

Welcome to the HUB TOOLBOX!

The Hub Toolbox is a software suite for hubness analysis and hubness reduction
in high-dimensional data.

User Guide

The user guide explains how to install the Hub Toolbox, how to analyze your
data sets for hubness, and how to use the Hub Toolbox to lift this
curse of dimensionality.

	Which Hub Toolbox to choose
	hub-toolbox-matlab

	hub-toolbox-python3

	Installation
	Prerequisites

	Stable Hub Toolbox release

	Installation from source

	Tutorial
	Prerequisites

	Analyze the dexter dataset

	Interpreting the results

	Analyzing other datasets

	Using individual methods

API Reference

Find all the information about specific modules and functions of the Hub
Toolbox in this section.

	Index

	Module Index

Which Hub Toolbox to choose

The Hub Toolbox is available as Python and Matlab scripts.
If in doubt, use the Hub Toolbox for Python. See below
for a more detailed description.

hub-toolbox-matlab

The Hub Toolbox was originally developed for Matlab/Octave.
We still provide these scripts, however, development is limited to bugfixing.
No new functionality will be added.
The Hub Toolbox for Matlab [https://github.com/OFAI/hub-toolbox-matlab]
supports:

	hubness analysis

	hubness reduction

	Mutual Proximity

	Local Scaling

	Shared Nearest Neighbors

	evaluation

	k-NN classification

	Goodman-Kruskal index

for distance matrices.

hub-toolbox-python3

The Hub Toolbox for Python3 [https://github.com/OFAI/hub-toolbox-python3]
was initially ported from the Matlab code.
Development now focuses on these scripts. It is thus continuously being extended
for new functionality and is tested and documented thoroughly.
The Hub Toolbox for Python3 offers all the functionality the Matlab
scripts offer, plus:

	additional hubness reduction methods

	centering

	DisSim

	using similarity matrices instead of distance matrices

	support for sparse matrices (some modules)

	support for parallel processing (some modules)

	performance improvements (some modules)

	unit tests

	this documentation

We recommend using hub-toolbox-python3 for all users. This documentation will
assume you are using these scripts.

Installation

Most of the instructions below assume you are running a Linux system.
It might be possible to install the Hub Toolbox on Mac or Windows systems.
We cannot, however, give any guidance for these cases at this point.

Prerequisites

Python

The Hub Toolbox currently requires Python 3.6 or higher. You can check this
on your system with:

python3 --version

If Python3 is missing, or its version is lower than 3.6, please install it
via the package manager of your operating system (e.g. apt in
Debian/Ubuntu or dnf in Fedora).

You might also consider using the Anaconda environment [https://www.continuum.io/downloads#linux] for easy Python environment
and package handling.

numpy/scipy/scikit-learn

The Hub Toolbox heavily relies on numpy and requires scipy and scikit-learn
for some functions.
Please install these packages via your operating system’s package manager
(e.g. sudo apt install python3-numpy python3-scipy python3-sklearn) or
use Anaconda: conda install numpy scipy scikit-learn.
We do not recommend installation via pip since this may lead to suboptimal
performance unless configured properly.

Stable Hub Toolbox release

Stable releases of the Hub Toolbox are added to
PyPI [https://pypi.python.org/pypi/hub-toolbox] .
To install the latest stable release, simply use pip
(you may need to install it first via your operating system’s package manager,
e.g. sudo apt install python3-pip).

pip3 install hub-toolbox

Alternatively, you may download the latest release from GitHub [https://github.com/OFAI/hub-toolbox-python3/releases/latest] and follow
the instructions of a development installation (from source) below,
omitting the git clone step.

Installation from source

For a bleeding edge version of the Hub Toolbox, you can install it from
the latest sources:
On the console, change to the directory, under which the Hub Toolbox should
be installed. Then obtain a copy of the latest sources from GitHub:

git clone https://github.com/OFAI/hub-toolbox-python3.git

They will be cloned to a subdirectory called hub-toolbox-python3.
The Hub Toolbox must then be built and installed with

cd hub-toolbox-python3
python3 setup.py build
sudo python3 setup.py install

The Hub Toolbox is now available system wide. Optionally, you can now run
a test suite by

sudo python3 setup.py test

If this prints an OK message, you are ready to go. Note, that some
skipped tests are fine.

Tutorial

In this tutorial you will analyze the dexter dataset for hubness, reduce
hubness, and observe how this improves internal and external evaluation
measures.

From there on you will be able to apply the techniques offered by the
Hub Toolbox to the dataset of your choice.

Prerequisites

For this tutorial, you will require a working installation of the Hub
Toolbox. If you don’t have one yet, please follow the instructions in
Installation.

Analyze the dexter dataset

The Hub Toolbox ships with DEXTER as an example dataset. DEXTER is a text
classification problem in a bag-of-word representation. This is a
binary classification problem with sparse continuous input variables.
This dataset was one of five datasets of the NIPS 2003 feature selection
challenge. For more info, see: http://archive.ics.uci.edu/ml/datasets/Dexter

On the terminal, start a Python shell:

python3

Consider using an IPython/jupyter notebook [http://jupyter.org/] as a
more flexible and powerful alternative.

The HubnessAnalysis class automatically
analyzes the DEXTER example dataset, if invoked without further parameters:

>>> from hub_toolbox.HubnessAnalysis import HubnessAnalysis
>>> ana = HubnessAnalysis()
>>> ana.analyze_hubness()

This will print a rather lengthy result log:

NO PARAMETERS GIVEN! Loading & evaluating DEXTER data set.
DEXTER is a text classification problem in a bag-of-word
representation. This is a two-class classification problem
with sparse continuous input variables.
This dataset is one of five datasets of the NIPS 2003
feature selection challenge.
http://archive.ics.uci.edu/ml/datasets/Dexter

================
Hubness Analysis
================

ORIGINAL DATA:
data set hubness (S^k= 5) : 4.22
% of anti-hubs at k= 5 : 26.67%
% of k= 5-NN lists the largest hub occurs: 23.67%
data set hubness (S^k=10) : 3.98
% of anti-hubs at k=10 : 17.67%
% of k=10-NN lists the largest hub occurs: 50.0%
k= 1-NN classification accuracy : 80.33%
k= 5-NN classification accuracy : 80.33%
k=20-NN classification accuracy : 84.33%
Goodman-Kruskal index (higher=better) : 0.104
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

MUTUAL PROXIMITY (Empiric):
data set hubness (S^k= 5) : 0.712
% of anti-hubs at k= 5 : 3.0%
% of k= 5-NN lists the largest hub occurs: 6.0%
data set hubness (S^k=10) : 0.71
% of anti-hubs at k=10 : 0.0%
% of k=10-NN lists the largest hub occurs: 10.67%
k= 1-NN classification accuracy : 82.67%
k= 5-NN classification accuracy : 89.67%
k=20-NN classification accuracy : 88.67%
Goodman-Kruskal index (higher=better) : 0.132
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

MUTUAL PROXIMITY (Independent Gaussians):
data set hubness (S^k= 5) : 0.805
% of anti-hubs at k= 5 : 4.667%
% of k= 5-NN lists the largest hub occurs: 5.667%
data set hubness (S^k=10) : 1.21
% of anti-hubs at k=10 : 0.0%
% of k=10-NN lists the largest hub occurs: 12.67%
k= 1-NN classification accuracy : 83.67%
k= 5-NN classification accuracy : 89.0%
k=20-NN classification accuracy : 90.0%
Goodman-Kruskal index (higher=better) : 0.135
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

LOCAL SCALING (NICDM):
parameter k = 7 (for optimization use the individual modules of the HUB-TOOLBOX)
data set hubness (S^k= 5) : 2.1
% of anti-hubs at k= 5 : 0.6667%
% of k= 5-NN lists the largest hub occurs: 8.667%
data set hubness (S^k=10) : 1.74
% of anti-hubs at k=10 : 0.0%
% of k=10-NN lists the largest hub occurs: 16.0%
k= 1-NN classification accuracy : 84.67%
k= 5-NN classification accuracy : 85.0%
k=20-NN classification accuracy : 85.0%
Goodman-Kruskal index (higher=better) : 0.118
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

CENTERING:
data set hubness (S^k= 5) : 1.62
% of anti-hubs at k= 5 : 6.667%
% of k= 5-NN lists the largest hub occurs: 8.333%
data set hubness (S^k=10) : 1.38
% of anti-hubs at k=10 : 1.333%
% of k=10-NN lists the largest hub occurs: 13.0%
k= 1-NN classification accuracy : 85.0%
k= 5-NN classification accuracy : 87.67%
k=20-NN classification accuracy : 89.33%
Goodman-Kruskal index (higher=better) : 0.19
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

DISSIM GLOBAL:
data set hubness (S^k= 5) : 1.87
% of anti-hubs at k= 5 : 6.333%
% of k= 5-NN lists the largest hub occurs: 8.667%
data set hubness (S^k=10) : 1.62
% of anti-hubs at k=10 : 1.667%
% of k=10-NN lists the largest hub occurs: 14.67%
k= 1-NN classification accuracy : 84.0%
k= 5-NN classification accuracy : 88.67%
k=20-NN classification accuracy : 88.67%
Goodman-Kruskal index (higher=better) : 0.189
embedding dimensionality : 20000
intrinsic dimensionality estimate : 161

Interpreting the results

Let us dissect these results: The first block appears, because we did not
provide any parameters, when instantiating
HubnessAnalysis. It thus goes
into example mode and tells you a little bit about the dataset being used.

The actual results of the analysis are grouped into blocks by experiments.
Here, an experiment comprises the following:

	a hubness reduction method is applied to the dataset’s distance matrix
to obtain a matrix of secondary distances (except for centering, which
changes vector data)

	hubness and additional measures of hubs and anti-hubs are calculated
(in this case twice, for two different neighborhood sizes)

	k-nearest neighbor classification leave-one-out cross-validation is
performed (in this case three times, for three different values of k)

	the Goodman-Kruskal index is calculated for the secondary distance matrix

Additionally, the intrinsic dimension is estimated once for the dataset
for all experiments.

The second block (under the Hubness Analysis headline) is the experiment
using primary distances. For text-based datasets like DEXTER cosine distances
are used frequently. We observe considerable hubness of S^(k=5) = 4.22.
(As a rule of thumb, consider values above 1.2 as ‘high hubness’).
Knowing that hubness is a phenomenon of intrinsically high dimensional data,
it is not surprising that the intrinsic dimension estimate of 161 is also
considerably high (although much lower than the embedding dimension
of 20000). We also observe a lot of anti-hubs (i.e. points that are
not among the k-nearest neighbors of any other point; or in other words:
their k-occurence=0), while the largest hub is among the k-nearest
neighbors of very many points. We find k-NN classification accuracy of
roughly 80%.

The third block contains the results of an Mutual Proximity experiment,
using the empirical distance distribution to rescale these distances.
We observe tremendously reduced hubness, hardly any anti-hubs, and reduced
k-occurence of the largest hub. Also, internal evaluation with the
Goodman-Kruskal index improves compared to using the primary distances.
Mutual Proximity is thus able to reduce hubness, but we don’t know yet,
whether these secondary distances still reflect the semantics of the dataset.
Looking at the k-NN classification, it seems like these were actually
improved, because accuracy increased to nearly 90%.
Note that embedding and intrinsic dimension do not change, because they are
computed on the original dataset.

The following blocks represent other hubness reduction methods, some
performing as well as Mutual Proximity, some performing worse. However,
all of them improve internal as well as external evaluation measures.

Analyzing other datasets

HubnessAnalysis can also be used to
investigate other datasets. You will require at least a numpy array of your
feature vectors (called vectors), or a distance matrix D (where
D[i, j] is the distance between your i-th and j-th feature vector).
If you want to perform classification, you also need to provide a vector
with integer labels for each data point (target or ‘ground-truth’).
If you don’t have a distance matrix yet, you can use the methods from
Distances to create one based on euclidean
or cosine distances. For other types of distances, you can also use
scipy.spatial.distance.pdist [http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist].

Now simply call

>>> from hub_toolbox.HubnessAnalysis import HubnessAnalysis
>>> ana = HubnessAnalysis(D, vectors, target)
>>> ana.analyze_hubness(experiments="orig,mp,nicdm,dsg",
 hubness_k=(5, 10), knn_k=(10, 20))

Note, how we provided parameters to analyze_hubness: The Hub Toolbox
will now perform four experiments (original data, Mutual Proximity (Empiric),
Local Scaling (NICDM), and DisSim Global). The neighborhood size is the same
as in the last example, but we changed the classification to 10-NN and 20-NN
(instead of 1-NN, 5-NN, and 20-NN).

Looking at your output, you may notice a line that was not discussed before:
NICDM has a parameter k that can be tuned. Other methods do so as well.
The convenience class HubnessAnalysis
does not allow to change the default values for the methods’ parameters.
To do so, you can use the individual methods of the Hub Toolbox directly,
which will be covered in the next section.

Using individual methods

In this section we will revisit the analysis we performed previously
on the DEXTER dataset. This time, instead of using the convenience class
HubnessAnalysis, we will employ
the individual modules of the Hub Toolbox in order to see, how to use
it in a more flexible way.

Loading the example dataset

>>> from hub_toolbox.IO import load_dexter
>>> D, labels, vectors = load_dexter()
>>> vectors.shape
(300, 20000)

We see that DEXTER comprises 300 points in an embedding
dimension of 20000. The IntrinsicDim module can provide some insight,
how well this reflects the ‘true’ dimensionality of the dataset, by

Calculating an intrinsic dimension estimate

>>> from hub_toolbox.IntrinsicDim import intrinsic_dimension
>>> intrinsic_dimension(vectors, k1=6, k2=12, estimator='levina', trafo=None)
74

The MLE by Levina and Bickel with neighborhood [6, 12] tells us
that the intrinsic dimension is much lower than the embedding dimension,
but is still considerably high. We can assume, that this dataset is prone
to

Hubness

>>> from hub_toolbox.Hubness import hubness
>>> S_k, D_k, N_k = hubness(D=D, k=5, metric='distance')
>>> print("Hubness:", S_k)
Hubness: 4.222131665788378

Besides the hubness in S_k, you also get the objects D_k
and N_k, which contain the k nearest neighbors of all elements
and the n-occurence, respectively. From them you can extract more
detailed information about hubs and anti-hubs.

External and internal evaluation can be performed with the following
methods:

k-NN classification

>>> from hub_toolbox.KnnClassification import score
>>> acc, corr, cmat = score(D=D, target=labels, k=[1,5], metric='distance')
>>> print("k=5-NN accuracy:", acc[1, 0])
k=5-NN accuracy: 0.803333333333

Also in this case, you obtain three objects: acc contains the
accuracy values,
corr contains information about each point, whether it was classified
correctly or not, and cmat contains the corresponding confusion
matrices. All three objects contain their information of each
k-NN experiment defined with parameter k=[1,5].

Goodman-Kruskal index

>>> from hub_toolbox.GoodmanKruskal import goodman_kruskal_index
>>> gamma = goodman_kruskal_index(D=D, classes=labels, metric='distance')
>>> print("Goodman-Kruskal index:", gamma)
Goodman-Kruskal index: 0.103701886155

Calculating the Goodman-Kruskal index
is straight forward.

Hubness reduction

>>> from hub_toolbox.MutualProximity import mutual_proximity_empiric
>>> D_mp = mutual_proximity_empiric(D=D, metric='distance')

>>> from hub_toolbox.LocalScaling import nicdm
>>> D_nicdm = nicdm(D=D, k=10, metric='distance')

You now have two objects D_mp and D_nicdm which contain
secondary distances of the DEXTER dataset, rescaled with Mutual
Proximity (Empiric) and Local Scaling (NICDM), respectively.
They can now be used just as illustrated above for k-NN classification,
hubness calculation etc.

The Hub Toolbox provides more methods for hubness reduction than these
two, and additional ones will be integrated as they are developed by
the hubness community. To see, which methods are currently included, try

>>> from hub_toolbox.HubnessAnalysis import SEC_DIST
>>> for k, v in SEC_DIST.items():
... print(k)
...
dsl
snn
wcent
lcent
mp_gaussi
mp
orig
mp_gauss
nicdm
dsg
cent
ls
mp_gammai

The values v in this dictionary are actually the hubness reduction
functions, so you may invoke them for example like this:

>>> D_snn = SEC_DIST['snn'](D)

to obtain shared nearest neighbor distances.

Approximate hubness reduction

TODO

For now, please consider the docstrings. If in doubt, please don’t hesitate to
contact the author.

Index

hub_toolbox package

Submodules

hub_toolbox.Centering module

hub_toolbox.Distances module

hub_toolbox.GoodmanKruskal module

hub_toolbox.Hubness module

hub_toolbox.HubnessAnalysis module

hub_toolbox.Hubness_parallel module

hub_toolbox.IO module

hub_toolbox.IntrinsicDim module

hub_toolbox.KnnClassification module

hub_toolbox.LocalScaling module

hub_toolbox.Logging module

hub_toolbox.MutualProximity module

hub_toolbox.MutualProximity_parallel module

hub_toolbox.SharedNN module

Module contents

hub_toolbox

	hub_toolbox package
	Submodules

	hub_toolbox.Centering module

	hub_toolbox.Distances module

	hub_toolbox.GoodmanKruskal module

	hub_toolbox.Hubness module

	hub_toolbox.HubnessAnalysis module

	hub_toolbox.Hubness_parallel module

	hub_toolbox.IO module

	hub_toolbox.IntrinsicDim module

	hub_toolbox.KnnClassification module

	hub_toolbox.LocalScaling module

	hub_toolbox.Logging module

	hub_toolbox.MutualProximity module

	hub_toolbox.MutualProximity_parallel module

	hub_toolbox.SharedNN module

	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to the HUB TOOLBOX!

 		
 Which Hub Toolbox to choose

 		
 hub-toolbox-matlab

 		
 hub-toolbox-python3

 		
 Installation

 		
 Prerequisites

 		
 Python

 		
 numpy/scipy/scikit-learn

 		
 Stable Hub Toolbox release

 		
 Installation from source

 		
 Tutorial

 		
 Prerequisites

 		
 Analyze the dexter dataset

 		
 Interpreting the results

 		
 Analyzing other datasets

 		
 Using individual methods

 		
 Loading the example dataset

 		
 Calculating an intrinsic dimension estimate

 		
 Hubness

 		
 k-NN classification

 		
 Goodman-Kruskal index

 		
 Hubness reduction

 		
 Approximate hubness reduction

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

