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Hardware Processing Engines (HWPEs) are special-purpose, memory-coupled accelerators that can be inserted in the
SoC or cluster of a PULP system to amplify its performance and energy efficiency in particular tasks.

Differently from most accelerators in literature, HWPEs do not rely on an external DMA to feed them with input and to
extract output, and they are not (necessarily) tied to a single core. Rather, they operate directly on the same memory that
is shared by other elements in the PULP system (e.g. the L1 TCDM in a PULP cluster, or the shared L2 in PULPissimo).
Their control is memory-mapped and accessed through a peripheral bus or interconnect. HW-based execution on an
HWPE can be readily intermixed with software code, because all that needs to be exchanged between the two is a set
of pointers and, if necessary, a few parameters.
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Fig. 1: Template of a Hardware Processing Engine (HWPE).

This document defines the interface protocols and modules that are used to enable connecting HWPEs in a PULP
system. Typically, such a module is divided in a streamer interface towards the memory system, a control/peripheral
interface used for programming it, and an engine containing the actual datapath of the accelerator.
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CHAPTER

ONE

HWPE INTERFACE PROTOCOLS

1.1 HWPE-Stream protocol

The HWPE-Stream protocol is a simple protocol designed to move data between the various sub-components of an
HWPE. As HWPEs are memory-based accelerators, streams are typically generated and consumed internally within
the accelerator between fully synchronous devices. HWPE-Stream can cross between two clock domains using dual-
clock FIFOs; handshakes still have to happen in a fully synchronous way. HWPE-Stream streams are directional,
flowing from a source to a sink direction, using a two signal handshake and carrying a data payload. Fig. 1.1 and Table
1.1 report the signals used by the HWPE-Stream protocol.
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Fig. 1.1: Data flow of the HWPE-Stream protocol. Red signals carry the handshake, blue ones the payload.

Table 1.1: HWPE-Stream signals.
Signal Size Description Direction
data Multiple of 8 bits The data payload transported by the stream. from source to sink
strb size(data)/8 Optional. Indicates valid bytes in the data payload (1=valid). from source to sink
valid 1 bit Handshake valid signal (1=asserted). from source to sink
ready 1 bit Handshake ready signal (1=asserted). from sink to source

The handshake signals valid and ready are used to validate transactions between sources and sinks. Transactions are
subject to the following rules:

1. A handshake occurs in the cycle when both valid and ready are asserted. The handshake is the “atomic” event
after which the current payload is considered consumed by the consumer at the sink side of the HWPE-Stream
interface.

2. data and strb can change their value either a) when valid is deasserted, or b) in the cycle following a hand-
shake, even if valid remains asserted. In other words, valid data payloads must stay on the interface until a

3
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valid handshake has occurred.

3. The assertion of valid (transition 0 to 1) cannot depend combinationally on the state of ready. On the other
hand, the assertion of ready (transition 0 to 1) can depend combinationally on the state of valid. This rule, which
is modeled around the similar behavior used by TCDM memories (see below) is meant to avoid any deadlock in
ping-pong logic.

4. The deassertion of valid (transition 1 to 0) can happen only in the cycle after a valid handshake. In other
words, valid data produced by a source must be correctly consumed before valid is deasserted.

wavedrom_hwpe_stream shows several correct handshakes on a HWPE-Stream, while
wavedrom_hwpe_stream_r2_no and wavedrom_hwpe_stream_r4_no show two examples of incorrect trans-
actions. Both behaviors are checked by means of asserts in the reference SystemVerilog code for HWPE-Stream
interfaces. Rule 3 cannot be checked by means of asserts; it is up to the designer to avoid valid to ready combinational
dependencies that could result in combinational loops, since the value of ready is assumed to be combinationally
dependent from valid.

The only side channel that can be included in an HWPE-Stream is strb, which is optionally used to signal which bytes
of the data payload contain meaningful data. HWPE-Stream streams in which strb is absent are assumed to have only
valid bytes in their data payload. We refer HWPE-Stream streams with strb as strobed streams.

1.2 HWPE-Mem and HCI-Core protocols

1.2.1 HWPE-Mem

HWPEs are connected to external L1/L2 shared-memory by means of a simple memory protocol, using a request/grant
handshake. The protocol used is called HWPE Memory (HWPE-Mem) protocol, and it is essentially similar to the
protocol used by cores and DMAs operating on memories in standard PULP clusters. This document focuses on the
specific signal names used within HWPEs and in the reference implementation of HWPE-Stream IPs. It supports
neither multiple outstanding transactions nor bursts, as HWPEs using this protocol are assumed to be closely coupled
to memories. It uses a two signal handshake and carries two phases, a request and a response.

The HWPE-Mem protocol is used to connect a master to a slave. Fig. 1.2 and Table 1.2 report the signals used by the
HWPE-Mem protocol.
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Fig. 1.2: Data flow of the HWPE-Mem protocol. Red signals carry the handshake; blue signals the request phase;
green signals the response phase.
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Table 1.2: HWPE-Mem signals.
Signal Size Description Direction
req 1 bit Handshake request signal (1=asserted). master to slave
gnt 1 bit Handshake grant signal (1=asserted). slave to master
add 32 bit Word-aligned memory address. master to slave
wen 1 bit Write enable signal (1=read, 0=write). master to slave
be 4 bit Byte enable signal (1=valid byte). master to slave
data 32 bit Data word to be stored. master to slave
r_data 32 bit Loaded data word. slave to master
r_valid 1 bit Valid loaded data word (1=asserted). slave to master

The handshake signals req and gnt are used to validate transactions between masters and slaves. Transactions are
subject to the following rules:

1. A valid handshake occurs in the cycle when both req and gnt are asserted. This is true for both write and
read transactions.

2. r_valid must be asserted the cycle after a valid read handshake; r_data must be valid on this cycle. This is
due to the tightly-coupled nature of memories; if the memory cannot respond in one cycle, it must delay granting
the transaction.

3. The assertion of req (transition 0 to 1) cannot depend combinationally on the state of gnt. On the other
hand, the assertion of gnt (transition 0 to 1) can depend combinationally on the state of req (and typically it
does). This rule avoids deadlocks in ping-pong logic.

The semantics of the r_valid signal are not well defined with respect to the usual TCDM protocol. In PULP clusters,
r_valid will be asserted also after write transactions, not only in reads. However, the HWPE-Mem protocol and the IPs
in this repository should not make assumptions on the r_valid in write transactions.

1.2.2 HWPE-MemDecoupled

The HWPE-Mem protocol can be used to directly connect an accelerator to the shared memory of a PULP-based
system. However, transactions using this protocol are inherently latency sensitive. HWPE-Mem rule 2 embodies this:
an operation is complete only when its response has arrived. This means that HWPE-Mem streams, including load
and store transactions, cannot be enqueued in a FIFO queue. To overcome this limitation, a variant of the HWPE-Mem
protocol is HWPE-MemDecoupled. This protocol uses the same interface as HWPE-Mem but lifts rule 2 and adds a
new rule 4. Transactions are thus following the following rules:

1. A valid handshake occurs in the cycle when both req and gnt are asserted. This is true for both write and
read transactions.

3. The assertion of req (transition 0 to 1) cannot depend combinationally on the state of gnt. On the other
hand, the assertion of gnt (transition 0 to 1) can depend combinationally on the state of req (and typically it
does). This rule avoids deadlocks in ping-pong logic.

4. The stream of transactions includes only reads ( wen =1) or only writes ( wen =0). Mixing reads and writes
in the stream is not allowed.

HWPE-MemDecoupled transactions are insensitive to latency and their request and response phases can be treated
similarly to separate HWPE-Stream streams. Once two or more HWPE-MemDecoupled transactions are mixed, the
mixed interface has to be treated as a HWPE-Mem protocol (i.e. it is sensitive to latency).

1.2. HWPE-Mem and HCI-Core protocols 5



Hardware Processing Engines, Release 2.0

1.2.3 HCI-Core

HCI-Core (Heterogeneous Cluster Interconnect – Core) is a protocol designed as a lighteweight extension of HWPE-
Mem better suited for the needs of accelerators, and specifically of cluster-coupled HWPEs. This document focuses
on the specific signal names used within HWPEs and in the reference implementation of HCI IPs. HCI-Core does not
support bursts, but it supports in-order multiple outstanding transactions in a similar fashion to HWPE-MemDecoupled.
Differently from HWPE-Mem, HCI-Core uses a two signal handshake but also includes an lrdy signal to support load
backpressure on the response phase. HCI-Core carries two phases, a request and a response. HCI-Core signals have
parametric width; Table 1.3 reports the parameters used by the HCI IPs; while Table 1.4 reports the signals used by the
HCI-Core protocol.

Table 1.3: HCI-Core parameters.
Parameter Description Default Range
DW Data width in bits 32 mult. of BW, WW
AW Address width in bits 32 1-32
BW Width of an individually strobed “byte” in bits 8 1-32
WW Width of a memory bank (“word”) in bits 32 mult. of BW
OW Intra-bank offset width 32 1-32
UW User-defined width 0 0-any

Table 1.4: HCI-Core signals.
Sig-
nal

Size Phase Description Direction

req 1 bit Request
HS

Request valid (1=asserted). master to
slave

gnt 1 bit Request
HS

Request granted (1=asserted). slave to
master

r_valid 1 bit Response
HS

Response valid (1=asserted). Mandatory for load, op-
tional for stores.

slave to
master

lrdy 1 bit Response
HS

Response load ready (1=asserted). master to
slave

add AW bit Request Word-aligned memory address. master to
slave

wen 1 bit Request Write enable signal (1=read, 0=write). master to
slave

be DW/BW bit Request Byte enable signal (1=valid byte). master to
slave

boffs DW/WW x OW
bit

Request Intra-bank offset. master to
slave

data DW bit Request Data word to be stored. master to
slave

user UW bit Request User-defined. master to
slave

r_data 32 bit Response Loaded data word. slave to
master

r_opc 1 bit Response Error code response. slave to
master

r_user UW bit Request User-defined. slave to
master

The two phases of HCI-Core transactions can be treated as two separate channels, so HCI-Core transactions can be
latency insensitive and support multiple in-order outstanding transactions (i.e., pipeline transactions). Request and

6 Chapter 1. HWPE Interface Protocols
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response phases are organized to be treated like HWPE-Stream streams. Table 1.5 and Table 1.6 detail the rules that
have to be followed for a valid transaction.

Table 1.5: HCI-Core Request phase rules.
Rule Description
RQ-1
HAND-
SHAKE

A valid handshake occurs in the cycle when both req and gnt are asserted, for both write and read
transactions. All request phase signals are sampled on handshake cycles.

RQ-2
NODEAD-
LOCK

The assertion of req (transition 0 to 1) cannot depend combinationally on the state of gnt. On the other
hand, the assertion of gnt (transition 0 to 1) can depend combinationally on the state of req. This rule
avoids deadlocks in ping-pong logic.

RQ-3
STABIL-
ITY

Request phase signals can change their value either in the cycle following a handshake, regardless if
req is deasserted or stays asserted.

RQ-
OPT-3
NORE-
TIRE

(Optional) Requests cannot be retired after req is asserted. HCI accelerators satisfy this indication, but
not all masters on HCI interconnects might be fully compliant.

Table 1.6: HCI-Core Response phase rules.
Rule Description
RSP-1
HAND-
SHAKE

For read transactions, a valid handshake occurs in the cycle when both r_valid and lrdy are asserted.
All response phase signals are sampled on handshake cycles.

RSP-2
NODEAD-
LOCK

The assertion of r_valid (transition 0 to 1) cannot depend combinationally on the state of lrdy. On the
other hand, the assertion of lrdy (transition 0 to 1) can depend combinationally on the state of r_valid.
This rule avoids deadlocks in ping-pong logic.

RSP-3
STABIL-
ITY

Response phase signals can change their value either in the cycle following a handshake, regardless if
r_valid is deasserted or stays asserted.

RSP-4
ORDER-
ING

Response phase signals must follow the same ordering of the requests.

1.2.4 Exchanging data between HWPE-Mem and HWPE-Stream

As HWPEs ultimately consume and produce data to the external shared memory using one or more ports expos-
ing TCDM interfaces, converting data between HWPE-Mem and HWPE-Stream (i.e., exchanging data between the
memory-based and the stream-based worlds) is one of the main tasks to be accomplished in the design of an acceler-
ator. The HWPE-Stream and HWPE-Mem protocols are similar by design, which makes the handling of handshakes
signficantly easier. The following applies to HWPE-Mem, HWPE-MemDecoupled, and HCI-Core in a similar manner.

Three objectives have to be met:

• HWPE-Stream has no notion of address: to produce a stream out of HWPE-Mem loads, or consume a stream in
a series of HWPE-Mem stores, it is necessary to generate addresses according to some rule.

• HWPE-Stream streams can be longer than 32 bits; it is necessary to generate them from / split them into multiple
TCDM loads/stores.

• HWPE-Mem addresses may be misaligned with respect to word boundaries, in which case two TCDM
loads/stores are necessary to transact a single 32-bit word and strobes have to be also aligned.

1.2. HWPE-Mem and HCI-Core protocols 7
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In the current version of the HWPE specifications, we address these issues by providing a set of modules which can
incrementally be used to solve each of the problems above. This are referred to in a later section.
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Fig. 1.3: Example of data exchange between a series of HWPE-Mem loads and a HWPE-Stream. Four data packets
have to be produced at the sink end of the stream; since data is not well aligned in memory, this results in five loads
on the HWPE-Mem interface, which are then transformed in a strobed HWPE-Stream. The stream is then realigned so
that the correct four elements are available.

Fig. 1.3, Fig. 1.4 show two examples of transactions going (respectively) from a series of loads on the HWPE-Mem
interface to internal HWPE-Streams and from an internal HWPE-Stream to a series of stores on HWPE-Mem. The
example focuses on the realignment behavior.

1.3 HWPE-Periph protocol

To enable control, HWPEs typically expose a slave port to the peripheral system interconnect. The slave port follows
an extension of the HWPE-Mem protocol which we call HWPE-Periph in this document. The HWPE-Periph protocol
is essentially the same one exposed by most peripherals in a PULP system and used by the core to communicate with
them.
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Fig. 1.4: Example of data exchange between a HWPE-Stream and a series of HWPE-Mem stores. Four data packets
have to be consumed at the source end of the stream; since data is not well aligned in memory, this results in a strobed
HWPE-Stream with five packets, the first and last of which contain also null data. The strobed stream is then converted
in a set of five HWPE-Mem store transactions.

Table 1.7: HWPE-Periph signals.
Signal Size Description Direction
req 1 bit Handshake request signal (1=asserted). master to slave
gnt 1 bit Handshake grant signal (1=asserted). slave to master
add 32 bit Word-aligned memory address. master to slave
wen 1 bit Write enable signal (1=read, 0=write). master to slave
be 4 bit Byte enable signal (1=valid byte). master to slave
data 32 bit Data word to be stored. master to slave
id ID_WIDTH bits ID used to identify the master (request). master to slave
r_data 32 bit Loaded data word. slave to master
r_valid 1 bit Valid loaded data word (1=asserted). slave to master
r_id ID_WIDTH bits ID used to identify the master (reply). slave to master

The HWPE-Periph protocol is distinguished by the HWPE-Mem protocol by the id and r_id side channels. These
are used in load operations issued through a PERIPH interface: the id identifies the master during the request phase,
is buffered by the slave peripherals and accompanies the response phase as r_id. In this way, multiple masters can
distinguish which traffic is related to themselves. For the rest of the purposes related with HWPEs, HWPE-Periph and
HWPE-Mem work in the same way. In particular, similarly to HWPE-Mem, PULP clusters will expect r_valid to be
asserted after write transactions. This is enforced also in HWPE IPs.

1.3. HWPE-Periph protocol 9
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CHAPTER

TWO

HARDWARE PROCESSING ENGINES: CONCEPT AND IPS

Hardware Processing Engines (HWPEs) are special-purpose, memory-coupled accelerators that can be inserted in the
SoC or cluster of a PULP system to amplify its performance and energy efficiency in particular tasks.

Differently from most accelerators in literature, HWPEs do not rely on an external DMA to feed them with input and to
extract output, and they are not (necessarily) tied to a single core. Rather, they operate directly on the same memory that
is shared by other elements in the PULP system (e.g. the L1 TCDM in a PULP cluster, or the shared L2 in PULPissimo).
Their control is memory-mapped and accessed through a peripheral bus or interconnect. HW-based execution on an
HWPE can be readily intermixed with software code, because all that needs to be exchanged between the two is a set
of pointers and, if necessary, a few parameters.
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Fig. 2.1: Template of a Hardware Processing Engine (HWPE).

This document defines the interface protocols and modules that are used to enable connecting HWPEs in a PULP
system. Typically, such a module is divided in a streamer interface towards the memory system, a control/peripheral
interface used for programming it, and an engine containing the actual datapath of the accelerator.
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CHAPTER

THREE

HWPE INTERFACE MODULES: DATA MOVEMENT & MARSHALING

3.1 Basic modules (HWPE-Stream)

Basic HWPE-Stream management modules are used to select multiple streams, merge multiple streams into one, split
a stream in multiple ones, synchronize their handshakes and similar basic “morphing” functionality; or to delay and
enqueue streams. Modules performing these functions can be found within the rtl/basic and rtl/fifo subfolders of the
hwpe-stream repository.
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3.1.1 hwpe_stream_merge

hwpe_stream_merge

clk_i pop_o

rst_ni

clear_i

push_i

HWPE-Stream pop_o clk_i

 rst_ni

 clear_i

HWPE-Stream push_i [NB_IN_STREAMS-1:0]

The hwpe_stream_merge module is used to merge NB_IN_STREAMS input streams into a single, bigger stream. The
data and strb channels from the input streams are bound in order and the valid is generated as the AND of all valid’s
from input streams. The ready is broadcasted from the output stream to all input streams.

A typical use of this module is to take NB_IN_STREAMS 32-bit streams coming from a TCDM load interface to be
merged into a single bigger stream.

The following shows an example of the hwpe_stream_merge operation:

Table 3.1: hwpe_stream_merge design-time parameters.
Name Default Description
NB_IN_STREAMS 2 Number of input HWPE-Stream streams.
DATA_WIDTH_IN 32 Width of the input HWPE-Stream streams.
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3.1.2 hwpe_stream_split

hwpe_stream_split

clk_i pop_o

rst_ni

clear_i

push_i

HWPE-Stream pop_o[NB_OUT_STREAMS-1:0] clk_i

 rst_ni

 clear_i

HWPE-Stream push_i

The hwpe_stream_split module is used to split a single stream into NB_OUT_STREAMS, 32-bit output streams. The
data and strb channel from the input stream is split in ordered output streams, and the valid is broadcast to all outgoing
streams. The ready is generated as the AND of all ready’s from output streams.

A typical use of this module is to take a multiple-of-32-bit stream coming from within the HWPE and split it into
multiple 32-bit streams that feed a TCDM store interface.

The following shows an example of the hwpe_stream_split operation:

Table 3.2: hwpe_stream_split design-time parameters.
Name Default Description
NB_OUT_STREAMS 2 Number of output HWPE-Stream streams.
DATA_WIDTH_IN 128 Width of the input HWPE-Stream stream.

3.1. Basic modules (HWPE-Stream) 15
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3.1.3 hwpe_stream_fence

hwpe_stream_fence

clk_i pop_o

rst_ni

clear_i

test_mode_i

push_i

HWPE-Stream pop_o[NB_STREAMS-1:0] clk_i

 rst_ni

 clear_i

 test_mode_i

HWPE-Stream push_i [NB_STREAMS-1:0]

The hwpe_stream_fence module is used to synchronize the handshake between NB_STREAMS streams. This is nec-
essary, for example, when multiple 32-bit streams are produced from separate TCDM accesses and have to be joined
into a single, wider stream.

Table 3.3: hwpe_stream_fence design-time parameters.
Name Default Description
NB_STREAMS 2 Number of input/output HWPE-Stream streams.
DATA_WIDTH 32 Width of the HWPE-Stream streams.
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3.1.4 hwpe_stream_mux_static

hwpe_stream_mux_static

clk_i pop_o

rst_ni

clear_i

sel_i

push_0_i

push_1_i

HWPE-Stream pop_o clk_i

 rst_ni

 clear_i

 sel_i

HWPE-Stream push_0_i

HWPE-Stream push_1_i

The hwpe_stream_mux_static module is used to statically propagate one of 2 input streams of size DATA_SIZE into
a single output stream. The multiplexer is static as the selection bit sel_i cannot be changed when there are transactions
in flight; if the selection bit is changed when transactions are in flight, the result is undefined.

The following shows an example of the hwpe_stream_mux_static operation:

3.1. Basic modules (HWPE-Stream) 17
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3.1.5 hwpe_stream_demux_static

hwpe_stream_demux_static

clk_i pop_o

rst_ni

clear_i

sel_i

push_i

HWPE-Stream pop_o[NB_OUT_STREAMS-1:0] clk_i

 rst_ni

 clear_i

 sel_i

HWPE-Stream push_i

[$clog2(NB_OUT_STREAMS)-1:0]

The hwpe_stream_demux_static module is used to propagate a single input stream of size DATA_SIZE into one of
NB_OUT_STREAMS output streams. The non-selected output streams are all invalid. The demultiplexer is static as
the selection bit sel_i cannot be changed when there are transactions in flight; if the selection bit is changed when
transactions are in flight, the result is undefined.

The following shows an example of the hwpe_stream_demux_static operation:

Table 3.4: hwpe_stream_demux_static design-time parameters.
Name Default Description
NB_OUT_STREAMS 2 Number of output HWPE-Stream streams.
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3.1.6 hwpe_stream_fifo

hwpe_stream_fifo

clk_i flags_o

rst_ni pop_o

clear_i

push_i

flags_fifo_t flags_o

HWPE-Stream pop_o

 clk_i

 rst_ni

 clear_i

HWPE-Stream push_i

The hwpe_stream_fifo module implements a hardware FIFO queue for HWPE-Stream streams, used to withstand data
scarcity (valid`=0) or backpressure (`ready`=0), decoupling two architectural domains. This FIFO is single-clock and
therefore cannot be used to cross two distinct clock domains. The FIFO will lower its `ready signal on the input stream
push_i interface when it is completely full, and will lower its valid signal on the output stream pop_o interface when it
is completely empty.

Table 3.5: hwpe_stream_fifo design-time parameters.
Name Default Description
DATA_WIDTH 32 Width of the HWPE-Streams (typically multiple of 32, but this module

does not care).
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in syn-

thesis).
LATCH_FIFO_TEST_WRAP 0 If 1 and LATCH_FIFO is 1, wrap latches with BIST wrappers.

Table 3.6: hwpe_stream_fifo output flags.
Name Type Description
empty logic 1 if the FIFO is currently empty.
full logic 1 if the FIFO is currently full.
push_pointer logic[7:0] Unused.
pop_pointer logic[7:0] Unused.

3.1. Basic modules (HWPE-Stream) 19
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3.1.7 hwpe_stream_fifo_earlystall

hwpe_stream_fifo_earlystall

clk_i flags_o

rst_ni pop_o

clear_i

push_i

flags_fifo_t flags_o

HWPE-Stream pop_o

 clk_i

 rst_ni

 clear_i

HWPE-Stream push_i

The hwpe_stream_fifo_earlystall module implements a hardware FIFO queue for HWPE-Stream streams, used to
withstand data scarcity (valid =1) or backpressure (ready =1), decoupling two architectural domains. This FIFO is
single-clock and therefore cannot be used to cross two distinct clock domains. The only difference with respect to
hwpe_stream_fifo is that this version of the FIFO lowers its ready signal one cycle earlier, i.e. when it is filled by
FIFO_DEPTH -1 elements. It will lower its valid signal on the output stream pop_o interface when it is completely
empty.

Table 3.7: hwpe_stream_fifo_earlystall design-time parameters.
Name Default Description
DATA_WIDTH 32 Width of the HWPE-Streams (multiple of 32).
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).

Table 3.8: hwpe_stream_fifo_earlystall output flags.
Name Type Description
empty logic 1 if the FIFO is currently empty.
full logic 1 if the FIFO is currently full.
push_pointer logic[7:0] Unused.
pop_pointer logic[7:0] Unused.
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3.1.8 hwpe_stream_fifo_ctrl

hwpe_stream_fifo_ctrl

clk_i flags_o

rst_ni push_ready_o

clear_i pop_valid_o

push_valid_i

pop_ready_i

flags_fifo_t flags_o

  push_ready_o

  pop_valid_o

  clk_i

  rst_ni

  clear_i

  push_valid_i

  pop_ready_i

The hwpe_stream_fifo_ctrl module implements a hardware FIFO queue similar to that implemented by
hwpe_stream_fifo, but without any actual interface handshake forced on HWPE-Streams. Instead, it will push its
“virtual” handshake on the push_valid_i/push_ready_o and pop_valid_o/pop_ready_i signals. It can be used to op-
erate multiple big FIFO queues (e.g. with latches) in a synchronized fashion without breaking the HWPE-Stream
protocol.

Table 3.9: hwpe_stream_fifo_ctrl design-time parameters.
Name Default Description
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).

3.1. Basic modules (HWPE-Stream) 21
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3.2 HCI Core modules

3.2.1 hci_core_assign

hci_core_assign

tcdm_target tcdm_initiator HCI-Core tcdm_initiatorHCI-Core tcdm_target

The hci_core_assign module implements a simple assignment for HCI-Core streams.
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3.2.2 hci_core_fifo

hci_core_fifo

clk_i flags_o

rst_ni tcdm_initiator

clear_i

tcdm_target

flags_fifo_t flags_o

HCI-Core tcdm_initiator

  clk_i

  rst_ni

  clear_i

HCI-Core tcdm_target

The hci_core_fifo module implements a hardware FIFO queue for HCI-Core interfaces, used to withstand data scarcity
(req=0) or backpressure (gnt=0), decoupling two architectural domains. This FIFO is single-clock and therefore cannot
be used to cross two distinct clock domains. The FIFO treats a HCI-Core load stream as a combination of two 32-bit
HWPE-Streams, one going from the tcdm_initiator to the tcdm_target interface carrying the addr (outgoing stream);
the other from the tcdm_target to the tcdm_initiator interface, carrying the r_data (incoming stream).

On the target side, the req and gnt of the HCI-Core interfaces are mapped on valid and ready respectively in the
outgoing stream. Backpressure on the incoming stream (target side) cannot be enforced by means of the HCI-Core
target interface and thus is carried by a specific input ready_i that must be generated outside of the TCDM FIFO,
typically by a hwpe_stream_source module (output tcdm_fifo_ready_o). On the initiator side, req is mapped to the
AND of the incoming stream ready signal and the outgoing stream valid signal. gnt is hooked to the outgoing stream
ready signal. The r_valid is mapped on valid in the incoming stream. _hci_core_fifo_mapping shows this mapping.

Mapping of HCI-Core and HWPE-Stream signals inside the load FIFO.

Table 3.10: hci_core_fifo design-time parameters.
Name Default Description
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).

Table 3.11: hci_core_fifo output flags.
Name Type Description
empty logic 1 if the FIFO is currently empty.
full logic 1 if the FIFO is currently full.
push_pointer logic[7:0] Unused.
pop_pointer logic[7:0] Unused.

3.2. HCI Core modules 23
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3.2.3 hci_core_mux_dynamic

hci_core_mux_dynamic

clk_i out

rst_ni

clear_i

in

HCI-Core out[0:NB_OUT_CHAN-1]  clk_i

  rst_ni

  clear_i

HCI-Core in [0:NB_IN_CHAN-1]

The HCI multiplexer can be used to funnel more input “virtual” HCI channels in into a smaller set of initiator ports out.
It uses a round robin counter to avoid starvation, and differs from the modules used within the logarithmic interconnect
in that arbitration is performed depending on the round robin counter and not on the target port; in other words, its task
is to fill all out ports with requests from the in port, and not to route in requests to a specific out port.

Notice that the multiplexer is not “optimal” in the sense that there is no reorder buffer, so transactions cannot be swapped
in-flight to optimally fill the downstream available bandwidth. However, in real accelerators many systematic issues
with bandwidth sharing can be solved by upstream HCI FIFOs and by clever reordering of channels, since the dataflow
schedule is known. For a multiplexer with reorder buffer, see hci_core_mux_ooo.

Table 3.12: hci_core_mux design-time parameters.
Name Default Description
NB_IN_CHAN 2 Number of input HWPE-Mem channels.
NB_OUT_CHAN 1 Number of output HWPE-Mem channels.
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3.2.4 hci_core_mux_ooo

hci_core_mux_ooo

clk_i out

rst_ni

clear_i

priority_force_i

priority_i

in

HCI-Core out clk_i

 rst_ni

 clear_i

 priority_force_i

 priority_i

HCI-Core in

[NB_CHAN-1:0][$clog2(NB_CHAN)-1:0]

[0:NB_CHAN-1]

The HCI dynamic OoO N-to-1 multiplexer enables to funnel multiple HCI ports into a single one. It supports out-of-
order responses by means of ID. As the ID is implemented as user signal, any FIFO coming after (i.e., nearer to memory
side) with respect to this block must respect id signals - specifically it must return them identical in the response. At
the end of the chain, there will typically be a hci_core_r_id_filter block reflecting back all the IDs. This must be placed
at the 0-latency boundary with the memory system. Priority is normally round-robin but can also be forced from the
outside by setting priority_force_i to 1 and driving the priority_i array to the desired priority values.

Table 3.13: hci_core_mux_ooo design-time parameters.
Name Default Description
NB_CHAN 2 Number of input HCI channels.
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3.2.5 hci_core_mux_static

hci_core_mux_static

clk_i out

rst_ni

clear_i

sel_i

in

HCI-Core out  clk_i

  rst_ni

  clear_i

  sel_i

HCI-Core in

[$clog2(NB_CHAN-1):0]

[0:NB_CHAN-1]

The HCI static multiplexer can be used in place of the dynamic ones when two sets of ports are guaranteed to be used
in a strictly alternative fashion.

Table 3.14: hci_core_mux_static design-time parameters.
Name Default Description
NB_CHAN 2 Number of input HCI channels.
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3.2.6 hci_core_r_id_filter

hci_core_r_id_filter

clk_i tcdm_initiator

rst_ni

clear_i

enable_i

tcdm_target

HCI-Core tcdm_initiator  clk_i

  rst_ni

  clear_i

  enable_i

HCI-Core tcdm_target

This block filters the id field of the TCDM request, and forwards it to the r_id field of the TCDM response.
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3.2.7 hci_core_r_valid_filter

hci_core_r_valid_filter

clk_i tcdm_initiator

rst_ni

clear_i

enable_i

tcdm_target

HCI-Core tcdm_initiator  clk_i

  rst_ni

  clear_i

  enable_i

HCI-Core tcdm_target

This block filters the r_valid field of the TCDM response: when enable_i is 1, only responses with r_valid=1 in case
of a read transaction. The block is currently only working at the zero-latency boundary between core and memory (it
expects that the latency between gnt and r_valid is exactly one cycle).
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3.2.8 hci_core_split

hci_core_split

clk_i tcdm_initiator

rst_ni

clear_i

tcdm_target

HCI-Core tcdm_initiator[0:NB_OUT_CHAN-1]  clk_i

  rst_ni

  clear_i

HCI-Core tcdm_target

The hci_core_split module uses FIFOs to enqueue a split version of the HCI transactions. The FIFO queues evolve in
a synchronized fashion on the accelerator side and evolve freely on the TCDM side. In this way, split transactions that
can not be immediately brought back to the accelerator do not need to be repeated, massively reducing TCDM traffic.
The hci_core_split requires to be followed (not preceded!) by any hci_core_r_id_filter that is used, for example, to
implement HCI IDs for the purpose of supporting out-of-order access from a hci_core_mux.

Table 3.15: hci_core_split design-time parameters.
Name Default Description
NB_OUT_CHAN 2 Number of output channels.
FIFO_DEPTH 0 Depth of internal HCI Core FIFOs.
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3.3 Basic modules (HWPE-Mem / HWPE-MemDecoupled - depre-
cated)

Basic HWPE-Mem management modules are used to delay/enqueue HWPE-MemDecoupled interfaces, multiplex mul-
tiple HWPE-Mem, or reorder them before hooking the accelerator to a Tightly-Coupled Data Memory (TCDM). Mod-
ules performing these functions can be found within the rtl/tcdm subfolder of the hwpe-stream repository.
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3.3.1 hwpe_stream_tcdm_fifo_store

hwpe_stream_tcdm_fifo_store

clk_i flags_o

rst_ni tcdm_master

clear_i

tcdm_slave

flags_fifo_t flags_o

HWPE-Mem tcdm_master

 clk_i

 rst_ni

 clear_i

HWPE-Mem tcdm_slave

The hwpe_stream_tcdm_fifo_store module implements a hardware FIFO queue for HWPE-MemDecoupled store
streams, used to withstand data scarcity (req`=0) or backpressure (`gnt`=0), decoupling two architectural domains.
This FIFO is single-clock and therefore cannot be used to cross two distinct clock domains. The FIFO treats a HWPE-
MemDecoupled store stream as a wide HWPE-Stream where, on both sides, the `data field contains addr, data, be of the
input tcdm_slave; the req and gnt of the HWPE-MemDecoupled interfaces are mapped on valid and ready respectively.
The FIFO will lower its gnt signal on the slave interface tcdm_slave when it is completely full, and will lower its req sig-
nal on the master interface tcdm_master when it is completely empty. _hwpe_stream_tcdm_fifo_store_mapping
shows this mapping.
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Fig. 3.1: Mapping of HWPE-MemDecoupled and HWPE-Stream signals inside the store FIFO.

Table 3.16: hwpe_stream_tcdm_fifo_store design-time parameters.
Name Default Description
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).

Table 3.17: hwpe_stream_tcdm_fifo_store output flags.
Name Type Description
empty logic 1 if the FIFO is currently empty.
full logic 1 if the FIFO is currently full.
push_pointer logic[7:0] Unused.
pop_pointer logic[7:0] Unused.
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3.3.2 hwpe_stream_tcdm_fifo_load

hwpe_stream_tcdm_fifo_load

clk_i flags_o

rst_ni tcdm_master

clear_i

ready_i

tcdm_slave

flags_fifo_t flags_o

HWPE-Mem tcdm_master

 clk_i

 rst_ni

 clear_i

 ready_i

HWPE-Mem tcdm_slave

The hwpe_stream_tcdm_fifo_load module implements a hardware FIFO queue for HWPE-MemDecoupled load
streams, used to withstand data scarcity (req`=0) or backpressure (`gnt`=0), decoupling two architectural domains.
This FIFO is single-clock and therefore cannot be used to cross two distinct clock domains. The FIFO treats a HWPE-
MemDecoupled load stream as a combination of two 32-bit HWPE-Streams, one going from the `tcdm_master to the
tcdm_slave interface carrying the addr (outgoing stream); the other from the tcdm_slave to the tcdm_master interface,
carrying the r_data (incoming stream).

On the slave side, the req and gnt of the HWPE-MemDecoupled interfaces are mapped on valid and ready re-
spectively in the outgoing stream. Backpressure on the incoming stream (slave side) cannot be enforced by means
of the HWPE-MemDecoupled slave interface and thus is carried by a specific input ready_i that must be gener-
ated outside of the TCDM FIFO, typically by a hwpe_stream_source module (output tcdm_fifo_ready_o). On the
master side, req is mapped to the AND of the incoming stream ready signal and the outgoing stream valid sig-
nal. gnt is hooked to the outgoing stream ready signal. The r_valid is mapped on valid in the incoming stream.
_hwpe_stream_tcdm_fifo_load_mapping shows this mapping.
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Fig. 3.2: Mapping of HWPE-MemDecoupled and HWPE-Stream signals inside the load FIFO.

Table 3.18: hwpe_stream_tcdm_fifo_load design-time parameters.
Name Default Description
FIFO_DEPTH 8 Depth of the FIFO queue (multiple of 2).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).
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Table 3.19: hwpe_stream_tcdm_fifo_load output flags.
Name Type Description
empty logic 1 if the FIFO is currently empty.
full logic 1 if the FIFO is currently full.
push_pointer logic[7:0] Unused.
pop_pointer logic[7:0] Unused.
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3.3.3 hwpe_stream_tcdm_mux

hwpe_stream_tcdm_mux

clk_i out

rst_ni

clear_i

in

HWPE-Mem out[NB_OUT_CHAN-1:0]  clk_i

  rst_ni

  clear_i

HWPE-Mem in [NB_IN_CHAN-1:0]

The TCDM multiplexer can be used to funnel more input “virtual” TCDM channels in into a smaller set of master
ports out. It uses a round robin counter to avoid starvation, and differs from the modules used within the logarithmic
interconnect in that arbitration is performed depending on the round robin counter and not on the slave port; in other
words, its task is to fill all out ports with requests from the in port, and not to route in requests to a specific out port.

Notice that the multiplexer is not “optimal” in the sense that there is no reorder buffer, so transactions cannot be
swapped in-flight to optimally fill the downstream available bandwidth. However, in real accelerators many systematic
issues with bandwidth sharing can be solved by upstream TCDM FIFOs and by clever reordering of channels, since
the dataflow schedule is known.

Table 3.20: hwpe_stream_tcdm_mux design-time parameters.
Name Default Description
NB_IN_CHAN 2 Number of input HWPE-Mem channels.
NB_OUT_CHAN 1 Number of output HWPE-Mem channels.
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3.3.4 hwpe_stream_tcdm_mux_static
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The hwpe_stream_tcdm_mux_static module is used to statically share a set of out master ports using the HWPE-
Mem protocol between two sets of slave ports in0 and in1. It works similarly to the hwpe_stream_mux_static and
similarly requires a strictly static selector sel_i.

Table 3.21: hwpe_stream_tcdm_mux_static design-time parameters.
Name Default Description
NB_CHAN 2 Number of output HWPE-Mem channels.
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3.3.5 hwpe_stream_tcdm_reorder
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The hwpe_stream_tcdm_reorder block can be used to rotate the order of a set of HWPE-Mem channels depending
on an order_i input, which can be changed dynamically (e.g. a counter). This is used to “equalize” channels with
different probabilities of issuing a request so that the downstream HWPE-Mem channels are used with the same average
probability, minimizing the chances for memory starvation.

Table 3.22: hwpe_stream_tcdm_reorder design-time parameters.
Name Default Description
NB_CHAN 2 Number of HWPE-Mem channels.
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3.4 HCI Streamer modules

Streamer modules constitute the heart of the IPs use to interface HWPEs with a PULP system. They include all the
modules that are used to generate HWPE-Streams from address patterns on the TCDM, including the address generation
itself, data realignment to enable access to data located at non-byte-aligned addresses, strobe generation to selectively
disable parts of a stream, and the main streamer source and sink modules used to put these functions together. HCI
Modules performing these functions can be found within the rtl/core subfolder of the hci repository.

Two main streamer modules (hci_core_source and hci_core_sink) are composite of several other IPs, including ad-
dress generation and strobe generation blocks included in this section, as well as of basic HWPE-Stream management
blocks.

3.4.1 hci_core_source

hci_core_source

clk_i flags_o

rst_ni tcdm
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 clear_i
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The hci_core_source module is the high-level source streamer performing a series of loads on a HCI-Core interface
and producing a HWPE-Stream data stream to feed a HWPE engine/datapath. The source streamer is a composite
module that makes use of many other fundamental IPs.

Fundamentally, a source streamer acts as a specialized DMA engine acting out a predefined pattern from an
hwpe_stream_addressgen_v3 to perform a burst of loads via a HCI-Core interface, producing a HWPE-Stream data
stream from the HCI-Core r_data field. By default, the HCI-Core streamer supports delayed accesses using a HCI-Core
interface.

Misaligned accesses are supported by widening the HCI-Core data width of 32 bits compared to the HWPE-Stream
that gets produced by the streamer. Unused bytes are simply ignored. This feature can be deactivated by unsetting
the MISALIGNED_ACCESS parameter; in this case, the sink will only work correctly if all data is aligned to a word
boundary.

In principle, the source streamer is insensitive to latency. However, when configured to support misaligned mem-
ory accesses, the address FIFO depth sets the maximum supported latency. This parameter can be controlled by the
ADDR_MIS_DEPTH parameter (default 8).
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Table 3.23: hci_core_source design-time parameters.
Name Default Description
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthe-

sis).
TRANS_CNT 16 Number of bits supported in the transaction counter of the address generator,

which will overflow at 2^ TRANS_CNT.
ADDR_MIS_DEPTH 8 Depth of the misaligned address FIFO. This must be equal to the max-

latency between the HCI-Core gnt and r_valid.
MISALIGNED_ACCESS 1 If set to 0, the source will not support non-word-aligned HCI-Core accesses.
PASSTHROUGH_FIFO 0 If set to 1, the address FIFO will be capable of fall-through operation (i.e.,

skipping the FIFO latency entirely).

Table 3.24: hci_core_source input control signals.
Name Type Description
req_start logic When 1, the source streamer operation is started if it is ready.
addressgen_ctrl ctrl_addressgen_v3_t Configuration of the address generator (see

hwpe_stream_addresgen_v3).

Table 3.25: hci_core_source output flags.
Name Type Description
ready_start logic 1 when the source streamer is ready to start operation, from the first

IDLE state cycle on.
done logic 1 for one cycle when the streamer ends operation, in the cycle before

it goes to IDLE state .
addressgen_flags flags_addressgen_v3_t Address generator flags (see hwpe_stream_addresgen_v3).
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3.4.2 hci_core_sink
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The hci_core_sink module is the high-level sink streamer performing a series of stores on a HCI-Core interface from
an incoming HWPE-Stream data stream from a HWPE engine/datapath. The sink streamer is a composite module that
makes use of many other fundamental IPs.

Fundamentally, a sink streamer acts as a specialized DMA engine acting out a predefined pattern from an
hwpe_stream_addressgen_v3 to perform a burst of stores via a HCI-Core interface, consuming a HWPE-Stream
data stream into the HCI-Core data field. The sink streamer is insensitive to memory latency. This is due to the nature
of store streams, which are unidirectional (i.e. addr and data move in the same direction).

Misaligned accesses are supported by widening the HCI-Core data width of 32 bits compared to the HWPE-Stream
that gets consumed by the streamer. The stream is shifted according to the address alignment and invalid bytes are
disabled by unsetting their strb. This feature can be deactivated by unsetting the MISALIGNED_ACCESS parameter;
in this case, the sink will only work correctly if all data is aligned to a word boundary.

Table 3.26: hci_core_sink design-time parameters.
Name Default Description
TCDM_FIFO_DEPTH 2 If >0, the module produces a HWPE-MemDecoupled interface and includes

a TCDM FIFO of this depth.
TRANS_CNT 16 Number of bits supported in the transaction counter of the address generator,

which will overflow at 2^ TRANS_CNT.
MISALIGNED_ACCESS 1 If set to 0, the sink will not support non-word-aligned HWPE-Mem accesses.

Table 3.27: hci_core_sink input control signals.
Name Type Description
req_start logic When 1, the sink streamer operation is started if it is ready.
addressgen_ctrl ctrl_addressgen_v3_t Configuration of the address generator (see

hwpe_stream_addresgen_v3).
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Table 3.28: hci_core_sink output flags.
Name Type Description
ready_start logic 1 when the sink streamer is ready to start operation, from the first

IDLE state cycle on.
done logic 1 for one cycle when the streamer ends operation, in the cycle before

it goes to IDLE state .
addressgen_flags flags_addressgen_v3_t Address generator flags (see hwpe_stream_addresgen_v3).
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3.4.3 hwpe_stream_addressgen_v3
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The hwpe_stream_addressgen_v3 module is used to generate addresses to load or store HWPE-Stream stream. In
this version of the address generator, the address is itself carried within a HWPE-Stream, making it easily stallable.
The address generator can be used to generate address from a three-dimensional space, which can be visited with
configurable strides in all three dimensions.

The multiple loop functionality is partially overlapped by the functionality provided by the microcode processor
hwce_ctrl_ucode that can be embedded in HWPEs. The latter is much more flexible and smaller, but less fast.

One iteration is performed per each cycle when enable_i is 1 and the output addr_o stream is ready. presample_i should
be 1 in the first cycle in which the address generator can start generating addresses, and no further. The following piece
of pseudo-C code resumes the basic functionality provided by the address generator.

hwpe_stream_addressgen_v3(
int base_addr, // base address (byte-aligned)
int d0_len, int d1_len, int tot_len // d0,d1,total length (in␣

→˓number of transactions)
int d0_stride, int d1_stride, int d2_stride, // d0,d1,d2 strides (in bytes)
int *d0_addr, int *d1_addr, int *d2_addr, // d0,d1,d2 addresses (by␣

→˓reference)
int *d0_cnt, int *d1_cnt, int *ov_cnt // d0,d1,overall counters (by␣

→˓reference)
) {
// compute current address
int current_addr = 0;
int done = 0;
if (dim_enable & 0x1 == 0) { // 1-dimensional streaming

current_addr = base_addr + *d0_addr;
}
else if(dim_enable & 0x2 == 0) { // 2-dimensional streaming
current_addr = base_addr + *d1_addr + *d0_addr;

}
else { // 3-dimensional streaming
current_addr = base_addr + *d2_addr + *d1_addr + *d0_addr;

}
// update counters and dimensional addresses
if(*ov_cnt == tot_len) {
done = 1;

}
(continues on next page)
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(continued from previous page)

if((*d0_cnt < d0_len) || (dim_enable & 0x1 == 0)) {
*d0_addr = *d0_addr + d0_stride;
*d0_cnt = *d0_cnt + 1;

}
else if ((*d1_cnt < d1_len) || (dim_enable & 0x2 == 0)) {
*d0_addr = 0;
*d1_addr = *d1_addr + d1_stride;
*d0_cnt = 1;
*d1_cnt = *d1_cnt + 1;

}
else {
*d0_addr = 0;
*d1_addr = 0;
*d2_addr = *d2_addr + d2_stride;
*d0_cnt = 1;
*d1_cnt = 1;

}
*ov_cnt = *ov_cnt + 1;
return current_addr, done;

}

Table 3.29: hwpe_stream_addressgen_v3 design-time parameters.
Name Default Description
TRANS_CNT 32 Number of bits supported in the transaction counter, which will overflow at 2^

TRANS_CNT.
CNT 32 Number of bits supported in non-transaction counters, which will overflow at 2^ CNT.

Table 3.30: hwpe_stream_addressgen_v3 input control signals.
Name Type Description
base_addr logic[31:0] Byte-aligned base address of the stream in the HWPE-accessible memory.
tot_len logic[31:0] Total number of transactions in stream; only the TRANS_CNT LSB are actually

used.
d0_len logic[31:0] d0 length in number of transactions
d0_stride logic[31:0] d0 stride in bytes
d0_len logic[31:0] d0 length in number of transactions
d1_stride logic[31:0] d1 stride in bytes
d1_len logic[31:0] d1 length in number of transactions
d2_stride logic[31:0] d2 stride in bytes
dim_enable_1h logic[1:0] One-hot switch to enable 3-d counting (11), 2-d (01), or 1-d (00).

Table 3.31: hwpe_stream_addressgen_v3 output flags.
Name Type Description
done logic 1 when the address generation has finished.
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3.5 Plain HWPE-Mem Streamer modules (deprecated)

The “plain” HWPE-Mem Streamer modules, although still functional, have generally been superseded by the HCI
Streamer modules. We suggest using those for new designs.

Streamer modules constitute the heart of the IPs use to interface HWPEs with a PULP system. They include all the
modules that are used to generate HWPE-Streams from address patterns on the TCDM, including the address generation
itself, data realignment to enable access to data located at non-byte-aligned addresses, strobe generation to selectively
disable parts of a stream, and the main streamer source and sink modules used to put these functions together. Modules
performing these functions can be found within the rtl/streamer subfolder of the hwpe-stream repository.

Two main streamer modules (hwpe_stream_source and hwpe_stream_sink) are composite of several other IPs, in-
cluding address generation and strobe generation blocks included in this section, as well as of basic HWPE-Stream
management blocks.
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3.5.1 hwpe_stream_source
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The hwpe_stream_source module is the high-level source streamer performing a series of loads on a HWPE-Mem or
HWPE-MemDecoupled interface and producing a HWPE-Stream data stream to feed a HWPE engine/datapath. The
source streamer is a composite module that makes use of many other fundamental IPs. Its architecture is shown in
:numfig: _hwpe_stream_source_archi.
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Fig. 3.3: Architecture of the source streamer.

Fundamentally, a source streamer acts as a specialized DMA engine acting out a predefined pattern from an
hwpe_stream_addressgen to perform a burst of loads via a HWPE-Mem interface, producing a HWPE-Stream data
stream from the HWPE-Mem r_data field.

Depending on the DECOUPLED parameter, the streamer supports delayed accesses using a HWPE-MemDecoupled
interface. The source streamer does not include any TCDM FIFO inside on its own; rather, it provides a specific
tcdm_fifo_ready_o output signal that can be hooked to an external hwpe_stream_tcdm_fifo_load. tcdm_fifo_ready_o
provides a backpressure mechanism from the source streamer to the TCDM FIFO (this is unnecessary in the case of
TCDM FIFOs for store).

Table 3.32: hwpe_stream_source design-time parameters.
Name Default Description
DECOUPLED 0 If 1, the module expects a HWPE-MemDecoupled interface instead of HWPE-Mem.
DATA_WIDTH 32 Width of input/output streams (multiple of 32).
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).
TRANS_CNT 16 Number of bits supported in the transaction counter of the address generator, which

will overflow at 2^ TRANS_CNT.
REALIGNABLE 1 If set to 0, the source will not support non-word-aligned HWPE-Mem accesses.

44 Chapter 3. HWPE Interface Modules: Data Movement & Marshaling



Hardware Processing Engines, Release 2.0

Table 3.33: hwpe_stream_source input control signals.
Name Type Description
req_start logic When 1, the source streamer operation is started if it is ready.
addressgen_ctrl ctrl_addressgen_t Configuration of the address generator (see hwpe_stream_addresgen).

Table 3.34: hwpe_stream_source output flags.
Name Type Description
ready_start logic 1 when the source streamer is ready to start operation.
done logic 1 for one cycle when the streamer ends operation.
addressgen_flags flags_addressgen_t Address generator flags (see hwpe_stream_addresgen).
ready_fifo logic Unused.
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3.5.2 hwpe_stream_sink
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HWPE-Stream stream

The hwpe_stream_sink module is the high-level sink streamer performing a series of stores on a HWPE-Mem or
HWPE-MemDecoupled interface from an incoming HWPE-Stream data stream from a HWPE engine/datapath. The
sink streamer is a composite module that makes use of many other fundamental IPs. Its architecture is shown in :numfig:
_hwpe_stream_sink_archi.
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Fig. 3.4: Architecture of the source streamer.

Fundamentally, a ink streamer acts as a specialized DMA engine acting out a predefined pattern from an
hwpe_stream_addressgen to perform a burst of stores via a HWPE-Mem interface, consuming a HWPE-Stream data
stream into the HWPE-Mem data field.

The sink streamer indifferently supports standard HWPE-Mem or delayed HWPE-MemDecoupled accesses. This is
due to the nature of store streams, that are unidirectional (i.e. addr and data move in the same direction) and hence
insensitive to latency.

Table 3.35: hwpe_stream_sink design-time parameters.
Name Default Description
TCDM_FIFO_DEPTH 2 If >0, the module produces a HWPE-MemDecoupled interface and includes

a TCDM FIFO of this depth.
DATA_WIDTH 32 Width of input/output streams.
LATCH_FIFO 0 If 1, use latches instead of flip-flops (requires special constraints in synthesis).
TRANS_CNT 16 Number of bits supported in the transaction counter of the address generator,

which will overflow at 2^ TRANS_CNT.
REALIGNABLE 1 If set to 0, the sink will not support non-word-aligned HWPE-Mem accesses.
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Table 3.36: hwpe_stream_sink input control signals.
Name Type Description
req_start logic When 1, the sink streamer operation is started if it is ready.
addressgen_ctrl ctrl_addressgen_t Configuration of the address generator (see hwpe_stream_addresgen).

Table 3.37: hwpe_stream_sink output flags.
Name Type Description
ready_start logic 1 when the sink streamer is ready to start operation.
done logic 1 for one cycle when the streamer ends operation.
addressgen_flags flags_addressgen_t Address generator flags (see hwpe_stream_addresgen).
ready_fifo logic Unused.
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3.5.3 hwpe_stream_addressgen
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_**hwpe_stream_addressgen** is DEPRECATED. New designs should use hwpe_stream_addressgen_v3 instead._

The hwpe_stream_addressgen module is used to generate addresses to load or store HWPE-Stream streams, as well as
the related byte enable strobes (gen_addr_o and gen_strb_o respectively). The address generator can be used to generate
address from a three-dimensional space of “words”, “lines” and “features”. Lines and features can be separated by a
certain stride, and a roll parameter can be used to reuse the same offsets multiple times.

The multiple loop functionality is partially overlapped by the functionality provided by the microcode processor
hwce_ctrl_ucode that can be embedded in HWPEs. The latter is much more flexible and smaller, but less fast. When
using a single loop in the address generator, the HWPE designer should statically set line_stride =0, feat_length =1,
feat_stride =0.

The address generation loop considers three-dimensional vectors, where the three dimensions are called packet, line
and features from the innermost to the outermost. One iteration is performed per each cycle when enable_i is 1. Feature
loops can behave in two different fashions, modeled after the behavior of input/output features in CNNs. The following
piece of code resumes the basic functionality provided by the address generator, discarding more complex situations
where the address is misaligned (resulting in one more transaction, introduced automatically).

int word_addr=0, line_addr=0, feat_addr=0;
int trans_idx=0;
while(trans_idx < trans_size) {
if(!enable)
continue;

for(int feat_idx=0; feat_idx<feat_roll; feat_idx++) { // feature loop
for(int line_idx=0; line_idx<feat_length; line_idx++) { // line loop
for(int word_idx=0; word_idx<line_length; word_idx++) { // word loop
gen_addr = base_addr + feat_addr + line_addr + word_idx * STEP;

}
line_addr += line_stride;

}
if((loop_outer) && (feat_idx == feat_roll-1)) {
feat_addr += feat_stride;
feat_idx = 0;

}
else if ((!loop_outer) && (feat_idx < feat_roll-1)){
feat_addr += feat_stride;

}
else if ((!loop_outer) && (feat_idx == feat_roll-1)){
feat_addr = 0;
feat_idx = 0;

(continues on next page)
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}
}

}

Table 3.38: hwpe_stream_addressgen design-time parameters.
Name Default Description
REALIGN_TYPE HWPE_STREAM_REALIGN_SOURCE Type of realignment, can be set to

HWPE_STREAM_REALIGN{SOURCE,SINK}.
STEP 4 Step of address generation (untested with != 4).
TRANS_CNT 16 Number of bits supported in the transaction

counter, which will overflow at 2^ TRANS_CNT.
CNT 10 Number of bits supported in non-transaction

counters, which will overflow at 2^ CNT.
DELAY_FLAGS 0 If 1, delay the production of flags by one cycle.

Table 3.39: hwpe_stream_addressgen input control signals.
Name Type Description
base_addr logic[31:0] Byte-aligned base address of the stream in the HWPE-accessible memory.
trans_size logic[31:0] Total size of transaction; only the TRANS_CNT LSB are actually used.
line_stride logic[15:0] Distance between two adjacent lines in bytes.
line_length logic[15:0] Length of a line in words, rounded by including also incomplete final

words.
feat_stride logic[15:0] Distance between two adjacent features in bytes.
feat_length logic[15:0] Length of a feature in number of lines.
loop_outer logic Whether this corresponds to an outer or inner feature loop.
feat_roll logic[15:0] After this number of features, depending on loop_outer, feature index will

be rolled back or incremented.
realign_type logic Unused.
line_length_remainder logic[7:0] Unused.

Table 3.40: hwpe_stream_addressgen output flags.
Name Type Description
realign_flags ctrl_realign_t Control signals to be used for realignment by

hwpe_stream_{source,sink}_realign modules.
word_update logic 1 when the word loop has been updated.
line_update logic 1 when the line loop has been updated.
feat_update logic 1 when the feature loop has been updated.
in_progress logic 1 when the address generation has progressed.
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3.5.4 hwpe_stream_strbgen
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The hwpe_stream_strbgen module is used to generate strobes for load or store HWPE-Stream streams, in case of
incomplete transfers. It uses information passed through the same configuration struct used for the address generator.

Table 3.41: hwpe_stream_strbgen design-time parameters.
Name Default Description
DATA_WIDTH 32 Width of input/output streams.

Table 3.42: hwpe_stream_strbgen input control signals.
Name Type Description
base_addr logic[31:0] Unused.
trans_size logic[31:0] Unused.
line_stride logic[15:0] Unused.
line_length logic[15:0] Length of a line in words, rounded by including also incomplete final

words.
feat_stride logic[15:0] Unused.
feat_length logic[15:0] Unused.
loop_outer logic Unused.
feat_roll logic[15:0] Unused.
realign_type logic Unused.
line_length_remainder logic[7:0] Number of valid bytes in the final word in a line; if 0, the final word is

considered fully valid.

50 Chapter 3. HWPE Interface Modules: Data Movement & Marshaling



Hardware Processing Engines, Release 2.0

3.5.5 hwpe_stream_sink_realign

hwpe_stream_sink_realign
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The hwpe_stream_sink_realign module realigns HWPE-Streams to prepare them for storage in memory. Specifically,
it rotates strb signals according to its control interface, produced along with addresses in the address generator.

Table 3.43: hwpe_stream_sink_realign design-time parameters.
Name Default Description
DATA_WIDTH 32 Width of input/output streams.

Table 3.44: hwpe_stream_sink_realign input control signals.
Name Type Description
enable logic Unused.
strb_valid logic Unused.
realign logic If 1, the realigner is actively used to generate strobed HWPE-Streams. If 0, it is by-

passed.
first logic Strobe at 1 for the first packet in a line.
last logic Strobe at 1 for the last packet in a line.
last_packet logic Strobe at 1 for the last packet of the transfer.
line_length logic[15:0] Unused.
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3.5.6 hwpe_stream_source_realign

hwpe_stream_source_realign
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[DATA_WIDTH/8-1:0]

The hwpe_stream_source_realign module realigns HWPE-Streams loaded in a misaligned fashion from memory.
Specifically, it rotates strb signals according to its control interface, produced along with addresses in the address
generator.

Table 3.45: hwpe_stream_source_realign design-time parameters.
Name Default Description
DECOUPLED 0 If 1, the module expects a HWPE-MemDecoupled interface instead of HWPE-

Mem.
DATA_WIDTH 32 Width of input/output streams.
STRB_FIFO_DEPTH 4 Depth of the FIFO queue used for strobes; when full, the realigner will lower

its ready signal at the input interface.

Table 3.46: hwpe_stream_source_realign input control signals.
Name Type Description
enable logic If 0, the realigner is fully clock-gated.
strb_valid logic If 1, the strobe at the strb_i interface is considered valid.
realign logic If 1, the realigner is actively used to generate strobed HWPE-Streams. If 0, it is by-

passed.
first logic Strobe at 1 for the first packet in a line.
last logic Strobe at 1 for the last packet in a line.
last_packet logic Strobe at 1 for the last packet of the transfer.
line_length logic[15:0] Length of a line in words, rounded by including also incomplete final words.

Table 3.47: hwpe_stream_source_realign output flags.
Name Type Description
decoupled_stall logic Do not use.
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3.6 HCI Interconnect modules

3.6.1 hci_router

hci_router

clk_i out

rst_ni

clear_i

in

HCI-Core out[0:NB_OUT_CHAN-1]  clk_i

  rst_ni

  clear_i

HCI-Core in

The hci_router is a specialized router used to build interconnects in a heterogeneous PULP cluster. It takes as input a
single in HCI channel of width DWH (typically “wide”, i.e., greater than 32 bits) that gets routed without arbitration to
DWH/32 adjacent out targets from a set of NB_OUT_CHAN out channels (typically, one per memory bank). Routing
is performed by splitting the address of the DWH-bit wide word in an index (bits [$clog2(DWH)+2-1:2]) and an offset
part (bits [AWH:$clog2(DWH)+2]). The index is used to select which out targets need to propagate the request, while
the offset is used to compute the target-level address for each out channel – since word interleaving is assumed, the
same address is generally propagated to all targeted out channels. However, if index > NB_OUT_CHAN-DWH/32,
then the set of selected targets “wraps around”: the first NB_OUT_CHAN-DWH/32-index out channels are activated,
propagating as address the offset+4. See https://ieeexplore.ieee.org/document/9903915 Sec. II-A (open-access) for
details (the router is called a shallow router).

Table 3.48: hci_router design-time parameters.
Name Default Description
FIFO_DEPTH 0 If > 0, insert a HCI FIFO of this depth after the input channel.
NB_OUT_CHAN 8 Number of output HCI channel
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3.6.2 hci_arbiter

hci_arbiter
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The hci_arbiter is a specialized arbiter used to build interconnects in a heterogeneous PULP cluster, and in particular to
arbitrate between two sets of NB_CHAN input channels, one with “default high” (in_high) and the other with “default
low” priority (in_low). The arbitration is meant to be performed generally at the direct boundary between the inter-
connect and the tightly-coupled memory banks. The arbiter uses a starvation-free unbalanced-priority scheme where
one of the input channels has by default access to most of the bandwidth guaranteed by the output channels. To prevent
starvation effects, depending on the control settings, the other input channel is always granted after a given number of
stall cycles. For more details, see:

• https://ieeexplore.ieee.org/document/9903915, Sec. II-A (open-access);

• https://ieeexplore.ieee.org/document/10247945 , Sec. II-A, III-B, and III-C.

Table 3.49: hci_arbiter design-time parameters.
Name Default Description
NB_CHAN 2 Number of HCI channels.

Table 3.50: hci_arbiter input control signals.
Name Type Description
invert_prio logic When 1, invert priorities between in_high and in_low.
low_prio_max_stall logic[7:0] Maximum number of consecutive stalls on low-priority channel.
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3.6.3 hci_interconnect

hci_interconnect

clk_i mems

rst_ni

clear_i

ctrl_i

cores

dma

ext

hwpe

HCI-Core mems[0:N_MEM-1]  clk_i
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Convenience top-level for the PULP heterogeneous cluster interconnect. It wraps both a logarithmic interconnect (LIC)
and an (optional) HCI router meant to realize a LIC and a HWPE branch of the interconnect, respectively. The two
branches are (optionally) arbitrated via a HCI arbiter.

Table 3.51: hci_interconnect design-time parameters.
Name Default Description
N_HWPE 1 Number of HWPEs attached as initiator to the interconnect

(LIC or HWPE branch).
N_CORE 8 Number of cores attached as initiator to the interconnect

(LIC branch).
N_DMA 4 Number of DMA ports attached as initiator to the inter-

connect (LIC branch).
N_EXT 4 Number of external ports attached as initiator to the inter-

connect (LIC branch).
N_MEM 16 Number of memory banks attached as target to the inter-

connect.
TS_BIT 21 Bit passed to LIC to define test&set aliased memory re-

gion.
IW N_HWPE+N_CORE+N_DMA+N_EXT ID Width.
EXPFIFO 0 Depth of HCI router FIFO.
SEL_LIC 0 Kind of LIC to instantiate (0=regular L1, 1=L2).
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3.7 Control interface modules (HWPE-Periph)

The control interface of HWPEs exposes a HWPE-Periph interface that is used to program a memory-mapped register
file. Several IPs can be used to compose the control interface, delivering a standard accelerator control interface that is
described below. Modules performing these functions can be found within the rtl/ subfolder of the hwpe-ctrl repository.
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GITHUB OPEN-SOURCE REPOSITORIES

IPs to build HWPE-based accelerators:

• https://github.com/pulp-platform/hwpe-stream/ : basic streamer IPs, HWPE-Stream SystemVerilog interfaces

• https://github.com/pulp-platform/hwpe-ctrl/ : basic control IPs

• https://github.com/pulp-platform/hci : Heterogeneous Cluster Interconnect streamer IPs and interconnect IPs

Simple examples of HWPEs:

• https://github.com/pulp-platform/hwpe-mac-engine : basic HWPE example with basic streamers - MAC engine
with single Multiply-Accumulate

• https://github.com/pulp-platform/hwpe-datamover-example : basic HWPE example with HCI streamers - pure
datamover

Complex HWPEs:

• https://github.com/pulp-platform/rbe : Reconfigurable Binary Engine - neural accelerator with flexible precision
for weights and activations

• https://github.com/pulp-platform/ne16 : Neural Engine (16 input-channels) - neural accelerator with flexible
precision for weights (TinyML applications)

• https://github.com/pulp-platform/neureka : NEureka Neural Engine - neural accelerator with flexible precision
for weights (AR/VR applications)

• https://github.com/pulp-platform/redmule : RedMulE (REDuced-precision Matrix MULtipication Engine) is a
8-bit and 16-bit floating-point systolic array
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Disclaimer: most of these references are the effect of the point of view of myself, Francesco Conti, maintainer and
dictator of this site. Most papers are related to work on HWPEs performed in the context of the PULP project during
my activity at University of Bologna (2012-ongoing) and ETH Zurich (2015-2020). Although there is a Other authors
section, there may be several missing papers using the HWPE IPs and/or a similar template. In case you spot a missing
reference, let me know and I’ll be happy to amend the list.
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5.2 HWPEs on FPGA
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ded Accelerator Deployment”, in DSD 2021 Conference.

• P. Meloni, D. Loi, G. Deriu, M. Carreras, F. Conti, A. Capotondi, and D. Rossi, “Exploring NEURAghe: A
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no. 2, pp. 62–65, 2020, doi: 10.1109/LES.2019.2947312.
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Computing and FPGAs, ReConFig 2016, Cancun, Mexico, November 30 - Dec. 2, 2016, 2016, pp. 1–8,
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“DARKSIDE: 2.6GFLOPS, 8.7mW Heterogeneous RISC-V Cluster for Extreme-Edge On-Chip DNN Inference
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Disclaimer: most of these references are the effect of the point of view of myself, Francesco Conti, maintainer and
dictator of this site. Most chips shown here are related to work on HWPEs performed in the context of the PULP
project during my activity at University of Bologna (2012-ongoing) and ETH Zurich (2015-2020). Although there is a
Other authors section, there may be several missing chips using the HWPE IPs and/or a similar template. In case you
spot a missing reference, let me know.
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6.1 PULP chips

Table 6.1: PULP chips
Chip Year Notes
Siracusa http://asic.ethz.ch/2022/Siracusa.html 2022 PULP cluster with NEureka

Darkside http://asic.ethz.ch/2021/Darkside.html 2021 PULP cluster with RedMulE, DepthWise
Engine, DataMover Engine

Echoes http://asic.ethz.ch/2021/Echoes.html 2021 PULPissimo with FFT HWPE

Kraken http://asic.ethz.ch/2021/Kraken.html 2021 PULP cluster with SNE and PULPO
(they do not directly use HWPE IPs, but
they follow the same HWPE template)

Marsellus http://asic.ethz.ch/2021/Marsellus.html 2021 PULP cluster with RBE (https://github.
com/pulp-platform/rbe)

Vega http://asic.ethz.ch/2020/Vega.html 2020 PULP cluster with HWCE v4

Xavier http://asic.ethz.ch/2019/Xavier.html 2019 PULPissimo with QNE

Poseidon (Quentin) http://
asic.ethz.ch/2018/Poseidon.html

2019 Chip including a PULPissimo with XNE

GAP8 http://asic.ethz.ch/2017/GAP8.html 2017 Commercial SoC including HWCE v3

Fulmine http://asic.ethz.ch/2015/Fulmine.html 2015 PULP cluster design with HWCE v2,
HWCrypt (the latter follows the HWPE
template but does not use HWPE IPs)

Mia Wallace http://asic.ethz.
ch/2015/Mia_Wallace.html

2015 PULP cluster design with HWCE v1

PULP3 http://asic.ethz.ch/2015/Pulpv3.html 2015 PULP cluster design with HWCE v1
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CHAPTER

SEVEN

TEAM

7.1 Current team

• Francesco Conti, team lead, Tenure-Track Assistant Professor @ UNIBO, Italy

• Arpan Prasad, N-EUREKA Neural Engine designer, PhD student @ ETHZ, Switzerland

• Yvan Tortorella, RedMulE (FP16 MatMul Engine) designer, PhD student @ UNIBO, Italy

• Luca Bertaccini, FFT-HWPE designer, PhD student @ ETHZ, Switzerland

• Alessio Burrello, SW integration in DORY, Postdoc @ POLITO, Italy

• Luka Macan, SW integration in DORY/Deeploy, PhD student @ UNIBO, Italy

• Alessandro Nadalini, course tutoring, PhD student @ UNIBO, Italy

• Luigi Ghionda, FP FFT-HWPE designer, master thesis student @ UNIBO, Italy

• Lorenzo Greco, in-memory computing acceleration, master thesis student @ UNIBO, Italy

7.2 Past members / Members at large

• Gianna Paulin, Reconfigurable Binary Engine designer, former PhD student @ ETHZ, now at Axelera AI

• Pietro Maltoni, former master thesis student @ UNIBO, now at GreenWaves Technologies

• Riccardo Gandolfi, former master thesis student @ UNIBO, now at GreenWaves Technologies

• Aurora Di Giampietro, former master thesis student @ UNIBO+ETHZ, now at OnSemi
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CHAPTER

EIGHT

DOCUMENT REVISIONS

Rev. Date Author Description
1.0 14/01/18 Francesco Conti First draft of the specifications.
1.1 19/01/18 Francesco Conti Added description of hwpe-stream, hwpe-ctrl modules.
1.2 26/01/18 Francesco Conti Added specification of the microcode processor.
1.3 10/02/18 Francesco Conti Removed some unnecessary constraints on TCDM prot.
1.4 27/03/19 Francesco Conti Switched to RST; major rehaul.
2.0 16/06/22 Francesco Conti Adding HCI; chips; papers.
2.0.1 28/11/23 Francesco Conti Minor updates.
2.0.2 20/01/24 Francesco Conti Minor updates.
3.0 16/03/24 Francesco Conti Update to HCIv2.
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