

The httplib2 Library

	Author:	Joe Gregorio

	Date:	Mar 8, 2007

Abstract

The httplib2 module is a comprehensive HTTP client library that handles
caching, keep-alive, compression, redirects and many kinds of authentication.

Contents:

	httplib2 A comprehensive HTTP client library.
	Http Objects

	Cache Objects

	Response Objects

	Examples

Indices and tables

	Index

	Module Index

	Search Page

httplib2 A comprehensive HTTP client library.

The httplib2 module is a comprehensive HTTP client library with the
following features:

	
HTTP and HTTPS

	HTTPS support is only available if the socket module was compiled with SSL
support.

	
Keep-Alive

	Supports HTTP 1.1 Keep-Alive, keeping the socket open and performing multiple
requests over the same connection if possible.

	
Authentication

	The following three types of HTTP Authentication are supported. These can be
used over both HTTP and HTTPS.

	Digest

	Basic

	WSSE

	
Caching

	The module can optionally operate with a private cache that understands the
Cache-Control: header and uses both the ETag and Last-Modified cache validators.

	
All Methods

	The module can handle any HTTP request method, not just GET and POST.

	
Redirects

	Automatically follows 3XX redirects on GETs.

	
Compression

	Handles both deflate and gzip types of compression.

	
Lost update support

	Automatically adds back ETags into PUT requests to resources we have already
cached. This implements Section 3.2 of Detecting the Lost Update Problem Using
Unreserved Checkout

The httplib2 module defines the following variables:

	
httplib2.debuglevel

	The amount of debugging information to print. The default is 0.

	
httplib2.RETRIES

	A request will be tried ‘RETRIES’ times if it fails at the socket/connection level.
The default is 2.

The httplib2 module may raise the following Exceptions. Note that there
is an option that turns exceptions into normal responses with an HTTP status
code indicating an error occured. See
Http.force_exception_to_status_code

	
exception httplib2.HttpLib2Error

	The Base Exception for all exceptions raised by httplib2.

	
exception httplib2.RedirectMissingLocation

	A 3xx redirect response code was provided but no Location: header was provided
to point to the new location.

	
exception httplib2.RedirectLimit

	The maximum number of redirections was reached without coming to a final URI.

	
exception httplib2.ServerNotFoundError

	Unable to resolve the host name given.

	
exception httplib2.RelativeURIError

	A relative, as opposed to an absolute URI, was passed into request().

	
exception httplib2.FailedToDecompressContent

	The headers claimed that the content of the response was compressed but the
decompression algorithm applied to the content failed.

	
exception httplib2.UnimplementedDigestAuthOptionError

	The server requested a type of Digest authentication that we are unfamiliar
with.

	
exception httplib2.UnimplementedHmacDigestAuthOptionError

	The server requested a type of HMACDigest authentication that we are unfamiliar
with.

	
class httplib2.Http([cache=None][, timeout=None][, proxy_info==ProxyInfo.from_environment][, ca_certs=None][, disable_ssl_certificate_validation=False])

	The class that represents a client HTTP interface. The cache parameter is
either the name of a directory to be used as a flat file cache, or it must an
object that implements the required caching interface. The timeout parameter
is the socket level timeout. The ca_certs parameter is the filename of the
CA certificates to use. If none is given a default set is used. The
disable_ssl_certificate_validation boolean flag determines if ssl certificate validation
is done. The proxy_info parameter is an object of type :class:ProxyInfo.

	
class httplib2.ProxyInfo(proxy_type, proxy_host, proxy_port[, proxy_rdns=None][, proxy_user=None][, proxy_pass=None])

	Collect information required to use a proxy.
The parameter proxy_type must be set to one of socks.PROXY_TYPE_XXX
constants. For example:

p = ProxyInfo(proxy_type=socks.PROXY_TYPE_HTTP, proxy_host=’localhost’, proxy_port=8000)

	
class httplib2.Response(info)

	Response is a subclass of dict and instances of this class are
returned from calls to Http.request. The info parameter is either an
rfc822.Message or an httplib.HTTPResponse object.

	
class httplib2.FileCache(dir_name[, safe=safename])

	FileCache implements a Cache as a directory of files. The dir_name parameter
is the name of the directory to use. If the directory does not exist then
FileCache attempts to create the directory. The optional safe parameter is a
funtion which generates the cache filename for each URI. A FileCache object is
constructed and used for caching when you pass a directory name into the
constructor of Http.

Http objects have the following methods:

Http Objects

	
Http.request(uri[, method="GET", body=None, headers=None, redirections=DEFAULT_MAX_REDIRECTS, connection_type=None])

	Performs a single HTTP request. The uri is the URI of the HTTP resource and
can begin with either http or https. The value of uri must be an
absolute URI.

The method is the HTTP method to perform, such as GET, POST,
DELETE, etc. There is no restriction on the methods allowed.

The body is the entity body to be sent with the request. It is a string
object.

Any extra headers that are to be sent with the request should be provided in the
headers dictionary.

The maximum number of redirect to follow before raising an exception is
redirections. The default is 5.

The connection_type is the type of connection object to use. The supplied
class should implement the interface of httplib.HTTPConnection.

The return value is a tuple of (response, content), the first being and instance
of the Response class, the second being a string that contains the
response entity body.

	
Http.add_credentials(name, password[, domain=None])

	Adds a name and password that will be used when a request requires
authentication. Supplying the optional domain name will restrict these
credentials to only be sent to the specified domain. If domain is not
specified then the given credentials will be used to try to satisfy every HTTP
401 challenge.

	
Http.add_certificate(key, cert, domain)

	Add a key and cert that will be used for an SSL connection to the specified
domain. keyfile is the name of a PEM formatted file that contains your
private key. certfile is a PEM formatted certificate chain file.

	
Http.clear_credentials()

	Remove all the names and passwords used for authentication.

	
Http.follow_redirects

	If True, which is the default, safe redirects are followed, where safe means
that the client is only doing a GET or HEAD on the URI to which it is
being redirected. If False then no redirects are followed. Note that a False
‘follow_redirects’ takes precedence over a True ‘follow_all_redirects’. Another
way of saying that is for ‘follow_all_redirects’ to have any affect,
‘follow_redirects’ must be True.

	
Http.follow_all_redirects

	If False, which is the default, only safe redirects are followed, where safe
means that the client is only doing a GET or HEAD on the URI to which it
is being redirected. If True then all redirects are followed. Note that a
False ‘follow_redirects’ takes precedence over a True ‘follow_all_redirects’.
Another way of saying that is for ‘follow_all_redirects’ to have any affect,
‘follow_redirects’ must be True.

	
Http.forward_authorization_headers

	If False, which is the default, then Authorization: headers are
stripped from redirects. If True then Authorization: headers are left
in place when following redirects. This parameter only applies if following
redirects is turned on. Note that turning this on could cause your credentials
to leak, so carefully consider the consequences.

	
Http.force_exception_to_status_code

	If True then no httplib2 exceptions will be
thrown. Instead, those error conditions will be turned into Response
objects that will be returned normally.

If False, which is the default, then exceptions will be thrown.

	
Http.optimistic_concurrency_methods

	By default a list that only contains “PUT”, this attribute
controls which methods will get ‘if-match’ headers attached
to them from cached responses with etags. You can append
new items to this list to add new methods that should
get this support, such as “PATCH”.

	
Http.ignore_etag

	Defaults to False. If True, then any etags present in the cached
response are ignored when processing the current request, i.e. httplib2 does
not use ‘if-match’ for PUT or ‘if-none-match’ when GET or HEAD requests are
made. This is mainly to deal with broken servers which supply an etag, but
change it capriciously.

If you wish to supply your own caching implementation then you will need to pass
in an object that supports the following methods. Note that the memcache
module supports this interface natively.

Cache Objects

	
Cache.get(key)

	Takes a string key and returns the value as a string.

	
Cache.set(key, value)

	Takes a string key and value and stores it in the cache.

	
Cache.delete(key)

	Deletes the cached value stored at key. The value of key is a string.

Response objects are derived from dict and map header names (lower case
with the trailing colon removed) to header values. In addition to the dict
methods a Response object also has:

Response Objects

	
Response.fromcache

	If true the the response was returned from the cache.

	
Response.version

	The version of HTTP that the server supports. A value of 11 means ‘1.1’.

	
Response.status

	The numerical HTTP status code returned in the response.

	
Response.reason

	The human readable component of the HTTP response status code.

	
Response.previous

	If redirects are followed then the Response object returned is just for
the very last HTTP request and previous points to the previous
Response object. In this manner they form a chain going back through
the responses to the very first response. Will be None if there are no
previous respones.

The Response object also populates the header content-location, that
contains the URI that was ultimately requested. This is useful if redirects were
encountered, you can determine the ultimate URI that the request was sent to.
All Response objects contain this key value, including previous responses so
you can determine the entire chain of redirects. If
Http.force_exception_to_status_code is True and the number of
redirects has exceeded the number of allowed number of redirects then the
Response object will report the error in the status code, but the
complete chain of previous responses will still be in tact.

To do a simple GET request just supply the absolute URI of the resource:

Examples

import httplib2
h = httplib2.Http()
resp, content = h.request("http://bitworking.org/")
assert resp.status == 200
assert resp['content-type'] == 'text/html'

Here is more complex example that does a PUT of some text to a resource that
requires authentication. The Http instance also uses a file cache in the
directory .cache.

import httplib2
h = httplib2.Http(".cache")
h.add_credentials('name', 'password')
resp, content = h.request("https://example.org/chap/2",
 "PUT", body="This is text",
 headers={'content-type':'text/plain'})

Here is an example that connects to a server that supports the Atom Publishing
Protocol.

import httplib2
h = httplib2.Http()
h.add_credentials(myname, mypasswd)
h.follow_all_redirects = True
headers = {'Content-Type': 'application/atom+xml'}
body = """<?xml version="1.0" ?>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content>Some text.</content>
</entry>
"""
uri = "http://www.example.com/collection/"
resp, content = h.request(uri, "POST", body=body, headers=headers)

Here is an example of providing data to an HTML form processor. In this case we
presume this is a POST form. We need to take our data and format it as
“application/x-www-form-urlencoded” data and use that as a body for a POST
request.

>>> import httplib2
>>> import urllib
>>> data = {'name': 'fred', 'address': '123 shady lane'}
>>> body = urllib.urlencode(data)
>>> body
'name=fred&address=123+shady+lane'
>>> h = httplib2.Http()
>>> resp, content = h.request("http://example.com", method="POST", body=body)

 Python Module Index

 h

 		 	

 		
 h	

 	
 	
 httplib2	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | O
 | P
 | R
 | S
 | U
 | V

A

 	
 	add_certificate() (httplib2.Http method)

 	
 	add_credentials() (httplib2.Http method)

C

 	
 	clear_credentials() (httplib2.Http method)

D

 	
 	debuglevel (in module httplib2)

 	
 	delete() (httplib2.Cache method)

F

 	
 	FailedToDecompressContent

 	FileCache (class in httplib2)

 	follow_all_redirects (httplib2.Http attribute)

 	
 	follow_redirects (httplib2.Http attribute)

 	force_exception_to_status_code (httplib2.Http attribute)

 	forward_authorization_headers (httplib2.Http attribute)

 	fromcache (httplib2.Response attribute)

G

 	
 	get() (httplib2.Cache method)

H

 	
 	Http (class in httplib2)

 	
 	httplib2 (module)

 	HttpLib2Error

I

 	
 	ignore_etag (httplib2.Http attribute)

O

 	
 	optimistic_concurrency_methods (httplib2.Http attribute)

P

 	
 	previous (httplib2.Response attribute)

 	
 	ProxyInfo (class in httplib2)

R

 	
 	reason (httplib2.Response attribute)

 	RedirectLimit

 	RedirectMissingLocation

 	
 	RelativeURIError

 	request() (httplib2.Http method)

 	Response (class in httplib2)

 	RETRIES (in module httplib2)

S

 	
 	ServerNotFoundError

 	
 	set() (httplib2.Cache method)

 	status (httplib2.Response attribute)

U

 	
 	UnimplementedDigestAuthOptionError

 	
 	UnimplementedHmacDigestAuthOptionError

V

 	
 	version (httplib2.Response attribute)

 nav.xhtml

 Table of Contents

 		The httplib2 Library

 		httplib2 A comprehensive HTTP client library.

 		Http Objects

 		Cache Objects

 		Response Objects

 		Examples

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

