

    
      
          
            
  
Welcome to HydroBox’s documentation!


Stable branch

[image: _images/hydrobox.svg]
 [https://travis-ci.org/mmaelicke/hydrobox][image: https://readthedocs.org/projects/hydrobox/badge/?version=latest]
 [http://hydrobox.readthedocs.io/en/latest?badge=latest][image: _images/badge.svg]
 [https://codecov.io/gh/mmaelicke/hydrobox]


Development branch

[image: _images/hydrobox1.svg]
 [https://travis-ci.org/mmaelicke/hydrobox][image: https://readthedocs.org/projects/hydrobox/badge/?version=latest]
 [http://hydrobox.readthedocs.io/en/latest?badge=latest][image: _images/badge1.svg]
 [https://codecov.io/gh/mmaelicke/hydrobox]
Warning

This documentation is by no means finished and in development. Kind of everything here might
be subject to change.








About

The HydroBox package is a toolbox for hydrological data analysis developed at the
Chair of Hydrology [https://hyd.iwg.kit.edu/english/index.php] at the Karlsruhe Institute of Technology (KIT) [https://kit.edu/english/index.php].
The HydroBox has a submodule called toolbox, which is a collection of functions and classes that accept common
numpy and pandas input formats and wrap around scipy functionality. Its purpose is:


	to speed up common hydrological data analysis tasks


	to integrate fully with custom numpy/pandas/scipy code




Jump directly to the installation section or get started.


Contents:


	Installation Guide
	PyPi

	GitHub





	Getting Started
	Under Development





	Examples
	Discharge Tools

	Signal Processing





	Contribution Guide
	How to Contribute

	Add / improve unit tests

	Add / improve docstrings

	Enhance the Examples

	Create a Pull Request





	Reference
	Input / Output

	Preprocessing

	Basic statistical tools

	Discharge Tools

	Signal Processing












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Installation Guide





PyPi

Install the Hydrobox using pip. The latest version on PyPI [https://pypi.python.org/pypi/hydrobox] can
be installed using pip:

pip install hydrobox








GitHub

There might be a more recent version on GitHub available. It can be installed as follows:

git clone https://github.com/mmaelicke/hydrobox.git
cd hydrobox
pip install -r requirements.txt
pip install -e .











          

      

      

    

  

    
      
          
            
  
Getting Started





Under Development


Warning

This site is under construction









          

      

      

    

  

    
      
          
            
  
Examples


Important

These examples should help you tp get started with most of the functionality.
However, some examples and tools might need a specific database backend or
service running on the machine. In this case you have to install the
requirements. The reference section
should guide you to the correct function with more detailed information
on the setup.





	Discharge Tools
	FDC from random data
	Workflow

	Generate the data

	Apply the aggregation

	Calculate the flow duration curve (FDC)

	Plot the result

	Reference





	Hydrological Regime
	Workflow

	Load the data using pandas

	Output the regime

	Plotting

	Using percentiles

	Adjusting the plot

	Reference









	Signal Processing
	Simplifying a Signal
	Set up a test case

	Handling replicas

	Handling sensor precision noise

















          

      

      

    

  

    
      
          
            
  
Discharge Tools





FDC from random data


Workflow

The workflow in this example will generate some random data and applies two
processing  steps to illustrate the general idea. All tools are designed to fit
seamlessly  into automated processing environments like WPS servers or other workflow engines.

The workflow in this example:



	generates a ten year random discharge time series from a gamma distribution


	aggregates the data to daily maximum values


	creates a flow duration curve


	uses python to visualize the flow duration curve










Generate the data

# use the ggplot plotting style
In [1]: import matplotlib as mpl

In [2]: mpl.style.use('ggplot')

In [3]: from hydrobox import toolbox

# Step 1:
In [4]: series = toolbox.io.timeseries_from_distribution(
   ...:     distribution='gamma',
   ...:     distribution_args=[2, 0.5],  # [location, scale]
   ...:     start='200001010000',        # start date
   ...:     end='201001010000',          # end date
   ...:     freq='15min',                # temporal resolution
   ...:     size=None,                   # set to None, for inferring
   ...:     seed=42                      # set a random seed
   ...: )
   ...: 

In [5]: print(series.head())
2000-01-01 00:00:00    1.196840
2000-01-01 00:15:00    0.747232
2000-01-01 00:30:00    0.691142
2000-01-01 00:45:00    0.691151
2000-01-01 01:00:00    2.324857
Freq: 15T, dtype: float64








Apply the aggregation

In [6]: import numpy as np

In [7]: series_daily = toolbox.aggregate(series, by='1D', func=np.max)

In [8]: print(series_daily.head())
2000-01-01    3.648999
2000-01-02    3.398266
2000-01-03    3.196676
2000-01-04    3.842573
2000-01-05    2.578654
Freq: D, dtype: float64








Calculate the flow duration curve (FDC)

# the FDC is calculated on the values only
In [9]: fdc = toolbox.flow_duration_curve(x=series_daily.values,     # an FDC does not need a DatetimeIndex
   ...:                               plot=False                 # return values, not a plot
   ...:                              )
   ...: 

In [10]: print(fdc[:5])
[0.0002736  0.0005472  0.00082079 0.00109439 0.00136799]

In [11]: print(fdc[-5:])

  
    
    Signal Processing
    

    
 
  

    
      
          
            
  
Signal Processing





Simplifying a Signal

Whenever you seek to apply a tool on your data that will operate on each
value and this tool is time and / or resource consuming, it might be a good
idea to operate on as few values as possible. Simply removing duplicated
values is not always the best approach. Think of a discharge time series
where you want to calculate an index that depends on a previous state.


Set up a test case

The example below will show the idea behind the
simplify method of the signal submodule. At
first some imports.

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: import matplotlib as mpl

In [4]: mpl.style.use('ggplot')





And now setup and plot the test signal.

In [5]: x = np.array([1., 1.2, 1.5, 1.5, 1.5, 1.5, 1.6, 1.5, 1.6, 1.5, 1., 0.5,
   ...:               0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3,
   ...:               0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.7, 1., 1.5, 1.6,
   ...:               1.5, 1.6, 1.5, 1.6, 1.5, 1.6])
   ...: 

In [6]: plt.plot(x, '.--r');





[image: ../_images/examples_sample_data.png]



Handling replicas

There are a number of replications. We want to get rid of those.

In [7]: from hydrobox.toolbox import simplify

In [8]: plt.plot(simplify(x, flatten=False), '.--r');





[image: ../_images/examples_simplified_sample.png]

	Look at the amount of markers in both plots, where the signal gave a constant

	value. The replicas got dropped from the signal.








Handling sensor precision noise

So far, this only removed subsequent value duplicates. The other signal
information this method can simplify is the constant repetition of two values.
This usually happens in environmental sensors either in constant conditions
or during really slow state changes. In these cases the signal can alternate
between two states within the sensor resolution. These recordings can be evened
out by setting the flatten attribute to True.

In [9]: plt.plot(simplify(x, flatten=True), '.--r');





[image: ../_images/examples_simplified_sample2.png]
Of course, the index information was completely lost. In this example the
x-axis is just counting the occurrences of values. In case you need the index
information for further analysis, you have to extract the index and preserve
it, before calling the simplify method.


Important

The preservation of indices, whenever the data is of type pandas.Series
is planned for a future release.




Warning

Keep in mind that two very strong assumptions are underlying this method.
It does change the signal dramatically. Ensuring that the sensor noise
assumption is correct is completely up to you.











          

      

      

    

  

  
    
    Contribution Guide
    

    
 
  

    
      
          
            
  
Contribution Guide





How to Contribute

There are several ways how you can contribute to hydrobox. All contributions
should make use of the Fork / Pull request workflow in the GitHub repository [https://github.com/mmaelicke/hydrobox.git].
More information on pull requests can be found on the GitHub About pull requests [https://help.github.com/articles/about-pull-requests]
page.



	Add new tools to the toolbox


	Improve / Add unit tests to increase code coverage


	Improve / Add docstrings on existing functions


	Add more examples to the documentation








Add Tools to the Toolbox


Important


	In a nutshell:

	
	Fork the repository on GitHub


	Commit your method to your fork


	Add documentation and unittests for your method


	Make sure your fork is building correctly


	Pull request your fork back into the main repository










The idea behind hydrobox is to be used on top of numpy, scipy and pandas.
This implies using the data types defined in these libraries whenever possible.
The main purpose of hydrobox is to save hydrologists from reproducing their
codes in every single project. Therefore a hydrobox tool should:



	combine analysis steps belonging together into one function, while


	separating preprocessing from analysis


	be helpful to other hydrologists


	output common python, numpy or pandas datatypes








Important

For this guide, we will add a function from_csv to the io
submodule. This should illustrate how you can add your stuff.




Fork and structure

Once you forked the project, place a new file in the appropriate module or
add a new one. Once your function has been added, import your function in the
hydrobox.toolbox file. Please use an meaningful name for your function. It
should be clear what the
function does. In some cases tool functions are tool specific to
make them available at the global hydrobox.toolbox scope. Then the
submodule itself will be imported in the toolbox and you do not need to
adjust the imports. One example is the io submodule.

Here, we pretend to add a from_csv file to the toolbox. This function
will go into a file text.py in the hydrobox.io submodule:

	1
2
3
4
5

	def from_csv(path, sep=','):
    """
    numpydoc docstring here
    """
    return pd.from_csv(path, sep=sep)







Now, import this function in the __init__ of hydrobox.io. If you
want your method to be available in the global scope, import it in
hydrobox.toolbox as well.


Important

Please do only use numpydoc [http://numpydoc.readthedocs.io/en/latest/format.html] docstring conventions and make sure to
properly style and comment the Parameters section.






Decorating your tool

Hydrobox includes two helpful decorators in the hydrobox.util submodule:
accept and enforce. We encourage you to use the
accept decorator whenever possible. This will help to produce way
cleaner code.
This decorator will check the input data for their data type and raise a
TypeError in case the passed data does not have the correct type.
If more than one type is accepted, simply pass a tuple. In case a argument can
be on NoneType or a callable, use the two literals
‘None’ and ‘callable’ and pass them as strings.

	1
2
3
4
5

	from io import TextIOWrapper

@accept(path=(str, TextIOWrapper), sep=str)
def from_csv(path, sep=','):
    ...







In this example, the path argument can be a string or a file pointer,
sep has to be a string. Thus, there is no need to check the user
input in your tool as the decorator already did this for you.
We encourage you to use this decorator especially for checking the input data
to be of type numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]
and pandas.Series [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series].




Test your tool

Although the code coverage of this project is not yet really good, it would be nice not to drop
it any further. A good code coverage needs unit tests. Beyond code coverage, unit tests will help
us to detect whenever our contribution breaks existing code. And last but not least a unit test
will help you to build more reliable code.
In a nutshell, it would be really helpful if you produce unit tests for your code. More
information on unit tests is given in the Add / Improve unit tests
section. Some useful links to get you stated with unit tests in Python can be found below.


See also


	`unit tests module reference`_


	Unit Test Wikipedia page [https://en.wikipedia.org/wiki/Unit_testing]


	Add / Improve unit tests









Document your tool

In order to make it possible for others to use your tool, a good, comprehensive documentation is
needed. As a first step, you should always add a docstring to your function. For hydrobox, please
use the numpydoc [http://numpydoc.readthedocs.io/en/latest/format.html] docstring format. More information can also be found in the
Add / Improve docstrings section.


See also


	numpydoc reference site


	Add / Improve docstrings









Produce examples

Sometimes a docstring is not enough to understand a tool. Although short examples, references and
formulas can go into numpydoc docstring formats, you might want to offer different examples
covering the whole bandwidth of your tool. Then you should produce some examples for this
documentation. You can refer to the Examples section for more
information.


See also


	Examples









Pull Request

Once your have finished with your implementations, create a pull request on GitHub.
More info in the Pull Request section.








Add / improve unit tests


Important

If you are not familiar with unit testing in general, please refer to
https://en.wikipedia.org/wiki/Unit_testing. If you are not familiar with
the unittests module. please refer to
https://docs.python.org/3/library/unittest.html



Unit tests are important as they make your code much more reliable and
reusable for other users. The basic idea behind a unit test is to test any
possible input and output to your tool against the expected behavior. For
this you have to set up a test case, run the scenario and compare it to what
you expected. When some modules and packages which you rely on change and break
your code, the unit test will notice and fail. I am personally using
unit tests whenever I try to improve my code, this way I can be sure that I
did not optimize any functionality away (and that happens a lot…).

For creating a unit test you need to define a class. Each method of this
class represents a test. There are different ways of implementing unit tests,
either one test method to test a whole tool or one test method per single
check you want to perform. In hydrobox, we decided to use one TestCase class
for each method and try to break down each check into a single test method.
The example below illustrates this.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import unittest
import pandas as pd
import from_csv         # import your tool here

class TestFromCsv(unittest.TestCase):
    def test_row_count(self):
        df = from_csv('file_of_known_size.txt')
        self.assertEqual(len(df), 450)

    def test_col_count(self):
        df = from_csv('file_of_known_size.txt')
        self.assertEqual(len(df.columns), 5)

    def test_change_sep(self):
        """
        change the separator to a sign that does not appear
        in the file. then there sould be only one column.
        """
        df = from_csv('file_of_known_size.txt', sep="|")
        self.assertEqual(len(df.columns)), 1)

if __name__=='__main__':
    unittest.main()







This is a very basic example that checks three different things. It uses
our new tool to load a file of known content into the variable df.




Add / improve docstrings


Important

If you are not familiar with the numpydoc docstring format, please refer to
http://numpydoc.readthedocs.io/en/latest/format.html.



The most important parts of a numpydoc docstring are shown in the example below. Please make
sure, that your docstring always contains the main description, parameters and returns.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	@accept(path=(str, TextIOWrapper), sep=str)
def from_csv(path, sep=','):
r"""short descriptive tile

After a short title, give a few sentences of explanation. What does this
Method do and how is it intended to be used?

Parameters
----------
path : str, TextIOWrapper
    The parameters can also get a full description about their meaning
    possible values. Please be as extensive as necessary here.
    Note the whitespace between the parameter name and the (list) of
    accepted types.
sep : str, optional
    In case an argument is optional, you can indicate this by the
    optional keyword after the type.

Returns
-------
pandas.DataFrame

Notes
-----

The first description at the top should be a rather technical description.
The optional Notes section can be added and used to inform the user about
the background of the function or further readings.
For this purpose you can also include references[1]_ into your Notes.
In the documentations, these will be rendered in the Reference section.

And last but not least you can also input some math:

.. math:: a^2 + b^2 = c^2

References
----------

..  [1] Python, M., Chapman, G., Cleese, J., Gilliam, T., Jones, T.,
    Idle, E., & Palin, M. (2000). the Holy Grail. EMI Records.

Examples
--------

>>> from_csv('file.txt').size
(220201, 5)

"""
...








Note

You should only add short and descriptive examples into the docstring itself. Make use of the
Examples section of this documentation.






Enhance the Examples


Todo

write this section






Create a Pull Request


Important

If you are not familiar with Pull Requests, please refer to
https://help.github.com/articles/about-pull-requests.



The best scenario for a pull request would be one that includes the new tool / enhancement, a
proper docstring, unit tests and a new example. However, we will also accept a pull request
including only a tool and a docstring. In these cases, please provide a proper description in the
pull request message in order to make it possible for others to add missing content.

Beside a good description, a descriptive title is vital. Please state what you actually want to
contribute in the pull request title. For the examples produced in this guide a descriptive title
would be something like: Added from_csv tool for reading files.


Note

If your contribution does only contain minor changes like PEP8 fixes, typos and small
bugfixes, you can of course pull request these changes without examples and unittests.



And finally, I am really looking forward to your contributions and thanks in advance!







          

      

      

    

  

  
    
    Reference
    

    
 
  

    
      
          
            
  
Reference


Note

The reference section is still under development, as is the toolbox itself.
It may not reflect the toolbox structure correctly at any time.





	Input / Output
	Random
	timeseries_from_distribution









	Preprocessing
	Scaling
	aggregation

	cut_period









	Basic statistical tools
	Moving window statistics
	moving_window





	Linear Regression
	linear_regression









	Discharge Tools
	Catchment hydrology
	flow_duration_curve

	regime





	Discharge coefficients
	Richards-Baker Flashiness Index









	Signal Processing
	Optimize
	simplify

















          

      

      

    

  

  
    
    Input / Output
    

    
 
  

    
      
          
            
  
Input / Output


Random


timeseries_from_distribution


	
hydrobox.io.random.timeseries_from_distribution(distribution='gamma', distribution_args=[10, 2], size=10, seed=None, start='now', end=None, freq='D')

	Generate a random time series

This function will return a pandas.Series indexed by a
pandas.DatetimeIndex holding random data that is generated by the
given distribution. The distribution name has to be importable from
numpy.random and the distribution_args list will be passed as
*args. The seed parameter will be directed to np.random.seed in
order to return reproducable pseudo-random results.


	Parameters

	
	distributionstring, default=’gamma’

	Any distribution density function from numpy.random can be
chosen. The distribution properties (like location or scale) can be
passed with the parameter distribution_args.



	distribution_argslist, None, default=[10,2]

	This list will be passed as *distribution_args into the given
density function. If no areguments shall be passed,
distribution_args can be set to None.



	sizeint, default=10

	Specifies the length of the produced time series.



	seedint, default=None

	Will be passed to numpy.random.seed.



	startstring, datetime, default=’now’

	Starting point for the pandas.DatetimeIndex. Can be either a
datetime or string. The string has either to be ‘now’ for
using the current time step, or a Datetime string of format
YYYYMMDDHHmmss, where the time (HHmmss) can be omitted.
If end is used, start or size should be set to None.



	endstring, datetime, defualt=None

	see start.



	freqstring, default=’D’

	Specify the temporal resulution of the time series. This can either
be used in case size is omitted, but start and end are given,
or in case either start or end is omitted but size is given.
Any string accepted by the freq attribute of pandas.Grouper is
accepted.







	Returns

	
	pandas.Series

	








See also


	pandas.Grouper [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Grouper.html#pandas.Grouper]

	further information of freq settings



















          

      

      

    

  

  
    
    Preprocessing
    

    
 
  

    
      
          
            
  
Preprocessing


Scaling


aggregation


	
hydrobox.preprocessing.scale.aggregate(x, by, func='mean')

	Time series aggregation

This function version will only operate on a single pandas.Series or
pandas.DataFrame instance. It has to be indexed by a
pandas.DatetimeIndex. The input data will be aggregated to the given
frequency by passing a pandas.Grouper conform string argument
specifying  the desired period like: ‘1M’ for one month or ‘3Y-Sep’ for
three years     starting at the first of October.


	Parameters

	
	x: ``pandas.Series``, ``pandas.DataFrame``

	The input data, will be aggregated over the index.



	bystring

	Specifies the desired temporal resolution. Will be passed as
freq argument of a pandas.Grouper object for grouping the
data into the new resolution.
If by is None, the whole Series will be aggregated to only one
value. The same applies to by='all'.



	funcstring

	Function identifier used for aggregation. Has to be importable from
numpy. The function must accept n input values and aggregate them
to only a single one.







	Returns

	
	pandas.Series :

	if x was of type pandas.Series



	pandas.DataFrame :

	if c was of type pandas.DataFrame
















cut_period


	
hydrobox.preprocessing.scale.cut_period(x, start, stop)

	Truncate Time series

Truncates a pandas.Series or pandas.DataFrame to the given
period.  The start and stop parameter need to be either a string or a
datetime.datetime, which will then be converted. Returns the
truncated time series.


	Parameters

	
	xpandas.Series, pandas.DataFrame

	The input data, will be truncated



	startstring, datetime

	Begin of truncation. Can be a datetime.datetime or a string.
If a string is passed, it has to use the format ‘YYYYMMDDhhmmss’,
where the time componen ‘hhmmss’ can be omitted.



	stopstring, datetime,

	End of truncation. Can be a datetime.datetime or a string.
If a string is passed, it has to use the format ‘YYYYMMDDhhmmss’,
where the time componen ‘hhmmss’ can be omitted.





















          

      

      

    

  

  
    
    Basic statistical tools
    

    
 
  

    
      
          
            
  
Basic statistical tools


Moving window statistics


moving_window


	
hydrobox.toolbox.moving_window(x, window_size=5, window_type=None, func='nanmean')

	Moving window statistics

Applies a moving window function to the input data. Each of the grouped
windows will be aggregated into a resulting time series.


	Parameters

	
	xpandas.Series, pandas.DataFrame

	Input data. The data should have a pandas.DatetimeIndex in order
to produce meaningful results. However, this is not needed and will
technically work on different indexed data.



	window_sizeint

	The specified number of values will be grouped into a window. This
parameter might have different behavior in case the window_type is
not None.



	window_typestr, default=None

	If None, an even spaced window will be used and shifted by one for
each group. Else, a window constructing class can be specified.
Possible constructors are specified in pandas.DataFrame.rolling.



	funcstr

	Aggregating function for calculating the new window value. It has to
be importable from numpy, accept various input values and return
only a single value like numpy.std or numpy.median.







	Returns

	
	pandas.Series

	

	pandas.DataFrame

	







Notes

Be aware that most window types (if window_type is not None) do only
work with either numpy.sum or numpy.mean.

Furthermore, most windows cannot work with the ‘nan’ versions of
numpy aggregating function. Therefore in case window_type is None, any
‘nan’ will be removed from the func string. In case you want to force this
behaviour, wrap the numpy function into a lambda.

Examples

This way, you can prevent the replacement of a np.nan* function:

>>> moving_window(x, func=lambda x: np.nanmean(x))
array([NaN, NaN, NaN, 4.7445, 4.784 ... 6.34532])














Linear Regression


linear_regression


	
hydrobox.toolbox.linear_regression(*x, df=None, plot=False, ax=None, notext=False)

	Linear Regression tool

This tool can be used for a number of regression related tasks. It can
calculate a linear regression between two observables and also return a
scatter plot including the regression parameters and function.

In case more than two Series or arrays are passed, they will be
merged into a DataFrame and a linear regression between all
combinations will be calculated and potted if desired.


	Parameters

	
	xpandas.Series, numpy.ndarray

	If df is None, at least two Series or arrays have to be passed. If
more are passed, a multi output will be produced.



	dfpandas.DataFrame

	If df is set, all x occurrences will be ignored. DataFrame of the
input to be used for calculating the linear regression,
This attribute can be useful, whenever a multi input to x does not
get merged correctly. Note that linear_regression will only use the
DataFrame.data array and ignore all other structural elements.



	plotbool

	If True, the function will output a matplotlib Figure or plot into an
existing instance. If False (default) the data used for the plots
will be returned.



	axmatplotlib.Axes.Axessubplot

	Has to be a single matplotlib Axes instance if two data sets are
passed or a list of Axes if more than two data sets are passed.



	notextbool

	If True, the output of the fitting parameters as a text into the plot
will be suppressed. This setting is ignored, is plot is set to False.







	Returns

	
	matplotlib.Figure

	

	numpy.ndarray

	







Notes

If plot is True and ax is not None, the number of passed Axes has to match
the total combinations between the data sets. This is


[image: N^2]


where N is the length of x, or the length of df.columns.


Warning

This function does just calculate a linear regression. It handles a
multi input recursively and has some data wrangling overhead. If you are
seeking a fast linear regression tool, use the scipy.stats.linregress
function directly.















          

      

      

    

  

  
    
    Discharge Tools
    

    
 
  

    
      
          
            
  
Discharge Tools


Catchment hydrology

Common tools for diagnosic tools frequently used in catchment hydrology.


flow_duration_curve


	
hydrobox.discharge.flow_duration_curve(x, log=True, plot=True, non_exceeding=True, ax=None, **kwargs)

	Calculate a flow duration curve

Calculate flow duration curve from the discharge measurements. The
function can either return a matplotlib plot or return the ordered (
non)-exceeding probabilities of the observations. These values can then
be used in any external plotting environment.

In case x.ndim > 1, the function will be called iteratively along axis 0.


	Parameters

	
	xnumpy.ndarray, pandas.Series

	Series of prefereably discharge measurements



	logbool, default=True

	if True plot on loglog axis, ignored when plot is False



	plotbool, default=True

	if False plotting will be suppressed and the resulting array will
be returned



	non_exceedingbool, default=True

	if True use non-exceeding probabilities



	axmatplotlib.AxesSubplot, default=None

	if not None, will plot into that AxesSubplot instance



	kwargskwargs,

	will be passed to the matplotlib.pyplot.plot function







	Returns

	
	matplotlib.AxesSubplot :

	if plot was True



	numpy.ndarray :

	if plot was `False









Notes

The probabilities are calculated using the Weibull empirical probability.
Following 1, this probability can be calculated as:


[image: p =m/(n + 1)]


where m is the rank of an observation in the ordered time series and
n are the total observations. The increasion by one will prevent 0%
and 100% probabilities.

References


	1

	Sloto, R. a., & Crouse, M. Y. (1996). Hysep: a computer program
for streamflow hydrograph separation and analysis. U.S. Geological
Survey Water-Resources Investigations Report, 96(4040), 54.












regime


	
hydrobox.discharge.regime(x, percentiles=None, normalize=False, agg='nanmedian', plot=True, ax=None, **kwargs)

	Calculate hydrological regime

Calculate a hydrological regime from discharge measurements. A regime is
a annual overview, where all observations are aggregated across the
month. Therefore it does only make sense to calculate a regime over more
than one year with a temporal resolution higher than monthly.

The regime can either be plotted or the calculated monthly aggreates can
be returned (along with the quantiles, if any were calculated).


	Parameters

	
	xpandas.Series

	The Series has to be indexed by a pandas.DatetimeIndex and
hold the preferably discharge measurements. However, the methods
does also work for other observables, if agg is adjusted.



	percentilesint, list, numpy.ndarray, default=None

	percentiles can be used to calculate percentiles along with the main
aggregate. The percentiles can either be set by an integer or a list.
If an integer is passed, that many percentiles will be evenly spreaded
between the 0th and 100th percentiles. A list can set the desired
percentiles directly.



	normalizebool, default=False

	If True, the regime will be normalized by the aggregate over all
months. Then the numbers do not give the discharge itself, but the
ratio of the monthly discharge to the overall discharge.



	aggstring, default=’nanmedian’

	Define the function used for aggregation. Usually this will be
‘mean’ or ‘median’. If there might be NaN values in the
observations, the ‘nan’ prefixed functions can be used. In general,
any aggregating function, which can be imported from numpy can
be used.



	plotbool, default=True

	if False plotting will be suppressed and the resulting
pandas.DataFrame will be returned. In case quantiles was None,
only the regime values will be returned as numpy.ndarray



	axmatplotlib.AxesSubplot, default=None

	if not None, will plot into that AxesSubplot instance



	cmapstring, optional

	Specify a colormap for generating the Percentile areas is a smooth
color gradient. This has to be a valid colormap reference,
see https://matplotlib.org/examples/color/colormaps_reference.html.
Defaults to 'Blue'.



	colorstring, optional

	Define the color of the main aggregate. If None, the first color
of the specified cmap will be used.



	lwint, optinal

	linewidth parameter in pixel. Defaults to 3.



	linestylestring, optional

	Any valid matplotlib linestyle definition is accepted.


':'    -  dotted

'-.'   -  dash-dotted

'--'   -  dashed

'-'    -  solid










	Returns

	
	matplotlib.AxesSubplot :

	if plot was True



	pandas.DataFrame :

	if plot was False and quantiles are not None



	numpy.ndarray :

	if plot was False and quantiles is None









Notes

In case the color argument is not passed it will default to the first
color in the the specified colormap (cmap). You might want to overwrite
this in case no percentiles are produced, as many colormaps range from
light to dark colors and the first color might just default to while.










Discharge coefficients

Common indices frequently used to describe discharge measurements in a single
coefficient.


Richards-Baker Flashiness Index


	
hydrobox.discharge.indices.richards_baker(x)

	Richards-Baker Flashiness Index

Calculates the Richards-Baker Flashiness index (RB Index), which is a
extension of the Richards Pathlengh index. In contrast to the Pathlength
of a signal, the R-B Index is relative to the total discharge and
independend of the chosen unit.


	Parameters

	
	xnumpy.ndarray, pd.Series

	The discharge input values.







	Returns

	
	numpy.ndarray

	







Notes

The Richards-Baker Flashiness Index 2 is defined as:


[image: {RBI} = \frac{\sum_{i=1}^{n}|q_i - q_{i-1}|}{\sum_{i=1}^{n} q_i}]


References


	2

	Baker D.B., P. Richards, T.T. Loftus, J.W. Kramer. A new
flashiness index: characteristics and applications to midwestern
rivers and streams. JAWRA Journal of the American Water Resources
Association, 40(2), 503-522, 2004.

















          

      

      

    

  

  
    
    Signal Processing
    

    
 
  

    
      
          
            
  
Signal Processing


Optimize


simplify


	
hydrobox.toolbox.simplify(x, flatten=True, threshold=0)

	Simplify signal

An given input is simplified by reducing the amount of nodes representing 
the signal. Whenever node[n+1] - node[n] <= threshold, no information 
gain is assumed between the two nodes. Thus, node[n+1] will be removed.

In case flatten is True, noise in the signal will be flattened as well. 
This is done by removing node[n + 1] in case node[n] and node[n + 1] hold 
the same value. In case the underlying frequency in the noise is higher 
than one time step or the amplitude is higher than the sensor precision, 
this method will not assume the value change as noise. In these cases a 
filter needs to be applied first.


	Parameters

	
	xnumpy.ndarray, pandas.Series, pandas.DataFrame

	numpy.array of signal



	flattenbool

	Specify if a 1 frequence 1 amplitude change in signal be flattened 
out as assumed noise.



	thresholdint, float

	value threshold at which a difference in signal is assumed







	Returns

	
	numpy.ndarray

	



















          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   h
   


   
     		 	

     		
       h	

     
       	[image: -]
       	
       hydrobox	
       

     
       	
       	   
       hydrobox.discharge.catchment	
       

     
       	
       	   
       hydrobox.discharge.indices	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 A
 | C
 | F
 | H
 | L
 | M
 | R
 | S
 | T
 


A


  	
      	aggregate() (in module hydrobox.preprocessing.scale)


  





C


  	
      	cut_period() (in module hydrobox.preprocessing.scale)


  





F


  	
      	flow_duration_curve() (in module hydrobox.discharge)


  





H


  	
      	hydrobox.discharge.catchment (module)


  

  	
      	hydrobox.discharge.indices (module)


  





L


  	
      	linear_regression() (in module hydrobox.toolbox)


  





M


  	
      	moving_window() (in module hydrobox.toolbox)


  





R


  	
      	regime() (in module hydrobox.discharge)


  

  	
      	richards_baker() (in module hydrobox.discharge.indices)


  





S


  	
      	simplify() (in module hydrobox.toolbox)


  





T


  	
      	timeseries_from_distribution() (in module hydrobox.io.random)


  







          

      

      

    

  
_static/file.png





_images/examples_regime_percentile.png
1000 -

900 -

2
8
8

700 -

600 -

500 -

400 -

300 -





_images/examples_regime_percentile2.png
900 -

800 -

700 -

600 -

500 -

400 -





_static/up-pressed.png





_images/examples_regime2.png





_static/minus.png





_images/examples_regime_normalize.png
115-

110-

1.05 -

1.00 -

0.95 -

0.90 -

0.85 -

0.80 -





_static/plus.png





_images/examples_simplified_sample2.png
14-

12-

10-

08-

06 -

04-

02-

10





_images/examples_single_fdc.png
loglog FDC

100 -

2 2

“goud Buipasdxa-uou

Ed

discharge [m3/s]





_images/examples_sample_data.png
40

-~
>
< R
<
-
>
IR .
e
>
1
H
el
S A s A A
e % v 8 ® & 3 u





_static/up.png





_images/examples_simplified_sample.png





_images/examples_double_fdc.png
non-exceeding prob.

10°

2

2

1072

10°

aggregated

discharge [m3/s]

10°

1071

2

non-exceeding prob.
g

107%

107%

1072

1072

non-aggregated

1071
discharge [m3/s]

10°

10!





_images/examples_regime.png





_images/math/22c81c93cd9cb23f7c4b6c54fb4bab9d1581c61e.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to HydroBox’s documentation!
        


        		
          Installation Guide
          
            		
              PyPi
            


            		
              GitHub
            


          


        


        		
          Getting Started
          
            		
              Under Development
            


          


        


        		
          Examples
          
            		
              Discharge Tools
              
                		
                  FDC from random data
                


                		
                  Hydrological Regime
                


              


            


            		
              Signal Processing
              
                		
                  Simplifying a Signal
                


              


            


          


        


        		
          Contribution Guide
          
            		
              How to Contribute
              
                		
                  Add Tools to the Toolbox
                


              


            


            		
              Add / improve unit tests
            


            		
              Add / improve docstrings
            


            		
              Enhance the Examples
            


            		
              Create a Pull Request
            


          


        


        		
          Reference
          
            		
              Input / Output
              
                		
                  Random
                


              


            


            		
              Preprocessing
              
                		
                  Scaling
                


              


            


            		
              Basic statistical tools
              
                		
                  Moving window statistics
                


                		
                  Linear Regression
                


              


            


            		
              Discharge Tools
              
                		
                  Catchment hydrology
                


                		
                  Discharge coefficients
                


              


            


            		
              Signal Processin