
Hugin EO
Release 0.2.0b3

Nov 12, 2019

Contents

1 Installation 2
1.1 Prerequisites . 2
1.2 Using pip . 2

1.2.1 From PyPi . 2
1.2.2 From GitHub . 2

1.3 From source code . 3

2 Introduction 4
2.1 Standalone . 4

2.1.1 Training . 4
2.1.1.1 Global Configuration 5
2.1.1.2 Data Source Specification 5
2.1.1.3 Model Configuration . 6
2.1.1.4 Example Experiment . 9

2.1.2 Prediction . 11
2.1.3 Mapping . 11

3 Indices and Tables 12

i

Hugin EO, Release 0.2.0b3

Hugin helps scientists run Machine Learning experiments on geospatial raster data.

Hugin was developed as part of the ESA funded ML4EO

Overall Hugin aims to facilitate experimentation with multiple machine learning prob-
lems, like:

• Classification

• Segmentation

• Super-Resolution

Currently Hugin builds on top of the Keras machine learning library but it also aims to
support, in the future, additional backends like scikit-learn.

Contents 1

http://sage.ieat.ro/projects/ML4EO/

CHAPTER 1

Installation

1.1 Prerequisites

Hugin builds functionality on top of existing technology, primarily it uses Keras, SciKit-
Learn, OpenCV and RasterIO.

The exact prerequisites are specified in the requirements.txt and setup.py files. Normally
you package manager will handle requirement installation automatically.

1.2 Using pip

1.2.1 From PyPi

pip install hugin

1.2.2 From GitHub

You can install Hugin using the following command:

pip install git+http://github.com/sage-group/hugin#egg=hugin

2

Hugin EO, Release 0.2.0b3

1.3 From source code

When installing from source code we recommend installation inside a specially created
virtual environment.

Installing from source code involves running the setup.py inside you python environ-
ment.

python setup.py install

1.3. From source code 3

CHAPTER 2

Introduction

Hugin is meant to be used in two scenarios:

• as a standalone tool driven a by an experiment configuration file

• as a library in your code

Both scenarios share same concepts with the main difference that the standalone tool
connects all the Hugin components together.

2.1 Standalone

Using Hugin involves two steps:

• training

• prediction

Both steps are driven using dedicated configuration files. The configuration files are
normal YAML files referencing various Hugin components.

This configuration files allow the end user to customize pre-processing, model and post-
processing operations.

2.1.1 Training

The training process involves the preparation of a training scenario configuration file.
This configuration file is composed out of multiple sections, particularly:

• Global configuration (the configuration key)

4

Hugin EO, Release 0.2.0b3

• Data source specification (the trainer key)

• Trainer specification (the data_source key)

2.1.1.1 Global Configuration

Currently in this section (the configuration key in YAML file) you can specify:

• model_path: a string specifying the “workspace” used for saving the model, and
depending on the backend it will hold checkpoints, metrics, etc. This string allows
interpolation of trainer attributes.

An example configuration specification could be:

1 configuration:
2 model_path: "/home/user/experiments/{name}"

2.1.1.2 Data Source Specification

The data source is intended for locating the data we wish to use in our experiments. As
part of Hugin there are multiple data source implementations, particularly:

• FileSystemLoader: capable of scanning, recursively, a directory for input files and
group them together according to a specified pattern.

• FileLoader: capable of reading file names from an input file. The main purpose of
this file is for supporting GDAL Virtual File Systems, for example:

– /vsicurl/: for retrieving files using cURL (HTTP, FTP, etc)

– /vsis3/: for retrieving files from AWS S3

– /vsigs/: for retrieving files from Google Cloud Storage

The data source that should be used is introduced using the YAML data_source key in
the YAML file and is an explicit reference to the data source implementation.

The aforementioned data sources can have the following configuration options:

• data_pattern (mandatory): used for specifying a regular expression matching
files that should be taken into consideration

• id_format (mandatory): used for constructing an scene id used by Hugin for iden-
tifying a particular scene. This option is similar to the SQL GROUP BY statement

• type_format (mandatory): used for identifying the various potential types of data
in a scene

• validation_percent (optional): used for specifying the number of scenes that
should be kept for validation purposes

• randomise (optional, default: ‘False‘): asks the data source to provide the scenes
to the other components in a randomized order

2.1. Standalone 5

Hugin EO, Release 0.2.0b3

• persist_file (optional): specifies a path where the data source should save the
detected files. In case it exists it is used as source for further operation. The
main benefit of this configuration option is the ability to reuse the same train-
ing/validation split between multiple runs.

• input_source (mandatory): specifies a location for loading the data. For the
FileSystemLoader it represents a directory that should be scanned. For FileLoader it
represents an input text file listing all files that should be taken into consideration
(on file path per line)

An example configuration for loading the data from the SpaceNet5 competition:

1 data_source: !!python/object/apply:hugin.io.FileSystemLoader
2 kwds:
3 data_pattern: '(?P<category>[0-9A-Za-z_]+)_AOI_(?P<location>\d+(_[A-Za-z0-

→˓9]+)+)_(?P<type>(PS-MS|PS-RGB|MS|PAN))_(?P<idx>[A-Za-z0-9]+)(?P<gti>_GTI)?.(?P
→˓<extension>(tif|tiff|png|jpg|jp2))$'

4 id_format: '{location}-{idx}'
5 type_format: '{type}{gti}'
6 validation_percent: 0.2
7 randomise: True
8 persist_file: "/storage/spacenet5/split1.yaml"
9 input_source: "/storage/spacenet5"

2.1.1.3 Model Configuration

This section is aimed for configuring the effective training operation.

The primary key specifying the training operation is the trainer key in the YAML file.
Currently Hugin only supports handling of raster operation (handling images of various
kinds) through the RasterSceneTrainer

The RasterSceneTrainer implementation offers multiple features like:

• Tiling (subsampling): splitting input scenes in multiple smaller scenes. This is
particularly useful for large inputs where the input can not fit in GPU memory.
Hugin support overlapping tiles using a specific stride.

• Co-registration: synchronize input tiles from the various components forming a
scene (Eg. a scene might be composed out of data in multiple resolutions: for
WorldView-3 we might have an panchromatic channel with 0.31m spatial resolu-
tion and multi-spectral data with 1.24m resolution per pixel)

• Pre-Processing: applying a series of preprocessing operation on the data before it
is ingested by models. Some of the operations supported include standardization,
augmentation, etc.

The RasterSceneTrainer assembles the data according to a user specified mapping and
feeds the data to a model implementation specified by the user. Both the mapping and
the model implementation will be discussed in the following sections.

The options supported by the RasterSceneTrainer are:

2.1. Standalone 6

Hugin EO, Release 0.2.0b3

• name (mandatory): specifies a name for the trainer. This name is used in multi-
ple locations, particularly for identifying the model in the experiment workspace
(discussed in Global Configuration)

• window_size (optional): specifies the size of the sliding window used for subsam-
pling. If omitted Hugin assumes that it equals the size of one of the randomly
picked scenes

• stride_size (optional): specifies the stride size to be used in case subsampling is
needed. If omitted it is inferred from the window size

• mapping (mandatory): this configuration option specifies how the input to the
model should be assembled. This configuration might be shared both between
training and prediction time. It is further discussed in (discussed in Mapping
section)

• model (mandatory) specifies to model to be used for training

Mapping

The mapping concept is further discussed in the Mapping section. One specific require-
ment related to training is the presence of the target mapping. It is needed for specifying
the expected output (ground truth) from the various machine learning models.

Model

This configuration option specifies the model to be trained. It is a reference to one of
the backend implementations offered by Hugin:

• KerasModel: The backend supporting running Keras based models

• SkLearnStandardizer: A custom backend based on SciKit-Learn for training an
SciKit-Learn data standardizer

• SciKitLearnModel: A backend for supporting model complient to the SciKit-Learn
interface (ToDo)

Keras Model

The KerasModel implementation allow running models defined using Keras. It exposes
the following options:

• name (mandatory): Option specifying the name of the model

• model_path (optional): The location of the trained model. If it exists it is loaded
and training resumes from the loaded state. This is particularly useful for transfer
learning

• model_builder (mandatory): The function to be called for building the model

2.1. Standalone 7

Hugin EO, Release 0.2.0b3

• loss (mandatory): Loss function to be used by Keras during training. Any Keras
loss can be referenced, or used defined functions

• optimizer (optional): Optimizer function to be used during training. Any Keras
optimizer can be referenced

• batch_size (mandatory): The batch size to be used for feeding the data to the
model

• epochs (mandatory): The maximum number of epochs to run

• metrics (optional): A list of metrics to be computed during training

• checkpoint (optional): If defined it enables model checkpoints according to spec-
ified configuration. It allows setting the following options:

– save_best_only (default: False): Saves only the best model

– save_weights_only (default: False): Save only the model weights

– mode (valid options: auto, min, max): Save models based on either the
maximization or the minimization of the monitored quantity. This only ap-
plies when save_best_only is enabled

– monitor: quantity to be monitored (eg. val_loss or any user defined metric)

• enable_multi_gpu (optional, default=False): enable multiple GPU usage

• num_gpus (optional): number of GPUs to be used by Keras

• callbacks (optional): list of Keras callbacks to be enabled. List is composed out of
Keras callbacks or compatible user defined callbacks.

An example configuration:

1 model: !!python/object/apply:hugin.engine.keras.KerasModel
2 kwds:
3 name: keras_model1
4 model_builder: sn5.models.wnet.wnetv9:build_wnetv9
5 batch_size: 200
6 epochs: 9999
7 metrics:
8 - accuracy
9 - !!python/name:hugin.tools.utils.dice_coef

10 - !!python/name:hugin.tools.utils.jaccard_coef
11 loss: categorical_crossentropy
12 checkpoint:
13 monitor: val_loss
14 enable_multi_gpu: True
15 num_gpus: 4
16 optimizer: !!python/object/apply:keras.optimizers.Adam
17 kwds:
18 lr: !!float 0.0001
19 beta_1: !!float 0.9
20 beta_2: !!float 0.999

(continues on next page)

2.1. Standalone 8

https://keras.io/losses/
https://keras.io/losses/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/callbacks/

Hugin EO, Release 0.2.0b3

(continued from previous page)

21 epsilon: !!float 1e-8
22 callbacks:
23 - !!python/object/apply:keras.callbacks.EarlyStopping
24 kwds:
25 monitor: 'val_dice_coef'
26 min_delta: 0
27 patience: 40
28 verbose: 1
29 mode: 'auto'
30 baseline: None
31 restore_best_weights: False

Limitations

• Hugin assumes all scenes have an equal size per data type (eg. all multispectral
data has the same size).

• Hugin only support square sliding windows. This is expected to be fixed in an
upcoming version

• Hugin only support the same stride size both horizontally and vertically

2.1.1.4 Example Experiment

A complete example configuration is depicted bellow:

1 configuration:
2 model_path: "/home/user/experiments/{name}"
3 data_source: !!python/object/apply:hugin.io.FileSystemLoader
4 kwds:
5 data_pattern: '(?P<category>[0-9A-Za-z_]+)_AOI_(?P<location>\d+(_[A-Za-z0-

→˓9]+)+)_(?P<type>(PS-MS|PS-RGB|MS|PAN))_(?P<idx>[A-Za-z0-9]+)(?P<gti>_GTI)?.(?P
→˓<extension>(tif|tiff|png|jpg|jp2))$'

6 id_format: '{location}-{idx}'
7 type_format: '{type}{gti}'
8 validation_percent: 0.2
9 randomise: True

10 persist_file: "/storage/spacenet5/split1.yaml"
11 input_source: "/storage/spacenet5"
12 trainer: !!python/object/apply:hugin.infer.scene.RasterSceneTrainer
13 kwds:
14 name: raster_keras_trainerv2
15 stride_size: 100
16 window_size: [256, 256]
17 model: !!python/object/apply:hugin.engine.keras.KerasModel
18 kwds:
19 name: keras_model1

(continues on next page)

2.1. Standalone 9

Hugin EO, Release 0.2.0b3

(continued from previous page)

20 model_builder: sn5.models.wnet.wnetv9:build_wnetv9
21 batch_size: 200
22 epochs: 9999
23 metrics:
24 - accuracy
25 - !!python/name:hugin.tools.utils.dice_coef
26 - !!python/name:hugin.tools.utils.jaccard_coef
27 loss: categorical_crossentropy
28 checkpoint:
29 monitor: val_loss
30 enable_multi_gpu: True
31 num_gpus: 4
32 optimizer: !!python/object/apply:keras.optimizers.Adam
33 kwds:
34 lr: !!float 0.0001
35 beta_1: !!float 0.9
36 beta_2: !!float 0.999
37 epsilon: !!float 1e-8
38 callbacks:
39 - !!python/object/apply:keras.callbacks.EarlyStopping
40 kwds:
41 monitor: 'val_dice_coef'
42 min_delta: 0
43 patience: 40
44 verbose: 1
45 mode: 'auto'
46 baseline: None
47 restore_best_weights: False
48 mapping:
49 inputs:
50 input_1:
51 primary: True
52 channels:
53 - ["PAN", 1]
54 window_size: [256, 256]
55 input_2:
56 window_size: [64, 64]
57 channels:
58 - ["MS", 1]
59 - ["MS", 5]
60 - ["MS", 4]
61 - ["MS", 8]
62 target:
63 output_1:
64 channels:
65 - ["PAN_GTI", 1]
66 preprocessing:
67 - !!python/object/apply:hugin.io.loader.

→˓BinaryCategoricalConverter

(continues on next page)

2.1. Standalone 10

Hugin EO, Release 0.2.0b3

(continued from previous page)

68 kwds:
69 do_categorical: False

Assuming that the above configuration is saved in a file named experiment.yaml, train-
ing can be started as follows:

hugin trainv2 --config experiment.yaml

2.1.2 Prediction

2.1.3 Mapping

The data mapping functionality represents one of the core features of Hugin. It is used
by the RasterSceneTrainer and RasterScenePredictor for assembling input data that is
sent to the underlying models.

2.1. Standalone 11

CHAPTER 3

Indices and Tables

12

	Installation
	Prerequisites
	Using pip
	From PyPi
	From GitHub

	From source code

	Introduction
	Standalone
	Training
	Global Configuration
	Data Source Specification
	Model Configuration
	Example Experiment

	Prediction
	Mapping

	Indices and Tables

