

httsleep

A python library for polling HTTP endpoints – batteries included!

httsleep aims to take care of any situation where you may need to poll a remote
endpoint over HTTP, waiting for a certain response.

Contents

	Tutorial
	Polling

	Conditions

	Multiple Conditionals

	Setting Alarms

	Chaining Conditionals and Alarms

	Putting it all together

	API Reference
	Exceptions

Motivation

Polling a remote endpoint over HTTP (e.g. waiting for a job to complete) is a
very common task. The fact that there are no truly flexible polling libraries
available leads to developers reproducing this boilerplate code time and time
again.

A Simple Example

Maybe you want to just poll until you get a HTTP status code 200?

resp = httsleep('http://server/endpoint',
 until={'status_code': 200})

This example would be easily replaced with a few lines of Python code.
However, most real-world cases aren’t as simple as this, and your
polling code ends up becoming more and more complicated – dealing with values
in JSON payloads, cases where the remote server is unreachable, or cases where
the job running remotely has errored out and we need to react accordingly.

httsleep aims to cover all of these cases – and more – by providing an array of
validators (e.g. status_code, json and, most powerfully, jsonpath)
which can be chained together logically, removing the burden of having to write
any of this boilerplate code ever again.

A Real-World Example

“Poll my endpoint until it responds with the JSON payload {'status': 'SUCCESS'}
and a HTTP status code 200, but raise an alarm if the HTTP status code is 500 or if the
JSON payload is {'status': 'TIMEOUT'}. If a ConnectionError is thrown, ignore it, and
give up after 20 attempts.”

resp = httsleep('http://server/endpoint',
 until={'json': {'status': 'SUCCESS'},
 'status_code': 200},
 alarms=[{'status_code': 500},
 {'json': {'status': 'TIMEOUT'}}],
 ignore_exceptions=[ConnectionError],
 max_retries=20)

The Python code required to cover this logic would be significantly more complex,
not to mention that it would require an extensive test suite be written.

This is the idea behind httsleep: outsource all of this logic to a library and
not have to reimplement it for each different API you use.

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Polling

httsleep polls a HTTP endpoint until it receives a response that matches a
success condition. It returns a requests.Response object.

from httsleep import httsleep
response = httsleep('http://myendpoint/jobs/1', until={'status_code': 200})

In this example, httsleep will fire a HTTP GET request at http://myendpoint/jobs/1
every 2 seconds, retrying a maximum of 50 times, until it gets a response with a
status code of 200.

We can change these defaults to poll once a minute, but a maximum of 10 times:

try:
 response = httsleep('http://myendpoint/jobs/1', until={'status_code': 200},
 max_retries=10, polling_interval=60)
except StopIteration:
 print "Max retries has been exhausted!"

Similar to the Requests library, we can also set the auth to a (username, password)
tuple and headers to a dict of headers if necessary. It is worth noting that these are provided as a
convenience, since many APIs will require some form of authentication and client headers, and that
httsleep doesn’t duplicate the Requests library’s API wholesale. Instead, you can
pass a requests.Request object in place of the URL in more specific cases
(e.g. polling using a POST request):

from requests import Request
req = Request('http://myendpoint/jobs/1', method='POST',
 data={'payload': 'here'})
response = httsleep(req, until={'status_code': 200})

If you want to share headers, cookies etc. across multiple different HTTP requests (e.g.
to maintain auth credentials), you might make use of a Session object [http://docs.python-requests.org/en/master/user/advanced/#session-objects].

import requests
session = requests.Session()
session.verify = False
session.headers.update({'Authorization': 'token=%s' % auth_token,
 'Content-Type': 'application/json'})

response = session.post('http://server/jobs/create', data=data)
response = httsleep('http://server/jobs/1', session=session, until={'status_code': 200})
response = session.get('http://server/jobs/1/output')

If we’re polling a server with a dodgy network connection, we might not want to
break on a requests.exceptions.ConnectionError, but instead keep polling:

from requests.exceptions import ConnectionError
response = httsleep('http://myendpoint/jobs/1', until={'status_code': 200},
 ignore_exceptions=[ConnectionError])

Conditions

Let’s move on to specifying conditions. These are the conditions which,
when met, cause httsleep to stop polling.

There are five conditions built in to httsleep:

	status_code

	text

	json

	jsonpath

	callback

The Basics

We’ve seen that status_code can be used to poll until a response with a certain
status code is received. text and json are similar:

Poll until the response body is the string "OK!":
httsleep('http://myendpoint/jobs/1', until={'text': 'OK!'})
Poll until the json-decoded response has a certain value:
httsleep('http://myendpoint/jobs/1', until={'json': {'status': 'OK'}})

If a json condition is specified but no JSON object could be decoded in the response,
a ValueError bubbles up. If needs be, this can be ignored by specifying ignore_exceptions.

JSONPath

The json condition is all well and good, but what if we’re querying a
resource on a RESTful API? The response may look something like the following:

{
 "id": 35872,
 "created": "2016-01-01 12:00:00",
 "updated": "2016-02-14 14:25:20",
 "status": "OK"
}

We won’t necessarily know what the entire response (e.g. the object’s ID, creation date, update date)
will look like. This is where JSONPath comes into play. JSONPath makes it easy
to focus on the information we want to compare in the JSON response
and forget about everything else.

To assert that the status key of the JSON response is equal to "OK",
we can use the following JSONPath query:

httsleep('http://myendpoint/jobs/1',
 until={'jsonpath': [{'expression': 'status', 'value': 'OK'}]})

httsleep uses jsonpath-rw [http://jsonpath-rw.readthedocs.io/en/latest/] to evaluate JSONPath expressions.
If you’re familiar with this library, you can also use pre-compiled JSONPath expressions:

from jsonpath_rw.jsonpath import Fields
httsleep('http://myendpoint/jobs/1',
 until={'jsonpath': [{'expression': Fields('status'), 'value': 'OK'}]})

You might notice that the jsonpath value is a list. A response has
only one status code, and only one body, but multiple JSONPath expressions might
evaluate true for the JSON content returned. Therefore, you can string multiple JSONPaths
together in a list. Logically, they will be evaluated with a boolean AND.

JSONPath is a highly powerful language, similar to XPath for XML. This section
just skims the surface of what’s possible with this language.
To find out more about JSONPath and how to use it to build complex expressions,
please refer to its documentation [http://jsonpath-rw.readthedocs.io/en/latest/].

Callbacks

The last condition to have a look at is callback. This allows you to
use your own function to evaluate the response and is intended for very specific
cases where the other conditions might not be flexible enough.

A callback function should return True if the response matches. Any other
return value will be interpreted as failure by httsleep, and it will keep polling.

Here is an example of a callback that makes sure the last_scheduled_change
is in the past.

import datetime

def ensure_scheduled_change_in_past(response):
 data = response.json()
 last_scheduled_change = datetime.datetime.strptime(
 data['last_scheduled_change'], '%Y-%m-%d %H:%M:%S')
 if last_scheduled_change < datetime.datetime.utcnow():
 return True

httsleep('http://myendpoint/jobs/1', until={'callback': ensure_scheduled_change_in_past})

Multiple Conditionals

It’s possible to use multiple conditions simultaneously to assert many different things.
Multiple conditions are joined using a boolean “AND”.

For example, the following httsleep call will poll until a response with status code 200 AND
an empty dict in the JSON body are received:

httsleep('http://myendpoint/jobs/1',
 until={'status_code': 200, 'json': {}})

Setting Alarms

Let’s return to a previous example:

Poll until the json-decoded response has a certain value:
httsleep('http://myendpoint/jobs/1', until={'json': {'status': 'OK'}})

What if the job running on the remote server errors out and gets a status of ERROR?
httsleep would keep polling the endpoint, waiting for a status of OK,
until its max_retries had been exhausted – not exactly what we’d like to happen.

This is because no alarms have been set.

Alarms can be set using the alarms kwarg, just like success conditions can be
set using the until kwarg. Every time it polls an endpoint, httsleep always
checks whether any alarms are set, and if so, evaluates them. If the response matches
an alarm condition, an httsleep.exceptions.Alarm exception is raised. If not,
httsleep goes on and checks the success conditions.

Here is a version of the example above, modified so that it raises an httsleep.exceptions.Alarm
if the job status is set to ERROR:

from httsleep.exceptions import Alarm
try:
 httsleep('http://myendpoint/jobs/1',
 until={'json': {'status': 'OK'}},
 alarms={'json': {'status': 'ERROR'}})
except Alarm as e:
 print "Got a response with status ERROR!"
 print "Here's the response:", e.response
 print "And here's the alarm went off:", e.alarm

As can be seen here, the response object is stored in the exception, along with
the alarm that was triggered.

Any conditions, or combination thereof, can be used to set alarms.

Chaining Conditionals and Alarms

We’ve seen that conditions can be joined together with a boolean “AND” by
packing them into a single dictionary.

There are cases where we might want to join conditions using boolean “OR”. In
these cases, we simply use lists:

httsleep('http://myendpoint/jobs/1',
 until=[{'json': {'status': 'SUCCESS'}},
 {'json': {'status': 'PENDING'}}])

This means, “sleep until the json response is {"status": "SUCCESS"} OR {"status": "PENDING"}”.

As always, we can use the same technique for alarms:

httsleep('http://myendpoint/jobs/1',
 until=[{'json': {'status': 'SUCCESS'}},
 {'json': {'status': 'PENDING'}}],
 alarms=[{'json': {'status': 'ERROR'}},
 {'json': {'status': 'TIMEOUT'}}])

Putting it all together

As we’ve seen in this short tutorial, you can really squeeze a lot of flexibility out of httsleep.

We can see how far this can be taken in the next example:

until = {
 'status_code': 200,
 'jsonpath': [{'expression': 'status', 'value': 'OK'}]
}
alarms = [
 {'json': {'status': 'ERROR'}},
 {'jsonpath': [{'expression': 'status', 'value': 'UNKNOWN'},
 {'expression': 'owner', 'value': 'Chris'}],
 'callback': is_job_really_failing},
 {'status_code': 404}
]
httsleep('http://myendpoint/jobs/1', until=until, alarms=alarms,
 max_retries=20)

Translated into English, this means:

	
	Poll http://myendpoint/jobs/1 – at most 20 times – until

	
	it returns a status code of 200

	AND the status key in its response has the value OK

	
	but raise an error if

	
	the status key has the value ERROR

	OR the status key has the value UNKNOWN AND the owner key has the value Chris AND the function is_job_really_dying returns True

	OR the status code is 404

API Reference

	
httsleep.httsleep(url_or_request, until=None, alarms=None, auth=None, headers=None, session=<requests.sessions.Session object>, verify=None, polling_interval=2, max_retries=50, ignore_exceptions=None, loglevel=40)

	Convenience wrapper for the HttSleeper class.
Creates a HttSleeper object and automatically runs it.

	Returns

	requests.Response object.

	
class httsleep.HttSleeper(url_or_request, until=None, alarms=None, auth=None, headers=None, session=<requests.sessions.Session object>, verify=None, polling_interval=2, max_retries=50, ignore_exceptions=None, loglevel=40)

	
	Parameters

	
	url_or_request – either a string containing the URL to be polled,
or a requests.Request object.

	until – a list of success conditions, respresented by dicts, or a
single success condition dict.

	alarms – a list of error conditions, respresented by dicts, or a
single error condition dict.

	auth – a (username, password) tuple for HTTP authentication.

	headers – a dict of HTTP headers. If specified, these will be merged with (and take
precedence over) any headers provided in the session.

	session – a Requests session, providing cookie persistence, connection-pooling, and
configuration (e.g. headers).

	verify – Either a boolean, in which case it controls whether we verify the server’s
TLS certificate, or a string, in which case it must be a path to a CA
bundle to use. If specified, this takes precedence over any value defined
in the session (which itself would be True, by default).

	polling_interval – how many seconds to sleep between requests.

	max_retries – the maximum number of retries to make, after which
a StopIteration exception is raised.

	ignore_exceptions – a list of exceptions to ignore when polling
the endpoint.

	loglevel – the loglevel to use. Defaults to ERROR.

url_or_request must be provided, along with at least one success condition (until).

	
run()

	Polls the endpoint until either:

	a success condition in self.until is reached, in which case a
requests.Request object is returned

	an error condition in self.alarms is encountered, in which case an
Alarm exception is raised

	self.max_retries is reached, in which case a StopIteration exception
is raised

	Returns

	requests.Response object.

Exceptions

	
exception httsleep.exceptions.Alarm(response, alarm_condition)

	Exception raised when an alarm condition has been met. Contains the following
extra attributes:

	response: The response the matched the alarm condition

	alarm: The alarm condition that was triggered

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 httsleep	

 	
 	
 httsleep.exceptions	

Index

 A
 | H
 | R

A

 	
 	Alarm

H

 	
 	httsleep() (in module httsleep)

 	
 	httsleep.exceptions (module)

 	HttSleeper (class in httsleep)

R

 	
 	run() (httsleep.HttSleeper method)

 nav.xhtml

 Table of Contents

 		
 httsleep

 		
 Tutorial

 		
 Polling

 		
 Conditions

 		
 The Basics

 		
 JSONPath

 		
 Callbacks

 		
 Multiple Conditionals

 		
 Setting Alarms

 		
 Chaining Conditionals and Alarms

 		
 Putting it all together

 		
 API Reference

 		
 Exceptions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

