

Hugin EO: Machine Learning for Earth Observation made easy

Hugin helps scientists run Machine Learning experiments on geospatial raster data.

Hugin was developed as part of the ESA funded ML4EO [http://sage.ieat.ro/projects/ML4EO/]

Overall Hugin aims to facilitate experimentation with multiple machine learning problems, like:

	Classification

	Segmentation

	Super-Resolution

Currently Hugin builds on top of the Keras machine learning library but it also aims to support, in the future, additional backends like scikit-learn.

	Installation
	Prerequisites

	Using pip
	From PyPi

	From GitHub

	From source code

	Introduction
	Standalone
	Training
	Global Configuration

	Data Source Specification

	Model Configuration

	Example Experiment

	Prediction

	Mapping

Indices and Tables

Installation

Prerequisites

Hugin builds functionality on top of existing technology, primarily it uses Keras, SciKit-Learn, OpenCV and RasterIO.

The exact prerequisites are specified in the requirements.txt and setup.py files. Normally you package manager will handle
requirement installation automatically.

Using pip

From PyPi

pip install hugin

From GitHub

You can install Hugin using the following command:

pip install git+http://github.com/sage-group/hugin#egg=hugin

From source code

When installing from source code we recommend installation inside a specially created virtual environment.

Installing from source code involves running the setup.py inside you python environment.

python setup.py install

Introduction

Hugin is meant to be used in two scenarios:

	as a standalone tool driven a by an experiment configuration file

	as a library in your code

Both scenarios share same concepts with the main difference that the standalone
tool connects all the Hugin components together.

Standalone

Using Hugin involves two steps:

	training

	prediction

Both steps are driven using dedicated configuration files. The configuration
files are normal YAML files referencing various Hugin components.

This configuration files allow the end user to customize pre-processing, model and post-processing operations.

Training

The training process involves the preparation of a training scenario configuration file.
This configuration file is composed out of multiple sections, particularly:

	Global configuration (the configuration key)

	Data source specification (the trainer key)

	Trainer specification (the data_source key)

Global Configuration

Currently in this section (the configuration key in YAML file) you can specify:

	model_path: a string specifying the “workspace” used for saving the model, and depending on the backend it will hold checkpoints, metrics, etc. This string allows interpolation of trainer attributes.

An example configuration specification could be:

	1
2

	configuration:
 model_path: "/home/user/experiments/{name}"

Data Source Specification

The data source is intended for locating the data we wish to use in our experiments.
As part of Hugin there are multiple data source implementations, particularly:

	FileSystemLoader: capable of scanning, recursively, a directory for input files and group them together according to a specified pattern.

	FileLoader: capable of reading file names from an input file. The main purpose of this file is for supporting GDAL Virtual File Systems, for example:

	/vsicurl/: for retrieving files using cURL (HTTP, FTP, etc)

	/vsis3/: for retrieving files from AWS S3

	/vsigs/: for retrieving files from Google Cloud Storage

The data source that should be used is introduced using the YAML data_source key in the YAML file and is an explicit reference to the data source implementation.

The aforementioned data sources can have the following configuration options:

	data_pattern (mandatory): used for specifying a regular expression matching files that should be taken into consideration

	id_format (mandatory): used for constructing an scene id used by Hugin for identifying a particular scene. This option is similar to the SQL GROUP BY statement

	type_format (mandatory): used for identifying the various potential types of data in a scene

	validation_percent (optional): used for specifying the number of scenes that should be kept for validation purposes

	randomise (optional, default: `False`): asks the data source to provide the scenes to the other components in a randomized order

	persist_file (optional): specifies a path where the data source should save the detected files. In case it exists it is used as source for further operation. The main benefit of this configuration option is the ability to reuse the same training/validation split between multiple runs.

	input_source (mandatory): specifies a location for loading the data. For the FileSystemLoader it represents a directory that should be scanned. For FileLoader it represents an input text file listing all files that should be taken into consideration (on file path per line)

An example configuration for loading the data from the SpaceNet5 competition:

	1
2
3
4
5
6
7
8
9

	data_source: !!python/object/apply:hugin.io.FileSystemLoader
 kwds:
 data_pattern: '(?P<category>[0-9A-Za-z_]+)_AOI_(?P<location>\d+(_[A-Za-z0-9]+)+)_(?P<type>(PS-MS|PS-RGB|MS|PAN))_(?P<idx>[A-Za-z0-9]+)(?P<gti>_GTI)?.(?P<extension>(tif|tiff|png|jpg|jp2))$'
 id_format: '{location}-{idx}'
 type_format: '{type}{gti}'
 validation_percent: 0.2
 randomise: True
 persist_file: "/storage/spacenet5/split1.yaml"
 input_source: "/storage/spacenet5"

Model Configuration

This section is aimed for configuring the effective training operation.

The primary key specifying the training operation is the trainer key in the YAML file.
Currently Hugin only supports handling of raster operation (handling images of various kinds) through the RasterSceneTrainer

The RasterSceneTrainer implementation offers multiple features like:

	Tiling (subsampling): splitting input scenes in multiple smaller scenes. This is particularly useful for large inputs where the input can not fit in GPU memory. Hugin support overlapping tiles using a specific stride.

	Co-registration: synchronize input tiles from the various components forming a scene (Eg. a scene might be composed out of data in multiple resolutions: for WorldView-3 we might have an panchromatic channel with 0.31m spatial resolution and multi-spectral data with 1.24m resolution per pixel)

	Pre-Processing: applying a series of preprocessing operation on the data before it is ingested by models. Some of the operations supported include standardization, augmentation, etc.

The RasterSceneTrainer assembles the data according to a user specified mapping and feeds the data to a model implementation specified by the user. Both the mapping and the model implementation will be discussed in the following sections.

The options supported by the RasterSceneTrainer are:

	name (mandatory): specifies a name for the trainer. This name is used in multiple locations, particularly for identifying the model in the experiment workspace (discussed in Global Configuration)

	window_size (optional): specifies the size of the sliding window used for subsampling. If omitted Hugin assumes that it equals the size of one of the randomly picked scenes

	stride_size (optional): specifies the stride size to be used in case subsampling is needed. If omitted it is inferred from the window size

	mapping (mandatory): this configuration option specifies how the input to the model should be assembled. This configuration might be shared both between training and prediction time. It is further discussed in (discussed in Mapping section)

	model (mandatory) specifies to model to be used for training

Mapping

The mapping concept is further discussed in the Mapping section.
One specific requirement related to training is the presence of the target mapping. It is needed for specifying the expected output (ground truth) from the various machine learning models.

Model

This configuration option specifies the model to be trained. It is a reference to one of the backend implementations offered by Hugin:

	KerasModel: The backend supporting running Keras based models

	SkLearnStandardizer: A custom backend based on SciKit-Learn for training an SciKit-Learn data standardizer

	SciKitLearnModel: A backend for supporting model complient to the SciKit-Learn interface (ToDo)

Keras Model

The KerasModel implementation allow running models defined using Keras. It exposes the following options:

	name (mandatory): Option specifying the name of the model

	model_path (optional): The location of the trained model. If it exists it is loaded and training resumes from the loaded state. This is particularly useful for transfer learning

	model_builder (mandatory): The function to be called for building the model

	loss (mandatory): Loss function to be used by Keras during training. Any Keras loss [https://keras.io/losses/] can be referenced, or used defined functions

	optimizer (optional): Optimizer function to be used during training. Any Keras optimizer [https://keras.io/optimizers/] can be referenced

	batch_size (mandatory): The batch size to be used for feeding the data to the model

	epochs (mandatory): The maximum number of epochs to run

	metrics (optional): A list of metrics to be computed during training

	checkpoint (optional): If defined it enables model checkpoints according to specified configuration. It allows setting the following options:

	save_best_only (default: False): Saves only the best model

	save_weights_only (default: False): Save only the model weights

	mode (valid options: auto, min, max): Save models based on either the maximization or the minimization of the monitored quantity. This only applies when save_best_only is enabled

	monitor: quantity to be monitored (eg. val_loss or any user defined metric)

	enable_multi_gpu (optional, default=False): enable multiple GPU usage

	num_gpus (optional): number of GPUs to be used by Keras

	callbacks (optional): list of Keras callbacks to be enabled. List is composed out of Keras callbacks [https://keras.io/callbacks/] or compatible user defined callbacks.

An example configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	 model: !!python/object/apply:hugin.engine.keras.KerasModel
 kwds:
 name: keras_model1
 model_builder: sn5.models.wnet.wnetv9:build_wnetv9
 batch_size: 200
 epochs: 9999
 metrics:
 - accuracy
 - !!python/name:hugin.tools.utils.dice_coef
 - !!python/name:hugin.tools.utils.jaccard_coef
 loss: categorical_crossentropy
 checkpoint:
 monitor: val_loss
 enable_multi_gpu: True
 num_gpus: 4
 optimizer: !!python/object/apply:keras.optimizers.Adam
 kwds:
 lr: !!float 0.0001
 beta_1: !!float 0.9
 beta_2: !!float 0.999
 epsilon: !!float 1e-8
 callbacks:
 - !!python/object/apply:keras.callbacks.EarlyStopping
 kwds:
 monitor: 'val_dice_coef'
 min_delta: 0
 patience: 40
 verbose: 1
 mode: 'auto'
 baseline: None
 restore_best_weights: False

Limitations

	Hugin assumes all scenes have an equal size per data type (eg. all multispectral data has the same size).

	Hugin only support square sliding windows. This is expected to be fixed in an upcoming version

	Hugin only support the same stride size both horizontally and vertically

Example Experiment

A complete example configuration is depicted bellow:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	configuration:
 model_path: "/home/user/experiments/{name}"
data_source: !!python/object/apply:hugin.io.FileSystemLoader
 kwds:
 data_pattern: '(?P<category>[0-9A-Za-z_]+)_AOI_(?P<location>\d+(_[A-Za-z0-9]+)+)_(?P<type>(PS-MS|PS-RGB|MS|PAN))_(?P<idx>[A-Za-z0-9]+)(?P<gti>_GTI)?.(?P<extension>(tif|tiff|png|jpg|jp2))$'
 id_format: '{location}-{idx}'
 type_format: '{type}{gti}'
 validation_percent: 0.2
 randomise: True
 persist_file: "/storage/spacenet5/split1.yaml"
 input_source: "/storage/spacenet5"
trainer: !!python/object/apply:hugin.infer.scene.RasterSceneTrainer
 kwds:
 name: raster_keras_trainerv2
 stride_size: 100
 window_size: [256, 256]
 model: !!python/object/apply:hugin.engine.keras.KerasModel
 kwds:
 name: keras_model1
 model_builder: sn5.models.wnet.wnetv9:build_wnetv9
 batch_size: 200
 epochs: 9999
 metrics:
 - accuracy
 - !!python/name:hugin.tools.utils.dice_coef
 - !!python/name:hugin.tools.utils.jaccard_coef
 loss: categorical_crossentropy
 checkpoint:
 monitor: val_loss
 enable_multi_gpu: True
 num_gpus: 4
 optimizer: !!python/object/apply:keras.optimizers.Adam
 kwds:
 lr: !!float 0.0001
 beta_1: !!float 0.9
 beta_2: !!float 0.999
 epsilon: !!float 1e-8
 callbacks:
 - !!python/object/apply:keras.callbacks.EarlyStopping
 kwds:
 monitor: 'val_dice_coef'
 min_delta: 0
 patience: 40
 verbose: 1
 mode: 'auto'
 baseline: None
 restore_best_weights: False
 mapping:
 inputs:
 input_1:
 primary: True
 channels:
 - ["PAN", 1]
 window_size: [256, 256]
 input_2:
 window_size: [64, 64]
 channels:
 - ["MS", 1]
 - ["MS", 5]
 - ["MS", 4]
 - ["MS", 8]
 target:
 output_1:
 channels:
 - ["PAN_GTI", 1]
 preprocessing:
 - !!python/object/apply:hugin.io.loader.BinaryCategoricalConverter
 kwds:
 do_categorical: False

Assuming that the above configuration is saved in a file named experiment.yaml, training can be started as follows:

hugin trainv2 --config experiment.yaml

Prediction

Mapping

The data mapping functionality represents one of the core features of Hugin.
It is used by the RasterSceneTrainer and RasterScenePredictor for assembling input data that is sent to the underlying models.

Index

 nav.xhtml

 Table of Contents

 		
 Hugin EO: Machine Learning for Earth Observation made easy

 		
 Installation

 		
 Prerequisites

 		
 Using pip

 		
 From PyPi

 		
 From GitHub

 		
 From source code

 		
 Introduction

 		
 Standalone

 		
 Training

 		
 Prediction

 		
 Mapping

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

