

Welcome to Hyper2Web’s documentation!

Contents:

	Hyper2Web
	Installation

	Dependency

	Quick Start

	Docs

	Example

	Test

	Misc
	Why did I create this framework?

	Installation
	Stable release

	From sources

	Tutorials
	Chapter 1: Set Up the Server

	Chapter 2: Static File Server

	Chapter 3: REST

	Chapter 4: Parameterized REST

	Chapter 5: Persistent Storage

	How-to Examples

	API References
	hyper2web package
	Submodules

	hyper2web.abstract module

	hyper2web.app module

	hyper2web.cli module

	hyper2web.exceptions module

	hyper2web.http module

	hyper2web.router module

	hyper2web.server module

	hyper2web.sslsocket module

	Module contents

	Discussion

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.0.0 (2017-06-08)

Indices and tables

	Index

	Module Index

	Search Page

Hyper2Web

Super Fast HTTP2 Framework for Progressive Web Application

Installation

To install Hyper2Web, run this command in your terminal:

$ # due to a known issue, please install Curio manually
$ pip install git+https://github.com/dabeaz/curio.git
$ pip install hyper2web

This is the preferred method to install Hyper2Web, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Dependency

Python3.6

h2

curio

Quick Start

Assuming you have a directory structure like:

your project/
--public/
 --index.html
 --index.js
 ...
--app.py

Your app.py looks like

from hyper2web import app

if __name__ == '__main__':

 # A basic callback style API is provided
 # Function name is up to you
 async def post_echo(request, response):
 # Send the data received back to the client
 await response.send(request.stream.data)

 app = app.App(port=5000)
 app.post('name', post_echo)
 app.up()

Then run this script

$ python app.py

That’s it!

If you just want to serve static files, it’s just 2 lines!

from hyper2web import app
app.App(port=5000).up()

Docs

Documentation is hosted on hyper2web.readthedocs.io [http://hyper2web.readthedocs.io].

Example

See the example folders for examples.

Test

$ python -m unittest discover test

Run all tests under test/ dir.

Misc

Why did I create this framework?

April 23rd, 2017, Sunday, I woke up and felt bored and decided to create my own HTTP2 web framework.

Since I had little or some prior web knowledge, this would be a super learning and fun project for me.

Installation

Stable release

To install Hyper2Web, run this command in your terminal:

$ pip install hyper2web

This is the preferred method to install Hyper2Web, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Hyper2Web can be downloaded from the Github repo [https://github.com/CreatCodeBuild/hyper2web].

You can either clone the public repository:

$ git clone git://github.com/CreatCodeBuild/hyper2web

Or download the tarball [https://github.com/CreatCodeBuild/hyper2web/tarball/master]:

$ curl -OL https://github.com/CreatCodeBuild/hyper2web/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Tutorials

Chapter 1: Set Up the Server

In this tutorial, we will create a simple HTML5 game together. The game will teach you most aspects of our framework. We will only focus on backend. Frontend code will be provided.

Our framework works on both Linux and Windows systems. I will use Unix/Linux conventions/terms in this tutorial.

First, we need to create our project. Create a new directory/folder named Game. Under it, create a Python script named app.py and a directory named public.

app.py will contains all backend code and all frontend code will go into ./public directory.

Now, put this piece of code in app.py.

from hyper2web import app

let's only bind ip address to localhost for now. Later we will change it.
port number is up to you. any number larger than 1000 should be fine.
app = app.App(address="localhost", port=5000)

up() starts the server.
app.up()

Next, let’s write the frontend. Create a index.html file in ./public. Put this piece of code in it.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>The Game</title>
</head>
<body>
 Congratulations, you have set up the server correctly!

 We will start to create our game next!
</body>
</html>

As you might know, Hyper2Web only uses HTTP/2. H2 uses HTTPS by default. Therefore, you need to have a pair of ssl keys in your top level directory. You can either generator your own keys or copy the key files in the example [https://github.com/CreatCodeBuild/hyper2web/tree/master/example/game]. Copy and paste files with the name localhost.* to your Game directory.

Now, let’s start the server. Open your terminal under Game directory and type

$ python app.py

Now open your browser and go to https://localhost:5000. You should be able to see the webpage you just wrote.

Congratulations! Now our server is running. The next chapter will teach you some basic RESTful routing.

Chapter 2: Static File Server

Although you might want your App to be as dynamic as possible, you have to first understand how a static website is served.

The convention is to have a public directory under your project directory and have all your static files there.

For example, if the client does GET /some_file.format, the framework will try to read the path public/some_file.format and sent what it read to the client. If the path does not exist, then the framework simply reports resource not found.

Therefore, you can easily just put all your frontend code under the public directory and start serving your application.

Chapter 3: REST

Web is built on HTTP and HTTP is all about semantics. While there are thousands of ways to build HTTP API, the one which our framework embraces is REST. Since our audience’s experience varies, I do not want to confuse you by explaining too much about REST. The only thing you need to know is that HTTP requests are all about semantics and a REST API is a semantic API.

Let’s dive into the example code and you will understand it.

First, let’s see the frontend code:

fetch('/top10', {method: 'GET'});

fetch() is the new browser API which does async HTTP requests. It is better than XMLHttpRequest in almost every aspects. It has a cleaner interface which fits RESTful API design.

This line creates a HTTP GET request with :path = /top10. How to respond to this request is 100% up to the server. Now, in app.py, write this piece of code:

define API's callback function
async def top10_api(request, response):
 await response.send("some data")

register this function
app.get("top10", top10_api)
you can also do
app.get("/top10", top10_api)

Now, whenever the client does such a request, top10_api will be run by the framework. We call this function the endpoint of a REST API. You can define the function as whatever you need, but have to include the async and await key words.

Chapter 4: Parameterized REST

Chapter 5: Persistent Storage

How-to Examples

API References

	hyper2web package
	Submodules

	hyper2web.abstract module

	hyper2web.app module

	hyper2web.cli module

	hyper2web.exceptions module

	hyper2web.http module

	hyper2web.router module

	hyper2web.server module

	hyper2web.sslsocket module

	Module contents

hyper2web package

Submodules

hyper2web.abstract module

This module defines all Abstract Types in the framework.
Mainly for Better Organization of Code and For Better IDE Type Inferences

	
class hyper2web.abstract.AbstractApp

	Bases: object

This class is the base class of any App classes. The framework provides an App class which implements all methods of this class.

A user can also implement this class if the user find that the App class is insufficient. But, the creator recommends user to extend App class instead of AbstractApp class.

	
get(route: str, handler)

	

	
handle_route(http, stream)

	This function has to be async.

	
post(route: str, handler)

	

	
up()

	

	
class hyper2web.abstract.AbstractHTTP

	Bases: object

The HTTP class implements this class.

All methods declared here are async.

	
handle_event(event)

	

	
send(stream_id, headers, data)

	

	
class hyper2web.abstract.AbstractRequest

	Bases: object

	
class hyper2web.abstract.AbstractResponse

	Bases: object

A Response should be constructed by the router.
The router passes Stream information such as stream id to the Response object
and Response object is passed to the end point function for top level users’ use.

The flow control is handled by the HTTP class. Therefore, a send method always ends the response.

All send methods should call HTTP’s send method

	
send(data: bytes)

	send this response.
:param headers: HTTP headers
:param data: Body of the response. Has to be bytes
That means, if you want to send some string, you have to convert the string to bytes.
The framework does not do type conversion for you. It just fails if incorrect type is passed.

	
send_file(file_path)

	

	
send_status_code(status_code)

	

	
class hyper2web.abstract.AbstractRouter

	Bases: object

	
handle_route(http, stream)

	

	
register(method: str, route: str, handler)

	

hyper2web.app module

	
class hyper2web.app.App(address='0.0.0.0', port=5000, root='./public', auto_serve_static_file=True, default_file='index.html', router=<class 'hyper2web.router.Router'>)

	Bases: hyper2web.abstract.AbstractApp

This class is the main class which users should be interact with.

This is the only class which users should construct.

	
get(route: str, handler)

	Register a GET handler.

	Parameters:	
	route – A string which represent a RESTful route with optional parameters

	handler – A handler function. Has to be async.

	
handle_route(http: hyper2web.http.HTTP, stream: hyper2web.http.Stream)

	When the framework gets a incoming request, handle this request to corresponding routing handler.

Only used by the framework. Users should never call it.

	
post(route: str, handler)

	The same as self.get except that it’s for POST

	
up()

	Start the server. This is the last function users should call.

Users only call this function after set up all routing handlers.

	
hyper2web.app.default_get(app)

	This function is the default handler for GET request whose :path is registered in the router.

To be more clear, a user does not have to register GET /index.html or GET /any_static_file.xxx. Any :path which is not found in the router will initiate this method.

This method treats all requests as a GET /static_file. If :path is not a existing file path, it returns status code 404.

Users should not use this function.

	
hyper2web.app.get_index(app)

	The default handler for GET /.

The default behavior for GET / is GET /index.html.

If a user specifies a default_file in the constructor of App, the behavior becomes GET /default_file

Users should not use this function.

hyper2web.cli module

hyper2web.exceptions module

Exceptions in hyper2web

	
exception hyper2web.exceptions.DifferentStreamIdException

	Bases: Exception

	
exception hyper2web.exceptions.RouteNotRegisteredException

	Bases: Exception

hyper2web.http module

This module implements HTTP methods for end user

I currently think that they should be synchronized since they should not do IO
Where as endpoint module is designed for IO

	
class hyper2web.http.HTTP(app: hyper2web.abstract.AbstractApp, sock, connection: h2.connection.H2Connection)

	Bases: hyper2web.abstract.AbstractHTTP

This class further implements complete HTTP2 on top of h2

	
data_received(event: h2.events.DataReceived)

	Handle received data for a certain stream. Currently used for POST

	
handle_event(event: h2.events.Event)

	

	
request_received(event: h2.events.RequestReceived)

	Handle a request

	
send(stream_id: int, headers, data: bytes = None)

	send the response to the client
:param stream_id: the stream id associated with this request/response
:param headers: HTTP headers. a sequence(tuple/list) of tuples

	((‘:status’, ‘200’),

	(‘content-length’, ‘0’),
(‘server’, ‘hyper2web’))

	Parameters:	data – HTTP response body. Has to be bytes(binary data).

It’s users’ responsibility to encode any kinds of data to binary.

	
wait_for_flow_control(stream_id)

	Blocks until the flow control window for a given stream is opened.

	
window_updated(event)

	Unblock streams waiting on flow control, if needed.

	
class hyper2web.http.Request(stream, para)

	Bases: hyper2web.abstract.AbstractRequest

	
class hyper2web.http.Response(stream_id: int, http: hyper2web.http.HTTP)

	Bases: hyper2web.abstract.AbstractResponse

	
send(data: bytes)

	

	
send_file(file_path)

	

	
send_status_code(status_code)

	

	
set_header(field, value)

	

	
set_headers(headers)

	

	
update_headers(headers)

	

	
class hyper2web.http.Stream(stream_id: int, headers: dict)

	Bases: object

As the code is right now, many stream implementation is done in endpoint.EndPointHandler
Am moving those functionality to this class

The current design is that application will only return complete stream to top level api
But, since a user might also want to program on a live stream.
For example, the client may send a giant file 1GB,
the user will want to write this stream to disk in real time
Also, buffering 1GB in memory is kind of stupid.

But nonethelss, the current focus is on better organization of code instead of more API or performace.

	
finalize()

	concat all data chunks in this handler to one bytes object

	
update(event: h2.events.DataReceived)

	assume only POST stream will call this one

hyper2web.router module

	
class hyper2web.router.Router(default_get)

	Bases: hyper2web.abstract.AbstractRouter

User should never construct Router

	
find_match(path: str)

	‘user/{userId}’ should match ‘user/abc’
userId = abc
return a tuple (matched, parameters)
matched is the route which matches the incoming path
parameters is a dict of parameters and their values

	
handle_route(http: hyper2web.http.HTTP, stream: hyper2web.http.Stream)

	

	
register(method: str, route: str, handler)

	

hyper2web.server module

A fully-functional HTTP/2 server written for curio.

Requires Python 3.5+.

	
class hyper2web.server.H2Server(sock, app: hyper2web.abstract.AbstractApp)

	Bases: object

This class just connects to socket and that’s about it.
Most heavy lifting is done by http.HTTP

	
run()

	Loop over the connection, managing it appropriately.

	
hyper2web.server.h2_server(address, certfile, keyfile, app: hyper2web.abstract.AbstractApp)

	Create an HTTP/2 server at the given address.

hyper2web.sslsocket module

	
hyper2web.sslsocket.create_listening_ssl_socket(address, certfile, keyfile)

	Create and return a listening TLS socket on a given address.

Module contents

Discussion

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/CreatCodeBuild/hyper2web/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Hyper2Web could always use more documentation, whether as part of the
official Hyper2Web docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/CreatCodeBuild/hyper2web/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up hyper2web for local development.

	Fork the hyper2web repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/hyper2web.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv hyper2web
$ cd hyper2web/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 hyper2web tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/CreatCodeBuild/hyper2web/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_hyper2web

Credits

Development Lead

	Xuanzhe Wang <wangxuanzhealbert@gmail.com>

Contributors

None yet. Why not be the first?

History

0.0.0 (2017-06-08)

	First release on PyPI.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hyper2web	

 	
 	
 hyper2web.abstract	

 	
 	
 hyper2web.app	

 	
 	
 hyper2web.cli	

 	
 	
 hyper2web.exceptions	

 	
 	
 hyper2web.http	

 	
 	
 hyper2web.router	

 	
 	
 hyper2web.server	

 	
 	
 hyper2web.sslsocket	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | P
 | R
 | S
 | U
 | W

A

 	
 	AbstractApp (class in hyper2web.abstract)

 	AbstractHTTP (class in hyper2web.abstract)

 	AbstractRequest (class in hyper2web.abstract)

 	
 	AbstractResponse (class in hyper2web.abstract)

 	AbstractRouter (class in hyper2web.abstract)

 	App (class in hyper2web.app)

C

 	
 	create_listening_ssl_socket() (in module hyper2web.sslsocket)

D

 	
 	data_received() (hyper2web.http.HTTP method)

 	
 	default_get() (in module hyper2web.app)

 	DifferentStreamIdException

F

 	
 	finalize() (hyper2web.http.Stream method)

 	
 	find_match() (hyper2web.router.Router method)

G

 	
 	get() (hyper2web.abstract.AbstractApp method)

 	(hyper2web.app.App method)

 	
 	get_index() (in module hyper2web.app)

H

 	
 	h2_server() (in module hyper2web.server)

 	H2Server (class in hyper2web.server)

 	handle_event() (hyper2web.abstract.AbstractHTTP method)

 	(hyper2web.http.HTTP method)

 	handle_route() (hyper2web.abstract.AbstractApp method)

 	(hyper2web.abstract.AbstractRouter method)

 	(hyper2web.app.App method)

 	(hyper2web.router.Router method)

 	HTTP (class in hyper2web.http)

 	
 	hyper2web (module)

 	hyper2web.abstract (module)

 	hyper2web.app (module)

 	hyper2web.cli (module)

 	hyper2web.exceptions (module)

 	hyper2web.http (module)

 	hyper2web.router (module)

 	hyper2web.server (module)

 	hyper2web.sslsocket (module)

P

 	
 	post() (hyper2web.abstract.AbstractApp method)

 	(hyper2web.app.App method)

R

 	
 	register() (hyper2web.abstract.AbstractRouter method)

 	(hyper2web.router.Router method)

 	Request (class in hyper2web.http)

 	request_received() (hyper2web.http.HTTP method)

 	
 	Response (class in hyper2web.http)

 	RouteNotRegisteredException

 	Router (class in hyper2web.router)

 	run() (hyper2web.server.H2Server method)

S

 	
 	send() (hyper2web.abstract.AbstractHTTP method)

 	(hyper2web.abstract.AbstractResponse method)

 	(hyper2web.http.HTTP method)

 	(hyper2web.http.Response method)

 	send_file() (hyper2web.abstract.AbstractResponse method)

 	(hyper2web.http.Response method)

 	
 	send_status_code() (hyper2web.abstract.AbstractResponse method)

 	(hyper2web.http.Response method)

 	set_header() (hyper2web.http.Response method)

 	set_headers() (hyper2web.http.Response method)

 	Stream (class in hyper2web.http)

U

 	
 	up() (hyper2web.abstract.AbstractApp method)

 	(hyper2web.app.App method)

 	
 	update() (hyper2web.http.Stream method)

 	update_headers() (hyper2web.http.Response method)

W

 	
 	wait_for_flow_control() (hyper2web.http.HTTP method)

 	
 	window_updated() (hyper2web.http.HTTP method)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to Hyper2Web's documentation!

 		Hyper2Web

 		Installation

 		Dependency

 		Quick Start

 		Docs

 		Example

 		Test

 		Misc

 		Why did I create this framework?

 		Installation

 		Stable release

 		From sources

 		Tutorials

 		Chapter 1: Set Up the Server

 		Chapter 2: Static File Server

 		Chapter 3: REST

 		Chapter 4: Parameterized REST

 		Chapter 5: Persistent Storage

 		How-to Examples

 		API References

 		hyper2web package

 		Submodules

 		hyper2web.abstract module

 		hyper2web.app module

 		hyper2web.cli module

 		hyper2web.exceptions module

 		hyper2web.http module

 		hyper2web.router module

 		hyper2web.server module

 		hyper2web.sslsocket module

 		Module contents

 		Discussion

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.0.0 (2017-06-08)

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

