
htmlPy Documentation
Release 2.0.0

Amol Mandhane

December 14, 2016

Contents

1 Installation 3
1.1 Installing htmlPy . 3
1.2 Installing PySide . 3

2 Quickstart tutorial of htmlPy 5
2.1 Standalone application . 5
2.2 Web based application . 5

3 Important instructions for application development with htmlPy 7
3.1 Use a driver file . 7
3.2 Set static_path and template_path . 8

4 Tutorials for common tasks 9
4.1 GUI to Python calls . 9
4.2 Python to GUI calls . 10
4.3 General structure of htmlPy applications . 10
4.4 Integration with django . 11
4.5 Using file input . 11

5 API Reference 13
5.1 Class htmlPy.AppGUI (htmlPy.BaseGUI) . 13
5.2 Class htmlPy.WebAppGUI (htmlPy.BaseGUI) . 16
5.3 Class htmlPy.Object . 19
5.4 Decorator htmlPy.Slot . 20
5.5 Module htmlPy.settings . 20
5.6 Class htmlPy.BaseGUI . 20

6 Indices and tables 23

Python Module Index 25

i

ii

htmlPy Documentation, Release 2.0.0

HTML5-CSS3-Javascript based GUI libary in Python

htmlPy is a wrapper around PySide‘s QtWebKit library. It helps with creating beautiful GUIs using HTML5, CSS3
and Javascript for standalone Python applications. It is built on Qt which makes it highly customizable and cross-
platform. htmlPy is compatible with both Python2 and Python3. It can be used with any python library or environ-
ment like django, flask, scipy, virtualenv etc. You can use front-end libraries and frameworks like bootstrap, jQuery,
jQuery UI etc. and create GUIs for your applications in no time.

To start using htmlPy, please read installation instructions.

You can get the source at GitHub repository. Versions older than 2.0.0 are not recommended for use in production.

Contents:

Contents 1

http://pyside.org/
http://qt.io/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://www.scipy.org/
http://virtualenv.readthedocs.org/
http://getbootstrap.com/
http://jquery.com/
http://jqueryui.com/
https://github.com/amol-mandhane/htmlPy

htmlPy Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Installation

1.1 Installing htmlPy

Note: htmlPy is dependent on PySide which is not included in dependencies. Please refer the installation instructions
for PySide.

You can install htmlPy with pip:

$ [sudo] pip install htmlPy

Or with easy_install:

$ [sudo] easy_install htmlPy

Or download the compressed archive from PyPI, extract it, and inside it, run:

$ [sudo] python setup.py install

Note: Superuser access may be required if you are trying to install htmlPy globally. Please use sudo before the above
commands in such case.

1.2 Installing PySide

Note: For detailed installation instructions, refer PySide documentation.

htmlPy is dependent on PySide which is not included in the dependencies of htmlPy installation. PySide has to be
installed manually. Following are the ways to do this.

1. On Windows PySide can be installed with pip:

$ pip install PySide

Or with easy_install:

$ easy_install PySide

2. On Mac OS X

You need to install or build Qt 4.8 first. You can use Homebrew and install Qt with:

3

http://pyside.org/
https://pypi.python.org/pypi/htmlPy/
http://pyside.readthedocs.org/en/latest/index.html
http://pyside.org/
http://pyside.org/
http://pyside.org/

htmlPy Documentation, Release 2.0.0

$ brew install qt

After this, PySide can be installed with pip:

$ pip install PySide

Or with easy_install:

$ easy_install PySide

2. On Linux (refer this for detailed instructions) Installing PySide on linux with python installers is very slow
as it requires compiling PySide from scratch. Hence, it is not included in the dependencies.

A faster way is to use package managers of the operating system. On Ubuntu, you can install it with:

$ sudo apt-get install python-pyside

or:

$ sudo apt-get install python3-pyside

depending on the python version.

If you are installing in a virtualenv or if you want to build PySide from scratch, you can install it with
python installers. (This will take quite some time to compile):

$ [sudo] pip install PySide
$ [sudo] easy_install PySide

Or refer to this link.

4 Chapter 1. Installation

http://pyside.org/
http://pyside.readthedocs.org/en/latest/building/linux.html
http://pyside.org/
http://pyside.org/
http://pyside.org/
http://pyside.readthedocs.org/en/latest/building/linux.html

CHAPTER 2

Quickstart tutorial of htmlPy

2.1 Standalone application

Following code assumes that there is a file index.html in the same directory as the file and the script is being
executed fromt the same directory.

import htmlPy
import os

app = htmlPy.AppGUI(title=u"htmlPy Quickstart", maximized=True)

app.template_path = os.path.abspath(".")
app.static_path = os.path.abspath(".")

app.template = ("index.html", {"username": "htmlPy_user"})

app.start()

The above code instantiates an application, renders index.html file in that application using Jinja2 templating
engine and starts it.

2.2 Web based application

Following code is a web-based application displaying Python website. You can change the URL to a local or network
server to display any website as an application.

import htmlPy

web_app = htmlPy.WebAppGUI(title=u"Python Website", maximized=True)
web_app.url = u"http://python.org/"

web_app.start()

5

http://jinja.pocoo.org/
http://jinja.pocoo.org/

htmlPy Documentation, Release 2.0.0

6 Chapter 2. Quickstart tutorial of htmlPy

CHAPTER 3

Important instructions for application development with htmlPy

3.1 Use a driver file

Keep your application modularized. Use a separate file for initialization, configuration and execution of htmlPy GUI.
Do not include any back-end functionalities in this file. The driver file structure should be

1. Initial configurations

2. htmlPy GUI initialization

3. htmlPy GUI configuration

4. Binding of back-end functionalities with GUI

(a) Import back-end functionalities

(b) Bind imported functionalities

5. Instructions for running front-end in if __name__ == "__main__": conditional. Always keep the GUI
starter code in the ‘‘if __name__ == “__main__”:‘‘ conditional. The GUI has to be started only when the
driver file is running, not when it is being imported

Here’s a sample driver file

import os
import htmlPy
from PyQt4 import QtGui

Initial confiurations
BASE_DIR = os.path.abspath(os.path.dirname(__file__))

GUI initializations
app = htmlPy.AppGUI(title=u"Application", maximized=True, plugins=True)

GUI configurations
app.static_path = os.path.join(BASE_DIR, "static/")
app.template_path = os.path.join(BASE_DIR, "templates/")

app.web_app.setMinimumWidth(1024)
app.web_app.setMinimumHeight(768)
app.window.setWindowIcon(QtGui.QIcon(BASE_DIR + "/static/img/icon.png"))

7

htmlPy Documentation, Release 2.0.0

Binding of back-end functionalities with GUI

Import back-end functionalities
from html_to_python import ClassName

Register back-end functionalities
app.bind(ClassName())

Instructions for running application
if __name__ == "__main__":

The driver file will have to be imported everywhere in back-end.
So, always keep app.start() in if __name__ == "__main__" conditional
app.start()

3.2 Set static_path and template_path

When using htmlPy.AppGUI, always set static_path and template_path right after instantiating GUI.
Set BASE_DIR variable as the absolute path to the directory of the driver file and set static_path and
template_path with respect to BASE_DIR. Refer to the driver file section for example.

htmlPy uses Jinja2 for templating which is inspired by Django’s templating system but extends with powerful tools.
Jinja2 requires a base directory to be set. This can be done by setting the template_path as displayed in driver
file section. You can use your own templating system as htmlPy.AppGUI allows setting the attribute html.

static_path is where all the static files including images, stylesheets and javascripts are stored. The static files
will have to be present on the user computer and using htmlPy static filter, their links can be generated dynamically.
For example,

<script src="{{ 'js/jquery.min.js'|staticfile }}"></script>
<link rel="stylesheet" href="{{ 'css/bootstrap.min.css'|staticfile }}">

8 Chapter 3. Important instructions for application development with htmlPy

http://jinja.pocoo.org/

CHAPTER 4

Tutorials for common tasks

Following are some basic instructions for performing most common GUI and Python tasks with htmlPy.

4.1 GUI to Python calls

These calls work only for htmlPy.AppGUI applications.

An essential aspect of GUI is to attach back-end calls to GUI events. htmlPy needs the corresponding back-end
functions to be selectively exposed to GUI. The calls from GUI can be done in very HTML way.

The back-end functions that have to be attached to GUI events are defined as follows

import htmlPy
import json
from sample_app import app as htmlPy_app

class ClassName(htmlPy.Object):
GUI callable functions have to be inside a class.
The class should be inherited from htmlPy.Object.

def __init__(self):
super(ClassName. self).__init__()
Initialize the class here, if required.
return

@htmlPy.Slot()
def function_name(self):

This is the function exposed to GUI events.
You can change app HTML from here.
Or, you can do pretty much any python from here.
#
NOTE: @htmlPy.Slot decorater needs argument and return data-types.
Refer to API documentation.
return

@htmlPy.Slot(str, result=str)
def form_function_name(self, json_data):

@htmlPy.Slot(arg1_type, arg2_type, ..., result=return_type)
This function can be used for GUI forms.
#
form_data = json.loads(json_data)

9

htmlPy Documentation, Release 2.0.0

return json.dumps(form_data)

@htmlPy.Slot()
def javascript_function(self):

Any function decorated with @htmlPy.Slot decorater can be called
using javascript in GUI
return

You have to bind the class instance to the AppGUI instance to be
callable from GUI
htmlPy_app.bind(ClassName())

After exposing the class methods to GUI, they can be called from HTML as follows

GUI clickable link
<!-- The "a" tag needs to have unique ID and data-bind attribute set to "true"
The ClassName and function_name have to be set in href attribute as displayed above.
The "a" tag can be styled using CSS with other HTML elements inside it -->

<form action="ClassName.form_function_name" id="form" data-bind="true">
<input type="text" id="form_input" name="name">
<input type="submit" value="Submit" id="form_submit">

</form>
<!-- The "form" tag needs to have unique ID and data-bind attribute set to "true".
The ClassName and form_function_name have to be set in action attribute as
displayed above. The argument given to ClassName.form_function_name on form submit
will be a json string of the form data. -->

<script>
ClassName.javascript_function();
// You can treat the class inherited from htmlPy.Object (in this case, ClassName)
// as a javascript object.
</script>

4.2 Python to GUI calls

from sample_app import app
app imported from sample_app file is an instance of htmlPy.AppGUI class.

Change HTML of the app
app.html = u"<html></html>"

Change HTML of the app using Jinja2 templates
app.template = ("./index.html", {"template_variable_name": "value"})

Execute javascript on currently displayed HTML in the app
app.evaluate_javascript("alert('Hello from back-end')")

4.3 General structure of htmlPy applications

Following should be a general directory structure for htmlPy applications

10 Chapter 4. Tutorials for common tasks

htmlPy Documentation, Release 2.0.0

back_end_codes/
static/

css/
style.css
.
.
.

js/
script.js
.
.
.

img/
logo.img
.
.
.

templates/
first_template_directory/

template1.html
template2.html
.
.

another_template_directory/
another_template.html

base_layout.html
main.py

main.py is the driver file for the applications. In the driver file, you should initialize GUI, import functionalities
from back_end_codes and bind it to GUI as explained on the first section of this page. Refer this section for
sample driver file.

In the back_end_codes, you can import the app from main.py and perform operations on in as explained in this
section.

4.4 Integration with django

Django can be used for standalone application development using htmlPy. The integration can be done easily. In the
previous section, the django application and projects can be kept in back_end_codes directory. In the GUI driver
file, include this code before initializing GUI for loading django settings.

import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "<project_name>.settings")

Note: TODO: Add sample application developed using django and htmlPy

4.5 Using file input

htmlPy replaces the HTML file input code with PyQt’s file dialog. To use file input, write the file input tag with an addi-
tional data attribute for filtering extensions, if required. The filter attribute string should be of the form "[{’title’:
’title for extension’, ’extensions’: ’space separated extensions’}, {’title’:
’title for another extension’, ’extensions’: ’space separated extensions’}]".
For example

4.4. Integration with django 11

htmlPy Documentation, Release 2.0.0

<input type="file" name="file" id="file" data-filter="[{'title': 'Images', 'extensions': '*.png *.xpm *.jpg'}, {'title': 'Documents', 'extensions': '*.pdf *.doc *.docx'}]">

The json returned to the python backend for the form will have the absolute path of the selected file as the input value.

12 Chapter 4. Tutorials for common tasks

CHAPTER 5

API Reference

5.1 Class htmlPy.AppGUI (htmlPy.BaseGUI)

class htmlPy.AppGUI(*args, **kwargs)
GUI class for creating apps using PySide’s QtWebkit.

The class AppGUI can be used to create standalone applications with HTML GUI. It uses Jinja2 templating
engine for generating HTML which can be overridden.

Note: Arguments and Attributes of this class come from the parent class htmlPy.BaseGUI. Please refer to
its documentation for more details.

Keyword Arguments

• title (Optional[unicode]) – The title of the window. Defaults to u”Application”.

• width (Optional[int]) – Width of the window in pixels. Defaults to 800 px. Redundant if
maximized is True.

• height (Optional[int]) – Height of the window in pixels. Defaults to 600 px. Redundant if
maximized is True.

• x_pos (Optional[int]) – The X-coordinate for top-left corner of the window in pixels. De-
faults to 10 px. Redundant if maximized is True.

• y_pos (Optional[int]) – The Y-coordinate for top-left corner of the window in pixels. De-
faults to 10 px. Redundant if maximized is True.

• maximized (Optional[bool]) – window is maximized when set to True. Defaults to
False.

• plugins (Optional[bool]) – Enables plugins like flash when set as True. Defaults to
False.

• developer_mode (Optional[bool]) – Enables developer mode when set as True. Defaults
to False. The developer mode gives access to web inspector and other development tools
and enables right-click on the webpage.

• allow_overwrite (Optional[bool]) – PySide.QtGui.QApplication can be instanti-
ated only once. If it is already instantiated, then setting allow_overwrite to True
overwrites the QApplication‘s window with window of this class instance. If False,
RuntimeError is raised. If QApplication is not instantiated, this is irrelevent.

13

htmlPy Documentation, Release 2.0.0

app
PySide.QtGui.QApplication – The singleton Qt application object. This can be instantiated only once in
the entire process.

window
PySide.QtGui.QMainWindow – The window being displayed in the app.

web_app
PySide.QtWebKit.QWebView – The web view widget which renders and displays HTML in the a window.

html
unicode property – The HTML currently rendered in the web_app. The HTML in web_app can be
changed by assigning the new HTML to this property.

static_path
str property – The absolute path relative to which the staticfile filter will create links in templat-
ing. Changing this creates a function dynamically which replaces current staticfile filter in current
templating environment.

template_path
str property – The absolute path relative to which jinja2 finds the templates to be rendered. Changing this
updates the template loader in current templating environment.

template
tuple(str, dict – The current template being displayed in web_app. First element of the tuple is the path of
the template file relative to template_path. The second element of the tuple is the context dictionary
in which it is being rendered.

maximized
bool property – A boolean which describes whether the window is maximized or not. Can be set to True
to maximize the window and set to False to restore.

width
int property – Width of the window in pixels. Set the value of this property in pixels to change the width.

height
int property – Height of the window in pixels. Set the value of this property in pixels to change the height.

x_pos
int property – The X-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window horizontally.

y_pos
int property – The Y-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window vertically.

title
unicode property – The title of the window. Set the value of this property to change the title.

plugins
bool property – A boolean flag which indicates whether plugins like flash are enabled or not. Set the value
to True or False as required.

developer_mode
bool property – A boolean flag which indicated whether developer mode is active or not. The developer
mode gives access to web inspector and other development tools and enables right-click on the webpage.
Set the value to True or False as required.

Raises RuntimeError – If PySide.QtGui.QApplication is already instantiated and
allow_overwrite is False.

14 Chapter 5. API Reference

htmlPy Documentation, Release 2.0.0

__delattr__
x.__delattr__(‘name’) <==> del x.name

__format__()
default object formatter

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__hash__
x.__hash__() <==> hash(x)

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__
x.__repr__() <==> repr(x)

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__sizeof__()→ int
size of object in memory, in bytes

__str__
x.__str__() <==> str(x)

auto_resize()
Resizes and relocates the window to previous state

If the window is not maximized, this function resizes it to the stored dimensions, moves it to the stored
location.

bind(signal_object, variable_name=None)
Binds an object to be called from GUI javascript.

This function binds an object to the javascript window of the page. The signal_object should be in-
herited from htmlPy.Object. The methods that should be callable from javascript should be decorated
with htmlPy.Slot. A variable name can be supplied which will be the name of the variable in javascript
corresponding to that object. Otherwise, name of the class of that object will be used as the variable name

Parameters signal_object (htmlPy.Object) – The object that has to be bound to GUI javascript.

Keyword Arguments variable_name (str) – The name of the javascript vari-
able the object should be attached to. Defaults to None. If None,
signal_object.__class__.__name__ is used.

Raises

• TypeError – If signal_object is not of type htmlPy.Object.

• NameError – If variable_name is “GUIHelper” or name of the class of
signal_object is “GUIHelper”

evaluate_javascript(javascript_string)
Evaluates javascript in web page currently displayed

Parameters javascript_string (str) – The string of javascript code that has to be evaluated.

execute()
Executes the application without ending the process on its end.

5.1. Class htmlPy.AppGUI (htmlPy.BaseGUI) 15

htmlPy Documentation, Release 2.0.0

DO NOT execute this process directly. Use only when htmlPy.BaseGUI.stop() is connected to
some signal.

right_click_setting(value)
Javascript based setting for right click on the application.

This function changes the web page’s behaviour on right click. Normal behaviour is to open a context
menu. Enabling right click exhibits that behaviour. Right click is enabled by default. Disabling right click
suppresses context menu for entire page. Enabling right click for only inputs suppresses context menu
for all elements excepts inputs and textarea, which is the recommended option. The arguments provided
should be from htmlPy.settings module as explained further.

Parameters value (int) – should be either htmlPy.settings.ENABLE (default)
or htmlPy.settings.DISABLE or htmlPy.settings.INPUTS_ONLY (recom-
mended)

start()
Starts the application.

This is not asynchronous. Starting the application will halt the further processes. DO NOT start outside
the if __name__ == "__main__": conditional

stop()
Stops the application. Use only to bind with signals.

The Qt application does not have to be manually stopped. Also, after starting the application is stuck in
the execution loop and will not go further until it is stopped. Calling this function manually is redundant.
This function exits only to be binded with QSignals to stop the application when that signal is emitted.

template
tuple(str, dict) – The current template being displayed in web_app. First element of the tuple is the path of
the template file relative to template_path. The second element of the tuple is the context dictionary
in which it is being rendered.

text_selection_setting(value)
Javascript based setting for text selection in the application.

This function changes the web page’s behaviour on selection of text. Normal behaviour is to highlight
the selected text. Enabling text selection exhibits that behaviour. Text selection is enabled by default.
Disabling text selection disallows user to select any text on the page except for inputs and disables the
I-beam cursor for text selection. The arguments provided should be from htmlPy.settings module
as explained further.

Parameters value (int) – should be either htmlPy.settings.ENABLE (default) or
htmlPy.settings.DISABLE or

5.2 Class htmlPy.WebAppGUI (htmlPy.BaseGUI)

class htmlPy.WebAppGUI(*args, **kwargs)
GUI class for creating web apps using PySide’s Qt.

The class WebAppGUI can be used to create web based applications in a QtWebKit based browser running on
user side. The server for the web app can be remote or local. This can be used for quick desktop deployment of
existing websites. However, for a standalone application, it is recommended to used htmlPy.AppGUI class.

Note: Arguments and Attributes of this class come from the parent class htmlPy.BaseGUI. Please refer to
its documentation for more details.

16 Chapter 5. API Reference

htmlPy Documentation, Release 2.0.0

Keyword Arguments

• title (Optional[unicode]) – The title of the window. Defaults to u”Application”.

• width (Optional[int]) – Width of the window in pixels. Defaults to 800 px. Redundant if
maximized is True.

• height (Optional[int]) – Height of the window in pixels. Defaults to 600 px. Redundant if
maximized is True.

• x_pos (Optional[int]) – The X-coordinate for top-left corner of the window in pixels. De-
faults to 10 px. Redundant if maximized is True.

• y_pos (Optional[int]) – The Y-coordinate for top-left corner of the window in pixels. De-
faults to 10 px. Redundant if maximized is True.

• maximized (Optional[bool]) – window is maximized when set to True. Defaults to
False.

• plugins (Optional[bool]) – Enables plugins like flash when set as True. Defaults to
False.

• developer_mode (Optional[bool]) – Enables developer mode when set as True. Defaults
to False. The developer mode gives access to web inspector and other development tools
and enables right-click on the webpage.

• allow_overwrite (Optional[bool]) – PySide.QtGui.QApplication can be instanti-
ated only once. If it is already instantiated, then setting allow_overwrite to True
overwrites the QApplication‘s window with window of this class instance. If False,
RuntimeError is raised. If QApplication is not instantiated, this is irrelevent.

app
PySide.QtGui.QApplication – The singleton Qt application object. This can be instantiated only once in
the entire process.

window
PySide.QtGui.QMainWindow – The window being displayed in the app.

web_app
PySide.QtWebKit.QWebView – The web view widget which renders and displays HTML in the a window.

url
unicode property – The URL currently being displayed in window. Set the property to a URL unicode
string to change the URL being displayed.

html
unicode property – The HTML currently rendered in the web_app. This is a readonly property.

maximized
bool property – A boolean which describes whether the window is maximized or not. Can be set to True
to maximize the window and set to False to restore.

width
int property – Width of the window in pixels. Set the value of this property in pixels to change the width.

height
int property – Height of the window in pixels. Set the value of this property in pixels to change the height.

x_pos
int property – The X-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window horizontally.

5.2. Class htmlPy.WebAppGUI (htmlPy.BaseGUI) 17

htmlPy Documentation, Release 2.0.0

y_pos
int property – The Y-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window vertically.

title
unicode property – The title of the window. Set the value of this property to change the title.

plugins
bool property – A boolean flag which indicates whether plugins like flash are enabled or not. Set the value
to True or False as required.

developer_mode
bool property – A boolean flag which indicated whether developer mode is active or not. The developer
mode gives access to web inspector and other development tools and enables right-click on the webpage.
Set the value to True or False as required.

Raises RuntimeError – If PySide.QtGui.QApplication is already instantiated and
allow_overwrite is False.

__delattr__
x.__delattr__(‘name’) <==> del x.name

__format__()
default object formatter

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__hash__
x.__hash__() <==> hash(x)

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__
x.__repr__() <==> repr(x)

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__sizeof__()→ int
size of object in memory, in bytes

__str__
x.__str__() <==> str(x)

auto_resize()
Resizes and relocates the window to previous state

If the window is not maximized, this function resizes it to the stored dimensions, moves it to the stored
location.

evaluate_javascript(javascript_string)
Evaluates javascript in web page currently displayed

Parameters javascript_string (str) – The string of javascript code that has to be evaluated.

execute()
Executes the application without ending the process on its end.

18 Chapter 5. API Reference

htmlPy Documentation, Release 2.0.0

DO NOT execute this process directly. Use only when htmlPy.BaseGUI.stop() is connected to
some signal.

html
unicode – The HTML currently rendered in the window.

This property will return the HTML which is being displayed in the web_app. This is not asynchronous.
The URL set with htmlPy will not load until the window is in display.

right_click_setting(value)
Javascript based setting for right click on the application.

This function changes the web page’s behaviour on right click. Normal behaviour is to open a context
menu. Enabling right click exhibits that behaviour. Right click is enabled by default. Disabling right click
suppresses context menu for entire page. Enabling right click for only inputs suppresses context menu
for all elements excepts inputs and textarea, which is the recommended option. The arguments provided
should be from htmlPy.settings module as explained further.

Parameters value (int) – should be either htmlPy.settings.ENABLE (default)
or htmlPy.settings.DISABLE or htmlPy.settings.INPUTS_ONLY (recom-
mended)

start()
Starts the application.

This is not asynchronous. Starting the application will halt the further processes. DO NOT start outside
the if __name__ == "__main__": conditional

stop()
Stops the application. Use only to bind with signals.

The Qt application does not have to be manually stopped. Also, after starting the application is stuck in
the execution loop and will not go further until it is stopped. Calling this function manually is redundant.
This function exits only to be binded with QSignals to stop the application when that signal is emitted.

text_selection_setting(value)
Javascript based setting for text selection in the application.

This function changes the web page’s behaviour on selection of text. Normal behaviour is to highlight
the selected text. Enabling text selection exhibits that behaviour. Text selection is enabled by default.
Disabling text selection disallows user to select any text on the page except for inputs and disables the
I-beam cursor for text selection. The arguments provided should be from htmlPy.settings module
as explained further.

Parameters value (int) – should be either htmlPy.settings.ENABLE (default) or
htmlPy.settings.DISABLE or

5.3 Class htmlPy.Object

class htmlPy.Object
Alias of PySide.QtCore.QObject.

For binding python functionalities to GUI, the classes being bound should inherit htmlPy.Object. Its con-
structor has to be called. The methods of the class that have to be bound to GUI must be decorated with
htmlPy.Slot.

Example: Refer to the API reference of htmlPy.Slot for an example.

5.3. Class htmlPy.Object 19

htmlPy Documentation, Release 2.0.0

5.4 Decorator htmlPy.Slot

class htmlPy.Slot
Alias of PySide.QtCore.Slot

This decorator binds the methods of classes which inherit htmlPy.Object to the GUI. The argument types
and return type of the method being bound have to be provided as argument to the decorator.

Parameters

• *args ([type]) – Data types of arguments of the method being decorated

• result (type) – Data type of return value of the method being decorated

Example:

import htmlPy
htmlPy_app = htmlPy.AppGUI()

class BindingClass(htmlPy.Object):

@htmlPy.Slot(str, int, result=int)
def binding_method(self, string_arg, int_arg):

int_return = 1
return int_return

htmlPy_app.bind(BindingClass())

5.5 Module htmlPy.settings

htmlPy.settings has 3 variables.

htmlPy.settings.ENABLE
Used for enabling some setting

htmlPy.settings.DISABLE
Used for enabling some setting

htmlPy.settings.INPUTS_ONLY
Currently used only to DISABLE right clicking on application except for input fields.

5.6 Class htmlPy.BaseGUI

class htmlPy.BaseGUI(title=u’Application’, width=800, height=600, x_pos=10, y_pos=10, maxi-
mized=False, plugins=False, developer_mode=False, allow_overwrite=False)

Abstract GUI class for creating apps using PySide’s Qt and HTML.

This class shouldn’t be used directly. It serves as a parent to other GUI classes. Use htmlPy.AppGUI and
htmlPy.WebAppGUI for developing applications.

Parameters args (No) – This is an abstract base class. It must not be instantiated.

app
PySide.QtGui.QApplication – The singleton Qt application object. This can be instantiated only once in
the entire process.

20 Chapter 5. API Reference

htmlPy Documentation, Release 2.0.0

window
PySide.QtGui.QMainWindow – The window being displayed in the app.

web_app
PySide.QtWebKit.QWebView – The web view widget which renders and displays HTML in the a window.

maximized
bool property – A boolean which describes whether the window is maximized or not. Can be set to True
to maximize the window and set to False to restore.

width
int property – Width of the window in pixels. Set the value of this property in pixels to change the width.

height
int property – Height of the window in pixels. Set the value of this property in pixels to change the height.

x_pos
int property – The X-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window horizontally.

y_pos
int property – The Y-coordinate for top-left corner of the window in pixels. Set the value of this property
in pixels to move the window vertically.

title
unicode property – The title of the window. Set the value of this property to change the title.

plugins
bool property – A boolean flag which indicates whether plugins like flash are enabled or not. Set the value
to True or False as required.

developer_mode
bool property – A boolean flag which indicated whether developer mode is active or not. The developer
mode gives access to web inspector and other development tools and enables right-click on the webpage.
Set the value to True or False as required.

auto_resize()
Resizes and relocates the window to previous state

If the window is not maximized, this function resizes it to the stored dimensions, moves it to the stored
location.

evaluate_javascript(javascript_string)
Evaluates javascript in web page currently displayed

Parameters javascript_string (str) – The string of javascript code that has to be evaluated.

execute()
Executes the application without ending the process on its end.

DO NOT execute this process directly. Use only when htmlPy.BaseGUI.stop() is connected to
some signal.

right_click_setting(value)
Javascript based setting for right click on the application.

This function changes the web page’s behaviour on right click. Normal behaviour is to open a context
menu. Enabling right click exhibits that behaviour. Right click is enabled by default. Disabling right click
suppresses context menu for entire page. Enabling right click for only inputs suppresses context menu
for all elements excepts inputs and textarea, which is the recommended option. The arguments provided
should be from htmlPy.settings module as explained further.

5.6. Class htmlPy.BaseGUI 21

htmlPy Documentation, Release 2.0.0

Parameters value (int) – should be either htmlPy.settings.ENABLE (default)
or htmlPy.settings.DISABLE or htmlPy.settings.INPUTS_ONLY (recom-
mended)

start()
Starts the application.

This is not asynchronous. Starting the application will halt the further processes. DO NOT start outside
the if __name__ == "__main__": conditional

stop()
Stops the application. Use only to bind with signals.

The Qt application does not have to be manually stopped. Also, after starting the application is stuck in
the execution loop and will not go further until it is stopped. Calling this function manually is redundant.
This function exits only to be binded with QSignals to stop the application when that signal is emitted.

text_selection_setting(value)
Javascript based setting for text selection in the application.

This function changes the web page’s behaviour on selection of text. Normal behaviour is to highlight
the selected text. Enabling text selection exhibits that behaviour. Text selection is enabled by default.
Disabling text selection disallows user to select any text on the page except for inputs and disables the
I-beam cursor for text selection. The arguments provided should be from htmlPy.settings module
as explained further.

Parameters value (int) – should be either htmlPy.settings.ENABLE (default) or
htmlPy.settings.DISABLE or

22 Chapter 5. API Reference

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

23

htmlPy Documentation, Release 2.0.0

24 Chapter 6. Indices and tables

Python Module Index

h
htmlPy.settings, 20

25

htmlPy Documentation, Release 2.0.0

26 Python Module Index

Index

Symbols
__delattr__ (htmlPy.AppGUI attribute), 14
__delattr__ (htmlPy.WebAppGUI attribute), 18
__format__() (htmlPy.AppGUI method), 15
__format__() (htmlPy.WebAppGUI method), 18
__getattribute__ (htmlPy.AppGUI attribute), 15
__getattribute__ (htmlPy.WebAppGUI attribute), 18
__hash__ (htmlPy.AppGUI attribute), 15
__hash__ (htmlPy.WebAppGUI attribute), 18
__reduce__() (htmlPy.AppGUI method), 15
__reduce__() (htmlPy.WebAppGUI method), 18
__reduce_ex__() (htmlPy.AppGUI method), 15
__reduce_ex__() (htmlPy.WebAppGUI method), 18
__repr__ (htmlPy.AppGUI attribute), 15
__repr__ (htmlPy.WebAppGUI attribute), 18
__setattr__ (htmlPy.AppGUI attribute), 15
__setattr__ (htmlPy.WebAppGUI attribute), 18
__sizeof__() (htmlPy.AppGUI method), 15
__sizeof__() (htmlPy.WebAppGUI method), 18
__str__ (htmlPy.AppGUI attribute), 15
__str__ (htmlPy.WebAppGUI attribute), 18

A
app (AppGUI attribute), 13
app (htmlPy.settings.BaseGUI attribute), 20
app (WebAppGUI attribute), 17
AppGUI (class in htmlPy), 13
auto_resize() (htmlPy.AppGUI method), 15
auto_resize() (htmlPy.BaseGUI method), 21
auto_resize() (htmlPy.WebAppGUI method), 18

B
BaseGUI (class in htmlPy), 20
bind() (htmlPy.AppGUI method), 15

D
developer_mode (AppGUI attribute), 14
developer_mode (htmlPy.settings.BaseGUI attribute), 21
developer_mode (WebAppGUI attribute), 18
DISABLE (in module htmlPy.settings), 20

E
ENABLE (in module htmlPy.settings), 20
evaluate_javascript() (htmlPy.AppGUI method), 15
evaluate_javascript() (htmlPy.BaseGUI method), 21
evaluate_javascript() (htmlPy.WebAppGUI method), 18
execute() (htmlPy.AppGUI method), 15
execute() (htmlPy.BaseGUI method), 21
execute() (htmlPy.WebAppGUI method), 18

H
height (AppGUI attribute), 14
height (htmlPy.settings.BaseGUI attribute), 21
height (WebAppGUI attribute), 17
html (AppGUI attribute), 14
html (htmlPy.WebAppGUI attribute), 19
html (WebAppGUI attribute), 17
htmlPy.Object (built-in class), 19
htmlPy.settings (module), 20
htmlPy.Slot (built-in class), 20

I
INPUTS_ONLY (in module htmlPy.settings), 20

M
maximized (AppGUI attribute), 14
maximized (htmlPy.settings.BaseGUI attribute), 21
maximized (WebAppGUI attribute), 17

P
plugins (AppGUI attribute), 14
plugins (htmlPy.settings.BaseGUI attribute), 21
plugins (WebAppGUI attribute), 18

R
right_click_setting() (htmlPy.AppGUI method), 16
right_click_setting() (htmlPy.BaseGUI method), 21
right_click_setting() (htmlPy.WebAppGUI method), 19

S
start() (htmlPy.AppGUI method), 16

27

htmlPy Documentation, Release 2.0.0

start() (htmlPy.BaseGUI method), 22
start() (htmlPy.WebAppGUI method), 19
static_path (AppGUI attribute), 14
stop() (htmlPy.AppGUI method), 16
stop() (htmlPy.BaseGUI method), 22
stop() (htmlPy.WebAppGUI method), 19

T
template (AppGUI attribute), 14
template (htmlPy.AppGUI attribute), 16
template_path (AppGUI attribute), 14
text_selection_setting() (htmlPy.AppGUI method), 16
text_selection_setting() (htmlPy.BaseGUI method), 22
text_selection_setting() (htmlPy.WebAppGUI method),

19
title (AppGUI attribute), 14
title (htmlPy.settings.BaseGUI attribute), 21
title (WebAppGUI attribute), 18

U
url (WebAppGUI attribute), 17

W
web_app (AppGUI attribute), 14
web_app (htmlPy.settings.BaseGUI attribute), 21
web_app (WebAppGUI attribute), 17
WebAppGUI (class in htmlPy), 16
width (AppGUI attribute), 14
width (htmlPy.settings.BaseGUI attribute), 21
width (WebAppGUI attribute), 17
window (AppGUI attribute), 14
window (htmlPy.settings.BaseGUI attribute), 20
window (WebAppGUI attribute), 17

X
x_pos (AppGUI attribute), 14
x_pos (htmlPy.settings.BaseGUI attribute), 21
x_pos (WebAppGUI attribute), 17

Y
y_pos (AppGUI attribute), 14
y_pos (htmlPy.settings.BaseGUI attribute), 21
y_pos (WebAppGUI attribute), 17

28 Index

	Installation
	Installing htmlPy
	Installing PySide

	Quickstart tutorial of htmlPy
	Standalone application
	Web based application

	Important instructions for application development with htmlPy
	Use a driver file
	Set static_path and template_path

	Tutorials for common tasks
	GUI to Python calls
	Python to GUI calls
	General structure of htmlPy applications
	Integration with django
	Using file input

	API Reference
	Class htmlPy.AppGUI (htmlPy.BaseGUI)
	Class htmlPy.WebAppGUI (htmlPy.BaseGUI)
	Class htmlPy.Object
	Decorator htmlPy.Slot
	Module htmlPy.settings
	Class htmlPy.BaseGUI

	Indices and tables
	Python Module Index

