

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	humblewx 0.0.0 documentation

Welcome to humblewx’s documentation!

Contents:

	Introduction

	Downloading & Installing

	Tutorial
	Hello World

	Greeting

	Summary

	Topics
	Using Sizers

	Using Variables

	Using Custom Components

	API
	Classes

	Configuration

	GUI Description Language

	Release

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

Introduction

humblewx is a Python library that makes it more pleasant to create user
interfaces with wxPython. It has two goals:

	Simplify writing code to construct and layout wxPython GUI components

	Enforce the Humbe Dialog Box [http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf]
pattern

humblewx started life as a module in The Timeline Project [http://thetimelineproj.sourceforge.net/]. It was created because we wanted a
more pleasant way to work with all wxPython dialogs. It was later extracted to
its own library.

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

Downloading & Installing

humblewx is a regular Python package that can be downloaded and installed
with pip.

From PyPi [https://pypi.python.org/pypi/humblewx]:

pip install humblewx

From source [https://github.com/thetimelineproj/humblewx] (recommended
because PyPi is not always up to date):

pip install git+https://github.com/thetimelineproj/humblewx

After the install, you should be able to import humblewx like this:

import humblewx

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

Tutorial

This tutorial demonstrates basic usage of humblewx by showing and
explaining a few examples.

Hello World

Our first example is a dialog that displays the text hello world. It looks
something like this:

[image: _images/hello_world.png]
Here is the complete code:

import humblewx
import wx

class HelloWorldDialog(humblewx.Dialog):

 """
 <StaticText label="Hello World" />
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, HelloWorldDialogController, parent)

class HelloWorldDialogController(humblewx.Controller):
 pass

if __name__ == "__main__":
 app = wx.App()
 dialog = HelloWorldDialog(None)
 dialog.ShowModal()
 dialog.Destroy()

Let’s walk through the code piece by piece:

import humblewx
import wx

Here we import the hubmlewx module that is used to access its
functionality. The wx import is only needed in the example program to
create the App object so that we can display our dialog.

class HelloWorldDialog(humblewx.Dialog):

Here we say that we want to create a dialog. The humblewx.Dialog is
actually a subclass of wx.Dialog. This subclass adds the functionality to
create the GUI from a description in XML.

 """
 <StaticText label="Hello World" />
 """

This is the description of the GUI. It is written in the dosctring of the
class. It is written in XML and describes what components should be in our
dialog. In this case we have only one component.

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, HelloWorldDialogController, parent)

Here we create the dialog. The __init__() method will
read the GUI description and construct the components. The first argument,
HelloWorldDialogController is a class that will be instantiated and used as
a controller for this dialog. We’ll come back to what the controller does. For
now we just need to know that it must be a subclass of
humblewx.Controller().

class HelloWorldDialogController(humblewx.Controller):
 pass

Here we define our controller. At the moment it doesn’t do anything.

if __name__ == "__main__":
 app = wx.App()
 dialog = HelloWorldDialog(None)
 dialog.ShowModal()
 dialog.Destroy()

This code displays our dialog when we run the Python file.

Greeting

Our second example is a greeting dialog that allows us to enter our name, and
when we press a button a greeting will be shown. It looks something like this:

[image: _images/greeting.png]
Here is the dialog class:

class GreetingDialog(humblewx.Dialog):

 """
 <BoxSizerVertical>
 <BoxSizerHorizontal>
 <StaticText label="What is your name?" />
 <TextCtrl name="name_text_ctrl" />
 <Button label="Greet" event_EVT_BUTTON="on_greet_clicked" />
 </BoxSizerHorizontal>
 <StaticText name="greeting" label="" />
 </BoxSizerVertical>
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, GreetingDialogController, parent)

 def GetName(self):
 return self.name_text_ctrl.GetValue()

 def SetGreeting(self, text):
 self.greeting.SetLabel(text)

Here is the controller class:

class GreetingDialogController(humblewx.Controller):

 def on_greet_clicked(self, event):
 self.view.SetGreeting("Hello %s!" % self.view.GetName())

We can see that the GUI description has been extended from the previous
example. We have more components and we use sizers to control how they are laid
out.

The second interesting addition in this example is that we have communication
between the dialog and the controller. They collaborate in a pattern inspired
by the Humbe Dialog Box [http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf]. The
dialog corresponds to the view and the controller corresponds to the smart
object.

The controller receives events from the view (such as a button click) and
responds to them by calling methods on the view.

The way to connect events to the controller is via event_ attributes in the
XML. When humblewx sees event_EVT_BUTTON="on_greet_clicked", it will
automatically bind the EVT_BUTTON event to the on_greet_clicked method
on the controller.

What happens when we click the greet button?

	on_greet_clicked is called.

	It calls GetName on the view.

	GetName in turn gets the name from the text control. The view can access
the text control by the name name_text_ctrl because we specified the name
attribute in the XML.

	on_greet_clicked then calls SetGreeting on the view with the
greeting string constructed from the name.

	SetGreeting sets the label on the static text similarly to how
GetName got the text from the text control.

Summary

In our experience it’s very pleasant to be able to describe how the GUI should
look like in XML instead of manually calling wx APIs. We feel that we can
more rapidly create new dialogs that also look better. Changing existing ones
is also more pleasant.

The separation between the view and the control makes the code even cleaner and
the controller can be tested in isolation without ever invoking a GUI.

We encourage you to try this approach to creating user interfaces in wxPython.
Let us know what you think.

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

Topics

The following topics explain how to use a certain aspect of the library.

	Using Sizers

	Using Variables

	Using Custom Components

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

 	Topics

Using Sizers

Sizers is the technique used in wxPython to control the layout of components.
However, using sizers directly requires writing code that is difficult to
understand. Here is a simple example:

class SizersWxExampleDialog(wx.Dialog):

 def __init__(self, parent):
 wx.Dialog.__init__(self, parent)
 button1 = wx.Button(self, label="button 1")
 button2 = wx.Button(self, label="button 2")
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(button1, flag=wx.EXPAND|wx.ALL, border=5)
 sizer.Add(button2, flag=wx.EXPAND)
 self.SetSizerAndFit(sizer)

We have two buttons that are laid out vertically. It looks like this:

[image: _images/sizers_wx.png]
The problem is that this is not obvious to figure out by taking a quick look at
the code. That is because the structure of the components is not reflected in
the structure of the code. This problem grows larger the more components we
have in our dialogs.

humblewx allow us to define everything about a component in one place. The
hierarchical structure of XML also makes it easier to see how the components
are laid out. Let’s see what the above example looks like rewritten using
humblewx:

class SizersHumbleWxExampleDialog(humblewx.Dialog):

 """
 <BoxSizerVertical>
 <Button label="button 1" border="ALL" />
 <Button label="button 2" />
 </BoxSizerVertical>
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, humblewx.Controller, parent)

Quickly we can see that this dialog has two buttons and that they are laid out
vertically.

Here is a larger example demonstrating what we can do with sizers.

class SizersFullExampleDialog(humblewx.Dialog):

 """
 <BoxSizerVertical>

 <StaticText border="TOP" label="Demonstrating proportion:" />
 <BoxSizerHorizontal>
 <Button label="button 1" proportion="1" />
 <Button label="button 2" proportion="1" />
 <Button label="button 3" proportion="2" />
 </BoxSizerHorizontal>

 <StaticText border="TOP" label="Demonstrating stretch spacer:" />
 <BoxSizerHorizontal>
 <Button label="button 1" />
 <StretchSpacer />
 <Button label="button 2" />
 </BoxSizerHorizontal>

 <StaticText border="TOP" label="Demonstrating spacer:" />
 <BoxSizerHorizontal>
 <Button label="button 1" />
 <Spacer />
 <Button label="button 2" proportion="1" />
 </BoxSizerHorizontal>

 <StaticText border="TOP" label="Demonstrating grid:" />
 <FlexGridSizer columns="2" align="ALIGN_CENTER">
 <Button label="button 1" />
 <Button label="button 2" />
 <Button label="button 3" />
 <Button label="button 4" />
 </FlexGridSizer>

 </BoxSizerVertical>
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, humblewx.Controller, parent)

The dialog looks like this:

[image: _images/sizers.png]

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

 	Topics

Using Variables

class VariablesExampleDialog(humblewx.Dialog):

 """
 <BoxSizerVertical>
 <StaticText
 label="$(translated_label)"
 />
 </BoxSizerVertical>
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, humblewx.Controller, parent, {
 "translated_label": "Gutent tag",
 })

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

 	Topics

Using Custom Components

We have seen that we can refer to standard wx components such as buttons
and static text fields from the XML. What about custom components that are not
inside the wx namespace?

humblewx can be configured to look for components anywhere. We just need to
modify the humblewx.COMPONENT_MODULES configuration variable.

Say we have this custom component that we want to use in a dialog:

class CustomComponent(wx.Panel):

 def __init__(self, parent):
 wx.Panel.__init__(self, parent)
 label = wx.StaticText(self, label="this is a custom component")
 button = wx.Button(self, label="click me")
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(label)
 sizer.Add(button)
 self.SetSizer(sizer)

In the XML we can just refer to this component by name as we do with any other
wx component:

class CustomComponentExampleDialog(humblewx.Dialog):

 """
 <BoxSizerVertical>
 <StaticText label="before custom component" />
 <CustomComponent />
 <StaticText label="after custom component" />
 </BoxSizerVertical>
 """

 def __init__(self, parent):
 humblewx.Dialog.__init__(self, humblewx.Controller, parent)

It looks like this:

[image: _images/custom_component.png]
In order for this to work, we have to tell humblewx that it should also
look for components in another module. In this example, we only have one module
where both the custom component and the dialog are defined. We can get a
reference to that module with the following code:

sys.modules[__name__]

Next we need to modify humblewx.COMPONENT_MODULES to include this
module:

humblewx.COMPONENT_MODULES.append(sys.modules[__name__])

We need to run this code before we create our dialog.

We can add any module to this list:

import foo.bar
humblewx.COMPONENT_MODULES.append(foo.bar)

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	humblewx 0.0.0 documentation

API

Classes

	
class humblewx.Dialog

	
	
__init__(controller_class, parent, variables={}, **kwargs)

	This constructs a wx.Dialog and fills it with content according to
the GUI description found in
this class’ docstring.

	Parameters:	
	controller_class – The class that should be used as a controller in this dialog. It
will be initialized automatically.

	parent – The parent window to this dialog. Passed as first argument to the
__init__ method of the wx.Dialog.

	variables – Variables that can be accessed by name from the XML definition.
Should be a mapping from strings to Python values.

	**kwargs – Additional parameters that are passed to the __init__ method of
the wx.Dialog.

	
class humblewx.Controller

	
	
__init__(view)

	

Configuration

	
humblewx.COMPONENT_MODULES

	

	Default:	[wx]

This is a list of modules where humblewx will search for components.

By default, only wx components can be found. Extend or change this list
to allow humblewx to find components defined in other modules.

GUI Description Language

GUI descriptions are defined in XML.

Nodes in the XML correspond to either components or sizers. Attributes
correspond to arguments passed to the constructors. For example:

<Button label="Hello World" />

Will result in the following Python code:

wx.Button(..., label="Hello World")

Attribute values

Often components need arguments that are not strings. Attribute values in the
XML are interpreted in the following order:

	
Variable

	Example:

<Button label="$(name)" />

If the attribute value matches the variable pattern $(..), the Python
value will be fetched from the variables dictionary passed to
Dialog.

	
Boolean

	Example:

<Button label="True" />
<Button label="False" />

If the attribute value matches eihter True or False, the Python
value will be the corresponding boolean.

	
String

	Example:

<Button label="Hello World" />

All other attribute values will be returned as Python strings.

Special nodes

	
BoxSizerVertical

	This is the quivalent of the following Python code:

wx.BoxSizer(wx.VERTICAL)

	
BoxSizerHorizontal

	This is the quivalent of the following Python code:

wx.BoxSizer(wx.HORIZONTAL)

	
FlexGridSizer

	This creates a wx.FlexGridSizer. It supports the following attributes:

	
rows

	

	Default:	0

The number of rows this sizer should have.

	
columns

	

	Default:	0

The number of columns this sizer should have.

	
growableColumns

	A comma separated list of integers saying which columns should be
growable. (Argument to AddGrowableCol.)

	
growableRows

	A comma separated list of integers saying which row should be growable.
(Argument to AddGrowableRow.)

	
StaticBoxSizerVertical

	This creates a static box and a corresponding sizer used to lay out child
components. All attributes are passed to the wx.StaticBox. The sizer is
created like this:

wx.StaticBoxSizer(..., wx.VERTICAL)

	
Spacer

	This can only be used within a sizer.

	
StretchSpacer

	This can only be used within a sizer.

Special attributes

	
name

	

	
event_*

	

	
border

	

	
borderType

	

	
proportion

	

	
align

	

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	humblewx 0.0.0 documentation

Release

Steps to make a release:

	Update version number in setup.py

	Build with python setup.py sdist

	Upload to PyPi with twine upload dist/humblewx-x.y.z.tar.gz

	Tag git tag x.y.z

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	humblewx 0.0.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	
 	
 humblewx	

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	humblewx 0.0.0 documentation

Index

 _
 | C
 | D
 | H

_

 	

 	__init__() (humblewx.Controller method)

 	

 	(humblewx.Dialog method)

C

 	

 	COMPONENT_MODULES (in module humblewx)

 	

 	Controller (class in humblewx)

D

 	

 	Dialog (class in humblewx)

H

 	

 	humblewx (module)

 Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/down.png

_images/hello_world.png
*

Hello World

_images/custom_component.png
i d

before custom component

this is a custom component| ™ ¢ me

after custom component

_images/sizers_wx.png

_images/sizers.png
Demonstrating proportion
| button1 | button2 | button 3 |

Demonstrating stretch spacer:
| button1 | button 2 |

Demonstrating spacer:

| button1 || button 2 |
Demonstrating grid
| button1 || button2 |

| button3 || buttona |

_images/greeting.png
i d

What is your name?| iclard =

Hello Rickard!

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		humblewx 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rickard Lindberg.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

