

 Navigation

 	
 index

 	
 next |

 	Hydrant 2.0.0 documentation

Welcome to the Hydrant Documentation

Hydrant is a simple object serializer and data mapper library. Its goal is to
parse JSON into value objects that you can safely use throughout your
application. All the input validation and error checking can be done through
Hydrant.

New? Install Hydrant and then jump in with
getting started.

	Topical guides after getting started

	
	Learn how Hydrant’s error handling system works

	Read up on mapping techniques for some parsing
scenarios that Hydrant can handle.

	Understand Hydrant’s design

	Learn how to write your own mappers.

	Hydrant’s Public API reference

	
	HYDMappers

	HYDAccessors

	NSFormatters

	NSValueTransformers

	About Hydrant’s Development

	
	Review what’s changed between versions.

	Read the Contributor’s Guide.

	Bugs? File bugs on GitHub.
Don’t know the best way? Read filing bugs.

Table of Contents

	Installation

	Getting Started
	The Problem

	Serializing with Hydrant

	Why not manully parse the JSON?

	Error Handling

	Marking fields as Optional

	Converting it back to JSON

	Removing Boilerplate
	Using Reflection to Remove the Boilerplate

	Handling Hydrant Errors
	Debugging Parse Errors

	Reading Information from Hydrant Errors

	Creating Hydrant Errors

	Mapping Techniques
	Convert a value or return nil (or another default value)

	How do I return a source object’s value unchanged?

	Mapping an array of objects, excluding invalid ones instead of failing entirely

	Mapping Two Fields to One Property

	Writing Your Own Mappers
	Thought Process

	Raising Exceptions

	Crafting your Implementation

	Closing Thoughts

	Design
	Philosophies
	Composition over Inheritance

	Immutability over Mutability

	Abstractions over Concretions

	Have Small Abstractions

	Test-Driven Code

	Mapper

	Accessor
	Accessors & Mappers

	Mapping Data Structure

	How do you have function overloading without being Objective-C++?

	Trade-offs

	Mapper Reference
	Thread Safety

	Constructor Helper Functions

	The Reverse Mapper

	HYDMapEnum

	HYDMapIdentity

	HYDMapObjectToStringByFormatter

	HYDMapStringToObjectByFormatter

	HYDMapDateToNumberSince

	HYDMapNumberToDateSince

	HYDMapDateToString

	HYDMapStringToDate

	HYDMapStringToNumber

	HYDMapNumberToString

	HYDMapURLToString

	HYDMapStringToURL

	HYDMapUUIDToString

	HYDMapStringToUUID

	HYDMapValue

	HYDMapReverseValue

	HYDMapForward

	HYDMapBackward

	HYDMapCollectionOf / HYDMapArrayOf

	HYDMapFirst

	HYDMapSplit

	HYDMapNonFatally

	HYDMapNotNull

	HYDMapOptionally

	HYDMapTypes

	HYDMapKVCObject

	HYDMapObject

	HYDMapWithBlock

	HYDMapWithPostProcessing

	HYDMapReflectively
	mapType(Class, id<HYDMapper>)

	optional(NSArray *propertyNames)

	required(NSArray *propertyNames)

	withNoRequiredFields

	only(NSArray *propertyNames)

	except(NSArray *propertyNames)

	customMapping(NSDictionary *mappingOverrides)

	keyTransformer(NSValueTransformer *keyTransformer)

	HYDMapThread

	HYDMapDispatch

	Accessor Reference
	HYDAccessKeyPath

	HYDAccessKey

	HYDAccessIndex

	HYDAccessDefault

	Formatter Reference
	Date Format Strings

	HYDDotNetDateFormatter

	HYDURLFormatter

	HYDUUIDFormatter

	Value Transformer Reference
	HYDBlockValueTransformer

	HYDIdentityValueTransformer

	HYDReversedValueTransformer

	HYDCamelToSnakeCaseValueTransformer

	Contributing to Hydrant
	Filing Bugs

	Contributing Code

	Changelog
	v2.0.0

	v2.0.0-alpha.2

	v2.0.0-alpha.2

	v1.0.1

	v1.0.0

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Installation

If you’re using CocoaPods [http://cocoapods.org], you can pull in Hydrant by adding this to your
pod file:

this will pull any patch version with 'pod update'
pod "Hydrant", '~>2.0.0'

Or submodule the project into your project:

git submodule add https://github.com/jeffh/Hydrant.git <path/for/Hydrant>

And then add libHydrant to your dependencies and <./Hydrant/Public/> to
your header include path. At this point in time, importing individual
headers that are not Hydrant.h is not safe.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Getting Started

Hydrant is designed to be highly flexible in parsing JSON or any other
structured data (eg - structured NSArrays, NSDictionaries) into Value Objects
for your application to use. Hydrant can perform validations to ensure the
data coming in is what you expect when doing these transformations.

This doesn’t have to be just JSON. Parsing XML or converting values
objects to your views and back is possible, but this tutorial will focus on
JSON.

Enough talk, it’s easier to see the usefulness with some code examples.

The Problem

Let’s look at some json data we just parsed from NSJSONSerialization [https://developer.apple.com/library/iOS/documentation/Foundation/Reference/NSJSONSerialization_Class/Reference/Reference.html]:

id json = @{
 @"first_name": @"John",
 @"last_name": @"Doe",
 @"homepage": @"http://example.com",
 @"age": @24,
 @"children": @[
 @{@"first_name": @"Ann",
 @"last_name": @"Doe",
 @"Age": 6},
 @{@"first_name": @"Bob",
 @"last_name": @"Doe",
 @"age": 6},
]
};

And we want to convert it to our person object:

@interface Person : NSObject
@property (copy, nonatomic) NSString *firstName;
@property (copy, nonatomic) NSString *lastName;
@property (strong, nonatomic) NSURL *homepage;
@property (assign, nonatomic) NSInteger age;
@property (copy, nonatomic) NSArray *children; // array of Person objects
@end

@implementation Person
@end

How can we parse this with Hydrant?

Serializing with Hydrant

Let’s see how you can solve it via Hydrant:

id<HYDMapper> mapper = HYDMapObject([NSDictionary class], [Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"homepage": @[HYDMapStringToURL(), @"homepage"],
 @"age": @"age",
 @"children": @[HYDMapArrayOf(HYDMapObject([NSDictionary class], [Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"age": @"age"})
 @"children"]);

HYDError *error = nil;
Person *john = [mapper objectFromSourceObject:json error:&error];
if ([error isFatal]) {
 // do error handling
} else {
 // use john ... it's valid
}

At first glance, that’s a lot of indentation! It’s easy to break this into
several variables for readability. But we’re doing this to easily see the
code flow of function calls for a function-by-function breakdown.

This is a declarative way to define how Hydrant should map fields
from one object to another. We’re defining a schema of the JSON structure we’re
expecting to parse. Let’s break it down:

	The first HYDMapObject is a helper function that constructs an object for
us to use. The function takes 4 arguments: an id, two classes, and a
dictionary. The dictionary’s keys correspond to the first class while the
value corresponds to the second class. This defines a mapping from an
NSDictionary to a Person class. So it’s key will map in the same direction.
The values can be strings or other objects that support the Mapper
protocol.

	HYDMapStringToURL is another helper function that constructs a HYDMapper
object. It converts strings into NSURLs for our Person class.

	HYDMapCollectionOf / HYDMapArrayOf is yet another helper function that constructs another
HYDMapper object. It takes an argument of another HYDMapper and uses
it to parse an array of objects.

	Now the second HYDMapObject. But now the first argument
becomes obvious, it provides the destination of the results of the operation
– in this example, to the children property.

	[mapper objectFromSourceObject:json error:nil] This actually does the
conversion on the given JSON data structure and produces a Person class. The
mapper will produce an error if the parsing failed. This method comes from
the Mapper protocol.

	[error isFatal] This checks the HYDError for fatalness. Hydrant has two
notions of errors: fatal and non-fatal errors. Fatal errors are given when
the object could not be produced under the given requirements. Non-fatal
errors indicate alternative parsing strategies have occurred to produce the
object returned. We’ll cover more of this shortly.

The mapper object can be reused for parsing that same JSON structure to
produce Person objects. So after the construction, it can be memoized.

All helper functions that produce HYDMapper are prefixed with HYDMap for
easy auto-completing goodness.

Why not manully parse the JSON?

Let’s take a short aside to talk about the go-to solution - parsing it manually.
Here’s an example of parsing the JSON we got manually:

Person *johnDoe = [Person new];
johnDoe.firstName = json[@"first_name"];
johnDoe.lastName = json[@"last_name"];
johnDoe.age = [json[@"age"] integerValue];

NSMutableArray *children = [NSMutableArray arrayWithCapacity:[json[@"children"] count]];
for (NSDictionary *childJSON in json[@"children"]) {
 Person *child = [Person new];
 child.firstName = childJSON[@"first_name"];
 child.lastName = childJSON[@"last_name"];
 child.age = [childJSON[@"age"] integerValue];
 [children addObject:child];
}

johnDoe.children = children;

Not too bad. But what’s are assumptions here? We’re assuming the structure of
the JSON. Easy if you happen to control the source of this JSON, but what if
we don’t? Someone could easily change the JSON to:

id json = @[];

Or something less nefarious, but may potentially happen:

id json = @{
 @"first_name": @"John",
 @"last_name": @"Doe",
 @"homepage": [NSNull null],
 @"age": [NSNull null],
 @"children": [NSNull null]
};

That’s now going to crash your program when you try to treat NSNull as another
object you expected (NSArray, NSNumber, NSString). Last time I checked no
one liked crashes. And writing all the proper guard code starts becoming error-prone,
boring, and adds a lot of noise to your code.

But wait, you don’t need to error check anything! Then you don’t need to
use Hydrant. Simple as that. No hard feelings that you’re not using my library.

Error Handling

Of course, if you don’t know when Hydrant failed to parse something that’s just
as unhelpful. So Hydrant mappers return errors, which can be used to handle
errors when parsing the source object. There are three states after the
mapper parses the source object:

HYDError *error = nil;
Person *john = [mapper objectFromSourceObject:json error:&error];
if ([error isFatal]) {
 // do error handling
} else {
 if (error) {
 // log the non-fatal error.
 }
 // use john ... it's valid
}

Checking for -[HYDError isFatal] is usually the only check you need to
perform in practice. Hydrant errors inherit from NSError.

Hydrant errors contain a lot of state of the library when parsing fails. These
include the source object (or partial object being parsed), any internal
errors, other mapper errors, fatalness, and properties being mapped to and
from. They’re all stored in userInfo, as HYDError just provides convenient
methods.

Warning

Since Hydrant errors store a lot of information about the source
object, you might leak sensitive information from the source
object (eg - user credentials) if you transfer the
error.userInfo over the network.

So when would errors occur? Here’s some examples from our mapper object we
defined:

	Hydrant fails to convert the incoming object to an NSURL for homepage, such
as a trying to use a non-NSString.

	Any element in the incoming children array fails to parse.

	Any of the specified keys are nil or NSNull.

	Any of the properties that are set that aren’t their corresponding property
types (eg - “age” key is a string).

Read Handling Hydrant Errors for more on this topic.

Marking fields as Optional

Most of time, we still want our users to still use the application despite some
invalid data. We can mark fields to tell Hydrant that some fatal errors are
actually non-fatal.

This produces the effect of having optional fields that are parsed or a fallback
value is used instead.

The way to do this is with HYDMapOptionally:

id<HYDMapper> mapper = HYDMapObject[NSDictionary class], [Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"homepage": @[HYDMapOptionallyTo(HYDMapStringToURL()), @"homepage"],
 @"age": @[HYDMapOptionally(), @"age"],
 @"children": @[HYDMapArrayOf(HYDMapObject([NSDictionary class], [Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"age": HYDMapOptionally(@"age")}))
 @"children"];

Here we’re making the age and homepage keys optional. Any invalid values
will produce nil or the zero-value:

	If homepage isn’t a valid NSURL, it is nil

	If age isn’t a valid number, it is 0

The format of the dictionary mapper HYDMapObject expects is:

@{<KeyPathToRead>: @[<HYDMapper>, <KeyPathToWrite>],
 <KeyPathToRead>: <KeyPathToWrite>}

We can use this new mapper to selectively populate our array with values that
are parsable. We can make our mapper ignore children objects that fail to
parse:

id<HYDMapper> personMapper = HYDMapObject([NSDictionary class], [Person class],
 @{@"name": @"firstName"});
id<HYDMapper> mapper = HYDMapArrayOf(HYDMapOptionallyTo(personMapper));

json = @[@{},
 @{"name": @"John"},
 @{"last": @"first"}];

HYDError *error = nil;
NSArray *people = [mapper objectFromSourceObject:json error:&error];

people // => @[<Person: John>]
error // => non-fatal error

But swapping the two map functions will change the behavior to optionally
dropping the array when any of the elements fail to parse:

id<HYDMapper> personMapper = HYDMapObject([NSDictionary class], [Person class],
 @{@"name": @"firstName"});
id<HYDMapper> mapper = HYDMapOptionallyTo(HYDMapArrayOf(personMapper));

json = @[@{},
 @{"name": @"John"},
 @{"last": @"first"}];

HYDError *error = nil;
NSArray *people = [mapper objectFromSourceObject:json error:&error];

people // => nil
error // => non-fatal error

The composition of these mappers provides the flexibility and power in Hydrant.

Converting it back to JSON

You can use the mapper to convert the person object back into JSON since we just
declaratively described the JSON structure:

id<HYDMapper> reversedMapper = [mapper reverseMapper];
id json = [reverseMapper objectFromSourceObject:john error:&err];

That will give us our JSON back. Easy as that!

Removing Boilerplate

Soon, you’ll be typing a lot of these maps to dictionaries. We can cut some of
the cruft we have to type. [NSDictionary class] is implicit as the second
argument to HYDMapObject:

id<HYDMapper> mapper = HYDMapObject([NSDictionary class], [Person class], ...);
// can is equivalent to
id<HYDMapper> mapper = HYDMapObject([Person class], ...);

Likewise with arrays, you can merge HYDMapObject and HYDMapCollectionOf / HYDMapArrayOf
into HYDMapCollectionOf / HYDMapArrayOf:

HYDMapArrayOf(HYDMapObject([NSDictionary class], [Person class], ...))
// can become
HYDMapArrayOfObjects([Person class], ...)

So now we have this:

id<HYDMapper> mapper = HYDMapObject([Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"homepage": @[HYDMapStringToURL(), @"homepage"],
 @"age": @"age",
 @"children": @[HYDMapArrayOfObjects([Person class],
 @{@"first_name": @"firstName",
 @"last_name": @"lastName",
 @"age": @"age"}),
 @"children"]});

But we can do even better.

Using Reflection to Remove the Boilerplate

If your JSON is well formed and just requires a little processing to map
directly to your objects, you can use HYDMapReflectively, which will use
introspection of your classes to determine how to map your values.
Although some information is still required for container types:

HYDCamelToSnakeCaseValueTransformer *transformer = \
 [[HYDCamelToSnakeCaseValueTransformer alloc] init];
id<HYDMapper> childMapper = HYDMapReflectively([Person class])
 .keyTransformer(transformer)
 .except(@[@"children"]);
id<HYDMapper> mapper = HYDMapReflectively([Person class])
 .keyTransformer(transformer)
 .customMapping(@{@"children": @[HYDMapArrayOf(childMapper), @"children"]});

The mapper variable above will map incoming source objects by converting
snake cased keys to their camel cased variants to map properties together.

The reflective mapper tries a bunch of strategies to parse the incoming data
into something reasonable. For example, it tries various different NSDate
formats and permutations to convert an NSString into an NSDate.

The reflective mapper cannot predict how to convert it back to JSON since it
tries a number of strategies for parsing the JSON. We can specify it like so:

// let's say we changed this class to have a birthDate property
@interface Person
// ...
@property (strong, nonatomic) NSDate *birthDate;
@end

id<HYDMapper> mapper = HYDMapReflectively([NSDictionary class], [Person class])
 .keyTransformer(snakeToCamelCaseTransformer)
 .mapClass([NSDate class], HYDMapDateToString(HYDDateFormatRFC3339));

This will explicitly tell Hydrant how to map types to and from your source
object. Otherwise its behavior can be unexpected for certain classes. Read the
documentation about HYDMapReflectively for more details.

That’s it! You might like to read up on some of the many mappers you can use.
But that’s all there’s to it!

Got some more complicated parsing you need to do? Check out the
Mapping Techniques section for more details.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Handling Hydrant Errors

When handling Hydrant errors, use the -[HYDError isFatal] method to check
if the received error is fatal. Fatal errors indicate that the resulting object
should not be used:

HYDError *error = nil;
id resultingObject = [mapper objectFromSourceObject:json error:&error];

if ([error isFatal]) {
 // do error handling
} else {
 // success
}

If [error isFatal] is NO, but there is a non-nil error, then a
non-fatal error has occurred. This is happens when a fallback parse option has
taken place. A simple example of this is with HYDMapOptionally:

id<HYDMapper> mapper = HYDMapOptionallyTo(HYDMapStringToURL());

id invalidURL = @1;

HYDError *error = nil;
id resultingObject = [mapper objectFromSourceObject:invalidURL error:&error];
// error => non-fatal error
// resultingObject => nil

This example above produces a non-fatal error with a resulting object of nil.
The non-fatal error reports the error that HYDMapStringToURL would.

Debugging Parse Errors

Without exceptions, it becomes harder to track down the sources of errors. For
this reason, Hydrant errors store a signifcant amount of information for
debugability.

Currently HYDErrors provides a human-friendly output when using
debugDescription or description:

(lldb) po error
[FATAL] HYDErrorDomain (code=HYDErrorMultipleErrors) because "Multiple parsing errors occurred (fatal=1, total=2)"
- Could not map from 'name.first' to 'firstName' (HYDErrorInvalidResultingObjectType)

The default description will emit all the fatal errors that have occurred when
parsing. Non-fatal errors are suppressed from output. If you want to see all
the errors, use -[HYDError fullDescription]:

(lldb) po [error fullDescription]
[FATAL] HYDErrorDomain (code=HYDErrorMultipleErrors) because "Multiple parsing errors occurred (fatal=1, total=2)"
- Could not map from 'name.first' to 'firstName' (HYDErrorInvalidResultingObjectType)
- Could not map from 'name.last' to 'lastName' (HYDErrorInvalidResultingObjectType)

If you like trees, you can have a more classical-styled output using
-[HYDError recursiveDescription], which prints a tree of fatal errors.

And there’s a corresponding -[HYDError fullRecursiveDescription] which
emits a tree of all errors.

Reading Information from Hydrant Errors

If you want more debugging information access the userInfo dictionary:

	HYDIsFatalKey returns an NSNumber indicating when the error is fatal or
not. Fatal errors indicate the resulting object return should not be used.

	HYDUnderlyingErrorsKey returns all the child errors that contributes to
this error.

	HYDSourceObjectKey returns the source object that caused the error. For
child errors, this can be part of the original source object.

	HYDDestinationObjectKey returns destination object that caused the error.
Most of the time this is nil unless mappers do post-object validation, such
as HYDMapTypes.

	HYDSourceAccessorKey returns the source accessor for accessing the source
object value in question.

	HYDDestinationAccessorKey returns the destination accessor for the
destination object. This is the intended destination of the resulting object.
produced by this mapper.

HYDError provides a helper methods for reading keys from userInfo more
easily:

- (BOOL)isFatal;
- (NSArray *)underlyingErrors;
- (id)sourceObject;
- (id)destinationObject;
- (id<HYDAccessor>)sourceAccessor;
- (id<HYDAccessor>)destinationAccessor;

Warning

It’s worth noting that sourceObject and destinationObject could
leak sensitive information. Be careful when you’re sending
HYDError’s userInfo over the network or logging to disk.

Creating Hydrant Errors

If you’re writing your own Mapper or Accessor there are
also helper methods to construct conforming Hydrant errors:

+ (instancetype)errorWithCode:(NSInteger)code
 sourceObject:(id)sourceObject
 sourceAccessor:(id<HYDAccessor>)sourceAccessor
 destinationObject:(id)destinationObject
 destinationAccessor:(id<HYDAccessor>)destinationAccessor
 isFatal:(BOOL)isFatal
 underlyingErrors:(NSArray *)underlyingErrors;

This will properly construct the object with all possible information. While not
all the arguments are required. Providing more information will help with
tracing down parse errors. The only required parameters are code and
isFatal – any other parameter can accept nil.

underlyingErrors is an array of NSErrors, which can include other Hydrant
errors.

If your mapper contains other mappers, it can wrap errors with more
information:

+ (instancetype)errorFromError:(HYDError *)error
 prependingSourceAccessor:(id<HYDAccessor>)sourceAccessor
 andDestinationAccessor:(id<HYDAccessor>)destinationAccessor
 replacementSourceObject:(id)sourceObject
 isFatal:(BOOL)isFatal;

This method uses existing values from the source error with potential overrides
or additions based on the context of the mapper’s usage. Passing in nil
will use the underlying error’s values. Only error and isFatal are
required.

If your mapper uses multiple child mappers, you can create a HYDError with
multiple errors:

+ (instancetype)errorFromErrors:(NSArray *)errors
 sourceObject:(id)sourceObject
 sourceAccessor:(id<HYDAccessor>)sourceAccessor
 destinationObject:(id)destinationObject
 destinationAccessor:(id<HYDAccessor>)destinationAccessor
 isFatal:(BOOL)isFatal;

This will store the underlying errors for debugging via -[description] and
similar methods.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Mapping Techniques

This is a list of various methods of parsing potentially problematic or
difficult input data. Prefer these techniques before having to resort to
using HYDMapWithBlock or HYDMapWithPostProcessing

Convert a value or return nil (or another default value)

Use the HYDMapOptionally mapper:

id<HYDMapper> mapper1 = HYDMapStringToURL();
id<HYDMapper> mapper2 = HYDMapOptionallyTo(HYDMapStringToURL());

mapper1 one will produce a fatal error if given a value like @1 but
mapper2 will return a non-fatal error with nil.

Use it with HYDMapObject, to optionally map properties.

How do I return a source object’s value unchanged?

Just use HYDMapIdentity.

Mapping an array of objects, excluding invalid ones instead of failing entirely

Depending on the location of HYDMapOptionally in comparison to
HYDMapCollectionOf / HYDMapArrayOf, different behavior occurs:

HYDMapOptionallyTo(HYDMapArrayOf(...))

This mapper will return nil if any part of mapping the array fails.
Where as:

HYDMapArrayOf(HYDMapOptionallyTo(...))

Will exclude any element that fails to parse from the array. This is due
to the way HYDMapArrayOf excludes values from its mapper that produces
nil and any kind of error (fatal or non-fatal).

Mapping Two Fields to One Property

This applies to any combination of mappings: many-to-one, one-to-many, or
many-to-many in a Mapping Data Structure.

Explictly use HYDAccessKeyPath with each key. The accessor will
produce an array of the values it has extracted:

HYDMapObject([Employee class],
 @{@[@"date", @"time"]: @[HYDMapByStringJoining(@"T"),
 HYDMapStringToDate(HYDDateFormatRFC3339),
 @"joinDate"]};

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Writing Your Own Mappers

Hydrant comes with a lot of mappers, but there will always be scenarios that
Hydrant cannot anticipate. Mappers are the ultimate method to extending the
features while still reusing as much as possible with Hydrant.

Before reading this, be sure to read the Mapper protocol and
error handling, specifically
creating errors.

Thought Process

When writing a mapper, look to do the least amount of work possible. Allow the
composition of other mappers to achieve the bigger goal you’re trying to solve:

	Processing a collection? Can you use HYDMapCollectionOf / HYDMapArrayOf instead?

	Need to map objects? Can you compose with HYDMapKVCObject?

Even when implementing, feel free to use the existing mappers for implementation
details, HYDMapReflectively and HYDMapObject both compose
other mappers to achieve their work.

Type-checking (via -[isKindOfClass:]) is a bit more sensitive. You should
do type checking to avoid crashing, but strict type checks to specific concrete
classes should be considered carefully, because HYDMapTypes can cover
those use cases.

Raising Exceptions

While mappers should not raise exceptions for -[objectFromSourceObject:error],
it is perfectly acceptable to raise exceptions on mapper construction or
creating a reverse mapper for easier debuggability by the consumer of your
mapper.

Crafting your Implementation

When creating a new mapper, you should treat the two arguments you
receive very carefully:

	sourceObject can be any value, so be sure that your mapper
does not crash or throw exceptions when receiving nil, [NSNull null],
and unexpected object types.

	error is an object pointer that may or may not be specified. Unlike
some SDKs, you should nil out the error pointer if there are no
errors.

If your mapper returns a fatal error, it is recommended to return nil.
Using nil is not enough to indicate errors if parsing a source object to
return nil is intended behavior. Don’t return [NSNull null] directly.

Closing Thoughts

Is the mapper you wrote generic? Contribute it back to
Hydrant! Make sure it conforms to Hydrant’s design and is
tested.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Design

This describes the internal design of Hydrant. Knowing the internal design
gives you the understanding how to extend Hydrant or contribute code.

The core the Hydrant’s flexibility are its protocols. There are two primary
ones which most of the objects in Hydrant use to interact with each other.
There are specific expectations and assumptions of these protocools if you
choose to write code that conforms to these protocols.

Whenever possible, compose mappers than reimplementing features from existing
mappers. This also applies when writing your own mappers. For example,
HYDMapKVCObject doesn’t do type checking, since HYDMapTypes does
that already. A facade object, HYDMapObject composes both of these
mappers to provide an object mapper that has type checking.

Philosophies

Hydrant has some opinions that are reflected in its code base and design – some
more strongly than others. Individually, they are useful, but as more of
these are combined, they become greater than the sum of their parts.

Composition over Inheritance

Hydrant is a composition library. Inheritance is strongly discouraged when
building mappers or accessors. They tightly couple child classes and parent
classes, break encapsulation, and increase overhead when learning a code base.
A subclass implementation requires knowledge of the parent classes’
implementation too.

Hydrant uses subclasses as dictated by Apple’s frameworks (eg -
NSFormatter or NSValueTransformer). Any other subclasses in Hydrant are
quickfix temporary solutions and are never to be considered public APIs.

Immutability over Mutability

Hydrant makes an unusual stance to hide all internal properties. Whenever
possible, Hydrant prefers immutability over mutation. This makes classes
significantly easier to consume and debug.

Having mutable properties also makes the classes less viable for being
shared across threads. Mutation can break assumptions about objects that
conform to an abstraction.

Abstractions over Concretions

Ideally, concrete classes should never have to know about each other by working
through a protocol. These protocols can be given on object construction to
provide flexibility. Protocols are also easy to test. They
provide a stronger assumption of having less intimate knowledge of the
collaborating object.

The only exception to this rule are Value Objects [http://martinfowler.com/bliki/ValueObject.html] which should not perform
complex behavior, but be a vessel for storing data. Handling Hydrant Errors is an
example of a value object.

Good abstractions can be utilized through the library and should thought through
carefully. Which leads to...

Have Small Abstractions

The best abstractions are as narrow as possible, to allow the most flexibility
of an implementation. Conveniences should be built on top of them but not be
included into the abstraction.

A large abstraction is usually indicative of multiple abstractions that need
to be split apart. For example, Mapper and Accessor were
one protocol, which exposed itself because of the duplicated work required for
implementation of getting and setting data across various mappers. Splitting
this abstraction avoided other solutions: such as using inheritance or
copy-pasting similar implementations.

Abstractions are fractal, so it may not be immediately obvious that smaller
ones exist, but they do and provide a more flexible system in less code.

Test-Driven Code

While you may not agree with TDD [http://en.wikipedia.org/wiki/Test-driven_development]/BDD [http://en.wikipedia.org/wiki/Behavior-driven_development], Hydrant should have thorough test
coverage for various scenarios. After all, nefarious input is being processed
by this library.

All public classes should have tests covering their proper behavior. Any bugs
fixed with associated tests that verify the bug.

Mapper

Let’s look at the mapper protocol which is the foundation to Hydrant’s design:

@protocol HYDMapper <NSObject>

- (id)objectFromSourceObject:(id)sourceObject error:(__autoreleasing HYDError **)error;
- (id<HYDMapper>)reverseMapper;

@end

Using this protocol plus object composition [http://en.wikipedia.org/wiki/Object_composition], provides a shared method for
mappers to compose with each other.

Let’s break it down by method – along with their purposes and expectations:

- (id)objectFromSourceObject:(id)sourceObject error:(__autoreleasing HYDError **)error;

This method is where all the grunt work occurs. Here a new object is created
from the source object. This also provides a method for returning errors that
should conform to Hydrant’s error handling policies. This includes:

	Emitting fatal errors when mapping fails.

	Emitting non-fatal errors when an alternative mapping occurred.

	Including as much userInfo about the error (see constants).

	Returning nil if a fatal error occurs.

It is the responsibility of each mapper to avoid throwing exceptions. This
matches Apple’s convention [https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Exceptions/Exceptions.html] of exceptions in Objective-C [http://stackoverflow.com/questions/4648952/objective-c-exceptions], where they should
be used to indicate programmer error.

For easy of discovery, many mappers will validate its construction instead of
possibly raising exceptions on -[objectFromSourceObject:error:].

For Hydrant Mappers, any operation on the sourceObject should be treated
defensively. Doing work on a sourceObject should never raise an exception.
Even under ARC, memory leaks can occur when exceptions are caught since the
underlying libraries may not support the -fobjc-arc-exceptions flag.

That being said, exceptions can be raised if the definition of the resulting
object is improperly configured. For example, HYDObjectMapper will throw an
exception if the destination object is missing a key that is specified by the
Hydrant user. But whenever possible, produce these exceptions as early as
possible (eg - on object construction time instead of when
-[objectFromSourceObject:error:] is called).

The next method on HYDMapper are for compositions of mappers:

- (id<HYDAccessor>)destinationAccessor;

This method returns an accessor instance for parent mappers (mappers that hold
this mapper). Accessors, which are described more in the later section, are an
abstraction to how to read and write values from an object. In this case, the
destinationAccessor is how the parent mapper should map the value. This method
exists for syntactic reasons of the DSL.

Accessor

Some mappers use a smaller abstraction called accessors. Accessors describe
how to set and get values. Surprisingly, they are larger than the Mapper
protocol:

@protocol HYDAccessor <NSObject>

- (NSArray *)valuesFromSourceObject:(id)sourceObject error:(__autoreleasing HYDError **)error;
- (HYDError *)setValues:(NSArray *)values onObject:(id)destinationObject;
- (NSArray *)fieldNames;

@end

There are currently two implementations of accessors: HYDAccessKey and
HYDAccessKeyPath which use KVC to set and get values off of objects.

The accessor protocol supports getting and setting multiple values at once. In
fact, both built-in Hydrant accessors support parsing multiple values. Allowing
mappers to process multiple values at once gives an opportunity to do value
joining (eg - joining a “date” and “time” field into a “datetime” field).

The method -[fieldNames] exists only for debuggability – providing the
developer enough contextual information to location the exact mapper that failed
in a large composition of mappers. The values in this method is used by mappers
to populate Hydrant errors.

Accessors & Mappers

Accessors can choose to emit errors like mappers, but the default
implementations existed prior to this feature and opt to return [NSNull null].
Hydrant mappers that treat nil and [NSNull null] the same. They also
extract values out of their resulting arrays if there is only one value for
easier composibility with other mappers.

Mappers will bubble up accessor errors to their consumers. The same rules about
fatalness apply here too – fatal errors abort the entire parsing operation
while non-fatal errors indicate errors that could be recovered from.

Mapping Data Structure

Various mappers built on top of HYDMapKVCObject utilize an informal
data structure based format for describing field-to-field mapping which follows
the form of:

@{<HYDAccessor>: <HYDMapping>}

Where’s HYDMapping? It’s just a tuple, which is fancy for saying an array:

@[<HYDMapper>, <HYDAccessor>]

So in summary, mapping dictionaries are just:

@{<HYDAccessor1>: @[<HYDMapper>, <HYDAccessor2>]}

Which reads, map <HYDAccessor1> to <HYDAccessor2> using <HYDMapper>.

To get this mapping into this form, it is first normalized by:

	Converting all keys that are strings into HYDAccessKeyPaths.

	Converting all keys that are arrays into HYDAccessKeyPaths with an array.

	Converting all values that are strings into a mapping of HYDMapIdentity and HYDKeyPathAccessors.

	Converting all values that are arrays into a mapping of HYDMapIdentity and HYDKeyPathAccessors.

And that’s it! Anything else specific must be done explicitly using the
array-styled syntax. If you so choose, you can use your own tuple-like object
for the HYDMapping protocol.

How do you have function overloading without being Objective-C++?

Hydrant makes use of a little known Clang-specific feature:

__attribute__((overloadable))

This overloadable attribute [http://clang.llvm.org/docs/AttributeReference.html#overloadable] allows basic C++ overloaded functions with some
notable exceptions:

- It cannot overload with a zero-arity function.
- Protocols are not part of the type dispatch -- so you cannot have two
 overloaded functions with different protocols

For convience, Hydrant uses the macro HYD_EXTERN_OVERLOADED to define
these functions:

HYD_EXTERN_OVERLOADED
id<HYDMapper> MyMapper(NSString *foo);

Since the custom attribute changes the compiled function name, adding the
overloadable attribute to an existing will break existing consumers. For iOS,
this is not usually a problem since recompilation is required for static
libraries. But for dynamic OSX libraries, this can be problematic.

Trade-offs

Every design and implementation has trade-offs. Anyone who tells you otherwise
is not giving the entire picture. Hydrant is no exception:

	It is slower than naive parsing, because it’s doing more validation checks

	It is design for parsing data that you do not control, if you control the
JSON API, it might not be necessary to use Hydrant

	It provides no other features other serialization/deserialization, such as
value objects, persistence, networking, etc.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Mapper Reference

Here lists all the mappers currently available in Hydrant. Composing these
mappers together provides the ability to (de)serialize for a wide variety of
use cases. All the functions listed here return objects that conform to the
Mapper protocol.

Thread Safety

While none of Hydrant’s mappers are ensured for thread safety. They are
immutable after creation unless otherwise noted. This doesn’t gaurantee
thread safety since other internal objects can be thread unsafe (eg -
Formatters, ValueTransformers, etc.).

Constructor Helper Functions

Nearly all mappers come with helper functions. These are simply overloaded c
functions that provide a way to construct mappers more succinctly. Since they
are overloaded they generally conform to the following style:

HYDMapMapperName(...)
HYDMapMapperName(id<HYDMapper> innerMapper, ...);

The former function is a convenience that converts to the latter function:

HYDMapMapperName(HYDMapIdentity(), ...);

The identity mapper simply provides direct access to
the source object and provides a KVC-styled key accessor for parent mappers.

Inner mappers are receive the source object before the current mapper. This
allows chaining of complex conversion methods. For example:

id<HYDMapper> mapper = HYDMapURLToStringFrom(HYDMapStringToURL())

This mapper composition produces strings that are valid URLs. Strings that
are not URLs fail to parse for this mapper. For readability, you can also
compose mappers in a chain using HYDMapThread.

For autocompleting convenience, all the helper functions are prefixed with
HYDMap. So HYDMapEnum exposes constructor functions with
HYDMapEnum.

You might be thinking these overload functions require Objective-C++, but
you’d be wrong.

The Reverse Mapper

All mappers defined here fully support Hydrant’s Mapper protocol
unless explicitly state otherwise. This means each mapper can create an
equivalent mapper that undoes the current mapper:

id<HYDMapper> mapper = HYDMapStringToURL();
id<HYDMapper> reversedMapper = [mapper reverseMapper];

NSString *URI = @"http://jeffhui.net";
// never pass nil to error, but here for brevity
NSURL *url = [mapper objectFromSourceObject:URI error:nil];
NSString *reversedURI = [reversedMapper objectFromSourceObject:url error:nil];

assert [URI isEqual:reversedURI]; // equal

Mappers that are lossy cannot ensure the reversability will be exactly
equal, this currently only applies to HYDMapForward and
HYDMapBackward.

HYDMapEnum

The enum mapper uses a dictionary to map values from the source object to the
destination object. This is typically used for mapping strings to an enum
equivalent.

Warning

The mapping dictionary for this mapper is assumed to have a
one-to-one mapping for its keys and values. Any key that maps to
the same value or vice versa will cause undefined behavior. Future
versions of Hydrant may choose to make this error throw an
exception.

Any values that do not match the enum will make this mapper produce a fatal
error. To provide an optional default, wrap with HYDOptionalMapper.

The following helper functions are available for this mapper:

HYDMapEnum(NSDictionary *mapping);
HYDMapEnum(id<HYDMapper> innerMapper, NSDictionary *mapping);

With the mapping dictionary mapping source object values to destination
object values. Remember that all values in the mapping need to be an object:

// defined somewhere...
typedef NS_ENUM(NSUInteger, PersonGender) {
 PersonGenderUnknown,
 PersonGenderMale,
 PersonGenderFemale,
};

// building the mapper
HYDMapEnum(HYDRootMapper,
 @{@"male": @(PersonGenderMale),
 @"female": @(PersonGenderFemale),
 @"unknown": @(PersonGenderUnknown)});

The internal implementation class is HYDEnumMapper.

HYDMapIdentity

This mapper, as its name suggests, is a passthrough mapper. It simply returns
the source object as its destination object.

Sounds pretty useless, but it is used by other mappers as the “default” inner
mapper that can be used for chaining. Because of this, this mapper is used by
helper functions for nearly all the other mappers in Hydrant.

HYDMapObjectToStringByFormatter

This mapper utilizes NSFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html] to convert objects to strings. It uses the
-[NSFormatter stringForObjectValue:] internally for this mapping while
conforming as a Hydrant mapper.

Formatters that return nil will make this mapper produce a fatal Hydrant
error.

For the reverse – mapping a string to an object with an NSFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html], use
HYDMapStringToObjectByFormatter. Calling -[reverseMapper] will do
this with the same parameters provided to this mapper.

The helper functions are available for this mapper:

HYDMapObjectToStringByFormatter(NSFormatter *formatter);
HYDMapObjectToStringByFormatter(id<HYDMapper> innerMapper, NSFormatter *formatter);

This mapper is the underpinning for other mappers that utilize this internally:

	HYDMapDateToString - Converts a NSDate to NSString

	HYDMapURLToString - Converts an NSURL to NSString

	HYDMapNumberToString - Converts a number to NSString

	HYDMapUUIDToString - Converts an NSUUID to NSString

HYDMapStringToObjectByFormatter

This mapper utilizes NSFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html] to convert strings to objects. It uses
-[NSFormatter getObjectValue:forString:errorDescription:] internally for
this mapping while conforming as a Hydrant mapper.

In addition, this mapper will validate that the source object is a valid string
before passing it through to the formatter. When an error description is
returned, Hydrant will insert it into an NSError instance like:

[NSError errorWithDomain:NSCocoaErrorDomain
 code:NSFormattingError
 userInfo:@{NSLocalizedDescriptionKey: errorDescription}];

If errorDescription is not provided but success is still NO, then a generic
errorDescription is created as a placeholder.

Following the creating of the NSError, it is wrapped inside a Hydrant error for
compatibility with the reset of Hydrant as a fatal error.

For the reverse – mapping an object to a string with an NSFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html], use
HYDMapObjectToStringByFormatter.

The helper functions are available for this mapper:

HYDMapStringToObjectByFormatter(NSFormatter *formatter);
HYDMapStringToObjectByFormatter(id<HYDMapper> mapper, NSFormatter *formatter);

This mapper is the underpinning for other mappers that utilize this
internally:

	HYDMapStringToDate - Converts a NSString to NSDate

	HYDMapStringToURL - Convert a NSString to NSURL

	HYDMapStringToNumber - Converts a NSString to NSNumber

	HYDMapStringToUUID - Converts a NSString to NSUUID

HYDMapDateToNumberSince

This converts NSDates into NSNumbers by using the built-in conversions.
The mapper will verifying the source object is a valid date before doing the
conversion.

The following helpers are available:

HYDMapDateToNumberSince1970();
HYDMapDateToNumberSince1970(HYDDateTimeUnit unit);
HYDMapDateToNumberSince(NSDate *sinceDate);
HYDMapDateToNumberSince(NSDate *sinceDate, HYDDateTimeUnit unit);

Some of these functions allow you specify the units the number is to be emitted
in. A double in seconds is returned by default, but you can change it to return
an alternative unit:

HYDDateTimeUnitMilliseconds
HYDDateTimeUnitSeconds
HYDDateTimeUnitMinutes
HYDDateTimeUnitHours

See HYDMapNumberToDateSince for the reverse of this mapper.

HYDMapNumberToDateSince

This converts NSNumbers into NSDates by using the built-in conversions.
The mapper will verifying the source object is a valid number before doing the
conversion. A reference date can be specified to interpret the source number
being relative to.

The following helpers are available:

HYDMapNumberToDateSince1970();
HYDMapNumberToDateSince1970(HYDNumberDateUnit unit);
HYDMapNumberToDateSince(NSDate *sinceDate);
HYDMapNumberToDateSince(NSDate *sinceDate, HYDDateTimeUnit unit);

Some of these functions allow you specify the units the number is to be emitted
in. A double in seconds is returned by default, but you can change it to return
an alternative unit:

HYDDateTimeUnitMilliseconds
HYDDateTimeUnitSeconds
HYDDateTimeUnitMinutes
HYDDateTimeUnitHours

See HYDMapDateToNumberSince for the reverse of this mapper.

HYDMapDateToString

This wraps around HYDMapObjectToStringByFormatter and provides
conveniences for using an NSDateFormatter [https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/Reference/Reference.html] to map a date to a string.

The following helper functions are available:

HYDMapDateToString(NSString *formatString);
HYDMapDateToString(NSDateFormatter *dateFormatter)
HYDMapDateToString(id<HYDMapper> innerMapper, NSString *formatString);
HYDMapDateToString(id<HYDMapper> innerMapper, NSDateFormatter *dateFormatter)

Either you can provide date format string (or use one of Hydrant’s
Date Format Strings) or use a customized NSDateFormatter instance.

The reverse of this mapper is HYDMapStringToDate.

See HYDMapDateToNumberSince if you’re looking to convert dates into numbers

HYDMapStringToDate

This wraps around HYDMapStringToObjectByFormatter and provides
conveniences for using an NSDateFormatter [https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/Reference/Reference.html] to map a string to a date.

The following helper functions are available:

HYDMapStringToDate(NSString *formatString);
HYDMapStringToDate(NSDateFormatter *dateFormatter)
HYDMapStringToDate(id<HYDMapper> innerMapper, NSString *formatString);
HYDMapStringToDate(id<HYDMapper> innerMapper, NSDateFormatter *dateFormatter)
HYDMapStringToAnyDate();
HYDMapStringToAnyDate(id<HYDMapper> innerMapper);

Either you can provide date format string (or use one of Hydrant’s
Date Format Strings) or use a customized NSDateFormatter instance.

HYDMapStringToAnyDate attempts to parse the given string as any of the
dates specified in Date Format Strings. Unsurprisingly, the mapper that
the function produces will have unreliable results when reversing.

The reverse of this mapper is HYDMapDateToString.

See HYDMapNumberToDateSince if you’re looking to convert numbers into
dates.

HYDMapStringToNumber

This provides conveniences to HYDMapStringToObjectByFormatter by using
NSNumberFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSNumberFormatter_Class/Reference/Reference.html] to convert a string to an NSNumber [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/nsnumber_class/Reference/Reference.html].

The following helper functions are available:

HYDMapStringToDecimalNumber()
HYDMapStringToNumber(id<HYDMapper> mapper)
HYDMapStringToNumber(NSNumberFormatterStyle numberFormatStyle)
HYDMapStringToNumber(id<HYDMapper> mapper, NSNumberFormatterStyle numberFormatStyle)
HYDMapStringToNumber(NSNumberFormatter *numberFormatter)
HYDMapStringToNumber(id<HYDMapper> mapper, NSNumberFormatter *numberFormatter)

The reverse of this mapper is HYDMapNumberToString.

Converting an NSNumber to a c-native numeric type is not the
responsibility of this mapper, that is what HYDMapKVCObject does.

HYDMapNumberToString

This provides conveniences to HYDMapStringToObjectByFormatter by using
NSNumberFormatter [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSNumberFormatter_Class/Reference/Reference.html] to convert an NSNumber [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/nsnumber_class/Reference/Reference.html] to a string.

The following helper functions are available:

HYDMapDecimalNumberToString()
HYDMapNumberToString(id<HYDMapper> mapper)
HYDMapNumberToString(NSNumberFormatterStyle numberFormatStyle)
HYDMapNumberToString(id<HYDMapper> mapper, NSNumberFormatterStyle numberFormatStyle)
HYDMapNumberToString(NSNumberFormatter *numberFormatter)
HYDMapNumberToString(id<HYDMapper> mapper, NSNumberFormatter *numberFormatter)

The reverse of this mapper is HYDMapStringToNumber.

Converting a c-native numeric type to an NSNumber is not the
responsibility of this mapper, that is what HYDMapKVCObject does.

HYDMapURLToString

This provides conveniences to HYDMapObjectToStringByFormatter by using
HYDURLFormatter to convert an NSURL to a string.

The following helper functions are available:

HYDMapURLToString();
HYDMapURLToStringFrom(id<HYDMapper> innerMapper);
HYDMapURLToStringOfScheme(NSArray *allowedSchemes)
HYDMapURLToStringOfScheme(id<HYDMapper> mapper, NSArray *allowedSchemes)

An array of schemes can be provided that the URL must conform to be valid. For
example, this mapper only accepts http urls:

HYDMapURLToStringOfScheme(@["http", @"https"])

The reverse of this mapper is HYDMapStringToDate.

HYDMapStringToURL

This provides conveniences to HYDMapStringToObjectByFormatter by using
HYDURLFormatter to convert a string to an NSURL [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/Reference/Reference.html].

The following helper functions are available:

HYDMapStringToURL();
HYDMapStringToURLFrom(id<HYDMapper> innerMapper);
HYDMapStringToURLOfScheme(NSArray *allowedSchemes)
HYDMapStringToURLOfScheme(id<HYDMapper> mapper, NSArray *allowedSchemes)

An array of schemes can be provided that the URL must conform to be valid. For
example, this mapper only accepts http urls:

HYDMapStringToURLOfScheme(@["http", @"https"])

The reverse of this mapper is HYDMapDateToString.

HYDMapUUIDToString

This provides conveniences to HYDMapObjectToStringByFormatter by using
HYDUUIDFormatter to convert an NSUUID [https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/Reference/Reference.html] to a string.

The following helper functions are available:

HYDMapUUIDToString();
HYDMapUUIDToStringFrom(id<HYDMapper> innerMapper);

The reverse of this mapper is HYDMapStringToUUID.

HYDMapStringToUUID

This provides conveniences to HYDMapStringToObjectByFormatter by using
HYDUUIDFormatter to convert a string to an NSUUID [https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/Reference/Reference.html].

The following helper functions are available:

HYDMapStringToUUID();
HYDMapStringToUUIDFrom(id<HYDMapper> innerMapper);

The reverse of this mapper is HYDMapUUIDToString.

HYDMapValue

This mapper utilizes NSValueTransformer [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSValueTransformer_Class/Reference/Reference.html] to convert from one value to
another. It utilizes -[NSValueTransformer transformValue:] internally for
this mapping while conforming to the Hydrant mapper protocol.

HYDValueTransformerMapper assumes that all validation will be handled by the
value transformer. No addition validation is done. It is impossible
for this mapper to return Hydrant errors.

If the value transformer is reversable, then this mapper can be reversed. It
produces HYDMapReverseValue which you can also use
directly if you want to apply the reversed transformation to a source object.

Attempting to produce a reverse mapper when the transformer cannot be reversed
will throw an exception.

The helper functions are available for this mapper:

HYDMapValue(NSValueTransformer *valueTransformer);
HYDMapValue(id<HYDMapper> innerMapper, NSValueTransformer *valueTransformer);
HYDMapValue(NSString *valueTransformerName);
HYDMapValue(id<HYDMapper> innerMapper, NSString *valueTransformerName);

If your value transformer is registered as a singleton via
+[NSValueTransformer setValueTransformer:forName:], then using the
constructor functions that accept a string as the second argument can be used
to easily fetch the value transformer by that name.

HYDMapReverseValue

This mapper utilizes NSValueTransformer [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSValueTransformer_Class/Reference/Reference.html] to convert from one value to
another. It utilizes -[NSValueTransformer reverseTransformedValue:]
internally to produce the resulting object.

This mapper assumes that all validation will be handled by the value
transformer. No additional validation is done. It is impossible for this
mapper to return Hydrant errors.

If constructing this mapper with a value transformer that cannot be reversed
will throw an exception. For the reverse of this mapper, see
HYDMapValue if you want to map values using
-[NSValueTransformer transformValue:].

The helper functions are available for this mapper:

HYDMapReverseValue(NSValueTransformer *valueTransformer);
HYDMapReverseValue(id<HYDMapper> innerMapper, NSValueTransformer *valueTransformer);
HYDMapReverseValue(NSString *valueTransformerName);
HYDMapReverseValue(id<HYDMapper> innerMapper, NSString *valueTransformerName);

If your value transformer is registered as a singleton via
+[NSValueTransformer setValueTransformer:forName:], then using the
constructor functions that accept a string as the second argument can be used
to easily fetch the value transformer by that name.

HYDMapForward

This mapper traverses the source object before sending the traversed sub-source
object to the child mapper its given. This allows for selectively ignoring
various parts of a data structure from the incoming source object:

id<HYDMapper> mapper = HYDMapForward(@"person.account",
 HYDMapObject(HYDRootMapper, [Person class],
 @{@"first": @"firstName"}));

id json = @{@"person": @{@"account": @{@"first": @"John"}}};

HYDError *error = nil;
Person *person = [mapper objectFromSourceObject:json error:&error];
// person.firstName => @"John"

Since this is lossy, reversing this mapper cannot produce any extra data that
was truncated by the traversal. The reversed mapper of this produces a
HYDMapBackward.

The helper functions available for this mapper:

HYDMapForward(NSString *walkKey, Class sourceClass, id<HYDMapper> childMapper);
HYDMapForward(id<HYDAccessor> walkAccessor, Class sourceClass, id<HYDMapper> childMapper);
HYDMapForward(NSString *walkKey, id<HYDMapper> childMapper);
HYDMapForward(id<HYDAccessor> walkAccessor, id<HYDMapper> childMapper);

The first argument for all these constructors are how to walk through through
the incoming mapping. The last argument is the child mapper to process the
subset of the source object being traversed by the first argument.

When not provided, sourceClass defaults to [NSDictionary class], this is
to hint to the reversed mapper how to produce the parent object.

HYDMapBackward

This mapper is the reverse of HYDMapForward it generates a series of
repeated objects to that would allow the HYDMapForward to function on
the resulting object produced:

id<HYDMapper> mapper = HYDMapBackward(@"person.account",
 HYDMapObject(HYDRootMapper, [Person class], [NSDictionary class],
 @{@"firstName": @"first"}));

Person *person = [[Person alloc] initWithFirstName:@"John"];

HYDError *error = nil;
id json = [mapper objectFromSourceObject:person error:&error];
// json => @{@"person": @{@"account": @{@"first": @"John"}}};

Since this mapper simply recursively creates the class it was given to produce
the hierarchy.

The helper functions available for this mapper:

HYDMapBackward(NSString *walkKey, Class destinationClass, id<HYDMapper> childMapper);
HYDMapBackward(id<HYDAccessor> walkAccessor, Class destinationClass, id<HYDMapper> childMapper);
HYDMapBackward(NSString *walkKey, id<HYDMapper> childMapper);
HYDMapBackward(id<HYDAccessor> walkAccessor, id<HYDMapper> childMapper);

The first argument for all these constructors are the path of the keys to
create recursively. The last argument is the child mapper to produce the final
object that will be placed in the leaf of the path presented by the first
argument.

When not provided, destinationClass defaults to [NSDictionary class], this is
to hint to the reversed mapper how to produce the parent objects. The
destinationClass is instanciated with [[NSObject alloc] init]. If the
class supports NSMutableCopying, then a mutableCopy is created to work with
immutable data types (eg - NSDictionary which needs to be converted to
NSMutableDictionary).

HYDMapCollectionOf / HYDMapArrayOf

This mapper applies a child mapper to process a collection, usually an array of
items. Although this can apply to sets any other collection of items to map.
The child mapper is used to map each individual element of the collection:

id<HYDMapper> childMapper = HYDMapObject([Person class],
 @{@"first": @"firstName"});
id<HYDMapper> mapper = HYDMapCollectionOf(childMapper,
 [NSArray class], [NSArray class]);

HYDError *error = nil;
id json = @[
 @{@"first": @"John"},
 @{@"first": @"Jane"},
 @{@"first": @"Joe"},
];
NSArray *people = [mapper objectFromSourceObject:json error:error];
// people => @[<Person: John>, <Person: Jane>, <Person: Joe>]

HYDCollectionMapper will validate the incoming source object’s enumerability
by checking if it is the given source class.

The helper functions available for this mapper:

HYDMapCollectionOf(id<HYDMapper> itemMapper, Class sourceCollectionClass, Class destinationCollectionClass)
HYDMapCollectionOf(Class collectionClass)
HYDMapCollectionOf(Class sourceCollectionClass, Class destinationCollectionClass)
HYDMapCollectionOf(id<HYDMapper> itemMapper, Class collectionClass)
HYDMapArrayOf(id<HYDMapper> itemMapper)
HYDMapArrayOfObjects(Class sourceItemClass, Class destinationItemClass, NSDictionary *mapping)
HYDMapArrayOfObjects(Class destinationItemClass, NSDictionary *mapping)

HYDMapArrayOf are a set of convenience functions that assume the source
and destination collection to be NSArrays. Further convenience are built
on top that to convert an array of objects into another array of objects.

HYDMapArrayOfObjects is simply the composition:

HYDMapArrayOf(HYDMapObject(...))

See HYDMapObject for more information on that mapper.

This mapper has some extra behavior based on the result of the child mapper.
Specifically, if a child mapper produces a nil value and a non-fatal error,
then its value is excluded from an array. This allows selective exclusion of
items from the source array in the resulting array.

For more details, see Mapping an array of objects, excluding invalid ones instead of failing entirely.

HYDMapFirst

This mapper tries to apply each mapper its given until one succeeds (does not
return a fatal error). Using this mapper can provide an ordered list of mappers
to attempt. An example is an array that has different object types:

id<HYDMapper> personMapper = HYDMapObject([Person class], {...});
id<HYDMapper> employeeMapper = HYDMapObject([Person class], {...});
id<HYDMapper> mapper = HYDMapArrayOf(HYDMapFirst(personMapper, employeeMapper));

mapper will try using personMapper, but if that mapper generates a fatal
error, then employeeMapper is used instead. If that fails, then it is
returned to the consumer of mapper.

HYDMapFirst is a macro around the constructor function:

HYDMapFirstMapperInArray(NSArray *mappers)

HYDMapSplit

This mapper allows you to replace the reverseMapper of the given mapper. This
can be useful if a mapper does not provide the reverse mapper implementation
you prefer, but want its source-to-destination mapping capabilities:

[HYDMapToString() reverseMapper]; // => raises exception

id<HYDMapper> mapper = HYDMapSplit(HYDMapToString(), HYDMapIdentity());

HYDError *err = nil;
[mapper objectFromSourceObject:@1 error:&err]; // => @"1"

[mapper reverseMapper] // => returns HYDMapIdentity()

There is only one helper function:

HYDMapSplit(id<HYDMapper> originalMapper, id<HYDMapper> reverseMapper);

Internally, Hydrant uses this for HYDMapReflectively to allow basic
type coercion between strings and numbers.

HYDMapNonFatally

The non-fatal mapper takes child mapper to process and converts any fatal
error that the child mapper produces into non-fatal ones:

// This mapper will attempt to convert a string to an NSURL
// or returns nil otherwise
id<HYDMapper> mapper = HYDMapNonFatally(HYDMapStringToURL(...))

There are many helper functions which relate to producing default values:

HYDMapNonFatally(id<HYDMapper> childMapper)
HYDMapNonFatallyWithDefault(id<HYDMapper> childMapper, id defaultValue)
HYDMapNonFatallyWithDefault(id<HYDMapper> childMapper, id defaultValue, id reverseDefault)
HYDMapNonFatallyWithDefaultFactory(id<HYDMapper> childMapper, HYDValueBlock defaultValueFactory)
HYDMapNonFatallyWithDefaultFactory(id<HYDMapper> childMapper, HYDValueBlock reversedDefaultFactory)

Which provides a variety of producing default values when fatal errors
are received. By default, nil is returned.

Also, you might want to use HYDMapOptionally, which composition this
with HYDMapNotNull.

HYDMapNotNull

The mapper produces fatal errors if a nil or [NSNull null] is returned
by a given mapper:

id<HYDMapper> mapper = HYDMapNotNull();
id json = [NSNull null];
HYDError *error = nil;
// => produces fatal error
[mapper objectFromSourceObject:json error:&error];

There are helper functions:

HYDMapNotNull()
HYDMapNotNullFrom(id<HYDMapper> innerMapper)

Also, you might want to use HYDMapOptionally, which composition this
with HYDMapNonFatally.

HYDMapOptionally

This is the composition of HYDMapNonFatally and HYDMapNotNull
which produces a mapper that converts nil, [NSNull null] or any
unmappable values into a default value provided.

The helper functions are based on the composition:

HYDMapOptionally()
HYDMapOptionallyTo(id<HYDMapper> innerMapper)
HYDMapOptionallyWithDefault(id defaultValue)
HYDMapOptionallyWithDefault(id<HYDMapper> innerMapper, id defaultValue)
HYDMapOptionallyWithDefault(id<HYDMapper> innerMapper, id defaultValue, id reverseDefaultValue)
HYDMapOptionallyWithDefaultFactory(HYDValueBlock defaultValueFactory)
HYDMapOptionallyWithDefaultFactory(id<HYDMapper> innerMapper, HYDValueBlock defaultValueFactory)
HYDMapOptionallyWithDefaultFactory(id<HYDMapper> innerMapper,
 HYDValueBlock defaultValueFactory,
 HYDValueBlock reverseDefaultValueFactory)

This is commonly used for conditionally allowing fields when
mapping with HYDMapObject:

// first name is optional, last name is required
HYDMapObject([Person class],
 @{@"first": @[HYDMapOptionally(), @"firstName"],
 @"last": @"lastName"});

// this json causes a fatal error:
id json = @{@"first": @"John"};

// this json will produce a non-fatal error, and map to a Person object
id json = @{@"last": @"Doe"};

// this json will produce no error and map to a Person object
id json = @{@"first": @"John",
 @"last": @"Doe"};

HYDMapTypes

This mapper does type checking to ensure the given type is as intended.
Using this mapper can provide type checking to filter out nefarious input that
can potentially crash your application. If you’re looking to apply this
upon an object’s properties, use HYDMapObject instead – which uses
this mapper internally. HYDMapCollectionOf / HYDMapArrayOf also does some type checking
for the collection source class.

The mapper simply uses -[isKindOfClass:] to verify expected inputs and
outputs - returning a fatal error if this check fails.

Here are the following functions to construct this mapper:

HYDMapType(Class sourceAndDestinationClass)
HYDMapType(Class sourceClass, Class destinationClass)
HYDMapTypes(NSArray *sourceClasses, NSArray *destinationClasses)
HYDMapType(id<HYDMapper> innerMapper, Class sourceAndDestinationClass)
HYDMapType(id<HYDMapper> innerMapper, Class sourceClass, Class destinationClass)
HYDMapTypes(id<HYDMapper> innerMapper, NSArray *sourceClasses, NSArray *destinationClasses)

As the arguments suggest, you can provide multiple classes that are valid for
inputs or outputs. Passing nil as a class argument will allow
any classes. Source classes indicate values provided to the mapper, and
destination classes represent output (usually from the innerMapper).

For functions that accept an array, passing an empty array will also behave
like passing nil.

Note

This mapper can behave in unintuitive ways for inherited
class clusters [https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/ClassCluster.html]. So specifying NSMutableDictionary and
NSMutableArray will cause fatal type-checking errors. Use
NSDictionary and NSArray instead.

HYDMapKVCObject

This uses Key-Value Coding to map arbitrary objects to one another, or the more
commonly known methods: -[setValue:forKey:] and -[valueForKey:]. This
mapper provides a data-structure mapping DSL that conforms to a specific design
that is mentioned in the Mapping Data Structure. But at an overview, they
usually look like one of two forms:

@{@"get.KeyPath": @"set.KeyPath"}
@{@"get.KeyPath": @[myMapper, @"set.KeyPath"]}

They both conform to KeyPath-like semantics, similar to the -[valueForKeyPath:]
method, but without the aggregation features. They all read similarly to:

Map ‘get.KeyPath’ to ‘set.KeyPath’ using myMapper

This is simply used as an abbreviated form to specify the mapping for each
property without the visual noise of objective-c styled object construction.
Again, read up on the Mapping Data Structure to see the internal
representation this mapper uses after processing this data structure.

Note

Since this mapper uses setValue:forKey: and valueForKey:, all
the same consequences apply – such as possibly setting invalid
object types to properties. Use HYDMapObject, which adds
type checking before mapping values to their destinations.

And since this uses KVC, it will correctly convert boxed objects into
their c-native types due to the implementation of KVC. This allows the
rest of the mappers of Hydrant to use NSNumber which can get
converted to integers, floats, doubles, etc.

If your key paths have dots, explicitly use HYDAccessKey and specify
the key:

@{HYDKeyAccessor("json.key.with.dots"): @"key"}

Which can be useful for JSON that has dots in its key.

The following helper functions exist for this mapper:

HYDMapKVCObject(id<HYDMapper> innerMapper, Class sourceClass, Class destinationClass, NSDictionary *mapping)
HYDMapKVCObject(id<HYDMapper> innerMapper, Class destinationClass, NSDictionary *mapping)
HYDMapKVCObject(Class sourceClass, Class destinationClass, NSDictionary *mapping)
HYDMapKVCObject(Class destinationClass, NSDictionary *mapping)

The all functions, except for the first one, are derived off the first helper
function. If no mapper is provided, then HYDMapIdentity is used.
Similarly, if no sourceClass is provided, [NSDictionary class] is used.

The mapping argument conforms to the Mapping Data Structure.

When specifying classes, this mapper will auto-promote them to their mutable
types. All destination classes are constructed using [destinationClass new].
Classes that support NSMutableCopying [https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Protocols/NSMutableCopying_Protocol/Reference/Reference.html] are created using
[[destinationClass new] mutableCopy].

This makes it safe to use [NSDictionary class] and [NSArray class] as
arguments for the sourceClass and destinationClass.

This object fully supports reverseMapping, which allows you to quickly create
a serializer and deserializer combination.

HYDMapObject

This maps arbitrary properties from one object to another using a KeyPath-like
mapping system. This mapper composes HYDMapKVCObject and
HYDMapTypes to produce a mapper that can check types as it is mapped to
its resulting object.

This mapper currently has tight-coupling around handling HYDMapNonFatally
to ensure that optional mappings can still work as intended.

The following helper functions exist similar to HYDMapKVCObject:

HYDMapObject(id<HYDMapper> innerMapper, Class sourceClass, Class destinationClass, NSDictionary *mapping)
HYDMapObject(id<HYDMapper> innerMapper, Class destinationClass, NSDictionary *mapping)
HYDMapObject(Class sourceClass, Class destinationClass, NSDictionary *mapping)
HYDMapObject(Class destinationClass, NSDictionary *mapping)

And like HYDMapKVCObject, the same default values apply:

	innerMapper defaults to HYDMapIdentity

	sourceClass defaults to [NSDictionary class]

Not surprisingly this also accepts a mapping argument described
in the Mapping Data Structure. One notable difference is that using
HYDMapType are implicit for all arguments.

Note

This mapper also verifies the types of source and destination classes
using HYDMapTypes, so the same notice
applies here for all types that are verified.

If you’re mapping a collection of objects (such as an array of objects), see
HYDMapCollectionOf / HYDMapArrayOf which is a composition of this mapper and
HYDMapArrayOf.

If you prefer to not have type checking but still have the mapping
functionality, use the lower-level HYDMapKVCObject instead.

HYDMapWithBlock

Note

This is a convenience to create custom Hydrant mappers. Blocks
that execute custom code are subject to the same error handling that
Hydrant expects for mappers to conform to Mapper
in order to be exception-free.

This is a mapper that accepts one or two blocks for you to manually do the
conversion. Unlike most other mappers, this does not provide any safety, but
allows you do make trade-offs that go against Hydrant’s design:

- Make a certain subset of the object graph being mapped to be more
 performant (instead of defensively checking the data as Hydrant does).
- Make a certain subset of the object graph "unsafe" and venerable to
 exceptions for easier debuggability.
- Perform complex mappings that cannot be sanely abstracted
- Quickly do one-off mappings for the perticular kind of data structure
 you're mapping (then ask: why are you using Hydrant then?)
- Store mutable state during the mapping to do more complex mappings that
 Hydrant does not support.

Try to avoid using this mapper, because it provides no benefits from
implementing the serialization yourself. See Mapping Techniques for
some tactics for mapping values without using this mapper.

These blocks take the same arguments as the HYDMapper protocol:

typedef id(^HYDConversionBlock)(id incomingValue, __autoreleasing HYDError **error);

Where errors can be filled to indicate to parent mappers that mapping has
failed.

The helper functions for this mapper:

HYDMapWithBlock(HYDConversionBlock convertBlock)
HYDMapWithBlock(HYDConversionBlock convertBlock, HYDConversionBlock reverseConvertBlock)

Where the former function is an alias to latter as:

HYDMapWithBlock(convertBlock, convertBlock)

The reverseConvertBlock is called when -[reverseMapper] is called on
the created mapper.

HYDMapWithPostProcessing

Note

This is a convenience to create custom Hydrant mappers. Blocks
that execute custom code are subject to the same error handling that
Hydrant expects for mappers to conform to Mapper
in order to be exception-free.

This is a mapper that allows you to perform “post processing” from another
mapper’s work. Use this to “migrate” data structures that don’t map cleanly
from the source objects to the destination objects.

Unlike HYDMapWithBlock, this mapper provides access to the source input
value and the resulting input value after executing the inner mapper.

Complex mappings across multiple source value fields can be done with this
mapper, at the same expenses the HYDMapWithBlock does:

- Produce mappings that require composing multiple distinct parts of the
 source object.
- Allows extra mutation after the creation of an resulting object.

Try to avoid using this mapper, because it provides no benefits from
implementing the serialization yourself. If you want to map multiple keys
to a single value, see Mapping Two Fields to One Property.

The helpers functions for this mapper:

typedef void(^HYDPostProcessingBlock)(id sourceObject, id resultingObject, __autoreleasing HYDError **error);

HYDMapWithPostProcessing(HYDPostProcessingBlock block)
HYDMapWithPostProcessing(id<HYDMapper> innerMapper, HYDPostProcessingBlock block)
HYDMapWithPostProcessing(id<HYDMapper> innerMapper, HYDPostProcessingBlock block, HYDPostProcessingBlock reverseBlock)

Where the first function is aliased to the last function as:

HYDMapWithPostProcessing(HYDMapIdentity(), block, block)

and reverseBlock is the block that is invoked by the The Reverse Mapper.

An easy example is to convert an array of keys and values into a dictionary and
then store it in a property of the resulting object:

id<HYDMapper> personMapper = ...; // defined somewhere else

// warning: there's no checking of sourceObject here, but you should
// if it is coming from an unknown source or hasn't been composed
// with HYDMapType
id<HYDMapper> mapper = \
 HYDMapWithPostProcessing(personMapper, ^(id sourceObject, id resultingObject, __autoreleasing HYDError **error) {
 Person *person = resultingObject;
 person.phonesToFriends = [NSDictionary dictionaryWithObjects:sourceObject[@"names"] forKeys:sourceObject[@"numbers"]];
 });

// example json
id json = @{...
 @"names": [@"John", @"Jane"],
 @"numbers": @[@1234567, @7654321]};

// post processor essentially does this:
person.phonesToFriends = [NSDictionary dictionaryWithObjects:json[@"names"] forKeys:json[@"numbers"]]

HYDMapReflectively

This builds upon various mappers and the Objective-C runtime to in the name of
dry code at the expense of internal complexity (thus, debug-ability). It uses
the runtime to try and intelligently generate mappings:

	Convert strings to dates with HYDMapStringToAnyDate

	Convert numbers to dates with HYDMapNumberToDateSince

	Converts numbers to strings and vice versa as needed

	Converts objects to strings for NSString properties

	Converts objects (to strings, then) to urls for NSURL properties

	Converts objects (to strings, then) to uuids for NSUUID properties

	Type check incoming values with HYDMapTypes to match the types
of the properties being assigned

Since this mapper cannot determine the intended reverse mapping, you must
explicitly state them if they differ from its configuration.

Unlike most mappers, this accepts optional configuration as property-blocks:

mapType(Class, id<HYDMapper>)

This allows you to always map a given objective-c class using a particular
mapper:

// All properties of Person of type MyClass will use MyCustomMapper
HYDMapReflectively([Person class])
 .mapType([MyClass class], [MyCustomMapper new]);

optional(NSArray *propertyNames)

This allows you to easily specify optional fields. Accepts an array of property
names (strings):

// firstName and lastName properties are optional. They can be nil.
HYDMapReflectively([Person class])
 .optional(@[@"firstName", @"lastName"]);

Optional and required cannot be used simultaneously.

required(NSArray *propertyNames)

This allows you to easily specify required fields. All other fields will be
marked as optional. Accepts an array of property names (strings):

// firstName and lastName properties are required. They can be not nil.
// All other fields are optional.
HYDMapReflectively([Person class])
 .required(@[@"firstName", @"lastName"]);

Optional and required cannot be used simultaneously.

withNoRequiredFields

Alias to doing required(@[]):

// All fields are optional instead of the default of required.
HYDMapReflectively([Person class]).withNoRequiredFields

Optional and withNoRequiredFields cannot be used simultaneously.

only(NSArray *propertyNames)

This allows you to easily specify fields the reflective mapper will map.
Accepts an array of property names (strings):

// firstName and lastName are the only fields set.
// All other fields are nil.
HYDMapReflectively([Person class])
 .only(@[@"firstName", @"lastName"]);

except(NSArray *propertyNames)

This allows you to easily exclude specific fields the reflective mapper should
map. Accepts an array of property names (strings):

// firstName and lastName are the excluded from mapping.
// All other fields are still mapped.
HYDMapReflectively([Person class])
 .except(@[@"firstName", @"lastName"]);

customMapping(NSDictionary *mappingOverrides)

This allows you to specify custom mappings for particular fields. Accepts a
dictionary like HYDMapObject:

// firstName property will map using MyCustomMapper.
HYDMapReflectively([Person class])
 .customMapping(@{@"firstName": @[[MyCustomMapper class], @"firstName"]});

keyTransformer(NSValueTransformer *keyTransformer)

This allows you to specify a value transformer that will convert destination keys
to source keys. (eg - property names to JSON keys):

// Will map source object's first_name to Person's firstName property
HYDMapReflectively([Person class])
 .keyTransformer([HYDCamelToSnakeCaseValueTransformer new]);

HYDMapThread

This mapper simply calls its given mappers in-order until one emits an error.
It’s inspired from the LISP’s threading macro, -> except errors are
returned without any subsequent mapper from knowing. Hydrant uses this
internally to provide the convienence of accepting an inner mapper argument:

id<HYDMapper> HYDMapEnum(id<HYDMapper> innerMapper, NSDictionary *mapping) {
 return HYDMapThread(innerMapper, HYDMapEnum(mapping));
}

Like the accessors, HYDMapThread is a macro that accepts a variadic set of
mappers to process in-order. The macro based off of the function:

HYDMapThreadMappersInArray(NSArray *mappers);

Where mappers is an array of mappers.

HYDMapDispatch

Warning

Alpha - This API may change at any point. Please avoid using when
possible.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Accessor Reference

Here lists all the accessors currently available in Hydrant. Accessors
abstract the details of getting and setting values from objects so that each
Mapper does not have to implement them individually. All the functions
listed here return objects that conform to the Accessor protocol.

You might be thinking the overload functions listed require Objective-C++, but
clang supports function overloading.

HYDAccessKeyPath

This accessor provides KeyPath-styled access to objects. They only support the
dot-access from KeyPath to walk nested data structures. Like HYDAccessKey,
this mapper will correctly convert boxed typed into their native c-types since
it internally uses -[valueForKey:] and -[setValue:forKey:].

If given [NSNull null] values, when setting values, then that assignment
is considered a no-op, not assigning to nil. This is because the accessor
cannot safely assign nil vs [NSNull null] (eg - property vs dictionary
key).

There is a macro to create this accessor:

HYDAccessKeyPath(...)

Which takes a variatic sequence of NSStrings that represent the keyPaths to
walk. Giving multiple keyPaths will generate a large array value and the
expected input values when setting it too.

The macro is based off of the c function:

HYDAccessKeyPathInArray(NSArray *keyPaths)

As the name suggests, accepts an explicit array of keyPaths.

HYDAccessKey

This accessor provides KVC-styled access to objects. Like HYDAccessKeyPath,
this mapper will correctly convert boxed typed into their native c-types since
it internally uses -[valueForKey:] and -[setValue:forKey:].

If given [NSNull null] values, when setting values, then that assignment
is considered a no-op, not assigning to nil. This is because the accessor
cannot safely assign nil vs [NSNull null] (eg - property vs dictionary
key).

There is a macro to create this accessor:

HYDAccessKey(...)

Which takes a variatic sequence of NSStrings that represent the keys to
walk. Giving multiple keyPaths will generate a large array value and the
expected input values when setting it too.

The macro is based off of the c function:

HYDAccessKeyInArray(NSArray *keyPaths)

As the name suggests, accepts an explicit array of keys.

HYDAccessIndex

Warning

This is feature alpha. It’s API and capabilities may change
between versions. Please avoid use if you can’t accept
instability.

This accessor provides index access to objects. This is useful for extracting
values from an array where the order has a specific, known meaning.

If given [NSNull null] values, when setting values, then that assignment
is valid. This is unlike the other mappers. Also, this accessor will place
add [NSNull null] instances to arrays if they do not meet the size
requirement that the accessor expects to update indicies.

There is a macro to create this accessor:

HYDAccessIndex(...)

Which takes a variatic sequence of NSNumbers that represent the indicies to
read. Giving multiple indicies will generate a large array value and the
expected input values when setting it too.

The macro is based off of the c function:

HYDAccessIndiciesInArray(NSArray *indicies)

As the name suggests, accepts an explicit array of indicies (NSNumbers).

HYDAccessDefault

This is a helper function that maps to the default accessor that Hydrant’s
mappers prefer. Handy if you need a default but don’t have an opinion for your
own mappers. Hydrant currently maps this to HYDAccessKeyPath.

There are two variants:

HYDAccessDefault(NSString *field)
HYDAccessDefault(NSArray *fields)

Which currently ties to the same behavior as HYDAccessKeyPath.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Formatter Reference

This is the reference documentation for all the NSFormatters [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html] that
Hydrant implements as conveniences for you. When using mappers that utilize
formatters:

	
	HYDMapObjectToStringByFormatter

	
	HYDMapDateToString

	HYDMapNumberToString

	HYDMapUUIDToString

	HYDMapURLToString

	
	HYDMapStringToObjectByFormatter

	
	HYDMapStringToDate

	HYDMapStringToNumber

	HYDMapStringToUUID

	HYDMapStringToURL

They are also publicly exposed if you need or prefer to use these classes
for other purposes.

Date Format Strings

Hydrant also includes a variety of constants that map to common datetime
formats that you can use for NSDateFormatter [https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/Reference/Reference.html]:

NSString *HYDDateFormatRFC3339 = @"yyyy'-'MM'-'dd'T'HH':'mm':'ssZ";
NSString *HYDDateFormatRFC3339_milliseconds = @"yyyy'-'MM'-'dd'T'HH':'mm':'ss.SSSZ";

NSString *HYDDateFormatRFC822_day_seconds_gmt = @"EEE, d MMM yyyy HH:mm:ss zzz";
NSString *HYDDateFormatRFC822_day_gmt = @"EEE, d MMM yyyy HH:mm zzz";
NSString *HYDDateFormatRFC822_day_seconds = @"EEE, d MMM yyyy HH:mm:ss";
NSString *HYDDateFormatRFC822_day = @"EEE, d MMM yyyy HH:mm";
NSString *HYDDateFormatRFC822_seconds_gmt = @"d MMM yyyy HH:mm:ss zzz";
NSString *HYDDateFormatRFC822_gmt = @"d MMM yyyy HH:mm zzz";
NSString *HYDDateFormatRFC822_seconds = @"d MMM yyyy HH:mm:ss";
NSString *HYDDateFormatRFC822 = @"d MMM yyyy HH:mm";

HYDDotNetDateFormatter

This is an NSDateFormatter [https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/Reference/Reference.html] subclass that supports parsing of microsoft AJAX
date formats which look like @"/Date(123456)/".

Since formatter sets some internal state from NSDateFormatter, so changing
this formatter via properties may break its intended behavior.

HYDURLFormatter

This formatter utilizes NSURL [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/Reference/Reference.html] to generate URLs and adds some extra safety
by checking inputs before trying to construct an NSURL.

It can optionally be constructed with a set of schemes to allow.

HYDUUIDFormatter

This formatter utilizes NSUUID [https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/Reference/Reference.html] to generate UUIDs and adds some extra safety
by checking inputs before trying to construct an NSUUID.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Value Transformer Reference

This is the reference documentation for all the NSValueTransformers [https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSFormatter_Class/Reference/Reference.html] that
Hydrant implements as conveniences for you. Currently, these transformers are
intended to be used with HYDMapReflectively.

They are also publicly exposed if you need or prefer to use these classes
for other purposes.

HYDBlockValueTransformer

This value transformer is a simple abstraction to allow custom blocks instead of
having to implement a custom value transformer. The Block Value Transformer
simply accepts two blocks: one for transforming and another for reverse
transforming.

Due to the limitation of the NSValueTransformer contract, the block
value transformer always returns YES for +[allowsReverseTransformation].

Example:

HYDBlockValueTransformer *transformer = [[HYDBlockValueTransformer alloc] initWithBlock:^id(id value){
 return [value componentsSeparatedByString:@"-"];
} reversedBlock:^id(id transformedValue){
 return [value componentsJoinedByString:@"-"];
}];

[transformer transformValue:@"foo-bar"] // => @[@"foo", @"bar"];
[transformer reverseTransformedValue:@[@"foo", @"bar"]] // => @"foo-bar"

HYDIdentityValueTransformer

This value transformer is a no-op, simply returning the value it has received.
When used with HYDMapReflectively, this can be an easy way to make your
objects map directly to the source objects.

Example:

HYDIdentityValueTransformer *transformer = [HYDIdentityValueTransformer new];

[transformer transformValue:@"foo"] // => @"foo"
[transformer reverseTransformedValue:@1] // => @1

HYDReversedValueTransformer

This value transformer reverses another value transformer. Essentially, this
transformer converts:

	-[transformValue:] into -[reverseTransformedValue:]

	and -[reverseTransformedValue:] into -[transformValue:]

The given value transformer should be reversable.

HYDCamelToSnakeCaseValueTransformer

This value transformer converts camel case to snake case. You can optionally
specific if it is UpperCamelCase or lowerCamelCase by specifying one of the
following enums:

HYDCamelCaseLowerStyle // default when not specified
HYDCamelCaseUpperStyle

This transformer expects NSStrings. This is useful for
HYDMapReflectively to convert snake-cased JSON keys into the more
familiar Objective-C style of lower camel-case:

HYDCamelToSnakeCaseValueTransformer *transformer = [[HYDCamelToSnakeCaseValueTransformer alloc] initWithStyle:HYDCamelCaseUpperStyle];

[transformer transformValue:@"foo_bar"] // => @"FooBar"
[transformer reverseTransformedValue:@"FooBar"] // => @"foo_bar"

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hydrant 2.0.0 documentation

Contributing to Hydrant

Hydrant is a relatively young project that can use plenty of help from anyone.
Things listed here are rough guidelines, but are a good starting direction.

If you have any questions, feel free to email jeff at jeffhui.net with some
subject talking about Hydrant.

Filing Bugs

Found a bug? File an issue on the GitHub page. When you
write on up, be sure to include:

	Steps to reproduce the behavior in question. Small code examples that
demonstrate is are excellent!

	Expected behavior, what expected to happen.

	Actual behavior, what actually happened.

These points are mostly a starting conversation about the issue.

Contributing Code

Code is welcomed, although unlike application code, is subjected to more
scrutiny. Since the most expense part about software is maintaince, so
pull requests require the following:

	Tests that can verify the regression (if a bug) or validate a new feature

	If its a new feature, documentation explaining the new feature.

It’s good to keep in mind the original design of Hydrant when
writing the code.

Feedback about the pull request or code contributes are never towards the
contributor, but instead towards improving the code.

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Hydrant 2.0.0 documentation

Changelog

Here lists all the changes that have occurred in Hydrant from version to
version. They are ordered by version, then by significance of change (from
breaking changes to minor bug fixes).

v2.0.0

	Updated compatibility for latest stable iOS SDKs (9.0 - Xcode 7.3.1)

	Minor documentation fixes

v2.0.0-alpha.2

	Updated for the latest iOS SDKs (8.4, 9.0)

	Properly handles some non-ascii characters in URLs.

v2.0.0-alpha.2

	Fix bugs where stringification does not work for some mappers

	HYDReflectiveMapper supports .require() to specify required fields instead of only optional fields.

	Converted from static library to iOS Framework

v1.0.1

Updated for Xcode 6.1

v1.0.0

Initial public release. Includes documentation (such as this file).

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Hydrant 2.0.0 documentation

Index

 Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		Hydrant 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jeff Hui.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

