIONS:
 --count value, -c value send how many transactions (default: 1)
 --namespace value, -n value specify the namespace to send transactions to (default: "global")
 --from value, -f value specify the account (default: "000f1a7a08ccc48e5d30f80850cf1cf283aa3abd")
 --to value, -t value specify the contract address
 --password value, -p value specify the password used to generate signature (default: "123")
 --amount value, -a value specify the amount to transfer (default: 0)
 --extra value, -e value specify the extra information
 --snapshot value, -s value specify the snapshot ID
 --simulate simulate execute or not

For example, you can use this command to send transactions, it means
send 10 transactions in a row:

./hypercli tx send -c 10

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xefbc9f9b5048337fbaf64047ad5eff03c40c1c76991b0364686ba3620e2c5ea3","vmType":"EVM","contractAddress":"0x00","gasUsed":0,"ret":"0x0","log":[]}}

...
...

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d","vmType":"EVM","contractAddress":"0x00","gasUsed":0,"ret":"0x0","log":[]}}

Please select one txHash in the results, it will be used later to
execute ‘info’ and ‘receipt’ sub-commands. In this case, we select this
txHash:

0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d

Transaction Info

The sub-command ‘info’ is used for getting a transaction’s information,
it has some parameters as follows:

./hypercli tx info --help
NAME:
 hypercli tx info - query the transaction info by hash

USAGE:
 hypercli tx info [command options] [arguments...]

OPTIONS:
 --hash value specify the tx hash used to query the detailed information
 --namespace value, -n value specify the namespace to query transaction information (default: "global")

For example, you can use this command to get the transaction’s
information with the txHash you got before:

./hypercli tx info --hash 0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","hash":"0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d","blockNumber":"0xf","blockHash":"0x2592e0f3e1f156effe93325a60b1190533be2053aa102eb182bd64f95b28080a","txIndex":"0x0","from":"0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd","to":"0x6201cb0448964ac597faf6fdf1f472edf2a22b89","amount":"0x8","timestamp":1512022032747286761,"nonce":5475154203949975728,"extra":"","executeTime":"0x5","payload":"0x0"}}

Transaction Receipt

The sub-command ‘receipt’ is used for getting a transaction’s receipt,
it has some parameters as follows:

$./hypercli tx receipt --help
NAME:
 hypercli tx receipt - query the transaction receipt by hash

USAGE:
 hypercli tx receipt [command options] [arguments...]

OPTIONS:
 --hash value specify the tx hash used to query the transaction receipt
 --namespace value, -n value specify the namespace to query transaction receipt (default: "global")

For example, you can use this command to get the transaction’s receipt
with the txHash you got before:

./hypercli tx receipt --hash 0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d

You’ll see these information if HyperCli command executed properly.

{"jsonrpc":"2.0","namespace":"global","id":1,"code":0,"message":"SUCCESS","result":{"version":"1.3","txHash":"0xc47b64ddad2be542bfdc5164d447317f5152142ac7961c88332b25f04b31783d","vmType":"EVM","contractAddress":"0x00","gasUsed":0,"ret":"0x0","log":[]}}

Transaction Flow

This document outlines the transactional mechanism from a transaction
initialized by client to final updated into the blockchain ledger. The
scenario includes the client that initiating the transaction and the
consensus peer A (also called validate peer, VP) directly connected to
it. The client interacts with the blockchain ledger by sending
transactions through the SDK (Java supported) with the VP-A; the VP-A
fully connected with other VP B, C and D… , while VP-A has two backup
nodes a1 and a2 (also called non-validate peer, NVP) . [image: image0]

Assumption

This flow assumes that a channel is set up and running. The application
user has registered and enrolled with the organization’s certificate
authority (CA) and received back necessary cryptographic material
(SDKCert) , which is used to authenticate to the blockchain network.

The smart contract (including the initial state and all the related
functions) has been deployed on the blockchain peers in the working
namespace.

Client initiates a transaction

What’s happening? - Client is sending a transaction request (calling one
of the methods in the smart contract). The request targets VP-A, through
which it goes into blockchain network.

The client initializes a HyperchainAPI object by calling the interface
of the SDK. During initialization, the SDK requests the VP-A with the
SDKCert and the public key to obtain the TCert needed for initiating the
transaction. After that, client generates a transaction by calling the
Transaction interface of the SDK. The SDK firstly signs the
transaction with the private key specified by the client, then signs the
message with the private key corresponding to the TCert after the
transaction is encapsulated in the JSONRPC protocol. HTTP/HTTPS
“short” connection and WebSocket “long” connection is supported during
the SDK and representative peer. [image: image1]

Peer accepts transaction & sends to the blockchain network

VP-A performs TCert authentication as soon as it receives the
transaction. The peer only processes the request that passed the
validation of TCert. Then the API module of the peer will do the
following transaction verification:

	The transaction throughput has not exceed the configuration of rate
limit;

	The transaction proposal is well formed (Verify the legality of the
transaction field, like the legitimacy of the timestamp);

	It has not been submitted already in the past (replay-attack
protection);

	The signature of transaction is valid (ECDH & SM2 supported).

After passing all the aforementioned verification, the transaction will
be submitted to the consensus module, and the consensus module will
broadcast it to all VPs in the entire network.

Consensus of transaction: ordering, validating, writing

The transaction goes through the three-phase protocol the Consensus
Algorithm (RBFT):

	Pre-Prepare The primary peer (master peer among all VPs) orders
tansactions chronologically by channel, and creates block of
transactions in a certain period of time (or a certain number). And
then, primary broadcasts the block to all VPs. [image: image2]

	Prepare Replicas (another name of all VPs used in consensus) make
confirmation and pre-execute the transactions in the block. Then
they broadcast the result hash.

	Commit Replicas write the block, update in the blockchain ledger.
[image: image3]

All the illegal transactions found after pre-executing will be recorded
into the database of illegal transactions instead of blockchain ledger.
The blockchain ledger is a ledger of blocks including all valid
transactions.

Furthermore, all VPs will push the block to all the respectively
connected NVPs after the block is successfully updated in blockchain
ledger.

Transaction Receipt SDK implements timely query in the result of
deploying transaction in the Transaction interface, that is,
transaction receipt. The configuration of the number of transactions and
packaging time (used in ordering) set in Blockchain network will affect
the latency of transaction.

Consensus

1. Overview

Consensus mechanism is the foundation of blockchain consistency, it
ensures that all consensus nodes (or say validating peer, VP) execute
transactions in the same order and then write into exactly the same
ledgers. Accounting nodes(or say non-validating peer, NVP) which connect
to one or more VP(s) can only synchronize ledger information from its
connected VP(s), so NVP don’t participate in consensus while NVP can
forward transactions to VP(s) received from client.

Hyperchain supports the pluggable consensus mechanism and provides
different consensus algorithms for different scenarios of the
blockchain. Current version has implemented the improved algorithm of
PBFT [http://www.usenix.net/legacy/publications/library/proceedings/osdi2000/castro/castro.pdf]:
Robust Byzantine Fault Tolerance (RBFT), the idea of this algorithm
comes from many classic papers (especially
Aardvark [https://www.usenix.org/legacy/event/nsdi09/tech/full_papers/clement/clement.pdf]).
Hyperchain will continue to support other consensus algorithms such as
RAFT later.

After received transcations from clients, the API layer parses out the
transactions and forwards to the consensus module. Consensus module
receives and stores the transactions into local transaction pool
(TxPool). TxPool takes the role of caching transactions and packaging
blocks so it is implemented as a sub-module of consensus module. In
addition, consensus module needs to maintain a consensus database to
store some variables required by the algorithm for autonomous recovery
after the system is crashed. For example, the RBFT algorithm needs to
maintain consensus information such as View, PrePrepare, Prepare, and
Commit.

[image: image0]

2. RBFT related parameters

In a consensus network of N nodes (N> = 4), RBFT can tolerate at most f
Byzantine faults which:

\[f=\lfloor \frac{N-1}{3} \rfloor\]

The number of nodes that can guarantee consensus is:

\[quorum=\lceil \frac{N+f+1}{2} \rceil\]

3. RBFT normal case

The normal case of RBFT ensures that each consensus node in blockchain
processes the transactions from the client in the same order. RBFT
requires at least 3f + 1 nodes to tolerate f Byzantine falult which is
the same as PBFT. The figure below is the consensus flow under the
minimum number of cluster nodes, where N = 4 and f = 1. Primary1 is the
master node which is dynamically elected by the consensus node, and is
responsible for sorting and packing the transactions sent from the
client. Replica2, 3 and 4 are backup nodes. All Replica nodes execute
the transaction with the same logic and are able to participate in the
election of new primary node when the primary node fails.

Process of normal case

The consensus of RBFT retains PBFT’s original three-phase submission
flow (PrePrepare, Prepare, Commit) and inserts important transaction
validation session which not only guarantees the consensus on the
transaction execution sequence but also gurantees the consensus on block
validation results.

[image: image1]

RBFT inserts important transaction validation session into native PBFT
normal case operations. Primary will validate block immidiately after
packing the transactions, and then include the validation result into
the PrePrepare message for the whole network broadcast, so PrePrepare
message contains both the ordered Transaction information and block
validation result. After receiving a PrePrepare message from primary,
the backup nodes check the legitimacy of the message. After passing the
legality check, backup node broadcasts Prepare message which indicates
that the backup node agrees with primary’s sorting result. The backup
node starts to validate the batch after receiving (quorum-1) Prepare
messages and compares the validation result with the validation result
of primary’s. If consistent, backup broadcasts Commit message which
indicates that the backup node agrees with the validation result of
primary’s, otherwise, directly triggers ViewChange which indicates that
the current node discovers primary’s abnormal behavior. RBFT normal case
operation is divided into the following steps:

	Transaction forward: Client sen transactions to any node
(consensus nodes or accounting nodes) in the blockchain. Accounting
nodes need to forward the transactions received from clients to its
connected consensus nodes and the consensus nodes broadcast
transactions received from clients or accounting nodes to all other
consensus nodes, so the transaction pool for all consensus nodes
maintains a complete list of transactions;

	PrePrepare: Primary packs transactions according to the policies
below: User can customize the batch timeout and the packed batch size
according to demand. Primary triggers the package event when it
collects more than batchsize transactions during the batch timeout or
it dosen’t collect batchsize transactions when batch timeout happens.
Primary packs the transactions into blocks according to the received
chronological order, then validates and computes the execution
result, and finally writes the ordered transaction information
together with the validation result into the PrePrepare message to be
broadcast to all consensus nodes which starts the three-phase
processing flow;

	Prepare: After receiving the PrePrepare message from the primary,
backup node first checks the legitimacy of the message(such as
current view and block number information). If the check passed,
backup nodes broadcast Prepare message to all consensus node;

	Commit: After receiving the (quorum-1) Prepare message and the
corresponding PrePrepare message, the backup node validates the batch
and compares the validation result with the validation result of
primary which is written in the PrePrepare message. If consistent,
the backup node broadcasts Commit message which indicates that backup
node agrees with the validation result of primary, otherwise,
directly triggers the ViewChange event which indicates that the
current node discovers primary’s abnormal behavior;

	Write Block: All consensus nodes write the execution result to
the local ledger after receiving quorum Commit messages.

By adding a validation mechanism in the consensus module, Hyperchain
ensures that every backup node participates in checking all primay’s
ordering results, so backup can discovery primary’s Byzantine behavior
as soon as possible which improves the stability of the system.

Checkpoint

Consensus nodes need to periodically clean up some useless message
caches in order to prevent unlimit message caching during operation.
RBFT collectes garbage by introducing checkpoint mechanism in the PBFT
algorithm and fixedly set the checkpoint size K to 10. The node reaches
a checkpoint after writing into an integer multiple of K and broadcasts
the checkpoint information. After receiving the same checkpoint
information from other quorum-1 nodes, replica reaches a stable
checkpoint, then replica can clean up some of the message cache whose
message number is less than checkpoint index.

Transaction pool(txpool)

Transaction pool(txpool) is the transaction cache place of consensus
node. The existence of txpool on the one hand limits the client’s
sending frequence, on the other hand reduces the bandwidth pressure of
primary. Firstly, by limiting the size of the transaction pool,
consensus node can refuse transactions from clients after the
transaction pool reaches its limit size, so users can maximize
utilization without abnormalities by setting the transaction cache size
for a reasonable assessment of machine performance. Secondly, the
consensus node stores the transactions received from the client into its
own transaction pool and then broadcasts the transactions to other
consensus nodes to ensure that all consensus nodes maintain a complete
transaction list. After primary packed transactions, it only needs to
put the transaction hash list into the PrePrepare message for
broadcasting instead of put the complete transaction list into
PrePrepare for broadcasting, which greatly reduces the pressure of the
egress bandwidth of primary. If the backup node finds that some
transactions are missing before validation, it needs only fetch the
missing entries from primary rather than fetching all the transactions
in the block.

4. RBFT ViewChange

The ViewChange mechanism of RBFT solves the problem that the primary
node may become a Byzantine node. In the RBFT algorithm, nodes
participating in consensus can be divided into Primary node and Replica
nodes according to roles. The most important function of the Primary
node is to package the received transactions according to a specific
strategy, order the transactions, and have all the nodes execute in this
order. However, if the Primary node crashes, goes wrong, or is hacked
(that is, it becomes a Byzantine node), the Replica nodes need to
discover the abnormality of the Primary node in time and elect a new
Primary node. This is a problem that all BFT algorithms must solve in
order to achieve stability.

view

In RBFT, the concept of view has been introduced as same as PBFT. The
view is changed each time a new Primary node is elected. At present,
RBFT chooses the Primary node by rotation, and the view increases
monotonically from zero. The current view and the total number of nodes
N determines the Primary node id:

\[PrimaryId = (view + 1) \bmod N\]

Byzantine behavior that can be detected

Currently, there are mainly two types of Primary‘s Byzantine behavior
that RBFT can detect：

	The Primary node stops working and sending no message；

	The Primary node sends wrong messages.

For scenario 1, being detected could be guaranteed by the nullRequest
mechanism. A properly behaved Primary node will send nullRequest
messages to all Replica nodes periodically to maintain normal connection
when no transaction occurs. If the Replica node does not receive a
nullRequest messages within the specified time, the ViewChange process
is triggered to elect a new Primary node.

For scenario 2, Replica nodes would check the messages sent from the
Primary node, such as the verification result contained in the
PrePrepare message, which is mentioned in the previous section. The
Replica node will directly initiate the ViewChange process to elect a
new Primary node if the messages fail to pass the verification.

In addition, RBFT provides a configurable option called
ViewChangePeriod. Users can set this option according to their needs.
Each time a certain number of blocks are written, the network would take
a proactive ViewChange process to rotate the Primary node. This can
alleviate the additional pressure on the primary node as a package node.
And secondly, all the nodes participating in the consensus can take some
packaging work to ensure fairness.

Process of ViewChange

[image: image2]

In the above figure, Primary 1 is a Byzantine node and the network need
to take ViewChange process. The ViewChange process in RBFT is as follows

	Replica nodes broadcast a ViewChange message to the entire network
after detecting an abnormal behavior of Primary node (without
receiving a nullRequest message on time) or after receiving a
ViewChange message from other f + 1 nodes, and change their view from
v to v + 1;

	In the new view, after receiving N-f ViewChange messages, Primary
node calculates the checkpoint where Primary node would start
executing from in the new view and the transactions to be processed
next, according to the received ViewChange message, then encapsulates
them into the NewView message and broadcasts the message. Finally
Primary node initiates the VcReset;

	After receiving the NewView message, Replica nodes validate the
message. If the message passes validation, Replica nodes initiate the
VcReset. If it does not pass validation, Replica nodes send
ViewChange message to start another round of ViewChange;

	After finishing VcReset, all nodes broadcast FinishVcReset to the
whole network;

	After each node receives N-f FinishVcReset messages, it starts to
process the transactions after the determined checkpoint and finishes
the entire ViewChange process.

Because the communication between the consensus module and the execution
module is asynchronous and execution module may have some useless
validation cache after ViewChange, the consensus module needs to inform
the execution module to clear this useless cache before the end of
ViewChange. The RBFT proactively notifies the execution module through
the VcReset event to clear the cache. The node can finish ViewChange
only after clearing the cache.

5. RBFT Recovery

During the operation of the blockchain network, the execution speed of
some nodes may lag behind that of most nodes due to network jittering,
sudden power failure, disk failure and the like. In this scenario, these
nodes need to be able to recover automatically to continue participating
in subsequent consensus processes. In order to solve this kind of data
recovery problem, the RBFT algorithm provides a mechanism for automatic
recovery of dynamic data (recovery). Node updates its storage status by
actively retrieving information such as the view of all nodes in the
existing consensus network and the latest block information, and finally
synchronizes to the latest status of the entire system. When the node is
going to start up, restart or the node falls behind, it will
automatically enter recovery and synchronize to the latest state of the
entire system.

Process of Recovery

[image: image3]

In the above figure, replica 4 is a backward node and needs to be
recovered. This node’s automatic recovery process in RBFT is as follows:

	At the beginning, replica 4 broadcasts the NegotiateView message to
retrieve the current view of the active nodes;

	The remaining three nodes send NegotiateViewResponse back to replica
4, returning the current view;

	Replica 4 updates its own view after it receives quorum
NegotiateViewResponse messages;

	Replica 4 broadcasts the RecoveryInit message to the remaining nodes
to notify them that replica 4 needs to be recovered, and requests the
checkpoint information and the latest block information of the
remaining nodes;

	After receiving the RecoveryInit message, the active node sends a
RecoveryResponse to return its own checkpoint information and latest
block information to the Replica 4;

	After Replica 4 receives quorum RecoveryResponse messages, it tries
to find the highest checkpoint among these responses, and then
updates its status to this checkpoint point;

	Replica 4 requests PQC data after the checkpoint from the active node
, and finally synchronize to the latest status of the entire network

6. RBFT Node Management

In consortium blockchain, the dynamic addition and deletion of members
is required due to the expansion of the consortium or the withdrawal of
some members, but the traditional PBFT algorithm does not support it. To
make it easier to control addition and deletion of members, RBFT adds
the function to dynamically add and remove nodes without shutting down
the cluster.

Process of Adding nodes

[image: image4]

In the above figure, replica 5 is the node to be added. The process of
dynamically adding this node is as follows:

	Newly added node replica 5 initiates connections to all existing
nodes by reading the configuration file information. After confirming
that all nodes are connected successfully, replica 5 updates its own
routing table and initiates recovery;

	After receiving a connection request from replica 5, the existing
node(including node 1, node 2, node 3 and node 4) confirms that
replica 5 is allowed to join, and then broadcasts an AddNode message
to the entire network, indicating that it agrees replica 5 to join
the consensus network;

	When an existing node receives N AddNode messages (N is the total
number of nodes in the current blockchain consensus network), it
updates its own routing table and then starts to respond to the
replica 5’s consensus message request (before this, All the consensus
message from replica 5 would not be processed);

	After Replica 5 finishs recovery, it broadcasts ReadyForN requests to
existing nodes across the network;

	After receiving the ReadyForN request, the existing node recalculates
N and view after replica 5 joins, and then encapsulates the PQC
message into AgreeUpdateN message and broadcast it to the whole
network;

	There would be a new primary node after Replica 5 joins, and now it’s
still node 1. After receiving N-f AgreeUpdateN messages, node 1 sends
the UpdateN message as the new primary node;

	All nodes in the network check the correctness of the UpdateN message
after receiving it, and proceed to VCReset if there is no problem;

	After completing VCReset, each node broadcasts FinishUpdate message
to the whole network;

	After receiving N-f FinishUpdate messages, all nodes process the
subsequent requests and complete the adding node process.

Ledger

1. Overview

The ledger is an important module in the hyperchain platform and is
responsible for the maintenance and organization of the blockchain
ledger data. Ledger data can be divided into two parts.

	Blockchain data

	Account data

Among them, the blockchain data include:

	block,

	transaction

	receipt

	other data.

This part is what we call the blockchain in the traditional sense. The
latter refers to the collection of all account states on the blockchain,
collectively referred to as world states. Because hyperchain supports
smart contracts, as with Ethereum, it discards Bitcoin’s UTXO model and
uses an account model to organize the data, so this part of the data is
called account data.

Blockchain data is mainly concatenated in blocks. All blocks are chained
sequentially from back to front in a chain, with each block pointing to
its parent block. Block contains a number of transactions, the consensus
module is responsible for unified packaging and sequencing. After
receiving a block, the block chain node executes the transaction in turn
based on the original account status, and during this period reads /
writes the status data of the relevant account. The execution of a
transaction means that the state of the blockchain has undergone a
transition.

Each transaction, in the hyperchain will have a transaction receipt or
illegal transaction records to indicate the final execution result. If
the transaction is a valid transaction, the execution result of the
transaction will be recorded in the transaction receipt after the
execution is completed. Conversely, the cause of the error is recorded
in an illegal transaction record.

The logical relationship between the various parts of the ledger can be
as follows.

[image:]

2. Blockchain data

In this chapter, we describe the relationship between the following data
structures：

	Block

	Transaction

	Receipt

	Chain

	Invalid Transaction Record

The first two types of data structures form “blockchain data” in the
blockchain network, which is the data that needs to be “consensus” in
the blockchain network. The latter three types of data structures are
maintained locally by each node. The above five data structures make up
all the blockchain data in one node.

Block

The block structure can be divided into two parts：

	Header

	Body

The block header mainly contains some blockchain metadata, including:
(1) block height (2) block hash (3) parent block hash (4) world state
hash (5) transaction set hash (6) receipt set hash (7) timestamp (8) log
filtering data.

Block body contains all the transaction data.

The main function of the block is to encapsulate the transaction data
and record the blockchain meta data.

Transaction

The transaction is initiated by an external user and records the
user-specified call information in the transaction.

Transactions can be divided into two categories based on whether smart
contracts are executed：

	normal transaction；

	contract transaction；

	contract deployment

	contract invocation

The former means that the execution of the transaction does not perform
the operation of the smart contract, only the hyperchain token transfer.

The latter that the will trigger smart contract code running.

The latter can be divided to two categories：

	contract deployment transaction

	contract invocation transaction.

Transaction includes these fields：

	Version：Indicating the version of the transaction data
structure, for backward compatibility;

	Transaction initiator：Identification of the initiator of the
transaction, 20 bytes in length;

	Transaction receiver：Identification of the recipient of the
transaction, 20 bytes in length.

	If the transaction type is contract invocation, the field is the
address of the contract to be invoked;

	If the field is empty, it indicates that the transaction type is
contract deployment;

	Calling information:

	If the transaction is a normal transaction, specify the number of
tokens that need to be transferred in the calling information;

	If the transaction is a contract invocation transaction, specify the
function to be called and the calling parameter in the calling
information;

	If the transaction is a contract deployment transaction, You need to
specify the contract’s binary code in the call information;

	Random value：Random uint64;

	Transaction Signature：The user uses his private key to sign
the content of five fields of (1) transaction initiator (2)
transaction receiver (3) call information (4) timestamp (5) random
value, and the generated signature content is filled in the field to
prevent the contents of the transaction been tampered;

	Transaction Hash：Hash the above (1) - (5) fields together with
the transaction signature to obtain a hash value indicating the
transaction;

Receipt

Each legitimate transaction, the results of its execution will be
packaged into a transaction receipt stored in the blockchain.
Transaction receipt includes:

	Version：Indicates the version information defined by the
receipt data structure for backward compatibility;

	Transaction Hash：Transaction hash associated with this
receipt;

	Contract Address：If the transaction is a contract for
deployment contract, the newly deployed contract address is placed in
the field, otherwise the field is empty;

	Execution Result：If the transaction is a contract invocation
transaction, the result of the execution is placed in the field,
otherwise the field is empty;

	Contract Logs：During a smart contract execution, a series of
logs may be generated and the log data is placed in this field;

	Contract Type：Contract type is placed in this field,
EVM(ethereum virtual machine), JVM or something else.

Invalid Transaction Record

Each illegal transaction, the error message will be packaged into an
illegal transaction record, stored in the local node.

Except transaction data related to the illegal record, the specific
causes of the error will also been recorded, for example: (1) the
balance is insufficient (2) the parameters of the contract invocation
illegal (3) call permission is not enough and so on.

Chain

A local node maintains some blockchain metadata for quick query, so in
the hyperchain there is a data structure named chain that records this
data, including：

	Latest parent block hash;

	Latest block hash;

	Latest block number;

	Genesis block number: default genesis block number is 0, but can be
affected by data archieve/restore;

	Transaction amount;

	Extra;

Consensus comparison

After executing all the transactions in a block, local node needs to
compare the “results” with other nodes in the network, and only when
“enough(quorum)” nodes have same result with local node, these results
will be submitted to the database.

The “execution result” of a block consists of the following contents：

	World state hash: During the execution of the transaction, the
world state data will be changed. When all transactions in a block
are executed, the bucket tree is used to perform a hash calculation
on the world state, and the calculation result is the world state
hash.

	Transaction set hash: Using the important field of each
transaction in the block as input to the sha256 algorithm, hash
result represents the entire transaction set. The important fields
are: (1) transaction initiator (2) transaction receiver (3) call
information (4) timestamp (5) random value；

	Receipt set hash: Using the important field for each receipt in
a block as input to the sha256 algorithm, hash result represents the
entire set of receipts. The important fields are as follows: (1) VM
execution counters (2) Execution results (3) VM execution logs

3. World state

The blockchain data mentioned above can in fact be summarized as a
water-flow collection of contract invocation information. The smart
contract needs to read / write the contract status data during the
execution. Now introduce the structure of this part of the data。

Because hyperchain needs to be compatible with EVM (Ethereum Virtual
Machine), and EVM has strong coupling with Ethereum’s account system,
hyperchain’s state is based on Ethereum, and a series of modifications
and optimization have been made.

Account type

Like Ethereum, accounts in hyperchain can be divided into two
categories:

	External Account: The private key of external accounts are
controlled by the users themselves; this type account and can
initiate transaction. Besides, such account does not contain smart
contract codes;

	Contract Account: The contract account contains an executable
smart contract code and has its own storage space for storing its own
state variables. The operation of the smart contract can be triggered
by initiating a transaction with an external account or by another
contract.

Although the two types of accounts differ in logic, but share the same
definition:

The metadata for an account includes the following fields:

	Account address: 20 bytes, generated by the hash function
according to certain input, regardless of hash conflicts, there will
be no two accounts with the same address;

	Balance: The balance indicates the number token owned by the
account. Such tokens can be manipulated through smart contracts or
can be traded by initiating normal transaction transfers;

	State variables hash: A contract account need to store all of its
state variables, a hash value used to represent these state variables
is stored in the field；

	Code hash: a hash to represents contract code;

	Status：the status of contract, normal or frozen；

	Birthday：If the account is a contract account, this block
number when this contract been deployed will be placed in this field;

	Creator：If the account is a contract account, the creator
address will be placed in this field;

	Deployed list: If the account is a external account, all contract
address deployed by itself will been recorded in this list;

[image:]

Except these “simply” data placed in the account metadata, there are (1)
contract source code (2) state variables which require a lot of storage
space data are stored directly to database. Only the hash value is
stored in account metadata.

In fact, contract state variables are a series of key value pairs. In
hyperchain, there is a bucket tree for each contract account to compute
the status hash of the contract state variables.

Each time a transaction is executed and a series of state variables are
modified, these changes can just as input to the bucket tree in order to
quickly calculate the “new” state variables hash。

Account set

[image:]

hyperchain serializes the metadata of an account, using the serialized
binary as the content of an account. All account data can eventually be
converted into a series of kv pairs, the key is the address of the
account, and the value is the metadata serialized content.

For the account set, there will be a global bucket tree for the world
state hash calculation as shown in the figure.

Each account is serialized as a record in the bucket tree, the hash
value of the entire world state is uniformly calculated by that bucket
tree. This hash value, as a state of the world state, is not only one of
the bases for comparison of the consensus stage but will be recorded
later in the block header.

Atomicity

Hyperchain uses the batch tool provided by the underlying database
leveldb to ensure the atomicity of the ledger. Hyperchain uses rbft as a
consensus algorithm, so the entire process is split into 3 phases.
During the execution phase, all changes to the ledger will be pre-stored
in a leveldb batch. When the result of this execution passes the
consensus comparison between nodes, the batch will be removed from the
cache and all changes will be placed on the disk.

Bucket tree

Overview

In hyperchain, the ledger data can be divided into two parts：

	blockchain data

	account data

The blockchain data includes: block, transaction, receipt and other
data. This part is what we call the blockchain in the traditional sense.
All blocks are chained sequentially from back to front in this chain,
with each block pointing to its parent block.

Block contains a number of transactions, the consensus module will be
responsible for the deciding order of the received transactions and
packaged into a block for distribution. After receiving a block, the
block chain node executes the transaction in sequence on the basis of
the original state, and reads/writes status data of the relevant
account during this period. When the execution ends, all account data
are written and changed atomically. The execution of each transaction
means that the blockchain has undergone a state transition.

The state of the blockchain refers to a collection of all the account
states on the blockchain, called world state. As support smart
contracts, like Ethereum, hyperchain abandoned the Bitcoin UTXO model
and used an account model to organize the data, so this part of the data
is called account data.

Therefore, hyperchain’s ledger can be broadly divided into the above two
parts, the structure diagram is as follows.

[image:]

In this article we will not start the discussion of the structure of the
ledger, but to discuss a tree structure used to quickly calculate the
world state hash.

In hyperchain, after each block executed, each node needs to compare
whether the results of the execution is consistent in the third phase of
BFT. In other words, the account data needs to be consistent in each
node. Therefore, the hyperchain uses a bucket tree structure to hash the
account data. The nodes only need to compare the tree hash values to
determine the consistency of the account data.

Note

Bucket tree does not organize and maintain the account data
directly, but only calculates the hash.

Bucket tree has the following characteristics：

	Provides a mechanism to quickly calculate the hash of account data;

	Provides a mechanism for ledger rollback;

The theory of bucket tree in hyperchain is the earliest learned from the
fabric project, a series of reconstruction and optimization, making
the final performance in line with production needs. In the following,
the structure of this tree, the core operations, and the final
performance are described in detail.

Structural analysis

Bucket tree is actually a combination of two different data structures,
the two data structures are：

	merkle tree

	hash table

Therefore, before introducing the structure of bucket tree, we first
briefly introduce these two data structures。

merkle tree

The Merkle tree was introduced many years ago by computer scientist
Ralph Merkle and named with his own name. This data structure is used in
bitcoin networks for verification of data correctness.

In bitcoin networks, the merkle tree is used to summarize all
transactions in a block and to generate a digital fingerprint of the
entire transaction set. In addition, due to the existence of the merkle
tree, it becomes possible to extend a “light node” for simple payment
verification in the case of a Bitcoin chain.

Features

	Merkle tree is a kind of tree, most of them are binary tree, also can
be multi-tree. It has all the characteristics of tree structure;

	Merkle tree leaf node value is the content of the data entry, or the
data entry hash value;

	The value of a non-leaf node is calculated by Hash according to the
information of its child node;

Principle

In bitcoin networks, the merkle tree is built from the bottom up. In the
example below, we first hash the four data entry of ENTRY1-ENTRY4 and
then store the hash value to the corresponding leaf node. These nodes
are Hash0-0, Hash0-1, Hash1-0, Hash1-1

[image:]

Combine two adjacent node’s hash into a single string, and then
calculate the hash of this string.

The result is the parent node’s hash value of these two nodes.

If the number of tree nodes in this layer is a single number, then this
case directly performs hashing on the last remaining tree node, and the
hash of its parent node is the hash of its hash value (for the singular
There are different ways to deal with leaf nodes, and you can copy the
last leaf node to get even number of leaf nodes). Loop repeat the
calculation process, get the last node as the root node, the hash of the
root node is the hash of the entire tree.

If the two trees have the same root hash, the contents of the two trees
must be the same.

The advantage of using the merkle tree is that when the content of a
node changes, it only needs to recalculate the hash of all the tree
nodes in the path from the node to the root node to obtain a hash that
can represent the status of the whole tree value.

It is also because of this feature of the merkle tree that the bucket
tree avoids many unnecessary computational overheads and has the ability
to quickly compute the world state hash.

Hash table

Hash table, also known as hash table, is a very familiar data structure,
is based on the key (key) and direct access to the memory storage
location. In other words, it speeds up lookup by calculating a function
on the key that maps the data of the desired query to a location in the
table to access the record. This mapping function is called a hash
function, the record array is called a hash table.

[image:]

The description about the hash is not repeat here. In the bucket tree,
use the hash table to maintain the original data。

bucket tree

[image:]

Bucket tree consists of two parts: the bottom hash table and the upper
merkel tree. Bucket tree is actually a merkle tree built on the hash
table.

A hash table consists of a series of buckets, each of which contains a
number of entries that have been hashed into the bucket, all of which
are arranged in sequence. Each bucket has a hash value to represent the
state of the entire hash bucket, which is hashed according to the
contents of all the data entries in the bucket.

Except the underlying hashtable, the upper level is a series of merkle
tree nodes. A merkle tree node corresponds to n hash buckets or merkle
tree nodes in the lower level. This n is also called the degree of
aggregation of the merkle tree. The merkle tree node maintains the hash
values of the n child nodes, and the hash value of the merkle tree node
is calculated according to the hash values of the n child nodes.

So continuous iteration, the ultimate tree node is the root node of the
entire tree, the node’s hash value represents the hash of the entire
tree.

The purpose of this design is：

	Using the characteristics of the merkle tree, the computational cost
of re-hashing is minimized every time the tree state changes;

	The use of hash table for the maintenance of the underlying data,
making the data entries evenly distributed;

For example, in the figure above, a new data entry entry5 is
inserted, and the data entry is hashed to a bucket at POS 2. The bucket,
as well as all the nodes from the bucket to the root node are dirty
nodes marked in pink. Recalculation only with these dirty nodes can
gives you a new hash value to represent the new tree state.

Because the bucket tree is a fixed-size tree (that is, the underlying
hash table can not be changed after the tree has been initialized).
Using hash table to distribute data entries evenly can avoid data
aggregation occurs.

In addition, bucket tree has two important tunable parameters：

	capacity

	aggreation

The former indicates the capacity of the hash table. The larger
capacity, more number of data entries that the entire tree can
accommodate. Under the condition of the same degree of aggregation, the
larger capacity, the higher tree height, and more number of tree nodes
in the path from the leaf node to the root node, the number of hash
calculation increases.

The latter represents the number of child nodes corresponding to a
parent node. The larger aggreation, the faster the tree converges.
Under the premise of the same hash table capacity, the tree height is
lower, the number of tree nodes in the path from the leaf node to the
root node is less, and the hash calculation times are reduced. However,
the size of each Merkle tree node is larger, which increases the
database IO overhead.

Bucket

The definition of a hash bucket is made up of a series of data entries,
note that these data entries are sorted by key’s lexicographical order,
each of which represents a user data (which can be optimized to store
only the hash of user data).

type Bucket []*DataEntry

merkle node

The definition of merkle node is as follows. The main field is the list
of children nodes related to it. Each element in this list is a hash
value of a child node.

// MerkleNode merkleNode represents a tree node except the lowest level's hash bucket.
// Each node contains a list of children's hash. It's hash is derived from children's content.
// If the aggreation is larger(children number is increased), the size of a merkle node will increase too.
type MerkleNode struct {
 pos *Position
 children [][]byte
 dirty []bool
 deleted bool
 lock sync.RWMutex
 log *logging.Logger
}

Core operation

The calculation procedure of bucket tree can be divided to four parts：

	Initialize

	Prepare

	Process

	Commit

[image:]

Initialize

In the initialization phase, building tree shape construction, cache
initialization and historical data recovery (from the db read the latest
root node hash)

The tree structure uses user configuration capacity and aggreation two
parameters to construct . The build function is as follows：

var (
 curlevel int
 curSize int = cap
 levelInfo = make(map[int]int)
)
 levelInfo[curlevel] = curSize
 for curSize > 1 {
 parSize := curSize / aggr
 if curSize%aggr != 0 {
 parSize++
 }
 curSize = parSize
 curlevel++
 levelInfo[curlevel] = curSize
 }
 conf.lowest = curlevel
 for k, v := range levelInfo {
 conf.levelInfo[conf.lowest-k] = v
 }

In addition, bucket tree in order to

	increase the efficiency of reading

	to prevent write loss

uses two caches for cache hash bucket and merkle node data.

These two cache are achieved by LRUCache, each update will be
synchronized to update the contents of the cache. So, the during next
hash calculation, bucket tree can hit hot data from the cache and try to
avoid the disk read.

As for the prevention of write loss, since validation and commit
are two separate asynchronous processes in hyperchain, validation of
block 101 may be performed immediately based on the state the validation
process of block 100 proceeds. At this moment, the modification of the
ledger in the execution of the block 100 has not yet been submitted to
the database, so in order to “prevent write loss”, the contents need to
hit from the cache.

If at this moment there is a situation where the capacity of the cache
is too small and the content that which not submitted is driven out.
The result of the validation of the block 101 is inconsistent with other
nodes (usually the primary node). When this happen, this node will enter
recovery procedure and rbft will promise the corecctness.

The bucket cache is used to store the hash bucket data, each hash bucket
is a cache data item. The problem is that a hash bucket itself consists
of a number of data entries, with the running time increasing, the size
of a hash bucket will be larger and larger, resulting in increasing
memory usage.

The merkle node cache is used to store all merkle node data except for
the highest layer. The number of merkle nodes is fixed, and the size of
each node is also capped. Therefore, merkle node cache does not have a
problem that content occupancy is increased.

Prepare

During the preparation phase, the bucket tree receives the modified set
passed in by the user and constructs a dirty set of hash buckets using
the contents of the modified set. Note that in the returned hash bucket,
the internal data items are arranged in ascending lexicographical order.

func newBuckets(prefix string, entries Entries) *Buckets {
 buckets := &Buckets{make(map[Position]Bucket)}
 for key, value := range entries {
 buckets.add(prefix, key, value)
 }
 for _, bucket := range buckets.data {
 sort.Sort(bucket)
 }
 return buckets
}

Process

Process is the hash recalculation phase, can be divided into two parts
(1) dirty hash bucket re-calculation (2) dirty merkle node hash
re-calculation.

[image:]

Dirty hash bucket re-calculation

As shown in the figure above, two new entry data items entry5 and entry6
are inserted in the bucket tree. The hash address obtained by entry5 is
Pos2, and the hash address obtained by entry6 is Pos5.

There is a merge operation in Pos2 to insert the new data and merge with
historical data with the fixed sorting algorithm to reorder, and
ultimately get a new hash bucket, contains all new and old data in
order.

The hash value of each hash bucket is a result of hashing the data in
the whole bucket.

As shown in the figure, Pos2 and Pos5 are two dirty hash buckets. After
the calculation is completed, the corresponding child hash value is set
in the parent node.

Dirty merkle node re-calculation

When the hash bucket calculation is completed, the hash calculation of
the merkle node can be performed. In this step, only the dirty merkle
nodes are hash calculated.

Note that the hash calculation of the merkle node is done
hierarchically.

Each merkle node maintains the hash value of its child node, and if the
child node hash value of the lower layer changes, the latest hash value
is placed in the parent node in the previous calculation. For no change
child node, bucket tree can directly use the history value.

The hash value of each merkle node is a result of hashing all its child
node hashes.

Commit

After the calculation is completed, the latest hash bucket data and
merkle node data needs to be persisted.

In addition, all the hash bucket data, merkle node data will be stored
in the cache as hot data, both to improve data search efficiency, but
also to avoid data write loss.

Smart Contract

1. Introduction

Note

A smart contract is a piece of computer program deployed on the
blockchain that automatically executes the terms. Smart contract can
automatically execute predefined protocols based on outside input
and complete the transfer of relevant status within the blockchain.

In the wide sense, smart contracts also include smart contract
programming languages, compilers, virtual machines, events, state
machines, fault tolerance mechanisms, and more. The most import
components of smart contract is the smart contract programming language
and its execution engine.

Smart contract virtual machines are generally sandboxed for security
reasons, and the entire execution environment is completely
isolated.Smart contracts executed inside virtual machines are not
allowed to access to system resources such as network, file system,
process threads, and so on.

Different smart contracts own different levels of security and richness
of expression. The HyperVM, which is developed independently by the
Hyperchain team, is a general-purpose intelligent contract engine
designed to allow access by many different smart contract engines.
Currently, HyperEVM is compatible with Ethereum’s Solidity language and
HyperJVM, a Java-enabled smart contract execution engine.

2. Smart contract execution engine HyperVM

HyperVM developed by Hyperchain is a pluggable smart contract engine
generic framework that allows different smart contract execution engine
embed.

As shown in the following figure is the schematic diagram of HyperVM
architecture, HyperVM architecture provides smart contract compiler,
interpreter, executor and state management components and other related
major components. Among them, Compiler provides smart contract
compilation related functions, Interpreter and Executor provide smart
contract interpretation and execution related functions, and State
components help contract to operate blockchain ledger. Guard module
provides smart contract security-related mechanisms.

[image: hypervm-architecture]
hypervm-architecture

2.1 HyperEVM

To maximize the open source community’s research and accumulation in
smart contract technologies, enhance the reusability and compatibility
of smart contracts. HyperEVM implementation uses a fully compliant
Ethereum smart contract specification using Solidity as the smart
contract development language and adopt the optimized Ethereum virtual
machine EVM as the default backend execution engine.

The following figure shows the HyperEVM smart contract execution flow:

[image: hyperevm-flow]
hyperevm-flow

HyperEVM executes a transaction, it returns an execution result. The
system stores it in a variable called a transaction receipt, and the
platform client can query the transaction result according to the
current transaction hash.

This process runs as follows:

	HyperEVM received the upper transmission of the transaction, and do
preliminary verification;

	Determine the type of transaction, if it is the disposition of the
contract, go to step 3, otherwise go to step 4;

	HyperEVM create a new contract account to store the contract address
and the compiled code;

	HyperEVM verify transaction parameters and signature information, and
call its execution engine to execute the corresponding smart contract
byte code;

	After the instruction is executed, HyperVM will determine if it is
down normaly, skip Step 2 if not, otherwise go to Step 6;

	Determine whether the shutdown state of HyperVM is normal, and if it
is normal, stop execution; otherwise, go to Step 7;

	Undo operation, the state should also rollback.

The instruction set execution module is the core of HyperEVM execution
component.The execution of the instruction module has two
implementations, namely bytecode-based execution and more complex and
efficient Just-in-time compilation.

Bytecode implementation is relatively simple, HyperEVM virtual machine
have an instruction execution unit. The instruction execution unit will
always try to execute the instruction set. When the designated time is
not completed, the virtual machine will interrupt the calculation logic
and return a timeout error message to prevent the execution of malicious
code in the smart contract.

JIT execution is relatively more complex, instant compilation also known
as timely compilation, real-time compilation, is a form of dynamic
compilation is a way to improve the efficiency of the program. In
general, there are two ways to run a program: static compilation and
dynamic transliteration. Statically compiled programs are all translated
into machine code before execution, while literal translation is
performed while translation is performed. The real-time compiler mixes
both, compiling the source code sentence by sentence, but caches
translated code to reduce performance penalties. Compare to the static
compiled code, compiled code on the fly can handle delayed binding and
enhance security. JIT execution model mainly includes the following
steps:

	All the information related to the smart contract is encapsulated in
the contract object, and then find out whether the contract object
stored and compiled by the hash of the code.There are four common
status of the contract object, namely: unknown, compiled, ready to
execute through JIT, error.

	If the contract status is ready for execution through the JIT,
HyperEVM selects the JIT executor to execute the contract. During
execution, the virtual machine will further compile the compiled
smart contract into a machine code and optimize the push and jump
instructions.

	If the contract status is unknown, HyperEVM first needs to check if
the virtual machine is forcing the JIT to execute, and if so, it will
be compiled sequentially and executed by the JTI instruction.
Otherwise, open a separate thread to compile, the current program is
still compiled by ordinary bytecode. Next time the virtual machine
encounters the same encoded contract again during execution, the
virtual machine directly selects the optimized contract. As a result
of the optimization of the instruction set of such a contract, the
efficiency of the execution and deployment of the contract can be
greatly improved.

3. Usage of Smart contract

3.1 Smart Contract Based on the Solidity

Write a contract

The Solidity-based smart contract is similar to a JavaScript program and
consists of a series of variables and related functions. Below is a
smart contract that simulates simple accumulator functionality. We use
this as an example to briefly introduce the basic components of a
Solidity smart contract.

contract Accumulator{
 uint32 sum = 0;
 function increment(){
 sum = sum + 1;
 }

 function getSum() returns(uint32){
 return sum;
 }

 function add(uint32 num1,uint32 num2) {
 sum = sum+num1+num2;
 }
}

Accumulator contract description:

	Solidity-based smart contracts begin with the keyword contract,
similar to the keyword class in Java and other languages;

	The contract can have variables and functions inside, the sum is a
simple variable uint32 type, Solidity smart contract also supports
map and other complex collection types;

	The contract allows the definition of the implementation of the
function function keyword definition;

Reference to [Solidiy official website]
(https://solidity.readthedocs.io/en/develop/) for detailed specification
of smart contracts based on the Solidity language.

Compile the contract

Hyperchain’s smart contracts can be compiled either with the official
Solidity compiler or using the smart contract JSON-RPC interface
provided by Hyperchain (this scenario requires installing the Solidity
compiler sloc on the host where Hyperchain installed).

The command which call Hyperchain to compile the solidity smart contract
as follows:

curl -X POST --data
'{
 "jsonrpc":"2.0",
 "namespace":"global",
 "method":"contract_compileContract",
 "params":["contract_code"],
 "id":1
}'

The contract compilation call returned as follows:

{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "abi": [
 "[{\"constant\":false,\"inputs\":[{\"name\":\"num1\",\"type\":\"uint32\"},{\"name\":\"num2\",\"type\":\"uint32\"}],\"name\":\"add\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"constant\":false,\"inputs\":[],\"name\":\"getSum\",\"outputs\":[{\"name\":\"\",\"type\":\"uint32\"}],\"payable\":false,\"type\":\"function\"},{\"constant\":false,\"inputs\":[],\"name\":\"increment\",\"outputs\":[],\"payable\":false,\"type\":\"function\"}]"
],
 "bin": [
 "0x60606040526000805463ffffffff1916815560ae908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d14605e578063d09de08a146084575b6002565b346002576000805460e060020a60243560043563ffffffff8416010181020463ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b34600257605c6000805460e060020a63ffffffff821660010181020463ffffffff1990911617905556"
],
 "types": [
 "Accumulator"
]
 }
}

The content corresponding to the field bin is the bytecode
representation of the contract, and the bin will be used for subsequent
deployment.

Deploy the contract

Hyperchain deploy solidity contract command is as follows:

curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"contract_deployContract", "params":[{
"from":"0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc ",
"nonce":5373500328656597,
"payload":"0x60606040526000805463ffffffff1916815560ae908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d14605e578063d09de08a146084575b6002565b346002576000805460e060020a60243560043563ffffffff8416010181020463ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b34600257605c6000805460e060020a63ffffffff821660010181020463ffffffff1990911617905556",
"signature":"0x388ad7cb71b1281eb5a0746fa8fe6fda006bd28571cbe69947ff0115ff8f3cd00bdf2f45748e0068e49803428999280dc69a71cc95a2305bd2abf813574bcea900",
"timestamp":1487771157166000000
}],"id":"1"}'

Deploy contract execution is returned as follows, where the result field
is the address of the contract in the blockchain, and the contract
address needs to be specified for subsequent execution call to the
contract.

{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x406f89cb205e136411fd7f5befbf8383bbfdec5f6e8bcfe50b16dcff037d1d8a"
}

Call contract

The Hyperchain invocation command is as follows, where payload is
the encoding result of the function in the invocation contract and its
parameter value, and to is the address of the invoked contract.

curl localhost:8081 --data

'{
 "jsonrpc":"2.0",
 "namespace":"global",
 "method": "contract_invokeContract",
 "params":[{
 "from":"0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "nonce":5019420501875693,
 "payload":"0x3ad14af300010002",
 "signature":"0xde467ec4c0bd9033bdc3b6faa43a8d3c5dcf393ed9f34ec1c1310b0859a0ecba15c5be4480a9ad2aaaea8416324cb54e769856775dd5407f9fd64f0467331c9301",
 "simulate":false,
 "timestamp":1487773188814000000,
 "to":"0x313bbf563991dc4c1be9d98a058a26108adfcf81"
 }],
 "id":"1"
}'

The contract call will immediately return the hash value of the
transaction to the client, and later query the execution result of the
specific transaction according to the hash value of the transaction.

{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"0xd7a07fbc8ea43ace5c36c14b375ea1e1bc216366b09a6a3b08ed098995c08fde"
}

The other contract operation methods and specifications of methods
parameters are detailed in: [Hyperchain API Documentation] ()

P2P

1. Overview

The P2P module is the underlying Hyperchain network communication
module. It guarantees the data transmission security of the
communication link. The user can configure whether to enable TLS
security and enable data transmission encryption (or replace the data
encryption algorithm) through the configuration file. In this module,
the physical connection (Network layer) is separated from the logical
connection. The overall architecture of the module is as follows:

[image: p2p_architecture.001]

2. Hypernet

As the underlying communication infrastructure of Hyperchain, Hypernet
provides network communication services to the upper layer by
registering slots. Its main functions include establishment of
communication links, data transmission, link security, and link activity
control. It has two important members Server and Client. The
overall structure is as follows:

[image: hypernet.001]

Server

In Hypernet, the Server is responsible for registering network slots,
listening for services, and distributing various types of messages from
the Client.

Network Slot

As the main mechanism of Hypernet to communicate with the upper layer,
the slot is actually a multi-dimensional thread-safe map, which maps the
relevant methods to different message processors for processing.

Slots as server members, with a set of slot that correspond to different
namespaces, process messages from different namespaces, respectively.

Client

Client corresponds with the Server, mainly used to handle different
message sending requests. Usually a Client corresponds to several
different remote Server (because a node will be connected to multiple
remote peer), and communicates with different servers which will
distribute message to different namespace slot to deal with.

TLS

Transport layer security of Hyperchain, default enable, which USES the
TLSCA certificate issued by the Hyperchain to carry out secure
communication, which guarantees the security of information and
communications from the transport layer. Further, this option is
optional.

TLS guarantees the security of information transmission at the transport
layer. It is the most common implementation standard for network
transmission and is adopted in almost all network security transmission.

3. P2PManager

P2PManager is used to allocate PeerManager in different
namespaces, it has only one global instance.

PeerManager

PeerManager is mainly responsible for the following sections:

	Provide different external message sending service interfaces;

	Post message to Hyperchain message middlewareeventhub;

	Use PeerManagerEventHub message middleware distributes and
manages the control messages of PeerManager to maintain the state
of the entire logical network and process more complicated message
logic.

In the entire network, the node can be called Node or Peer, the
following look at the difference between the two.

Peer

All logical remote nodes are called peer, a remote node corresponds to a
peer, the peer is mainly used for processing the logically message
sending request. Its main function is to encrypt the message, and then
call the corresponding message sending method of Hypernet Client, and
the message needs to be attached namespace information.

Node

Node that is the local node, which is also a logical server, is mainly
responsible for logically message processing of node, decryption of the
message received from the network and then posts decrypted message to
Hyperchain message middleware eventhub. Finally, the message
middleware identifies this type of message should be post to which
module to process, such as consensus module, executor module.

Data transmission encryption

Data Transfer Encryption refers to the encryption of transaction
information and communication messages transmitted over the network.
According to user requirements, all information transmitted on
Hyperchain network can be encrypted. The encryption scheme is similar to
TLS, firstly the node use the ECDH algorithm to negotiate the
corresponding session key, and then the session key is used to encrypt
the service information which is decrypted by the peer. All the
communication between nodes will be encrypted with different session
keys. This is a supplement to the security of the transport layer.
Currently, hyperchain messages can use Symmetric Encryption through
configuration, and can be handled in this way if there is a more
sophisticated message encryption requirement.

Digital Certificate

1.Overview

Hyperchain is a consortium blockchain service platform with granular
granularity of permission control.It requires multi-level CA
certificates for permission control. Access control is divided into two
aspects:

	Node access control

	Trading authority control

First of all, we need to know is that the permissions control is the
Namespace level, that is, each Namespace will have a corresponding
CaManager for CA certificate management and Namespace level permission
control. The following is our PKI system (certificate system) map:

[image: image0]

	root.ca (root certification authority): It represents the trust
anchor in the PKI architecture. Verification of digital certificates
follows the chain of trust. The root CA is the top-level CA in the
PKI hierarchy and is used to issue enrollment certificate authorities
and role certificate authorities.

	eca.ca (enrollment certificate authority): Used to issue nodes node
Enrollment certificates (ecert) and sdk certificates (sdkcert).

	rca.ca (role certificate authority): Used to issue a role certificate
(rcert) to a node.

	ecert.cert (enrollment certificate): An enrollment certificate is a
long-term certificate issued to a node for access to the node. If no
enrollment certificate is available, the node can not join the
Namespace and the enrollment certificate is also used as a
transaction The issuer of the certificate is used to issue the
transaction certificate.

	rcert.cert (role certificate): A role certificate is a long-term
certificate that is issued to a node for authentication of the role
of the node. If there is no role certificate, this node is an NVP and
can not participate in the consensus. Otherwise, it is a VP node.

	sdkcert.cert (sdk certificate): The SDK certificate is issued to the
SDK to determine the basis of the (Tcert) used to authenticate the
SDK and obtain the transaction certificate when receiving the SDK
certificate.

	tcert.cert (transaction certificate): The SDK needs to send the
transaction with the transaction certificate. If there is no
transaction certificate or the certificate verification fails, the
transaction is abandoned.

2.Certificate Introduction

Hyperchian blockchain platform certificates are in line with ITU-T X.509
international standards, it only contains the public key information
without private key information, is publicly available, so X.509
certificate object generally do not need to be encrypted. The format of
the X.509 certificate is usually as follows:

---BEGIN CERTIFICATE---
……PEM encoded X.509 certificate content (omitted)……
---END CERTIFICATE---

The full name of PEM encoding is Privacy Enhanced Mail, which is a
coding standard for confidential email. In general, the process of
encoding information is basically as follows：

	The information is converted to ASCII or other encoding, such as
using DER encoding.

	Use symmetric encryption algorithm to encrypt the encoded
information.

	Use BASE64 to encode the encrypted information.

	The use of some header definitions to encapsulate the information,
mainly contains the necessary information for the correct decoding.

In addition, the Hyperchain blockchain platform certificate specifically
includes the following information:

	X.509 version number: Pointed out that the certificate which version
of the X.509 standard version number will affect some specific
information in the certificate. The current version is 3.

	Certificate holder’s public key: includes the certificate holder’s
public key, the identifier of the algorithm (indicating which
cryptographic system the key belongs to) and other relevant key
parameters.

	the serial number of the certificate: given by the CA assigned to
each certificate a unique number, when the certificate is canceled,
the certificate is actually the serial number of the certificate
issued by the CA CRL (Certificate Revocation List certificate
revocation list, Or certificate black list). This is also the only
reason for the serial number.

	Topic information: The unique identifier of the certificate holder
(or DN-distinguished name) This name should be unique on the
Internet. The DN consists of many parts that look like this:

CN=Bob Allen, OU=Total Network Security Division
O=Network Associates, Inc.
C=US

​ The information indicates the common name of the subject, the name of
the organizational unit, organization and country or certificate holder,
and the location of the service.

	the validity of the certificate: the certificate start date and time
and the date and time of termination; specified certificate valid for
these two periods.

	Certification body: The certificate issuer, which is the X.509 name
of the only CA that issued the certificate. Using this certificate
means trusting the entity that issued the certificate. (Note: In some
cases, such as a root or top-level CA certificate, the publisher
itself issues a certificate)

	Digital signature of the publisher: This is a signature generated
using the publisher’s private key to ensure that the certificate has
not been redirected since it was released.

	Signature algorithm identifier: used to specify the signature
algorithm used by the CA to sign the certificate. The algorithm
identifier is used to specify the public key algorithm and hash
algorithm used by the CA when issuing a certificate.

3.CA Configuration

CA configuration required in the namespace.toml configuration file, the
specific parameters are as follows:

[encryption]
[encryption.ecert]
 eca = "config/certs/eca.cert"
 ecert = "config/certs/ecert.cert"
 priv = "config/certs/ecert.priv"

[encryption.rcert]
 #if you do not have rcert, leave this item blank
 rca = "config/certs/rca.cert"
 rcert = "config/certs/rcert.cert"
 priv = "config/certs/rcert.priv"

[encryption.tcert]
 #Tcert whitelist configuration.
 whiteList = false
 listDir = "config/certs/tcerts"

[encryption.check]
 enable = true #enable ERCert
 enableT = false #enable TCert

First of all, the first six parameters are related to the configuration
change Namespace certificate path, namely eca, ecert and ecert
corresponding private key, rcar, rcert and rcert corresponding private
key.

And the TCert configuration, the platform supports the TCert whitelist
policy, that is, when the whiteList = true, the TCert whitelist
policy is enabled, and the TCert certificate under the listDir parameter
configuration is an immediately available transaction certificate. On
the other hand, when the whiteList is false, the whitelist policy is
not enabled. Only when the validity of the transaction certificate is
verified and the transaction certificate is determined to be the node
and the transaction certificate promulgated under the Namespace can the
verification be fully verified.

The last two parameters are configured switch parameters, enable is
used to open the enrollment certificate and the role of the certificate
check switch. EnableT is uesd to open the transaction certificate
verification switch configuration, only when the parameter is set to
true Before the transaction certificate verification. The dynamic switch
configuration also makes the block chain more flexible.

4.Certificate acquisition and verification process

4.1 ECert and RCert

4.1.1 Acquisition

Enrollment certificates and role certificates are mainly issued under
the control of the line, a Certgen certificate issuance tool for
certificate generation.

4.1.2 Verification

If the ECert and RCert check switches are turned on, the specific
verification flow is as follows:

[image: image1]

ECert and RCert exchanged certificates and authenticated the certificate
when the node handshake the connection for the first time to determine
whether the node is allowed to enter the chain and the role information
of the connected node.

4.2 TCert

TCert acquisition and verification of the flow chart as shown below:

[image: image2]

4.2.1 Acquisition

First, the SDK or the external application needs to send a GetTcert
message to the connected node. The message needs to carry the SDKCert to
authenticate the SDK or the external application. After the
authentication is passed, the TCert certificate is generated and
promulgated.

4.2.2 Verification

If the SDK or the external application acquires the TCert successfully,
the following transaction needs to carry the relevant transaction
certificate to the relevant node for verification. Only after the
transaction certificate is verified, the next transaction execution will
be performed.

Namespace

1.Overview

Hyperchain achieves a partitioned consensus on internal transactions in
blockchain network by the Namespace mechanism. Users of the Hyperchain
platform can differentiate business transactions by namespace. Nodes in
the same Hyperchain consortium blockchain network form sub-blockchain
networks in namespace-size based on the services they participate in.
Namespaces achieve business-level privacy protection through physical
level isolation of business transaction consensus, distribution and
storage .

2.Cluster Architecture

Namespaces can be dynamically created, and individual Hyperchain nodes
can participate in one or more namespaces according to their business
needs. The following figure shows the overall cluster architecture of
the namespace mechanism: six nodes participate in two namespaces. Node1,
node2, node4 and node5 form namespace1, and node2, node3, node5 and
node6 form namespace2. Node1 and node4 only participate in namespace1,
node3 and node6 only participate in namespace2, while node2 and node4
participate in two namespaces at the same time. The namespace controls
the dynamic joining and exiting of nodes through CA authentication, and
each node is allowed to participate in one or more namesapces.

The verification, consensus, storage and transmission of transactions
with specific namespace information are performed only among nodes that
participate in the corresponding namespace. Transactions between
different namespaces can be executed in parallel. As shown in the
following figure, Node1 can only participate in the verification of the
transactions in namespace1 and the corresponding ledger maintenance.
Node2 can simultaneously participate in transaction execution and
account maintenance of namespace1 and namespace2. However, the ledgers
of namespace1 and namespace2 in node2 are not accessible to each other.

[image: image0]

3.Node Architecture

Hyperchain’s single node with the partition consensus mechanism
will include a NamespaceManager object. NamespaceManager is the
key management component of the partition consensus mechanism, which is
responsible for a series of life-cycle state operations such as
registering, starting, stopping and de-registering a specific namespace.

NamespaceManager contains multiple namespaces, in addition to
JvmManager and BloomFilter.

In particular：

	JvmManager is responsible for managing the jvm executor, and
starting JvmManager or not should be configured in the configuration
file;

	BloomFilter is a bloomFilter for transactions, which is mainly
responsible for detecting duplicate transactions and preventing
replay attacks.

One of the partitions is called a namespace, and each namespace is
isolated from each other, including the execution space and data storage
space. Each node joins the namespace named global by default. Each
namespace contains key components such as consenter,
executor, eventHub, peerManager, caManager,
requestProcessor, etc.. And these key components implement consensus
service, transaction execution and storage, asynchronous interaction
among modules, inter-node communication, identity authentication,
transaction processing for the respective namespace blockchain.

[image: image1]

To be specific:

	consenter provides consensus services and currently supports the
RBFT algorithm, which is responsible for sequencing the transactions
to ensure the consistency of the hyperchain nodes in the same
namespace;

	executor is responsible for the invocation of the smart contract
in the namespace and the maintenance of the ledger;

	eventHub is an event bus, which is a message transit center for
asynchronous interaction between various key components in the
namespace;

	peerManager provides node communication management, is
responsible for network communication between namespace members;

	caManager is a certificate authority, which is responsible for
the identity authentication on the Internet;

	requestProcessor is a request processing component, which is
responsible for processing JSON-RPC messages and eventually invokes
the corresponding api via reflection.

[image: image2]

4.Transaction Flow

After the introduction of namespace, hyperchain node’s transaction
execution flow has been changed. The client can send the transaction to
the corresponding namespace. After the transaction is passed to the
hyperchain platform, the json rpc service will first conduct preliminary
work on parameter checking and signature verifying. After that, the json
rpc service forwards the request to the NamespaceManager. The
NamespaceManager will send the transaction to the specific namespace
according to the namespace field in the request. Transactions between
different namespaces can execute concurrently. The corresponding
namespace will call requestProcessor to process transactions, and
firstly check the parameters of the request. If there is no problem, the
corresponding processing function is called by reflection and the result
could be returned.

[image: image3]

Cryptography Algorithm

1.Overview

Hyperchain blockchain platform to support multi-level cryptography
encryption to ensure data security, the use of the following
cryptographic algorithms to ensure data security issues:

	Elliptic curve digital signature:secp256k1,secp256r1

	Symmetric encryption algorithm:3DES,AES

	Key exchange:ECDH

	Hash:Keccak-256

2. Elliptic curve digital signature

Elliptic Curve Digital Signature Algorithm (ECDSA) is a simulation of
Digital Signature Algorithm (DSA) using [Elliptic Curve Cryptography
(ECC). ECDSA became ANSI standard in 1999 and became the IEEE and NIST
standards in 2000. It was accepted by the ISO in 1998 and some of the
other standards that include it are also under ISO’s consideration.
Unlike the discrete logarithm problem (DLP) and the integer
factorization problem (IFP), the elliptic curve discrete logarithm
problem (ECDLP) has no solution to the subexponential time. Therefore,
the unit bit strength of elliptic curve cryptography is higher than that
of other public key systems. Elliptic curve graphics as shown below:

[image: image0]

The Hyperchain blockchain uses the secp256k1 curve to sign and verify
the platform transaction to ensure the correctness and completeness of
the transaction. At the same time, the platform supports the use of
secp256r1 curve to sign messages between nodes to verify the integrity
and correctness of message communication between nodes. Node message
signature is pluggable, you can open it through the configuration
file.the configuration file in the namespace.toml:

[encryption.check]
sign = true #enable Signature

That is, when sign = true, you need to verify the signature of
messages between nodes, otherwise you do not need to verify.

3.Symmetric encryption algorithm

The Hyperchain blockchain platform supports both AES and 3DES symmetric
encryption algorithms to ensure ciphertext transfer between nodes.

3DES, also known as Triple DES, is a mode of the DES encryption
algorithm that uses three 56-bit keys to encrypt 3DES data three times.
The Data Encryption Standard (DES) is a well-established encryption
standard in the United States that uses symmetric key cryptography. DES
uses a 56-bit key and cryptographic block method, whereas in the
cryptographic block method, the text is divided into 64 Bit-sized text
blocks are then encrypted. 3DES is safer than the original DES.
Encryption algorithm, which is specifically implemented as follows: Let
Ek () and Dk () represent the encryption and decryption process of the
DES algorithm, K represents the key used by the DES algorithm, M
represents the plaintext, and C represents the ciphertext:

3DES Encryption Process：C=Ek3(Dk2(Ek1(M)))
3DES Decryption Process：M=Dk1(EK2(Dk3(C)))

AES, also known as Advanced Encryption Standard, is a block encryption
standard used by the U.S. federal government. The AES algorithm is based
on permutation and permutation operations, and AES uses several
different methods to perform permutation and permutation operations. AES
is an iterative, symmetric-key-group password that uses 128, 192, and
256-bit keys and encrypts and decrypts data with 128-bit (16-byte)
packets. Unlike public key password use key pairs, symmetric key
passwords use the same key to encrypt and decrypt data. The encrypted
data returned by the block password has the same number of bits as the
input data. Iterative encryption uses a loop structure in which the
input data is repeatedly replaced and replaced.

In addition,Hyperchain blockchain platform supports symmetric encryption
algorithm configuration option to encrypt node messages, configured
under namespace.toml:

[encryption.security]
algo = "3des" # Selective symmetric encryption algorithm (pure,3des or aes)

Support pure, 3des and aes three parameters:

	pure:do not perform any encryption, in plain text

	3des:3des encryption and decryption

	aes:aes encryption and decryption

4.Key exchange algorithm

ECDH is a combination of ECC and DH algorithms for key negotiation. The
exchange parties can negotiate a key without sharing any secrets. ECC is
a cryptosystem based on the discrete logarithm problem of elliptic
curve. Given a point P and an integer k on the elliptic curve, it is
easy to solve Q = kP. Given a point P, Q, we know that Q = kP , Find the
integer k is indeed a problem. ECDH is built on this math puzzle.

In addition, Hyperchain exchanges keys when the node handshake for the
first time and generates shared keys for each other. This key is the
symmetric encryption key between the nodes.

5.Hash algorithm

Hash algorithm, Hyperchain platform using Keccak256 algorithm for Hash
calculation, the results of the settlement for the signature of the
summary, but also can be used for address calculation.

JSON-RPC API

1. JSON-RPC Overview

JSON-RPC is a stateless, light-weight remote procedure call(RPC) protocol. It is transport agnostic in that the concepts can be used within the same process, over sockets, over http, or in many various
message passing environments. It uses JSON [http://www.json.org/] (RFC 4627 [http://www.ietf.org/rfc/rfc4627.txt]) as data format. A rpc call is represented by sending a Request object to a Server. The Request object has the following members:

	jsonrpc

	A String specifying the version of the JSON-RPC protocol. MUST be exactly “2.0”.

	method

	A String containing the name of the method to be invoked. Method names that begin with the word rpc followed by a period character (U+002E or ASCII 46) are reserved for rpc-internal methods and extensions and MUST NOT be used for anything else.

	params

	A Structured value that holds the parameter values to be used during the invocation of the method. This member MAY be omitted.

	id

	An identifier established by the Client that MUST contain a String, Number, or NULL value if included. If it is not included it is assumed to be a notification. The value SHOULD normally not be Null and Numbers SHOULD NOT contain fractional parts.

When a rpc call is made, the Server MUST reply with a Response object.
The Response object has the following members:

	jsonrpc

	A String specifying the version of the JSON-RPC protocol. MUST be exactly “2.0”.

	result

	This member is REQUIRED on success. This member MUST NOT exist if there was an error invoking the method. The value of this member is determined by the method invoked on the Server.

	error

	This member is REQUIRED on error. This member MUST NOT exist if there was no error triggered during invocation. The value for this member MUST be an Object including code field and message field.

	id

	This member is REQUIRED. It MUST be the same as the value of the id member in the Request Object. If there was an error in detecting the id in the Request object (e.g. Parse error/Invalid Request), it MUST be Null.

2. Hyperchain JSON-RPC API Design

Hyperchain JSON-RPC API consists of seven services:

	Transaction service, the method name prefix is "tx".

	Contract service, the method name prefix is "contract".

	Block service, the method name prefix is "block".

	Archive service, the method name prefix is "archive".

	Event subscription service, the method name prefix is "sub".

	Node service, the method name prefix is "node".

	Cert service, the method name prefix is "cert".

Hyperchain JSON-RPC API design bases on JSON-RPC 2.0 specification, all
the requests are POST. The Request object has the following members:

	jsonrpc: A String specifying the version of the JSON-RPC protocol. MUST be exactly “2.0”.

	namespace: A String specifying namespace name. This request will be sent to this namespace to handle.

	method: A String containing the name of the method to be invoked. The format is: [service prefix]_[method name].

	params: A Structured value that holds the parameter values to be used during the invocation of the method. This member MAY be omitted.

	id: An identifier established by the Client that MUST contain a String, Number.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"block_latestBlock","namespace":"global","params":[],"id":1}' localhost:8081

The Response object has the following members:

	jsonrpc: A String specifying the version of the JSON-RPC
protocol. MUST be exactly “2.0”.

	namespace: A String specifying which namespace this response
is sent from.

	code: Status code. If successful, the value is 0, others
status code see the form below。

	message: Status message. If successful, the value is SUCCESS,
otherwise, the value is error detail message.

	result: The data returned by the method invoked on the
Server. This member doen’t exist if there was an error invoking the
method.

	id: The same as the value of the id member in the Request
Object.

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.4",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.4",
 "hash": "0xf57a6443d08cda4a3dfb8083804b6334d17d7af51c94a5f98ed67179b59169ae",
 "blockNumber": "0x3",
 "blockHash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778652973000000,
 "nonce": 3573634504790373,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x81053a70004000c00300010002000500010001c8"
 }
]
 }
}

If the method call succeeds, the members returned including:
jsonrpc, namespace, id, code, message, result.
And the code value is 0, message value is SUCCESS, so the client
can determine the success of the method call through the values of these
two fields.

If the method call failed, the members returned including: jsonrpc,
namespace, id, code, message. And the code is
non-zero value, message value is error message. Status code
definition:

	code

	implication

	0

	Request successfully

	-32700

	Parse error, invalid JSON was
received by the server. An error
occurred on the server while
parsing the JSON text.

	-32600

	Invalid request, the JSON sent is
not a valid Request object.

	-32601

	The method does not exist / is not
available.

	-32602

	Invalid method parameter(s).

	-32603

	Internal JSON-RPC error.

	-32000

	Internal Hyperchain error or the
node does not install solidity
environment.

	-32001

	The data for the query does not
exist.

	-32002

	The account is out of balance.

	-32003

	Invalid transaction signature.

	-32004

	Contract deploy failed.

	-32005

	Contract invoke failed.

	-32006

	System is too busy.

	-32007

	duplicate transaction was received
by the server.

	-32008

	Not enough permission to operate
contract.

	-32009

	The (contract) account does not
exist.

	-32010

	The namespace does not exist.

	-32011

	No block generated on the chain. It
may return When querying latest
block.

	-32012

	The event client subscribed does
not exist. (Reserved code)

	-32013

	It returns when making snapshot or
data archive happen unexpected
error.

	-32098

	Invalid TCert or missing TCert when
sending request to node.

	-32099

	Failed to get TCert.

3. JSON-RPC Methods

Transaction

	tx_getTransactions

	tx_getDiscardTransactions

	tx_getTransactionByHash

	tx_getTransactionByBlockHashAndIndex

	tx_getTransactionByBlockNumberAndIndex

	tx_getTransactionsCount

	tx_getTxAvgTimeByBlockNumber

	tx_getTransactionReceipt

	tx_getBlockTransactionCountByHash

	tx_getBlockTransactionCountByNumber

	tx_getSignHash

	tx_getTransactionsByTime

	tx_getDiscardTransactionsByTime

	tx_getBatchTransactions

	tx_getBatchReceipt

Contract

	contract_compileContract

	contract_deployContract

	contract_invokeContract

	contract_getCode

	contract_getContractCountByAddr

	contarct_maintainContract

	contract_getStatus

	contract_getCreator

	contract_getCreateTime

	contract_getDeployedList

Block

	block_latestBlock

	block_getBlocks

	block_getBlockByHash

	block_getBlockByNumber

	block_getAvgGenerateTimeByBlockNumber

	block_getBlocksByTime

	block_getGenesisBlock

	block_getChainHeight

	block_getBatchBlocksByHash

	block_getBatchBlocksByNumber

Subscription

	sub_newBlockSubscription

	sub_newEventSubscription

	sub_getLogs

	sub_newSystemStatusSubscription

	sub_getSubscriptionChanges

	sub_unSubscription

Node

	node_getNodes

	node_getNodeHash

	node_deleteVP

	node_deleteNVP

Certificate

	cert_getTCert

4. JSON-RPC API Reference

tx_getTransactions

Returns a list of transactions in blocks from start block number to end block number.

Parameters

	<Object>

	from: <blockNumber> - Start block number.

	to: <blockNumber> - End block number.

from must be less than or equal to, otherwise returns error.

Type <blockNumber> can be:

	Decimal integer.

	Hex string.

	The string "latest" for the latest block.

Returns

	[<Transaction>] - the valid Transaction object has the following members:

	version: <string> - Platform version number.

	hash: <string>, 32 Bytes - Hash of the transaction.

	blockNumber: <string> - Block number where this transaction was in.

	blockHash: <string>, 32 Bytes - Hash of the block where this transaction was in.

	txIndex: <string> - Transaction index in the block.

	from: <string>, 20 Bytes - Address of the sender.

	to: <string>, 20 Bytes - Address of the receiver.

	amount: <string> - Transfer amount.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	nonce: <number> - 16-bit random number.

	extra: <string> - Extra information of this transaction.

	executeTime: <string> - The time it takes to execute this transaction (ms).

	payload: <string> - The data send along with deploying contract, invoking contract and upgrading contract.

Example1: Nomal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactions", "params": [{"from": 1, "to": 2}], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "result": [
 {
 "version": "1.0",
 "hash": "0x88d5b325dc9042ff92a9fa26ed8c943719bb049ac7022abd09bb85da36f531e4",
 "blockNumber": "0x2",
 "blockHash": "0xc6418753c28ad6d744cb4bbe689521696ba65ad010ce24056b6f8def9fc5cdd5",
 "txIndex": "0x0",
 "from": "0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1486994814684628715,
 "nonce": 7948317390228704,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x60606040526000805463ffffffff19168155609e908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d146056578063d09de08a14607c575b6002565b346002576000805463ffffffff8116600435016024350163ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b3460025760546000805463ffffffff19811663ffffffff90911660010117905556"
 },
 {
 "version": "1.0",
 "hash": "0xf7149a8349f1853d8d713a15935e5059e6f55c2827f0c88f8414dd0402d6760b",
 "blockNumber": "0x1",
 "blockHash": "0x4bab3f9297e737eb197d666a2f08219f94460ace08a8e1ecad87e6e52183bcd5",
 "txIndex": "0x0",
 "from": "0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1486994799163184948,
 "nonce": 2099818402815731,
 "extra": "",
 "executeTime": "0x7",
 "payload": "0x60606040526000805463ffffffff19168155609e908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d146056578063d09de08a14607c575b6002565b346002576000805463ffffffff8116600435016024350163ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b3460025760546000805463ffffffff19811663ffffffff90911660010117905556"
 }
]
}

Example2: Block does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactions", "params": [{"from": 1, "to": 2}], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 71,
 "code": -32602,
 "message": "block number 1 is out of range, and now latest block number is 0"
}

tx_getDiscardTransactions

Returns all the invalid transactions.

Parameters

none

Returns

	[<Transaction>] - the invalid Transaction object has the following members:

	version: <string> - Platform version number.

	hash: <string>, 32 Bytes - Hash of the transaction.

	from: <string>, 20 Bytes - Address of the sender.

	to: <string>, 20 Bytes - Address of the receiver.

	amount: <string> - Transfer amount.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	nonce: <number> - 16-bit random number.

	extra: <string> - Extra information of this transaction.

	payload: <string> - The data send along with deploying contract, invoking contract and upgrading contract.

	invalid: <boolean> - The flag of invalid transaction.

	invalidMsg: <string> - Invalid message of this transaction.

For invalid transaction, invalid value is true, and invalidMsg has following situations:

	DEPLOY_CONTRACT_FAILED - Contract deploy failed;

	INVOKE_CONTRACT_FAILED - Contract invoke failed；

	SIGFAILED - The transaction signature is invalid；

	OUTOFBALANCE - Transfer of account is out of balance;

	INVALID_PERMISSION - Not enough permission to operate this contract;

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_ getDiscardTransactions", "params": [], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "",
 "hash": "0x100ff931204d149f88c0778f6e7b8d4b11ba3c8c720f0cc3e204b46999954ed4",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1482405417011000000,
 "nonce": 6848885244669098,
"extra": "",
 "payload": "0x60606040526002600055600256",
 "invalid": true,
 "invalidMsg": "DEPLOY_CONTRACT_FAILED"
}
]
}

Example2: There is no invalid transactions

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_ getDiscardTransactions", "params": [], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": -32001,
 "message": "Not found discard transactions "
}

tx_getTransactionByHash

Returns the information about a transaction by transaction hash.

Parameters

	<string>, 32 Bytes - Hash of a transaction.

Returns

	[<Transaction>] - the Transaction object has the following members:

	version: <string> - Platform version number.

	hash: <string>, 32 Bytes - Hash of the transaction.

	blockNumber: <string> - Block number where this transaction was in.

	blockHash: <string>, 32 Bytes - Hash of the block where this transaction was in.

	txIndex: <string> - Transaction index in the block.

	from: <string>, 20 Bytes - Address of the sender.

	to: <string>, 20 Bytes - Address of the receiver.

	amount: <string> - Transfer amount.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	nonce: <number> - 16-bit random number.

	extra: <string> - Extra information of this transaction.

	executeTime: <string> - The time it takes to execute this transaction (ms).

	payload: <string> - The data send along with deploying contract, invoking contract and upgrading contract.

	invalid: <boolean> - The flag of invalid transaction.

	invalidMsg: <string> - Invalid message of this transaction.

For invalid transaction, invalid value is true, and invalidMsg has following situations:

	DEPLOY_CONTRACT_FAILED - Contract deploy failed;

	INVOKE_CONTRACT_FAILED - Contract invoke failed;

	SIGFAILED - The transaction signature is invalid;

	OUTOFBALANCE - Transfer of account is out of balance;

	INVALID_PERMISSION - Not enough permission to operate this contract;

Example1: Query valid transaction

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":"tx_getTransactionByHash", "params":["0xe652e25e617c5f193b240c0d8ff1941a8cfb1d15434eb3830892b7a8389730aa"], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "hash": "0xe652e25e617c5f193b240c0d8ff1941a8cfb1d15434eb3830892b7a8389730aa",
 "blockNumber": "0x4",
 "blockHash": "0x6ea0c80c1532c273c124511e364fc0a9225e0d129e53249f8e26752ee7d7d989",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1482405601747000000,
 "nonce": 6788653222523786,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x606060405260008055602d8060146000396000f3606060405260e060020a6000350463be1c766b8114601c575b6002565b34600257600060026000908155600256"
 }
}

Example2: Query invalid transaction

Request
curl -X POST --data '{"jsonrpc":"2.0","method":"tx_getTransactionByHash","params":["0x1f6dc4c744ce5e8a39e6a19f19dc27c99d7efd8e38061e80550bf5e7ab1060e1"],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.3",
 "hash": "0x1f6dc4c744ce5e8a39e6a19f19dc27c99d7efd8e38061e80550bf5e7ab1060e1",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1509448178302000000,
 "nonce": 1166705097783423,
 "extra": "",
 "payload": "0x6060604052600080553415601257600080fd5b5b6002600090815580fd5b5b5b60918061002d6000396000f300606060405263ffffffff7c0100600035041663be1c766b8114603c575b600080fd5b3415604657600080fd5b604c605e565b60405190815260200160405180910390f35b6000545b905600a165627a7a723058201e24ee668219357c2daa85cc0d2b3b31c192431783315ea37ed69c9e80a100e90029",
 "invalid": true,
 "invalidMsg": "DEPLOY_CONTRACT_FAILED"
 }
}

Example3: The transaction requested does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":"tx_getTransactionByHash", "params":[" 0x0e707231fd779779ce25a06f51aec60faed8bf6907e6d74fb11a3fd585831a7e"], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": -32001,
 "message": "Not found transaction 0x0e707231fd779779ce25a06f51aec60faed8bf6907e6d74fb11a3fd585831a7e"
}

tx_getTransactionByBlockHashAndIndex

Returns information about a transaction by block hash and transaction index position.

Parameters

	<string>, 32 Bytes - Hash of a block.

	<number> - Transaction index position. This value can be decimal integer or hex string.

Returns

	<Transaction> - the members of Transaction object see Valid Transaction.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionsByBlockHashAndIndex","params": ["0xd198976fa8b4ca2de6b1b137552b84dc08b7cdcbebbf9388add88f4710fd2cf9", 0], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "hash": "0xe81d39df11779c7f83e6073cc659c7ee85708c135b6557d318e765b9f938c02f",
 "blockNumber": "0x2",
 "blockHash": "0xd198976fa8b4ca2de6b1b137552b84dc08b7cdcbebbf9388add88f4710fd2cf9",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x3a3cae27d1b9fa931458b5b2a5247c5d67c75d61",
 "amount": "0x0",
 "timestamp": 1481767474717000000,
 "nonce": 8054165127693853,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x6fd7cc16007b00"
 }
}

Example2: The block requested does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionsByBlockHashAndIndex","params": ["0xd198976fa8b4ca2de6b1b137552b84dc08b7cdcbebbf9388add88f4710fd2cf9", 0], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 71,
 "code": -32001,
 "message": "Not found block 0xd198976fa8b4ca2de6b1b137552b84dc08b7cdcbebbf9388add88f4710fd2cf9"
}

tx_getTransactionByBlockNumberAndIndex

Returns information about a transaction by block number and transaction index position.

Parameters

	<blockNumber> - Block number. See type Block Number.

	<number> - Transaction index position. This value can be decimal integer or hex string.

Returns

	<Transaction> - the members of Transaction object see Valid Transaction.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionByBlockNumberAndIndex", "params": [2,0], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "hash": "0xe81d39df11779c7f83e6073cc659c7ee85708c135b6557d318e765b9f938c02f",
 "blockNumber": "0x2",
 "blockHash": "0xd198976fa8b4ca2de6b1b137552b84dc08b7cdcbebbf9388add88f4710fd2cf9",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x3a3cae27d1b9fa931458b5b2a5247c5d67c75d61",
 "amount": "0x0",
 "timestamp": 1481767474717000000,
 "nonce": 8054165127693853,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x6fd7cc16007b00"
 }
}

Example2: The block requested does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionsByBlockNumberAndIndex", "params": [2,0], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 71,
 "code": -32602,
 "message": "block number 2 is out of range, and now latest block number is 0"
}

tx_getTransactionsCount

Returns the number of transactions on the chain.

Parameters

none

Returns

	<Object>

	count: <string> - The number of transactions.

	timestamp: <number> - The unix timestamp for response (ns).

Example

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionsCount", "params": [], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 71,
 "code": 0,
 "message": "SUCCESS":,
 "result": {
 "count": "0x9",
 "timestamp": 1480069870678091862
 }
}

tx_getTxAvgTimeByBlockNumber

Returns the average execution time of all transactions in the given block number.

Parameters

	<Object>

	from: <blockNumber> - Start block number. See type Block Number.

	to: <blockNumber> - End block number. See type Block Number.

from must be less than or equal to, otherwise returns error.

Returns

	<string> - the average execution time of all transactions (ms).

Example

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTxAvgTimeByBlockNumber", "params": [{"from":10, "to":19}], "id": 71}'

Response
{
 "id":71,
 "jsonrpc": "2.0",
 "namespace":"global",
 "code": 0,
 "message": "SUCCESS",
 "result": "0xa9"
}

tx_getTransactionReceipt

Returns the receipt of a transaction by transaction hash.

Parameters

	<string>, 32 Bytes - Hash of a transaction.

Returns

	<Receipt> - the Receipt object has the following members:

	version: <string> - Platform version number.

	txHash: <string>, 32 Bytes - Hash of the transaction.

	vmType: <string> - The execution engine type used by this transaction execution, this value is EVM OR JVM.

	contractAddress: <string>, 20 Bytes - The contract address created, if the transaction was a contract creation, otherwise 0x00.

	gasUsed: <number>- The amount of gas used by this specific transaction alone.

	ret: <string> - Contract compling code OR contract execution results.

	log: [<Log>] - Array of Log. The Log object has following members:

	address: <string>, 20 Bytes - Contract address by which this event log is generated.

	topics: [<string>] - Array of 32 Bytes string. Topics are order-dependent. Each topic can also be an array of string with “or” options. The first topic is the unique identity of the event.

	data: <string> - Log message or data.

	blockNumber: <number> - Block number where this transaction was in.

	blockHash: <string>, 32 Bytes - Hash of the block where this transaction was in.

	txIndex: <number> - Transaction index position in the block.

	index: <number> - Event log index position in all logs generated in this transaction.

If the transaction requested has not been confirmed, the error code returned is -32001. If an error occurs during the transaction processing, the error may be:

	OUTOFBALANCE - Transfer of account is out of balance, code is -32002;

	SIGFAILED - The transaction signature is invalid, code is -32003;

	DEPLOY_CONTRACT_FAILED - Contract deploy failed, code is -32004;

	INVOKE_CONTRACT_FAILED - Contract invoke failed, code is -32005;

	INVALID_PERMISSION - Not enough permission to operate this contract, code is -32008;

Example1: The transaction has not been confirmed

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getTransactionReceipt","params":["0x0e0758305cde33c53f8c2b852e75bc9b670c14c547dd785d93cb48f661a2b36a "],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": -32001,
 "message": "Not found receipt by 0x0e0758305cde33c53f8c2b852e75bc9b670c14c547dd785d93cb48f661a2b36a"
}

Example2: Deploying contract failed

For this example, we use the following contract to recreate the situation:

contract TestContractor{
 int length = 0;

 modifier justForTest(){
 length = 2;
 throw;
 _;
 }
 function TestContractor()justForTest{
 }

 function getLength() returns(int){
 return length;
 }
}

We use contract compiled code as the value of payload in contract_deployContract , then the deploying contract request is as follows:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"contract_deployContract", "params":[{
"from":"17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"nonce":7021040367249265,
"payload":"0x60606040526000600055346000575b60026000556000565b5b5b603f806100266000396000f3606060405260e060020a6000350463be1c766b8114601c575b6000565b3460005760266038565b60408051918252519081900360200190f35b6000545b9056",
"timestamp":1487042279126000000,
"signature":"0xfc1cb1986dd4ee4a5f8d8238e2f7bac1866aad235d587eb641d76270bf686418310ab7d42dc0f2575aa858a88ae7732cd617281eedb38636e843ff3b49b8f8ab01"}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x33aef7e6bad2ae27c23a8ab44f56aef87042f1f0b02e1b0ee5e8a304705292a6"
}

Next, trying to get information about receipt of this transaction by transaction hash, an error will be returned:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getTransactionReceipt","params":["0x33aef7e6bad2ae27c23a8ab44f56aef87042f1f0b02e1b0ee5e8a304705292a6"],"id":1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":-32004,
 "message":"DEPLOY_CONTRACT_FAILED"
}

Example3: Invoking contract failed

For this example, we use the following contract to recreate the situation:

contract TestContractor{
 int length = 0;

 modifier justForTest(){
 length = 2;
 throw;
 _;
 }
 function TestContractor(){
 }

 function getLength()justForTest returns(int){
 return length;
 }
}

We invoke the method getLength(), then the invoking contract request is as follows:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_invokeContract", "params": [{
"from": "17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"to":"0xaeccd2fd1118334402c5de1cb014a9c192c498df",
"timestamp":1487042517534000000,
"nonce":2472630987523856,
"payload":"0xbe1c766b",
"signature":"0x8c56f025610dd9cb3f4ac346d35978639a536505527b7593d87f3b45c35328637280995ed32f6a6809069da915740b363c1b357cf31a7eb83e05dde0afc4937300"}],"id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":"0x5233d18f46e9c1ed49dbdeb4273c1c1e0eb176efcedf6edb6d9fa59d33d02fee "
}

Next, trying to get information about receipt of this transaction by transaction hash, an error will be returned:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getTransactionReceipt","params":["0x5233d18f46e9c1ed49dbdeb4273c1c1e0eb176efcedf6edb6d9fa59d33d02fee"],"id":1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":-32005,
 "message":"INVOKE_CONTRACT_FAILED"
}

Example4: Invalid transaction signature

In this example, we use Example3 request example, but change the last letter “c” of param from to “0” in order to simulate the situation of illegal signature, then the invoking contract request is as follows:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_invokeContract", "params": [{
"from": "17d806c92fa941b4b7a8ffffc58fa2f297a3bff0",
"to":"0xaeccd2fd1118334402c5de1cb014a9c192c498df",
"timestamp":1481872888621000000,
"nonce":9206467481004664,
"payload":"0xbe1c766b",
"signature":"0x57dfa7f2c2d8c762c9c0e5ef7b1c4dda84b584f36799ab751891c8dc553862145f64d1991441c9460481af4e4231db393744ad3cfd37c8cce74c873002745aa401"}],"id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "id": "SUCCESS",
 "result":"0x621d09cd9d5e9027d9b82c5e1fd911ac31297775dbb0c4dab6c6fcd64310fe23"
}

Next, trying to get information about receipt of this transaction by transaction hash, an error will be returned:

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getTransactionReceipt","params":["0x621d09cd9d5e9027d9b82c5e1fd911ac31297775dbb0c4dab6c6fcd64310fe23"],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": -32003,
 "message": " SIGFAILED "
}

Example5

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "tx_getTransactionReceipt", "params":["0x70376053e11bc753b8cc778e2fbb662718671712e1744980ba1110dd1118c059"], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.3",
 "txHash": "0x70376053e11bc753b8cc778e2fbb662718671712e1744980ba1110dd1118c059",
 "vmType": "EVM",
 "contractAddress": "0x00",
 "ret": "0x0",
 "log": [
 {
 "address": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "topics": [
 "0x24abdb5865df5079dcc5ac590ff6f01d5c16edbc5fab4e195d9febd1114503da"
],
 "data": "0064",
 "blockNumber": 2,
 "blockHash": "0x0c14a89b9611f7f268f26d4ce552de966bebba4aab6aaea988022f3b6817f61b",
 "txHash": "0x70376053e11bc753b8cc778e2fbb662718671712e1744980ba1110dd1118c059",
 "txIndex": 0,
 "index": 0
 }
]
 }
}

tx_getBlockTransactionCountByHash

Returns the number of transactions in a block from a block matching the given block hash.

Parameters

	<string>, 32 Bytes - Hash of a block.

Returns

	<string> - The number of transactions in a block.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":"tx_getBlockTransactionCountByHash", "params": ["0x7a87bd1fb51a86763e9791eab1d5ecca7f004bea1cfcc426113b4625d267f699"], "id": 71}'

Response
{
 "id":71,
 "jsonrpc": "2.0",
 "namespace":"global",
 "code": 0,
 "message": "SUCCESS",
 "result": "0xaf5"
}

Example2: The block requested does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":"tx_getBlockTransactionCountByHash", "params": ["0x7a87bd1fb51a86763e9791eab1d5ecca7f004bea1cfcc426113b4625d267f699"], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 71,
 "code": -32001,
 "message":"Not found block 0x7a87bd1fb51a86763e9791eab1d5ecca7f004bea1cfcc426113b4625d267f699"
}

tx_getBlockTransactionCountByNumber

Returns the number of transactions in a block from a block matching the given block number.

Parameters

	<blcokNumber> - Block number. See type Block Number.

Returns

	<string> - The number of transactions in a block.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":" tx_getBlockTransactionCountByNumber", "params": ["0x2"], "id": 71}'

Response
{
 "id":71,
 "jsonrpc": "2.0",
 "namespace":"global",
 "code": 0,
 "message": "SUCCESS",
 "result": "0xaf5"
}

Example2: The block requested does not exist

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method":" tx_getBlockTransactionCountByNumber", "params": ["0x2"], "id": 71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 71,
 "code": -32602,
 "message": "block number 0x2 is out of range, and now latest block number is 0"
}

tx_getSignHash

Returns transaction content hash string used to sign a transaction by client.

Parameters

	<Object>

	from: <string>, 20 Bytes - Address of the sender.

	to: <string>, 20 Bytes - [optional] Address of the receiver(account address OR contract address). If it’s a contract deployment transaction, needn’t specify this member.

	nonce: <number> - 16-bit random number.

	extra: <string> - [optional] Extra information of this transaction.

	value: <string> - [optional] Transfer amount. Value can not be empty if it’s a normal transfer transaction, otherwise, you needn’t specify this member.

	payload: <string> - [optional] Payload can not be empty if it’s a contract deployment transaction(See contract_deployContract), a contract invoke transaction(See contract_invokeContract) or a contract upgrade transaction(See contract_maintainContract), otherwise, you needn’t specify this member.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

Returns

	<string> - A hash string.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getSignHash", "params":[{
 "from":"0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "nonce":5373500328656597,
 "payload":"0x60606040526000805463ffffffff1916815560ae908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d14605e578063d09de08a146084575b6002565b346002576000805460e060020a60243560043563ffffffff8416010181020463ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b34600257605c6000805460e060020a63ffffffff821660010181020463ffffffff1990911617905556",
 "timestamp":1487771157166000000 }],"id":"1"}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x2e6a644a4ca6a9daba4444995dc0dda039208e642df11db35438d18e7c3b13c3"
}

tx_getTransactionsByTime

Returns a list of valid transactions generated at specific time periods.

Parameters

	<Object>

	startTime: <number> - The start unix timestamp.

	endTime: <number> - The end unix timestamp.

Returns

	[<Transaction>] - the members of Transaction object see Valid Transaction.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"tx_getTransactionsByTime","params":[{"startTime":1, "endTime":1581776001230590326}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [{
 "version": "1.0",
 "hash": "0xbd441c7234e3b83a05c89ed5d548c3d1877306975e271a08e7354d74e45431bc",
 "blockNumber": "0x1",
 "blockHash": "0xa6a4b2df16c7bdeb578aa7de7b05f9b54d96202bdc8414196741842834156ebd",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1481767468349000000,
 "nonce": 1775845467490815,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x606060405234610000575b6101e1806100186000396000f3606060405260e060020a60003504636fd7cc16811461002957806381053a7014610082575b610000565b346100005760408051606081810190925261006091600491606491839060039083908390808284375093955061018f945050505050565b6040518082606080838184600060046018f15090500191505060405180910390f35b346100005761010a600480803590602001908201803590602001908080602002602001604051908101604052809392919081815260200183836020028082843750506040805187358901803560208181028481018201909552818452989a9989019892975090820195509350839250850190849080828437509496506101bc95505050505050565b6040518080602001806020018381038352858181518152602001915080519060200190602002808383829060006004602084601f0104600302600f01f1509050018381038252848181518152602001915080519060200190602002808383829060006004602084601f0104600302600f01f15090500194505050505060405180910390f35b6060604051908101604052806003905b600081526020019060019003908161019f5750829150505b919050565b60408051602081810183526000918290528251908101909252905281815b925092905056"
 }]
}

Example2: There is no data

Request
curl -X POST --data '{"jsonrpc":"2.0","method":"tx_getTransactionsByTime","params":[{"startTime":1681776001230590326, "endTime":1681776001230590326}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": []
}

tx_getDiscardTransactionsByTime

Returns a list of invalid transactions generated at specific time periods.

Parameters

	<Object>

	startTime: <number> - The start unix timestamp.

	endTime: <number> - The end unix timestamp.

Returns

	[<Transaction>] - the members of invalid Transaction object see Invalid Transaction.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":" tx_getDiscardTransactionsByTime","params":[{"startTime":1, "endTime":1581776001230590326}],"id":1}'

Result
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "hash": "0x4e468969d94b92622e385246779d05981ef43869b17c8afedc7e6b5b138ae807",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd",
 "amount": "0x1",
 "timestamp": 1501586411342000000,
 "nonce": 4563214039387098,
 "extra": "",
 "payload": "0x0",
 "invalid": true,
 "invalidMsg": "OUTOFBALANCE"
 }
]
}

tx_getBatchTransactions

Returns a list of transactions by a list of specific transaction hash.

Parameters

	<Object>

	hashs: [<string>] - Array of 32 Bytes string, a list of transaction hash.

Returns

	[<Transaction>] - Array of Transaction object, the members of Transaction object see Valid Transaction.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0","method":"tx_getBatchTransactions","params":[{
 "hashes":["0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4","0x7aebde51531bb29d3ba620f91f6e1556a1e8b50913e590f31d4fe4a2436c0602"]
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "hash": "0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4",
 "blockNumber": "0x2",
 "blockHash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1509440823410000000,
 "nonce": 8291834415403909,
 "extra": "",
 "executeTime": "0x6",
 "payload": "0x0a9ae69d"
 },
 {
 "version": "1.3",
 "hash": "0x7aebde51531bb29d3ba620f91f6e1556a1e8b50913e590f31d4fe4a2436c0602",
 "blockNumber": "0x1",
 "blockHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1509440820498000000,
 "nonce": 5098902950712745,
 "extra": "",
 "executeTime": "0x11",
 "payload": "0x6060604052341561000f57600080fd5b60405160408061016083398101604052808051919060200180519150505b6000805467ffffffff000000001963ffffffff19821663ffffffff600393840b8701840b81169190911791821664010000000092839004840b860190930b16021790555b50505b60de806100826000396000f300606060405263ffffffff7c01006000350416630a9ae69d811460465780638466c3e614606f575b600080fd5b3415605057600080fd5b60566098565b604051600391820b90910b815260200160405180910390f35b3415607957600080fd5b605660a9565b604051600391820b90910b815260200160405180910390f35b600054640100000000900460030b81565b60005460030b815600a165627a7a7230582073eeeb74bb45b3055f1abe89f428d164ef7425bf57a999d219cbaefb6e3c0080002900040005"
 }
]
}

tx_getBatchReceipt

Returns a list of receipt of transactions by a list of specific transaction hash.

Parameters

	<Object>

	hashs: [<string>] - Array of 32 Bytes string, a list of transaction hash.

Returns

	[<Receipt>] - Array of Receipt object, the Receipt object see type Receipt.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"tx_getBatchReceipt","params":[{
 "hashes":["0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4","0x7aebde51531bb29d3ba620f91f6e1556a1e8b50913e590f31d4fe4a2436c0602"]
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "txHash": "0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4",
 "vmType": "EVM",
 "contractAddress": "0x00",
 "ret": "0x0005",
 "log": []
 },
 {
 "version": "1.3",
 "txHash": "0x7aebde51531bb29d3ba620f91f6e1556a1e8b50913e590f31d4fe4a2436c0602",
 "vmType": "EVM",
 "contractAddress": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "ret": "0x606060405263ffffffff7c01006000350416630a9ae69d811460465780638466c3e614606f575b600080fd5b3415605057600080fd5b60566098565b604051600391820b90910b815260200160405180910390f35b3415607957600080fd5b605660a9565b604051600391820b90910b815260200160405180910390f35b600054640100000000900460030b81565b60005460030b815600a165627a7a7230582073eeeb74bb45b3055f1abe89f428d164ef7425bf57a999d219cbaefb6e3c00800029",
 "log": []
 }
]
}

contract_compileContract

Compiles contract and returns compiled solidity code and abi definition.

Parameters

	<string> - The source code.

Returns

	<Object>

	abi: [<string>] - The contract abi definition.

	bin: [<string>] - The compiled solidity code.

	types: [<string>] - The contract name.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"contract_compileContract", "params":["contract Accumulator{ uint32 sum = 0; function increment(){ sum = sum + 1; } function getSum() returns(uint32){ return sum; } function add(uint32 num1,uint32 num2) { sum = sum+num1+num2; } }"],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "abi": [
 "[{\"constant\":false,\"inputs\":[{\"name\":\"num1\",\"type\":\"uint32\"},{\"name\":\"num2\",\"type\":\"uint32\"}],\"name\":\"add\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"constant\":false,\"inputs\":[],\"name\":\"getSum\",\"outputs\":[{\"name\":\"\",\"type\":\"uint32\"}],\"payable\":false,\"type\":\"function\"},{\"constant\":false,\"inputs\":[],\"name\":\"increment\",\"outputs\":[],\"payable\":false,\"type\":\"function\"}]"
],
 "bin": [
 "0x60606040526000805463ffffffff1916815560ae908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d14605e578063d09de08a146084575b6002565b346002576000805460e060020a60243560043563ffffffff8416010181020463ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b34600257605c6000805460e060020a63ffffffff821660010181020463ffffffff1990911617905556"
],
 "types": [
 "Accumulator"
]
 }
}

contract_deployContract

Returns a transaction hash after deploying contract.

Parameters

	<Object>

	from: <string>, 20 Bytes - Address of the creator.

	nonce: <number> - 16-bit ramdom value.

	extra: <string> - [optional] Extra information of this transaction.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	payload: <string> - For solidity contract, if the constructor of contract need parameters, payload value is the complied solidity code and encoded parameters. For java contract, payload value is the byte stream after the class file and the configuration file are compressed.

	signature: <string> - The signature of transaction.

	type: <string> - [optional, default "EVM"] The execution engine type used by this transaction execution, this value is EVM OR JVM.

Returns

	<string>, 32 Bytes - Hash of the transaction.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method":"contract_deployContract", "params":[{
"from":"0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"nonce":5373500328656597, "payload":"0x60606040526000805463ffffffff1916815560ae908190601e90396000f3606060405260e060020a60003504633ad14af381146030578063569c5f6d14605e578063d09de08a146084575b6002565b346002576000805460e060020a60243560043563ffffffff8416010181020463ffffffff199091161790555b005b3460025760005463ffffffff166040805163ffffffff9092168252519081900360200190f35b34600257605c6000805460e060020a63ffffffff821660010181020463ffffffff1990911617905556",
"signature":"0x388ad7cb71b1281eb5a0746fa8fe6fda006bd28571cbe69947ff0115ff8f3cd00bdf2f45748e0068e49803428999280dc69a71cc95a2305bd2abf813574bcea900",
"timestamp":1487771157166000000
}],"id":"1"}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x406f89cb205e136411fd7f5befbf8383bbfdec5f6e8bcfe50b16dcff037d1d8a"
}

contract_invokeContract

Returns a transaction hash after invoking contract.

Parameters

	<Object>

	from: <string>, 20 Bytes - Address of the account invoked the contract.

	to: <string>, 20 Bytes - Address of the contract. You can get contract address through tx_getTransactionReceipt after deploying contract.

	nonce: <number> - 16-bit random value.

	extra: <string> - [optional] Extra information of this transaction.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	payload: <string> - The hash of the invoked method signature and encoded parameters.

	signature: <string> - The signature of transaction.

	simulate: <boolean> - [optional, default false] Determines whether the transaction requires consensus or not, if true, no consensus.

	type: <string> - [optional, default "EVM"] The execution engine type used by this transaction execution, this value is EVM OR JVM.

Returns

	<string>, 32 Bytes - Hash of the transaction.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_invokeContract", "params":[{
"from":"0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"nonce":5019420501875693,
"payload":"0x3ad14af300010002",
"signature":"0xde467ec4c0bd9033bdc3b6faa43a8d3c5dcf393ed9f34ec1c1310b0859a0ecba15c5be4480a9ad2aaaea8416324cb54e769856775dd5407f9fd64f0467331c9301",
"simulate":false,
"timestamp":1487773188814000000,
"to":"0x313bbf563991dc4c1be9d98a058a26108adfcf81"
}],"id":"1"}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"0xd7a07fbc8ea43ace5c36c14b375ea1e1bc216366b09a6a3b08ed098995c08fde"
}

contract_getCode

Returns the compiled contract code by the given contract address.

Parameters

	<string> - The address of contract.

Returns

	<string> - contract code.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"contract_getCode","params": ["0xaeccd2fd1118334402c5de1cb014a9c192c498df"],"id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x606060405236156100565760e060020a600035046301000dd7811461005b5780638e739461146100e55780638f24d79614610107578063ae9f75e314610191578063b30cd67c1461021e578063e01da11e14610289575b610000565b346100005761006e6004356024356102e0565b604051808315158152602001806020018281038252838181518152602001915080519060200190808383829060006004602084601f0104600302600f01f150905090810190601f1680156100d65780820380516001836020036101000a031916815260200191505b50935050505060405180910390f35b34610000576100f56004356103f1565b60408051918252519081900360200190f35b346100005761006e600435602435610409565b604051808315158152602001806020018281038252838181518152602001915080519060200190808383829060006004602084601f0104600302600f01f150905090810190601f1680156100d65780820380516001836020036101000a031916815260200191505b50935050505060405180910390f35b346100005761006e6004356024356044356104b7565b604051808315158152602001806020018281038252838181518152602001915080519060200190808383829060006004602084601f0104600302600f01f150905090810190601f1680156100d65780820380516001836020036101000a031916815260200191505b50935050505060405180910390f35b346100005761026e6004808035906020019082018035906020019080806020026020016040519081016040528093929190818152602001838360200280828437509496506105cf95505050505050565b60408051921515835260208301919091528051918290030190f35b3461000057610296610683565b60405180806020018281038252838181518152602001915080519060200190602002808383829060006004602084601f0104600302600f01f1509050019250505060405180910390f35b6040805160208181018352600080835285815290819052918220541561033e57505060408051808201909152601781527f75736572206973206578697374656420616c726561647900000000000000000060208201526000906103ea565b60018054806001018281815481835581811511610380576000838152602090206103809181019083015b8082111561037c5760008155600101610368565b5090565b5b505050916000526020600020900160005b508590555050506000828152602081815260409182902084815560019081018490558251808401909352601083527f6e6577207573657220737563636573730000000000000000000000000000000091830191909152905b9250929050565b6000818152602081905260409020600101545b919050565b60408051602081810183526000808352858152908190529182208054151561046a5760408051808201909152601181527f75736572206973206e6f7420657869737400000000000000000000000000000060208201526000935091506104af565b600180820180548601905560408051808201909152601381527f7365742062616c616e6365207375636365737300000000000000000000000000602082015290935091505b509250929050565b6040805160208181018352600080835286815290819052828120858252928120835491939115806104e757508054155b1561052b5760408051808201909152601181527f75736572206973206e6f7420657869737400000000000000000000000000000060208201526000945092506105c5565b84826001015410156105765760408051808201909152601481527f616d6f756e74206973206e6f7420656e6f75676800000000000000000000000060208201526000945092506105c5565b60018083018054879003905581810180548701905560408051808201909152601081527f7472616e73666572207375636365737300000000000000000000000000000000602082015290945092505b5050935093915050565b8051600180548282556000828152928392917fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf69081019190602087018215610633579160200282015b82811115610633578251825591602001919060010190610618565b5b506106549291505b8082111561037c5760008155600101610368565b5090565b505060017f7365742055736572496473207375636365737300000000000000000000000000915091505b915091565b6040805160208181018352600082526001805484518184028101840190955280855292939290918301828280156106d957602002820191906000526020600020905b8154815260200190600101908083116106c5575b505050505090505b9056"
}

contract_getContractCountByAddr

Returns the number of contract that has been deployed by given account address.

Parameters

	<string>, 20 Bytes - The address of account.

Returns

	<string> - The number of contract.

Example

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "contract_getContractCountByAddr", "params": ["0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b"], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x3"
}

contarct_maintainContract

Upgrade contract, freeze contract and unfreeze contract.

Note

Only contract deployers have the authority to upgrade contract, freeze contract and unfreeze contract.

Parameters

	<Object>

	from: <string>, 20 Bytes - Address of the account.

	to: <string>, 20 Bytes - Address of the contract. You can get contract address through tx_getTransactionReceipt after deploying contract.

	nonce: <number> - 16-bit random value.

	extra: <string> - [optional] Extra information of this transaction.

	timestamp: <number> - The unix timestamp for when the transaction was generated.

	payload: <string> - [optional] Only upgrade contract operation need to specify this member. Represents the new contract compiled code.

	signature: <string> - The signature of transaction.

	type: <string> - [optional, default "EVM"] The execution engine type used by this transaction execution, this value is EVM OR JVM.

	opcode: This value may be:

	1: Upgrade contract.

	2: Freeze contract.

	3: Unfreeze contract.

Returns

	<string>, 32 Bytes - Hash of the transaction.

Example1: Upgrade contract

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_maintainContract","params":[{
"from": "17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"to":"0x3a3cae27d1b9fa931458b5b2a5247c5d67c75d61",
"timestamp":1481767474717000000,
"nonce": 8054165127693853,
"payload":"0x6fd7cc16007b00",
"signature":"0x19c0655d05b9c24f5567846528b81a25c48458a05f69f05cf8d6c46894b9f12a02af471031ba11f155e41adf42fca639b67fb7148ddec90e7628ec8af60c872c00",
"opcode": 1}],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"0xd7a07fbc8ea43ace5c36c14b375ea1e1bc216366b09a6a3b08ed098995c08fde"
}

Example2: Freeze contract

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_maintainContract","params":[{
 "from": "17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to":"0x3a3cae27d1b9fa931458b5b2a5247c5d67c75d61",
 "timestamp":1481767474717000000,
 "nonce": 8054165127693853,
 "signature":"0x19c0655d05b9c24f5567846528b81a25c48458a05f69f05cf8d6c46894b9f12a02af471031ba11f155e41adf42fca639b67fb7148ddec90e7628ec8af60c872c00",
 "opcode": 2}],
"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"0xd7a07fbc8ea43ace5c36c14b375ea1e1bc216366b09a6a3b08ed098995c08fde"
}

Example3: Unfreeze contract

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_maintainContract","params":[{
"from": "17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
"to":"0x3a3cae27d1b9fa931458b5b2a5247c5d67c75d61",
"timestamp":1481767474717000000,
"nonce": 8054165127693853,
"signature":"0x19c0655d05b9c24f5567846528b81a25c48458a05f69f05cf8d6c46894b9f12a02af471031ba11f155e41adf42fca639b67fb7148ddec90e7628ec8af60c872c00",
"opcode": 3}],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"0xd7a07fbc8ea43ace5c36c14b375ea1e1bc216366b09a6a3b08ed098995c08fde"
}

contract_getStatus

Returns status of a contract by contract address.

Parameters

	<string>, 20 Bytes - The address of contract.

Returns

	<string> - Status of the contract, this value may be:

	normal: Normal status.

	frozen: The contract has been frozen.

	non-contract: The given address is not a contract address. It
may be a normal account address.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_getStatus","params": ["0xbbe2b6412ccf633222374de8958f2acc76cda9c9"],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":" normal"
}

contract_getCreator

Returns the address of contract creator.

Parameters

	<string>, 20 Bytes - The address of contract.

Returns

	<string>, 20 Bytes - The address of contract creator.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_getCreator","params": ["0xbbe2b6412ccf633222374de8958f2acc76cda9c9"],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":" 0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd "
}

contract_getCreateTime

Returns the date and time a contract was created.

Parameters

	<string>, 20 Bytes - The address of contract.

Returns

	<string> - The date and time of contract created.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_getCreateTime","params": ["0xbbe2b6412ccf633222374de8958f2acc76cda9c9"],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":"2017-04-07 12:37:06.152111325 +0800 CST"
}

contract_getDeployedList

Returns a list of deployed contract address by account address.

Parameters

	<string>, 20 Bytes - The address of contract creator.

Returns

	[<string>] - a list of deployed contract address.

Example

Request
curl localhost:8081 --data '{"jsonrpc":"2.0", "namespace":"global", "method": "contract_getDeployedList","params": ["0x000f1a7a08ccc48e5d30f80850cf1cf283aa3abd"],"id": 1}'

Response
{
 "jsonrpc":"2.0",
 "namespace":"global",
 "id":1,
 "code":0,
 "message":"SUCCESS",
 "result":["0xbbe2b6412ccf633222374de8958f2acc76cda9c9"]
}

block_latestBlock

Returns information about the latest block.

Parameters

none

Returns

	<Block> - The Block object has the following members:

	version: <string> - Platform version number.

	number: <string> - The block number.

	hash: <string>, 32 Bytes - Hash of the block.

	parentHash: <string>, 32 Bytes - Hash of the parent block.

	writeTime: <number> - The unix timestamp for when the block was written.

	avgTime: <string> - The average time it takes to execute transactions in the block (ms).

	txCounts: <string> - The number of transactions in the block.

	merkleRoot: <string> - Merkle tree root hash.

	transactions: [<Transaction>] - The list of transactions in the block. The Transaction object see Valid
Transaction.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":" block_latestBlock","params":[],"id":71}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.0",
 "hash": "0xf57a6443d08cda4a3dfb8083804b6334d17d7af51c94a5f98ed67179b59169ae",
 "blockNumber": "0x3",
 "blockHash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778652973000000,
 "nonce": 3573634504790373,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x81053a70004000c00300010002000500010001c8"
 }
]
 }
}

Example2: There is no block on the chain

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":" block_latestBlock","params":[],"id":71}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": -32602,
 "message": "There is no block generated!"
}

block_getBlocks

Returns a list of blocks from start block number to end block number.

Parameters

	<Object>

	from: <blockNumber> - Start block number. See type Block Number.

	to: <blockNumber> - End block number. See type Block Number.

	isPlain: <boolean> - [optional, default false] If true it returns block excluding transactions, if false it returns block including transactions.

from must be less than or equal to, otherwise returns error.

Returns

	[<Block>] - array of Block, the members of Block object see Block.

Example1: Returns block including transactions

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "block_getBlocks", "params": [{"from":2,"to":3}], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.0",
 "hash": "0xf57a6443d08cda4a3dfb8083804b6334d17d7af51c94a5f98ed67179b59169ae",
 "blockNumber": "0x3",
 "blockHash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778652973000000,
 "nonce": 3573634504790373,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x81053a70004000c00300010002000500010001c8"
 }
]
 },
 {
 "version": "1.0",
 "number": "0x2",
 "hash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "parentHash": "0xe287c62aae77462aa772bd68da9f1a1ba21a0d044e2cc47f742409c20643e50c",
 "writeTime": 1481778642328872960,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.0",
 "hash": "0x07d606a25d1eab009f5374950383e9c0697599e6c35999337b969ba356800168",
 "blockNumber": "0x2",
 "blockHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778641306000000,
 "nonce": 1628827117185765,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x6fd7cc1600303a00"
 }
]
 }
]
}

Example2: Returns block excluding transactions

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "block_getBlocks", "params": [{"from":2,"to":3,"isPlain":true}], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c"
 },
 {
 "version": "1.0",
 "number": "0x2",
 "hash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "parentHash": "0xe287c62aae77462aa772bd68da9f1a1ba21a0d044e2cc47f742409c20643e50c",
 "writeTime": 1481778642328872960,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c"
 }
]
}

block_getBlockByHash

Returns information about a block by hash.

Parameters

	<string>, 32 Bytes - Hash of a block.

	<boolean> - If true it returns block excluding transactions, if false it returns block including transactions.

Returns

	<Block> - the members of Block object see Block.

Example1: Returns block including transactions

Request
curl -X POST -data '{"jsonrpc":"2.0","namespace":"global","method":"block_getBlockByHash","params":["0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914", false],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0"
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.0",
 "hash": "0xf57a6443d08cda4a3dfb8083804b6334d17d7af51c94a5f98ed67179b59169ae",
 "blockNumber": "0x3",
 "blockHash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778652973000000,
 "nonce": 3573634504790373,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x81053a70004000c00300010002000500010001c8"
 }
]
 }
}

Example2: Returns block excluding transactions

Request
curl -X POST -data '{"jsonrpc":"2.0","namespace":"global","method":"block_getBlockByHash","params":["0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914", true],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c"
 }
}

block_getBlockByNumber

Returns information about a block by number.

Parameters

	<blockNumber> - The block number. See type Block Number.

	<boolean> - If true it returns block excluding transactions, if false it returns block including transactions.

Returns

	<Block> - the members of Block object see Block.

Example1: Returns block including transactions

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "block_getBlockByNumber", "params": ["0x3", false], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c",
 "transactions": [
 {
 "version": "1.0",
 "hash": "0xf57a6443d08cda4a3dfb8083804b6334d17d7af51c94a5f98ed67179b59169ae",
 "blockNumber": "0x3",
 "blockHash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1481778652973000000,
 "nonce": 3573634504790373,
 "extra": "",
 "executeTime": "0x2",
 "payload": "0x81053a70004000c00300010002000500010001c8"
 }
]
 }
}

Example2: Returns block excluding transactions

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "block_getBlockByNumber", "params": ["0x3", true], "id": 1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "version": "1.0",
 "number": "0x3",
 "hash": "0x00acc3e13d8124fe799d55d7d2af06223148dc7bbc723718bb1a88fead34c914",
 "parentHash": "0x2b709670922de0dda68926f96cffbe48c980c4325d416dab62b4be27fd73cee9",
 "writeTime": 1481778653997475900,
 "avgTime": "0x2",
 "txcounts": "0x1",
 "merkleRoot": "0xc6fb0054aa90f3bfc78fe79cc459f7c7f268af7eef23bd4d8fc85204cb00ab6c"
 }
}

block_getAvgGenerateTimeByBlockNumber

Returns the average generation time of all blocks for the given block number.

Parameters

	<Object>

	from: <blockNumber> - Start block number. See type Block Number.

	to: <blockNumber> - End block number. See type Block Number.

Returns

	<string> - the average generation time of all blocks (ms).

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":" block_getAvgGenerateTimeByBlockNumber","params": [{"from": 10, "to": 19}],"id":71}'

Response
{
 "id":71,
 "jsonrpc": "2.0",
 "namespace":"global",
 "code": 0,
 "message": "SUCCESS",
 "result": "0x32"
}

block_getBlocksByTime

Returns the number of blocks generated at specific time periods.

Parameters

	<Object>

	startTime: <number> - The start unix timestamp.

	endTime: <number> - The end unix timestamp.

Returns

	<Object>

	sumOfBlocks: <string> - The number of blocks.

	startBlock: <string> - The start block number.

	endBlock: <string> - The end block number.

Example1: Normal request

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"block_getBlocksByTime","params":[{"startTime":1481778635567920177, "endTime":1481778653997475900}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "sumOfBlocks": "0x3",
 "startBlock": "0x1",
 "endBlock": "0x3"
 }
}

Example2: Start unix timestamp and end unix timestamp are both more than written unix timestamp of the latest block.

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"block_getBlocksByTime","params":[{"startTime":1481778635567920177, "endTime":1481778653997475900}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": {
 "sumOfBlocks": "0x0",
 "startBlock": null,
 "endBlock": null
 }
}

block_getGenesisBlock

Returns current genesis block number.

Parameters

none

Returns

	<string> - The genesis block number.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getGenesisBlock","params":[],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x8"
}

block_getChainHeight

Returns the current chain height.

Parameters

none

Returns

	<string> - The latest block number.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getChainHeight","params":[],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "0x11"
}

block_getBatchBlocksByHash

Returns a list of blocks by a list of specific block hash.

Parameters

	<Object>

	hashes: [<string>] - Array of block hash.

	isPlain: <boolean> - If true it returns block excluding transactions, if false it returns block including transactions.

Returns

	[<Block>] - Array of Block object, the members of Block object see Block.

Example1: Returns block including transactions

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getBatchBlocksByHash","params":[{
 "hashes":["0x810c92919fba632471b543905d8b4f8567c4fac27e5929d2eca8558c68cb7cf0","0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b"]
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "number": "0x3",
 "hash": "0x810c92919fba632471b543905d8b4f8567c4fac27e5929d2eca8558c68cb7cf0",
 "parentHash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "writeTime": 1509448178829111592,
 "avgTime": "0x0",
 "txcounts": "0x0",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481"
 },
 {
 "version": "1.3",
 "number": "0x2",
 "hash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "parentHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "writeTime": 1509440823930976319,
 "avgTime": "0x6",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481",
 "transactions": [
 {
 "version": "1.3",
 "hash": "0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4",
 "blockNumber": "0x2",
 "blockHash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1509440823410000000,
 "nonce": 8291834415403909,
 "extra": "",
 "executeTime": "0x6",
 "payload": "0x0a9ae69d"
 }
]
 }
]
}

Example2: Returns block excluding transactions

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getBatchBlocksByHash","params":[{
 "hashes":["0x810c92919fba632471b543905d8b4f8567c4fac27e5929d2eca8558c68cb7cf0","0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b"],
 "isPlain": true
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "number": "0x3",
 "hash": "0x810c92919fba632471b543905d8b4f8567c4fac27e5929d2eca8558c68cb7cf0",
 "parentHash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "writeTime": 1509448178829111592,
 "avgTime": "0x0",
 "txcounts": "0x0",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481"
 },
 {
 "version": "1.3",
 "number": "0x2",
 "hash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "parentHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "writeTime": 1509440823930976319,
 "avgTime": "0x6",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481"
 }
]
}

block_getBatchBlocksByNumber

Returns a list of blocks by a list of specific block number.

Parameters

	<Object>

	numbers: [<blockNumber>] - Array of block number. See type Block Number.

	isPlain: <boolean> - If true it returns block excluding transactions, if false it returns block including transactions.

Returns

	[<Block>] - Array of Block object, the members of Block object see Block.

Example1: Returns block including transactions

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getBatchBlocksByNumber","params":[{
 "numbers": ["1","2"]
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "number": "0x1",
 "hash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "parentHash": "0x00",
 "writeTime": 1509440821032039312,
 "avgTime": "0x11",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481",
 "transactions": [
 {
 "version": "1.3",
 "hash": "0x7aebde51531bb29d3ba620f91f6e1556a1e8b50913e590f31d4fe4a2436c0602",
 "blockNumber": "0x1",
 "blockHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0x00",
 "amount": "0x0",
 "timestamp": 1509440820498000000,
 "nonce": 5098902950712745,
 "extra": "",
 "executeTime": "0x11",
 "payload": "0x6060604052341561000f57600080fd5b60405160408061016083398101604052808051919060200180519150505b6000805467ffffffff000000001963ffffffff19821663ffffffff600393840b8701840b81169190911791821664010000000092839004840b860190930b16021790555b50505b60de806100826000396000f300606060405263ffffffff7c01006000350416630a9ae69d811460465780638466c3e614606f575b600080fd5b3415605057600080fd5b60566098565b604051600391820b90910b815260200160405180910390f35b3415607957600080fd5b605660a9565b604051600391820b90910b815260200160405180910390f35b600054640100000000900460030b81565b60005460030b815600a165627a7a7230582073eeeb74bb45b3055f1abe89f428d164ef7425bf57a999d219cbaefb6e3c0080002900040005"
 }
]
 },
 {
 "version": "1.3",
 "number": "0x2",
 "hash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "parentHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "writeTime": 1509440823930976319,
 "avgTime": "0x6",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481",
 "transactions": [
 {
 "version": "1.3",
 "hash": "0x22321358931c577ceaa2088d914758148dc6c1b6096a0b3f565d130f03ca75e4",
 "blockNumber": "0x2",
 "blockHash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "txIndex": "0x0",
 "from": "0x17d806c92fa941b4b7a8ffffc58fa2f297a3bffc",
 "to": "0xaeccd2fd1118334402c5de1cb014a9c192c498df",
 "amount": "0x0",
 "timestamp": 1509440823410000000,
 "nonce": 8291834415403909,
 "extra": "",
 "executeTime": "0x6",
 "payload": "0x0a9ae69d"
 }
]
 }
]
}

Example2: Returns block excluding transactions

Request
curl -X POST --data ' {"jsonrpc":"2.0","method":"block_getBatchBlocksByNumber","params":[{
 "numbers": ["1","2"],
 "isPlain": true
}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "version": "1.3",
 "number": "0x1",
 "hash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "parentHash": "0x00",
 "writeTime": 1509440821032039312,
 "avgTime": "0x11",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481"
 },
 {
 "version": "1.3",
 "number": "0x2",
 "hash": "0x9c41efcc50ec6af6e3d14e1669f37bd1fc0cfe5836af6ab1e43ced98653c938b",
 "parentHash": "0x4cd9f393aabb2df51c09e66925c4513e23f0dbbb9e94d0351c1c3ec7539144a0",
 "writeTime": 1509440823930976319,
 "avgTime": "0x6",
 "txcounts": "0x1",
 "merkleRoot": "0x97b0d9473478886f5b0aee123d5652b15d4ae3ab41cc487cda9d8885cb003481"
 }
]
}

sub_newBlockSubscription

To subscribe a new block event and create filter to notify client. The information of new block will be cached in filter when a new block is generated.

Parameters

	<boolean> - If true, the filter will return the full object Block , if false it will return block hash.

Returns

	<string> - Subscription ID.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_newBlockSubscription","params":[false],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":"0x7e533eb0647ecbe473ae610ebdd1bba6"
}

sub_newEventSubscription

To subscribe a new VM event and create filter to notify client. The VM
event log will be cached when a VM event is triggered.

Parameters

	<Object>

	fromBlock: <number> - [optional, default no limit] Start
block number. This block number should be more than or equal to
current latest block number.

	toBlock: <number> - [optional, default no limit] End block
number. This block number is the future block number that is more
than the start block number.

	addresses: [<string>] - [optional, default no limit] Array of
20 Bytes string, indicates that listen to event generated by
specified address of contract.

	topics: [<string>][<string>] - [optional, default no limit]
two-dimensional array of string, topics which the incoming message’s
topics should match. You can use the following combinations:

	[A, B] = A && B

	[A, [B, C]] = A && (B || C)

	[null, A, B] = ANYTHING && A && B null works as a wildcard

Returns

	<string> - Subscription ID.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_newEventSubscription","params":[{
 "fromBlock":100,
 "addresses": ["000f1a7a08ccc48e5d30f80850cf1cf283aa3abd"]
}],
"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":"0x7e533eb0647ecbe473ae610ebdd1bba6"
}

sub_getLogs

Returns the eligible VM event log.

Parameters

	<Object>

	fromBlock: <number> - [optional, default 0] Start block
number. This block number shouldn’t be less than the genesis block
number.

	toBlock：<number> - [optional, default
the latest block number] End block number. This block number
shouldn’t be more than current latest block number.

	addresses: [<string>] - [optional, default no limit] Array of
20 Bytes string, indicates that listen to event generated by
specified address of contract.

	topics: [<string>][<string>] - [optional, default no limit]
two-dimensional array of string, topics which the incoming message’s
topics should match. You can use the following combinations:

	[A, B] = A && B

	[A, [B, C]] = A && (B || C)

	[null, A, B] = ANYTHING && A && B null works as a wildcard

Returns

	[<Log>] - the Log object has the following members:

	address: <string>, 20 Bytes - Contract address by which
this event log is generated.

	topics: [<string>] - Array of 32 Bytes string. Topics are
order-dependent. Each topic can also be an array of string with
“or” options. The first topic is the unique identity of the event.

	data: <string> - Log message or data.

	blockNumber: <number> - Block number where this
transaction was in.

	blockHash: <string>, 32 Bytes - Hash of the block where
this transaction was in.

	txHash: <string>, 32 Bytes - Hash of the transaction where
this log was in.

	txIndex: <number> - Transaction index position in the
block.

	index: <number> - Event log index position in all logs
generated in this transaction.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_getLogs","params":[{
 "addresses": ["0x313bbf563991dc4c1be9d98a058a26108adfcf81"]
}],
"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":[
 {
 "address":"0x313bbf563991dc4c1be9d98a058a26108adfcf81",
 "topics":["0x24abdb5865df5079dcc5ac590ff6f01d5c16edbc5fab4e195d9febd1114503da"],
 "data":"0064",
 "blockNumber":4,
 "blockHash":"0xee93a66e170f2b20689cc05df27e290613da411c42a7bdfa951481c08fdefb16",
 "txHash":"0xa676673a23f33a95a1a5960849ad780c5048dff76df961e9f78329b201670ae2",
 "txIndex":0,
 "index":0
 }
]
}

sub_newSystemStatusSubscription

To subscribe a new system status event and create filter to notify
client. The information of system status will be cached when a new
system status event is thrown.

Parameters

	<Object>

	modules: [<string>] - [optional, default no limit] Array of
string, modules of system status which the client wants to subscribe.
For example, p2p, consensus, executor and so on.

	modules_exclude: [<string>] - [optional, default no limit]
Array of string, modules of system status which the client doesn’t
want to subscribe.

	subtypes: [<string>] - [optional, default no limit] Array of
string, which type of system status information under the module the
client wants to subscribe. For example, viewchange.

	subtypes_exclude: [<string>] - [optional, default no limit]
Array of string, which type of system status information under the
module the client doesn’t want to subscribe.

	error_codes: [<number>] - [optional, default no limit] Array
of number, specific status information under the module the client
wants to subscribe.

	error_codes_exclude: [<number>] - [optional, default no
limit] Array of number, specific status information under the module
the client doesn’t want to subscribe.

Returns

	<string> - Subscription ID.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_newSystemStatusSubscription","params":[{
 "modules":["executor", "consensus"],
 "subtypes": ["viewchange"],
 "error_codes_exclude": [-1, -2]
}],
"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":"0x7e533eb0647ecbe473ae610ebdd1bba6"
}

sub_getSubscriptionChanges

Polling method for filters. Returns new messages since the last call of
this method.

Parameters

	<string> - Subscription ID.

Returns

	<Array> - Array of messages received since last poll.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_getSubscriptionChanges","params":["0x7e533eb0647ecbe473ae610ebdd1bba6"], "id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":{}
}

sub_unSubscription

To unsubscribe a subscription with given id. This method should be
called when watch is no longer needed.

Parameters

	<string> - Subscription ID.

Returns

	<boolean> - true if the subscription was successfully
unsubscribe, otherwise false.

Example

Request
curl -X POST --data '{"jsonrpc":"2.0", "namespace":"global", "method":"sub_unsubscription","params":["0x7e533eb0647ecbe473ae610ebdd1bba6"], "id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result":true,
}

node_getNodes

Returns information of all nodes.

Parameters

none

Returns

	[<PeerInfo>] - Array of PeerInfo object, the PeerInfo object has
following members:

	id: <number> - The node ID.

	ip: <string> - IP address of the node.

	port: <number> - GRPC port of the node.

	namespace: <string> - Which namespace the node is in.

	hash: <string> - Hash of the node.

	hostname: <string> - Hostname of the node.

	isPrimary: <bool> - If true represents the node is a
primary node, otherwise not.

	isvp: <bool> - If true represents the node is a VP node,
otherwise not.

	status: <number> - Status of the node. This value may be:

	0: Alive status.

	1: Pending status.

	2: Stop status.

	delay: <number> - Represents the delay time(ns) between this
node and requested node. If this value is 0, it represents this
PeerInfo is the information of local node.

Example

Request
curl -X POST --data '{"jsonrpc": "2.0", "namespace":"global", "method": "node_getNodes", "params": [],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": [
 {
 "id": 1,
 "ip": "127.0.0.1",
 "port": "50011",
 "namespace": "global",
 "hash": "fa34664ec14727c34943045bcaba9ef05d2c48e06d294c15effc900a5b4b663a",
 "hostname": "node1",
 "isPrimary": true,
 "isvp": true,
 "status": 0,
 "delay": 0
 },
 {
 "id": 2,
 "ip": "127.0.0.1",
 "port": "50012",
 "namespace": "global",
 "hash": "c82a71a88c58540c62fc119e78306e7fdbe114d9b840c47ab564767cb1c706e2",
 "hostname": "node2",
 "isPrimary": false,
 "isvp": true,
 "status": 0,
 "delay": 347529
 },
 {
 "id": 3,
 "ip": "127.0.0.1",
 "port": "50013",
 "namespace": "global",
 "hash": "0c89dc7d8bdf45d1fed89fdbac27463d9f144875d3d73795f64f35dc204480fd",
 "hostname": "node3",
 "isPrimary": false,
 "isvp": true,
 "status": 0,
 "delay": 369554
 },
 {
 "id": 4,
 "ip": "127.0.0.1",
 "port": "50014",
 "namespace": "global",
 "hash": "34d299742260716bab353995fe98727004b5c27bde52489f61de093176e82088",
 "hostname": "node4",
 "isPrimary": false,
 "isvp": true,
 "status": 0,
 "delay": 430356
 }
]
}

node_getNodeHash

Return hash of the requested node.

Parameters

none

Returns

	<string> - hash of the node.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0", "namespace":"global", "method":"node_getNodeHash","params":[],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "c605d50c3ed56902ec31492ed43b238b36526df5d2fd6153c1858051b6635f6e"
}

node_deleteVP

To disconnect from a connected VP peer.

Parameters

	<Object>

	nodehash: <string> - Hash of the VP peer to disconnect.

Returns

	<string> - A message indicates whether the request is sent
successfully or not.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0", "namespace":"global", "method":"node_deleteVP","params":[{"nodehash":"c605d50c3ed56902ec31492ed43b238b36526df5d2fd6153c1858051b6635f6e"}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "successful request to delete vp node, hash c82a71a88c58540c62fc119e78306e7fdbe114d9b840c47ab564767cb1c706e2"
}

node_deleteNVP

VP node disconnects from connected NVP peer by hash of NVP peer.

Parameters

	<Object>

	nodehash: <string> - Hash of NVP peer to disconnect.

Returns

	<string> - A message indicates whether the request is sent
successfully or not.

Example

Request
curl -X POST --data ' {"jsonrpc":"2.0","namespace":"global", "method":"node_deleteNVP","params":[{"nodehash":"c605d50c3ed56902ec31492ed43b238b36526df5d2fd6153c1858051b6635f6e"}],"id":1}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "successful request to delete nvp node, hash 050ba6f3a19a4aca46adf51f0d46cf822b0b97f50014207a2b8d8535f5da7aa8"
}

cert_getTCert

Returns the tcert certificate issued by the node to the client.

Parameters

	<Object>

	pubkey: <string> - Public key(pem format).

Returns

	<Object>

	tcert: <string> - tcert certificate.

Example: Getting tcert certificate failed

Request
curl -X POST --data ' {"jsonrpc":"2.0", "namespace":"global", "method":"cert_getTCert","params":[{
"pubkey":"2d2d2d2d2d424547494e204543445341205055424c4943204b45592d2d2d2d2d0a424a4b73413554414d2b5763446c79357250515a2b32595264574a664f446a62393658476a426b59367373352b346a67424f636834394e3064447744633877610a362b46434954436b7a584d4139436d392b436e68722b633d0a2d2d2d2d2d454e44204543445341205055424c4943204b45592d2d2d2d2d"}],"id":"1"}'

Response
{
 "jsonrpc": "2.0",
 "namespace":"global",
 "id": "1",
 "code": -32099,
 "message": "signed tcert failed"
}

Node Operation

1. Add Node

Adding nodes requires the configuration of the following three files:

	peerconfig.toml: Peer profile, used to configure connection
information of logical peer.

	hosts.toml: Host profile, used to configure information of
physical peer, including the mapping between the hostname of node and
the IP address.

	addr.toml: Address profile, used to configure physical
interconnection address information, including the mapping of domain
name and IP address. This file configuration is required when the
peer connects in reverse to local node.

Example1: On the basis of four VP nodes, add the fifth VP node

The new VP node needs to be configured with the following configuration
files before it starts:

	peerconfig.toml

[[nodes]]
 hostname = "node1"
 id = 1
 static = true

[[nodes]]
 hostname = "node2"
 id = 2
 static = true

[[nodes]]
 hostname = "node3"
 id = 3
 static = true

[[nodes]]
 hostname = "node4"
 id = 4
 static = true

[[nodes]]
 hostname = "node5"
 id = 5
 static = true

[self]
 caconf = "config/namespace.toml"
 hostname = "node5"
 id = 5 # The node ID
 n = 5 # The number of VP to connect to
 new = true # Whether this is a new node to attend or not
 org = false # Whether this is a original node or not
 rec = false # Whether this node needs to be reconnected
 vp = true # Whether this is a primary node or not

	hosts.toml

This file needs to configure the physical addresses of all the nodes
to be connected. The hyperchain nodes communicate with each other
through the hostname, so the hostname can be configured as an arbitrary
node address.

hosts = [
"node1 127.0.0.1:50011",
"node2 127.0.0.1:50012",
"node3 127.0.0.1:50013",
"node4 127.0.0.1:50014",
"node5 127.0.0.1:50015"
]

	addr.toml

addr is declared in the form of a domain. For example, if two nodes with
hostname of node1 and node5 belong to domain1 and all other
nodes belong to different domains, the configuration file should be
configured as follows (this configuration file is addr.toml of
node5):

addrs = [
"domain1 127.0.0.1:50015",
"domain2 192.168.100.20:50015",
"domain3 202.110.20.13:50015",
"domain4 127.0.0.1:50015",
]
domain = "domain1"

Note

To reiterate, addr.toml is a configuration to let other peer know the node domain and nodes in different domains are interconnected by different network address, which allows nodes to connect between complex network segments.

Example2: On the basis of four VP nodes, add a NVP node

The new NVP node needs to be configured with the following configuration
files before it starts:

	peerconfig.toml

[[nodes]]
 hostname = "node1"
 id = 1
 static = true

[[nodes]]
 hostname = "node2"
 id = 2
 static = true

[[nodes]]
 hostname = "node3"
 id = 3
 static = true

[[nodes]]
 hostname = "node4"
 id = 4
 static = true

[self]
 caconf = "config/namespace.toml"
 hostname = "node5"
 id = 0 # This value must be 0 for NVP node
 n = 4 # The number of VP to connect to
 new = true # Whether this is a new node to attend or not
 org = false # Whether this is a original node or not
 rec = false # Whether this node needs to be reconnected
 vp = false # Whether this is a primary node or not

	hosts.toml

hosts = [
"node1 127.0.0.1:50011",
"node2 127.0.0.1:50012",
"node3 127.0.0.1:50013",
"node4 127.0.0.1:50014",
"node5 127.0.0.1:50015"
]

	addr.toml

addrs = [
"domain1 127.0.0.1:50015",
"domain2 127.0.0.1:50015",
"domain3 127.0.0.1:50015",
"domain4 127.0.0.1:50015",
"domain5 127.0.0.1:50015"
]
domain = "domain5"

2. Delete Node

We divide deleting nodes into three cases:

	VP disconnects from one VP;

	VP proactively disconnects from one NVP;

	NVP proactively disconnects from one VP;

The second and third results are the same, so that the NVP can no longer
synchronize the VP data and the NVP no longer forwards the transaction
to the VP.

In the following example, we assume that each node’s JSON-RPC API
service port mapping is as follows:

	Node 1：8081

	Node 2：8082

	Node 3：8083

	Node 4：8084

	Node 5：8085

Example1: VP disconnects from one VP

For example, there are currently five VP nodes and now delete VP node 5.

Firstly, get the hash of the VP node 5 to be deleted.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_getNodeHash","params":[],"id":1, "namespace":"global"}' localhost:8085

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "55d3c05f2c24c232a47a1f1963ace172b21d3a2ec0ac83ea075da2d2427603bc"
}

Then, the request of deleting node is sent to VP node 1, 2, 3, 4 and 5
respectively.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_deleteVP","params":[{"nodehash":"55d3c05f2c24c232a47a1f1963ace172b21d3a2ec0ac83ea075da2d2427603bc"}],"id":1, "namespace":"global"}' localhost:8081/8082/8083/8084/8085

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "successful request to delete vp node, hash 55d3c05f2c24c232a47a1f1963ace172b21d3a2ec0ac83ea075da2d2427603bc"
}

When you see the following logs on the terminal, the VP node is deleted
successfully.

global::p2p 12:33:17.709 DELETE NODE 55d3c05f2c24c232a47a1f1963ace172b21d3a2ec0ac83ea075da2d2427603bc
global::p2p 12:33:17.709 delete validate peer 5

Example2: VP disconnects from a NVP

For example, there are currently four VP nodes and one NVP node which is
connected to VP node 1.

Firstly, get the hash of the NVP node.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_getNodeHash","params":[],"id":1, "namespace":"global"}' localhost:8085

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "4886947d8191b62a1141dbc3250a0cc61a436ca28829f40cb5a690c7449825ad"
}

Then, send a request of deleting NVP to VP node 1.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_deleteNVP","params":[{"nodehash":"4886947d8191b62a1141dbc3250a0cc61a436ca28829f40cb5a690c7449825ad"}],"id":1, "namespace":"global"}' localhost:8081

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "successful request to delete nvp node, hash 4886947d8191b62a1141dbc3250a0cc61a436ca28829f40cb5a690c7449825ad"
}

The following logs are seen at the terminal of the VP node 1,

global::p2p 13:28:02.857 delete NVP peer, hash 4886947d8191b62a1141dbc3250a0cc61a436ca28829f40cb5a690c7449825ad, vp pool size(4) nvp pool size(0)

At the same time, the NVP node also prints the following log notes that
the VP node 1 has been disconnected.

global::p2p 13:28:02.858 peers_pool.go:244 delete validate peer 1

The NVP node is deleted successfully.

Example3: NVP disconnects from a VP

The situation is similar to that of Example2, except that we send a
request for deleting a node to the NVP node this time.

For example, there are currently four VP nodes and one NVP node which is
connected to VP node 1.

Firstly, get the hash of the VP node 1.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_getNodeHash","params":[],"id":1, "namespace":"global"}' localhost:8081

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "fa34664ec14727c34943045bcaba9ef05d2c48e06d294c15effc900a5b4b663a"
}

Then, send a request of deleting VP to NVP node.

Request
curl -X POST -d '{"jsonrpc":"2.0","method":"node_deleteVP","params":[{"nodehash":"fa34664ec14727c34943045bcaba9ef05d2c48e06d294c15effc900a5b4b663a"}],"id":1, "namespace":"global"}' localhost:8085

Response
{
 "jsonrpc": "2.0",
 "namespace": "global",
 "id": 1,
 "code": 0,
 "message": "SUCCESS",
 "result": "successful request to delete vp node, hash fa34664ec14727c34943045bcaba9ef05d2c48e06d294c15effc900a5b4b663a"
}

The following logs are seen at the terminal of the NVP node,

global::p2p 13:47:17.744 delete validate peer 1

At the same time, the VP node 1 also prints the following log,

global::p2p 13:47:17.744 delete NVP peer, hash 4886947d8191b62a1141dbc3250a0cc61a436ca28829f40cb5a690c7449825ad, vp pool size(4) nvp pool size(0)

The VP node is deleted successfully.

Developers’ Guide

This document describes how to contribute to hyperchain project. It is
an entry point for developers who are interested in build, develop,
create an issue or pull request to hyperchain.

Workflow

[image: _images/workflow.jpeg]
1. fork

visit https://github.com/hyperchain/hyperchain, click fork button

2. clone

We assume that you have go v1.8 installed, and GOPATH is set.

Create your clone:

git clone git@github.com:$user/hyperchain.git
$GOPATH/src/github.com/hyperchain/hyperchain

3. fetch && rebase

Get your local master up to date:

cd $GOPATH/src/github.com/hyperchain/hyperchain
git fetch upstream
git checkout master
git rebase upstream/master

4. branch

Branch from it:

git checkout -b myfeature

Then edit code on the myfeature branch.

5. commit

git commit

6. push

When ready to review (or just to establish an offsite backup or your
work), push your branch to your fork on github.com:

git push -f ${your_remote_name} myfeature

7. create pull request

	Visit your fork at https://github.com/$user/hyperchain

	Click the Compare & Pull Request button next to your
myfeature branch.

Building and Testing

build

Run instructions below in the project root directory

go build -o hyperchain

testing

Run unit tests in the project root directory

go test -cpu 4 ./...

Contributing

Each contributor should follow the git workflow. If your use of git is
not particularly clear, please read this
document <http://nvie.com/posts/a-successful-git-branching-model/>__
first.

If you would like to contribute to hyperchain, please fork, commit and
send a pull request for maintainers to review code and merge to main
code base.

Issue

If use want to create a issue, please follow this issue template.

Environment

hyperchain version: `hyperchain --version`
OS: Windows/Linux/OSX
Commit hash:

What happened:

What you expected to happen:

How to reproduce it (as minimally and precisely as possible):

Backtrace

​````
[backtrace]
​````

Pull request

	Pull request should be based on hyperchain’s master branch

	Commit messages should begin with the package name they modify, e.g.

	core/executor: use default parameters to initialize executor

	Please use go fmt tool to format the source code before submit
changes

We encourage any form of contribution, no matter it’s bug fixes, new
features, or something else. Our team will do our best to make every
valuable contribution to get merged as soon as possile.

Hyperchain Roadmap

Currently, hyperchain is available in the open source community with 1.4
stable version, will continue to introduce new features in the future.

Welcome to join the community of Hyperchain to participate in our
development!

[image:]

First community version

This is the first community version of Hyperchain that includes the
complete components of the consortium blockchain platform:

	Consensus engine based on RBFT algorithm;

	Compatible with Ethereum smart contract virtual machine;

	Data partition, isolate the business data physically ;

	Rich event subscription interface, capture blockchain platform events
in real-time;

	Multi-level encryption mechanism, including asymmetric encryption,
symmetric encryption, admittance mechanism based on digital
certificate;

	Available level of performance to meet the needs of most business
scenarios;

Better smart contract

This version is planned to be released in February 2018.

The main feature is to support the smart contract development in the
Java language, reducing the difficulty for blockchain application
development.

In addition, there will have a easy-to-use hyperchain docker images for
one-click cluster deployments.

Controllable data capacity

Currently, the existing blockchain data is accumulated, so the storage
capacity of blockchain data will be a big problem.

We plan to release a version in April 2018 to support archiving of
blockchain data and archiving of smart contract data.

Autonomous

The existing consortium blockchain admittance mechanism has the
following problems:

	There is a single point of failure;

	The entire blockchain network is easy to be controlled by a single
node;

	Low degree of automation;

Therefore, we propose to release a version to support decentralized
autonomous admittance mechanism in July 2018 that will enable automated
member management, identity switching, version upgrades and more.

Protect your pricacy

Currently in the same partition, blockchain data is shared by all nodes,
and there is no user privacy at all. In September 2018, we will release
a version that support two advanced cryptographic features to protect
user privacy.

The two cryptographic techniques are (1) zero knowledge proof (2) ring
signature technique.

Run fast

Currently hyperchain’s performance can meet the needs of most business
scenarios, but for particularly high-frequency and complex scenarios
still do nothing. As a result, we will make major adjustments to the
existing architecture to transform hyperchain with microservices and
cloud-based architectures so as to improve performance.

This version is scheduled to be released in December 2018.

What is your favourite

In June 2019, we will release a version that supports multiple consensus
algorithms to support dynamic consensus engine switching.

Besides we plan to come up with a new consensus algorithm that will
support larger node sizes in consortium blockchain.

Index

 _images/accounts.jpeg
Bucket ACCOUNT: 0X123

Tree

56789ABCDEFGH

BALANCE
STORAGE_ROOT
CODE_HASH
STATUS
CREATE_TIME
ETC.:.

UNDERLYING DATABASE

ACCOUNT: 0XABCDEFGHI1234

6789

BALANCE
STORAGE_ROOT
CODE_HASH
STATUS
CREATE_TIME
ETC...

_images/accounts_merkleroot.jpeg
ACCOUNT 1

HEGREE VT el Merkle Root

ACCOUNTN

_images/block_to_ledger.png
BlockChain Ledger

5%

/ Block

_images/bucket_tree_arch.jpeg
Root Hash

MERKLE
13

Merkle Tree

Hash Table

hash(key5) % 6 = 2

_images/ca.png
root.ca

1

I_I_I I

sdkcert.cert E ecert.cert rcert.cert

_images/bucket_process.jpeg
Root Hash

Merkle Tree

ENTRY 5 ——L

hash(key5) % 6 = 2

_images/bucket_process_diagram.jpeg
INITIALIZE PREPARE PROCESS COMMIT

_images/consensus.png
Transactions

'‘Consensus

|
W

_images/ecdsa.gif

