
httplib2
Release 0.4

June 23, 2017

Contents

1 httplib2 A comprehensive HTTP client library. 3
1.1 Http Objects . 5
1.2 Cache Objects . 6
1.3 Response Objects . 6
1.4 Examples . 6

2 Indices and tables 9

Python Module Index 11

i

ii

httplib2, Release 0.4

Author Joe Gregorio

Date Mar 8, 2007

Abstract

The httplib2 module is a comprehensive HTTP client library that handles caching, keep-alive, compression,
redirects and many kinds of authentication.

Contents:

Contents 1

httplib2, Release 0.4

2 Contents

CHAPTER 1

httplib2 A comprehensive HTTP client library.

The httplib2 module is a comprehensive HTTP client library with the following features:

HTTP and HTTPS
HTTPS support is only available if the socket module was compiled with SSL support.

Keep-Alive
Supports HTTP 1.1 Keep-Alive, keeping the socket open and performing multiple requests over the same con-
nection if possible.

Authentication
The following three types of HTTP Authentication are supported. These can be used over both HTTP and
HTTPS.

•Digest

•Basic

•WSSE

Caching
The module can optionally operate with a private cache that understands the Cache-Control: header and uses
both the ETag and Last-Modified cache validators.

All Methods
The module can handle any HTTP request method, not just GET and POST.

Redirects
Automatically follows 3XX redirects on GETs.

Compression
Handles both deflate and gzip types of compression.

Lost update support
Automatically adds back ETags into PUT requests to resources we have already cached. This implements
Section 3.2 of Detecting the Lost Update Problem Using Unreserved Checkout

The httplib2 module defines the following variables:

3

httplib2, Release 0.4

httplib2.debuglevel
The amount of debugging information to print. The default is 0.

httplib2.RETRIES
A request will be tried ‘RETRIES’ times if it fails at the socket/connection level. The default is 2.

The httplib2 module may raise the following Exceptions. Note that there is an option that turns
exceptions into normal responses with an HTTP status code indicating an error occured. See Http.
force_exception_to_status_code

exception httplib2.HttpLib2Error
The Base Exception for all exceptions raised by httplib2.

exception httplib2.RedirectMissingLocation
A 3xx redirect response code was provided but no Location: header was provided to point to the new location.

exception httplib2.RedirectLimit
The maximum number of redirections was reached without coming to a final URI.

exception httplib2.ServerNotFoundError
Unable to resolve the host name given.

exception httplib2.RelativeURIError
A relative, as opposed to an absolute URI, was passed into request().

exception httplib2.FailedToDecompressContent
The headers claimed that the content of the response was compressed but the decompression algorithm applied
to the content failed.

exception httplib2.UnimplementedDigestAuthOptionError
The server requested a type of Digest authentication that we are unfamiliar with.

exception httplib2.UnimplementedHmacDigestAuthOptionError
The server requested a type of HMACDigest authentication that we are unfamiliar with.

class httplib2.Http([cache=None][, timeout=None][, proxy_info==ProxyInfo.from_environment][,
ca_certs=None][, disable_ssl_certificate_validation=False])

The class that represents a client HTTP interface. The cache parameter is either the name of a directory to
be used as a flat file cache, or it must an object that implements the required caching interface. The timeout
parameter is the socket level timeout. The ca_certs parameter is the filename of the CA certificates to use.
If none is given a default set is used. The disable_ssl_certificate_validation boolean flag determines if ssl
certificate validation is done. The proxy_info parameter is an object of type :class:ProxyInfo.

class httplib2.ProxyInfo(proxy_type, proxy_host, proxy_port[, proxy_rdns=None][,
proxy_user=None][, proxy_pass=None])

Collect information required to use a proxy. The parameter proxy_type must be set to one of
socks.PROXY_TYPE_XXX constants. For example:

p = ProxyInfo(proxy_type=socks.PROXY_TYPE_HTTP, proxy_host=’localhost’, proxy_port=8000)

class httplib2.Response(info)
Response is a subclass of dict and instances of this class are returned from calls to Http.request. The info
parameter is either an rfc822.Message or an httplib.HTTPResponse object.

class httplib2.FileCache(dir_name[, safe=safename])
FileCache implements a Cache as a directory of files. The dir_name parameter is the name of the directory to
use. If the directory does not exist then FileCache attempts to create the directory. The optional safe parameter
is a funtion which generates the cache filename for each URI. A FileCache object is constructed and used for
caching when you pass a directory name into the constructor of Http.

Http objects have the following methods:

4 Chapter 1. httplib2 A comprehensive HTTP client library.

httplib2, Release 0.4

Http Objects

Http.request(uri[, method=”GET”, body=None, headers=None, redirec-
tions=DEFAULT_MAX_REDIRECTS, connection_type=None])

Performs a single HTTP request. The uri is the URI of the HTTP resource and can begin with either http or
https. The value of uri must be an absolute URI.

The method is the HTTP method to perform, such as GET, POST, DELETE, etc. There is no restriction on the
methods allowed.

The body is the entity body to be sent with the request. It is a string object.

Any extra headers that are to be sent with the request should be provided in the headers dictionary.

The maximum number of redirect to follow before raising an exception is redirections. The default is 5.

The connection_type is the type of connection object to use. The supplied class should implement the interface
of httplib.HTTPConnection.

The return value is a tuple of (response, content), the first being and instance of the Response class, the second
being a string that contains the response entity body.

Http.add_credentials(name, password[, domain=None])
Adds a name and password that will be used when a request requires authentication. Supplying the optional
domain name will restrict these credentials to only be sent to the specified domain. If domain is not specified
then the given credentials will be used to try to satisfy every HTTP 401 challenge.

Http.add_certificate(key, cert, domain)
Add a key and cert that will be used for an SSL connection to the specified domain. keyfile is the name of a PEM
formatted file that contains your private key. certfile is a PEM formatted certificate chain file.

Http.clear_credentials()
Remove all the names and passwords used for authentication.

Http.follow_redirects
If True, which is the default, safe redirects are followed, where safe means that the client is only doing a GET
or HEAD on the URI to which it is being redirected. If False then no redirects are followed. Note that a
False ‘follow_redirects’ takes precedence over a True ‘follow_all_redirects’. Another way of saying that is for
‘follow_all_redirects’ to have any affect, ‘follow_redirects’ must be True.

Http.follow_all_redirects
If False, which is the default, only safe redirects are followed, where safe means that the client is only doing
a GET or HEAD on the URI to which it is being redirected. If True then all redirects are followed. Note that a
False ‘follow_redirects’ takes precedence over a True ‘follow_all_redirects’. Another way of saying that is for
‘follow_all_redirects’ to have any affect, ‘follow_redirects’ must be True.

Http.forward_authorization_headers
If False, which is the default, then Authorization: headers are stripped from redirects. If True then Autho-
rization: headers are left in place when following redirects. This parameter only applies if following redirects is
turned on. Note that turning this on could cause your credentials to leak, so carefully consider the consequences.

Http.force_exception_to_status_code
If True then no httplib2 exceptions will be thrown. Instead, those error conditions will be turned into
Response objects that will be returned normally.

If False, which is the default, then exceptions will be thrown.

Http.optimistic_concurrency_methods
By default a list that only contains “PUT”, this attribute controls which methods will get ‘if-match’ headers
attached to them from cached responses with etags. You can append new items to this list to add new methods
that should get this support, such as “PATCH”.

1.1. Http Objects 5

httplib2, Release 0.4

Http.ignore_etag
Defaults to False. If True, then any etags present in the cached response are ignored when processing the
current request, i.e. httplib2 does not use ‘if-match’ for PUT or ‘if-none-match’ when GET or HEAD requests
are made. This is mainly to deal with broken servers which supply an etag, but change it capriciously.

If you wish to supply your own caching implementation then you will need to pass in an object that supports the
following methods. Note that the memcache module supports this interface natively.

Cache Objects

Cache.get(key)
Takes a string key and returns the value as a string.

Cache.set(key, value)
Takes a string key and value and stores it in the cache.

Cache.delete(key)
Deletes the cached value stored at key. The value of key is a string.

Response objects are derived from dict and map header names (lower case with the trailing colon removed) to header
values. In addition to the dict methods a Response object also has:

Response Objects

Response.fromcache
If true the the response was returned from the cache.

Response.version
The version of HTTP that the server supports. A value of 11 means ‘1.1’.

Response.status
The numerical HTTP status code returned in the response.

Response.reason
The human readable component of the HTTP response status code.

Response.previous
If redirects are followed then the Response object returned is just for the very last HTTP request and previous
points to the previous Response object. In this manner they form a chain going back through the responses to
the very first response. Will be None if there are no previous respones.

The Response object also populates the header content-location, that contains the URI that was ultimately
requested. This is useful if redirects were encountered, you can determine the ultimate URI that the request was sent
to. All Response objects contain this key value, including previous responses so you can determine the entire chain
of redirects. If Http.force_exception_to_status_code is True and the number of redirects has exceeded
the number of allowed number of redirects then the Response object will report the error in the status code, but the
complete chain of previous responses will still be in tact.

To do a simple GET request just supply the absolute URI of the resource:

Examples

6 Chapter 1. httplib2 A comprehensive HTTP client library.

httplib2, Release 0.4

import httplib2
h = httplib2.Http()
resp, content = h.request("http://bitworking.org/")
assert resp.status == 200
assert resp['content-type'] == 'text/html'

Here is more complex example that does a PUT of some text to a resource that requires authentication. The Http
instance also uses a file cache in the directory .cache.

import httplib2
h = httplib2.Http(".cache")
h.add_credentials('name', 'password')
resp, content = h.request("https://example.org/chap/2",

"PUT", body="This is text",
headers={'content-type':'text/plain'})

Here is an example that connects to a server that supports the Atom Publishing Protocol.

import httplib2
h = httplib2.Http()
h.add_credentials(myname, mypasswd)
h.follow_all_redirects = True
headers = {'Content-Type': 'application/atom+xml'}
body = """<?xml version="1.0" ?>

<entry xmlns="http://www.w3.org/2005/Atom">
<title>Atom-Powered Robots Run Amok</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>
<author><name>John Doe</name></author>
<content>Some text.</content>

</entry>
"""
uri = "http://www.example.com/collection/"
resp, content = h.request(uri, "POST", body=body, headers=headers)

Here is an example of providing data to an HTML form processor. In this case we presume this is a POST form. We
need to take our data and format it as “application/x-www-form-urlencoded” data and use that as a body for a POST
request.

>>> import httplib2
>>> import urllib
>>> data = {'name': 'fred', 'address': '123 shady lane'}
>>> body = urllib.urlencode(data)
>>> body
'name=fred&address=123+shady+lane'
>>> h = httplib2.Http()
>>> resp, content = h.request("http://example.com", method="POST", body=body)

1.4. Examples 7

httplib2, Release 0.4

8 Chapter 1. httplib2 A comprehensive HTTP client library.

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

httplib2, Release 0.4

10 Chapter 2. Indices and tables

Python Module Index

h
httplib2, 3

11

httplib2, Release 0.4

12 Python Module Index

Index

A
add_certificate() (httplib2.Http method), 5
add_credentials() (httplib2.Http method), 5

C
clear_credentials() (httplib2.Http method), 5

D
debuglevel (in module httplib2), 3
delete() (httplib2.Cache method), 6

F
FailedToDecompressContent, 4
FileCache (class in httplib2), 4
follow_all_redirects (httplib2.Http attribute), 5
follow_redirects (httplib2.Http attribute), 5
force_exception_to_status_code (httplib2.Http attribute),

5
forward_authorization_headers (httplib2.Http attribute), 5
fromcache (httplib2.Response attribute), 6

G
get() (httplib2.Cache method), 6

H
Http (class in httplib2), 4
httplib2 (module), 3
HttpLib2Error, 4

I
ignore_etag (httplib2.Http attribute), 6

O
optimistic_concurrency_methods (httplib2.Http at-

tribute), 5

P
previous (httplib2.Response attribute), 6

ProxyInfo (class in httplib2), 4

R
reason (httplib2.Response attribute), 6
RedirectLimit, 4
RedirectMissingLocation, 4
RelativeURIError, 4
request() (httplib2.Http method), 5
Response (class in httplib2), 4
RETRIES (in module httplib2), 4

S
ServerNotFoundError, 4
set() (httplib2.Cache method), 6
status (httplib2.Response attribute), 6

U
UnimplementedDigestAuthOptionError, 4
UnimplementedHmacDigestAuthOptionError, 4

V
version (httplib2.Response attribute), 6

13

	httplib2 A comprehensive HTTP client library.
	Http Objects
	Cache Objects
	Response Objects
	Examples

	Indices and tables
	Python Module Index

