
htcondenser Documentation
Release 0.2.0

Robin Aggleton

November 04, 2016

Contents

1 htcondenser 3
1.1 What is it? . 3
1.2 What do I need? . 3
1.3 How do I install it? . 3

1.3.1 1 via pip . 3
1.3.2 2 by hand . 4

1.4 How do I update it? . 4
1.5 How do I get started? . 4
1.6 Monitoring jobs/DAGs . 4
1.7 A bit more detail . 5
1.8 Full documentation . 6
1.9 Common pitfalls . 6
1.10 But I want XYZ! . 6
1.11 I want to help . 6

2 Usage 7
2.1 Some basic rules/principles . 7
2.2 Basic non-DAG jobs . 7
2.3 Input and output file arguments . 9
2.4 DAG jobs . 10
2.5 Logging . 10

3 DAGstatus 11
3.1 Usage . 11
3.2 Customisation . 12

4 FAQ 13

5 Changelog 15
5.1 v0.3.0 (27th October 2016) . 15
5.2 v0.2.0 (14th June 2016) . 15
5.3 v0.1.0 (12th May 2016) . 15

6 htcondenser package 17
6.1 Submodules . 17

6.1.1 htcondenser.common module . 17
6.1.2 htcondenser.dagman module . 18
6.1.3 htcondenser.job module . 20
6.1.4 htcondenser.jobset module . 21

i

6.2 Module contents . 23

7 Indices and tables 25

Python Module Index 27

ii

htcondenser Documentation, Release 0.2.0

htcondenser is a simple library for submitting simple jobs & DAGs on the Bristol machines.

It was designed to allow easy setting up of jobs and deployment on worker nodes, without the user worrying too much
about writing custom scripts, or copying across files to HDFS.

Contents:

Contents 1

htcondenser Documentation, Release 0.2.0

2 Contents

CHAPTER 1

htcondenser

1.1 What is it?

htcondenser is a simple library for submitting simple jobs & DAGs on the Bristol machines.

It was designed to allow easy setting up of jobs and deployment on worker nodes, whilst following the Code of
Conduct without the user worrying too much about writing custom scripts, or copying across files to HDFS.

Note that this probably won’t work for more custom or complicated workflows, but may be a useful starting point.

1.2 What do I need?

An area on /hdfs/users that you have read/write permission. Python >= 2.6 (default on soolin), but untested with
Python 3.

For developers: To build the docs, you’ll need sphinx (pip install sphinx). flake8 and pep8 are also
useful tools, and are available via pip or conda.

1.3 How do I install it?

There are 2 different ways of installing. Both ensure that the package is found globally.

1.3.1 1 via pip

This is the easiest and recommended method, but requires you to have pip installed. The easiest
way is via conda: either having your own miniconda installation, or simply adding the common one
(/software/miniconda/bin/pip) to PATH:

export PATH=/software/miniconda/bin:$PATH

Note that pip is not required for using the library, just installing it.

You can then install the library by doing:

pip install -U --user git+https://github.com/raggleton/htcondenser.git

Unfortunately, the executable scripts are not added to PATH by default. To do this, add the following to your
~/.bashrc:

3

https://wikis.bris.ac.uk/pages/viewpage.action?title=Code+of+Conduct&spaceKey=dic
https://wikis.bris.ac.uk/pages/viewpage.action?title=Code+of+Conduct&spaceKey=dic
http://www.sphinx-doc.org/en/stable/index.html

htcondenser Documentation, Release 0.2.0

export PATH=$HOME/.local/bin:$PATH

Then do source ~/.bashrc for this to take effect.

1.3.2 2 by hand

1. Clone this repo

2. Run ./setup.sh. Since is required every time you log in, you can add it to your ~/.bashrc:

source <path to htcondenser>/setup.sh

N.B master branch should always be usable. I have added some tags; these are more “milestones” to show a
collection of changes (e.g. new functionality, serioud bugfix).

1.4 How do I update it?

If you installed it via pip, ismply run the same command as before:

pip install -U --user git+https://github.com/raggleton/htcondenser.git

If you cloned it locally first, cd into the cloned directory and simply git pull origin master.

1.5 How do I get started?

Look in the examples directory. There are several directories, each designed to show off some features:

• simple_job/simple_job.py: Submits 3 jobs, each running a simple shell script, but with different arguments.
Designed to show off how to use the htcondenser classes.

• simple_exe_job/simple_exe_job.py: Submits a job using a user-compiled exe, showsize. Before submission,
you must compile the exe: gcc showsize.c -o showsize. Test it runs ok by doing: ./showsize.

• simple_root6_job/simple_root6job.py: Run ROOT6 over a macro to produce a PDF and TFile with a TTree.
(TO FIX: Requires existing ROOT setup)

• simple_cmssw_job/simple_cmssw_job.py: Setup a CMSSW environment and run edmDumpEventContent
inside it. For a CRAB-alternative, see cmsRunCondor

• dag_example/dag_example.py: Run a DAG (directed-acyclic-graph) - this allows you to schedule jobs that rely
on other jobs to run first.

• dag_example_common/dag_example_common.py has a similar setup but shows the use of
common_input_files arg to save time/space.

For more info/background, see Usage.

1.6 Monitoring jobs/DAGs

If you submit your jobs as a DAG, then there is a simple monitoring tools, DAGstatus. See DAGstatus for more
details.

4 Chapter 1. htcondenser

https://github.com/raggleton/htcondenser/blob/master/examples/simple_job/simple_job.py
https://github.com/raggleton/htcondenser/blob/master/examples/simple_exe_job/simple_exe_job.py
https://github.com/raggleton/htcondenser/blob/master/examples/simple_root6_job/simple_root6_job.py
https://github.com/raggleton/htcondenser/tree/master/examples/simple_cmssw_job
https://github.com/raggleton/condor-comforter/tree/master/cmsRun
https://github.com/raggleton/htcondenser/blob/master/examples/dag_example/dag_example.py
https://github.com/raggleton/htcondenser/blob/master/examples/dag_example_common/dag_example_common.py

htcondenser Documentation, Release 0.2.0

1.7 A bit more detail

The aim of this library is to make submitting jobs to HTCondor a breeze. In particular, it is designed to make the
setting up of libraries & programs, as well as transport of any input/output files, as simple as possible, whilst respecting
conventions about files on HDFS, etc.

Each job is represented by a Job object. A group of Jobs is governed by a JobSet object. All Jobs in the
group share common settings: they run the same executable, same setup commands, output to same log directory, and
require the same resources. 1 JobSet = 1 HTCondor job description file. Individual Jobs within a JobSet can
have different arguments, and different input/output files.

For DAGs an additional DAGMan class is utilised. Jobs must also be added to the DAGMan object, with optional
arguments to specify which jobs must run as a prerequisite. This still retains the Job/JobSet structure as before for
simpler jobs, to simplify the sharing of common parameters and to reduce the number of HTCondor submit files.

Aside: DAGs (Directed Acyclic Graphs)

Essentially, a way of tying jobs together, with the requirement that some jobs can only run once their predecessors
have run successfully.
Graph: collection of nodes joined together by edges. Nodes represent jobs, and edges represent hierarchy.
(Note, not the y = sin(x) type of graph.)
Directed: edges between nodes have a direction. e.g. A ->- B means A precedes B, so B will only run once
A has finished successfully.
Acyclic: the graph cannot have cycles, e.g. A ->- B ->- C ->- A.
For an example see the diamond DAG (examples/dag_example):

There, jobB and jobC can only run once jobA has completed. Similarly, jobD can only run once jobB and jobC
have completed.

1.7. A bit more detail 5

htcondenser Documentation, Release 0.2.0

1.8 Full documentation

See htcondenser on readthedocs.

1.9 Common pitfalls

• ERROR: proxy has expired: you need to renew your Grid certificate: voms-proxy-init -voms
cms.

• DAG submits, but then immediately disappears from running condor_q -dag: check your .dagman.out file. At
the end, you will see something like:

Warning: failed to get attribute DAGNodeName
ERROR: log file /users/ab12345/htcondenser/examples/dag_example_common/./diamond.dag.nodes.log is on NFS.
Error: log file /users/ab12345/htcondenser/examples/dag_example_common/./diamond.dag.nodes.log on NFS

**** condor_scheduniv_exec.578172.0 (condor_DAGMAN) pid 601659 EXITING WITH STATUS 1

This is telling you that you cannot put the DAG file (and therefore its log/output files) on a Network File Storage (NFS)
due to the number of frequent writes. Instead put it on /storage or /scratch.

1.10 But I want XYZ!

Log an Issue, make a Pull Request, or email me directly.

1.11 I want to help

Take a look at CONTRIBUTING.

6 Chapter 1. htcondenser

https://htcondenser.readthedocs.org/en/latest/
https://github.com/raggleton/htcondenser/issues
https://github.com/raggleton/htcondenser/pulls

CHAPTER 2

Usage

Here we explain a bit more about the basic htcondenser classes.

Full details on the API can be found in htcondenser package

For all snippets below, I’ve used:

import htcondenser as ht

2.1 Some basic rules/principles

These go along with the code of conduct and help your jobs run smoothly.

• The worker node is restricted to what it can read/write to:

– Read-only: /software, /users

– Read + Write: /hdfs

• However /software and /users are all accessed over the network.

Danger: Reading from /users with multiple jobs running concurrently is guaranteed to lock up the whole
network, including soolin.

• Therefore, it is best to only use /hdfs for reading & writing to/from worker nodes.

• Similarly, JobSet.filename, .out_dir, .err_dir, .log_dir, and DAGMan.filename and
.status should be specified on /storage or similar - not /users.

• hadoop commands should be used with /hdfs - use of cp, rm, etc can lead to lockup with many or large files.

Therefore, some basic rules for htcondenser are:

• Workers shall read input files from HDFS

• Workers shall deposit their output files on HDFS

• Condor job files, DAG files, and log files will not be allowed on /users or /hdfs

2.2 Basic non-DAG jobs

There are only 2 basic classes needed: JobSet and Job.

Job represents a single job to be run - the execution of some program or script, with arguments, inputs and outputs.

7

https://wikis.bris.ac.uk/display/dic/Code+of+Conduct
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

htcondenser Documentation, Release 0.2.0

JobSet defines a group of Job s that share common properties (e.g. executable), so that they can all share a common
condor submit file.

By specifying various options, these classes are designed to handle:

• The transferring of any necessary files (including executable) to /hdfs.

• Writing the necessary condor job files.

• Setting up directories for logs, etc.

On the worker node, a wrapper script is run. This handles the transfer of any files before and after execution, and can
run a setup script prior to the main executable.

Typically one defines a JobSet instance for each different executable to be run:

job_set = ht.JobSet(exe='simple_worker_script.sh',
copy_exe=True,
setup_script=None,
filename='/storage/user1234/simple_job.condor',
out_dir='/storage/user1234/logs', out_file='$(cluster).$(process).out',
...
cpus=1, memory='50MB', disk='1',
hdfs_store='/hdfs/user/user1234')

Then one defines the relevant Job instances with job-specific arguments and files:

job = ht.Job(name='job1',
args=['simple_text.txt', ..., word],
input_files=['simple_text.txt'],
output_files=['simple_results_1.txt'],
quantity=1)

job = ht.Job(name='job2',
args=['simple_text.txt', ..., other_word],
input_files=['simple_text.txt'],
output_files=['simple_results_2.txt'],
quantity=1)

Note that the files specified by input_files will automatically get transferred to HDFS before the job starts. This
avoids reading directly from /users. Files specified by output_files will automatically be transferred to HDFS
from the worker node when the job ends. Note that any arguments you pass to the job will automatically be updated
to reflect any transfers to/from /hdfs: you do not need to worry about this.

Each Job must then be added to the governing JobSet:

job_set.add_job(job)

Finally, one submits the JobSet:

job_set.submit()

The JobSet object has several constructor arguments of interest:

• One must specify the script/executable to be run, including its path if it’s a non-builtin command:
./myProg.exe not myProg.exe, but grep is ok.

• The copy_exe option is used to distinguish between builtin commands which can be accessed without trans-
ferring the executable (e.g. grep) and local executables which do require transferring (e.g. myProg.exe).

• A setup script can also be defined, which will be executed before JobSet.exe. This is useful for setting up
the environment, e.g. CMSSW, or conda.

8 Chapter 2. Usage

htcondenser Documentation, Release 0.2.0

• There are also options for the STDOUT/STDERR/condor log files. These should be put on /storage.

• The hdfs_store argument specifies where on /hdfs any input/output files are placed.

• The transfer_hdfs_input option controls whether input files on HDFS are copied to the worker node, or
read directly from HDFS.

• common_input_files allows the user to specify files that should be transferred to the worker node for every
job. This is useful for e.g. python module depedence.

The Job object only has a few arguments, since the majority of configuration is done by the governing JobSet:

• name is a unique specifier for the Job

• args allows the user to specify argument unique to this job

• hdfs_mirror_dir specifies the location on /hdfs to store input & output files, as well as the job ex-
ecutable & setup script if JobSet.share_exe_setup = False. The default for this is the governing
JobSet.hdfs_store/Job.name

• input_files/output_files allows the user to specify any input files for this job. The output files
specified will automatically be transferred to hdfs_mirror_dir after the exe has finished.

2.3 Input and output file arguments

The input_files/output_files args work in the following manner.

For input_files:

• myfile.txt: the file is assumed to reside in the current directory. It will be copied to
Job.hdfs_mirror_dir. On the worker node, it will be copied to the worker.

• results/myfile.txt: similar to the previous case, however the directory structure will be removed,
and thus myfile.txt will end up in Job.hdfs_mirror_dir. On the worker node, it will be copied to
the worker.

• /storage/results/myfile.txt: same as for results/myfile.txt

• /hdfs/results/myfile.txt: since this file already exists on /hdfs it will not be copied. If
JobSet.transfer_hdfs_input is True it will be copied to the worker and accessed from there, other-
wise will be accessed directly from /hdfs.

For output_files:

• myfile.txt: assumes that the file will be produced in $PWD. This will be copied to
Job.hdfs_mirror_dir after JobSet.exe has finished.

• results/myfile.txt: assumes that the file will be produced as $PWD/results/myfile.txt. The
file will be copied to Job.hdfs_mirror_dir after JobSet.exe has finished, but the directory structure
will be removed.

• /storage/results/myfile.txt: same as for results/myfile.txt. Note that jobs cannot write
to anywhere but /hdfs.

• /hdfs/results/myfile.txt: this assumes a file myfile.txt will be produced by the exe. It will then
be copied to /hdfs/results/myfile.txt. This allows for a custom output location.

Rational: this behaviour may seem confusing. However, it tries to account for multiple scenarios and best practices:

• Jobs on the worker node should ideally read from /hdfs. /storage and /software are both readable-only
by jobs. However, to avoid any potential network lock-up, I figured it was best to put it all on /hdfs

2.3. Input and output file arguments 9

htcondenser Documentation, Release 0.2.0

• This has the nice side-effect of creating a ‘snapshot’ of the code used for the job, incase you ever need to refer
to it.

• If a file /storage/A/B.txt wanted to be used, how would one determine where to put it on /hdfs?

• The one downfall is that output files and input files end up in the same directory on /hdfs, which may note be
desirable.

Note that I am happy to discuss or change this behaviour - please log an issue: github issues

2.4 DAG jobs

Setting up DAG jobs is only slightly more complicated. We still use the same structure of Job s within a JobSet.
However, we now introduce the DAGMan class (DAG Manager), which holds information about all the jobs, and
crucially any inter-job dependence. The class is constructed with arguments for DAG file, and optionally for status file
(very useful for keeping track of lots of jobs):

LOG_STORE = "/storage/%s/dag_example/logs" % os.environ['LOGNAME']
dag_man = ht.DAGMan(filename=os.path.join(LOG_STORE, 'diamond.dag'),

status_file=os.path.join(LOG_STORE, 'diamond.status'),

Note that like for JobSet s, it is best to put the file on /storage and not /users.

You can then create Job and JobSet s as normal:

job_set1 = ht.JobSet(exe='script1.sh', ...
jobA = ht.Job(name='jobA', args='A')
jobB = ht.Job(name='jobB', args='B')

One then simply has to add Job s to the DAGMan instance, specifying any requisite Job s which must be completed
first:

dag_man.add_job(jobA)
dag_man.add_job(jobB, requires=[jobA])

Finally, instead of calling JobSet.submit(), we instead call DAGMan.submit() to submit all jobs:

dag_man.submit()

If DAGMan.status_file was defined, then one can uses the DAGStatus script to provide a user-friendly status
summary table. See DAGstatus.

2.5 Logging

The htcondenser library utilises the python logging library. If the user wishes to enable logging messages, one
simply has to add into their script:

import logging

log = logging.getLogger(__name__)

where __name__ resolves to e.g. htcondenser.core.Job. The user can then configure the level of messages
produced, and various other options. At logging.INFO level, this typically produces info about files being trans-
ferred, and job files written. See the full logging library documentation for more details.

10 Chapter 2. Usage

https://github.com/raggleton/htcondenser/issues
https://docs.python.org/2/library/logging.html

CHAPTER 3

DAGstatus

A handy tool for monitor jobs in a DAG: DAGStatus

3.1 Usage

Ensure that the DAGMan.status_filename attribute is set. Then pass that filename to DAGStatus to view the
current DAG status. Use the DAGMan.status_update_period attribute to control how often the status file is
updated.

If you are not using the htcondenser library then ensure you have the following line in your DAG description file:

NODE_STATUS_FILE <filename> <refresh interval in seconds>

See 2.10.12 Capturing the Status of Nodes in a File for more details.

11

https://github.com/raggleton/htcondenser/blob/master/htcondenser/bin/DAGStatus
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031012000000000000000

htcondenser Documentation, Release 0.2.0

General usage instructions::

usage: DAGStatus [-h] [-v] [-s] [statusFile [statusFile ...]]

Code to present the DAGman status output in a more user-friendly manner. Add
this directory to PATH to run DAGStatus it from anywhere.

positional arguments:
statusFile name(s) of DAG status file(s), separated by spaces

optional arguments:
-h, --help show this help message and exit
-v, --verbose enable debugging mesages
-s, --summary only printout very short summary of all jobs

3.2 Customisation

It is possible to customise the coloured output to suit your personal preferences. This is done in DAGstatus_config.json.
The user must define any colours or styles used in the colors object. These can then be used in the statuses and
formatting objects. Any combination of colours/styles can be used, by concatenating with a +.

Note that concatenating two colours will only use the rightmost colour.

12 Chapter 3. DAGstatus

https://github.com/raggleton/htcondenser/blob/master/htcondenser/bin/DAGStatus_config.json

CHAPTER 4

FAQ

Can a DAG have 1 node/Job?

Yes. You can still have the advantages of auto-retry, DAGStatus monitoring, and other DAG options.

What are some cool uses of DAGs?

In addition to the 1-node DAG, you can submit multiple “layers” of processing one go.

For example: say you want to run analysis code over many input files, then hadd the files, and finally delete all the
intermediate files. This is achievable with a DAG that looks like this:

13

htcondenser Documentation, Release 0.2.0

14 Chapter 4. FAQ

CHAPTER 5

Changelog

5.1 v0.3.0 (27th October 2016)

• Globbing (aka wildcards) now supported in input_output file args. This allows for e.g. CMSSW_*/src/Hist.root

• DAGstatus now has options for colouring based on the detailed status column. This means one can now differ-
entiate between idle and running jobs

5.2 v0.2.0 (14th June 2016)

• Move setup to pip with big thanks to @kreczko https://github.com/raggleton/htcondenser/pull/4:

– Move python classes out of htcondenser/core into just htcondenser

– Rename/move exe/DAGStatus.py to bin/DAGStatus to aid pip deployment

• Use hadoop command to mkdir on HDFS, not os.makedirs

• Add check for output file on worker node before transfer

• Add in check to make output dir on HDFS if it doesn’t already exist

• Change the readthedocs theme

5.3 v0.1.0 (12th May 2016)

• Initial release.

• Includes classes for jobs and dags.

• Handles transfers to/from HDFS.

• DAG monitoring tool included.

• Basic documentation on readthedocs with examples.

15

https://github.com/raggleton/htcondenser/pull/4

htcondenser Documentation, Release 0.2.0

16 Chapter 5. Changelog

CHAPTER 6

htcondenser package

6.1 Submodules

6.1.1 htcondenser.common module

Functions/classes that are commonly used.

class htcondenser.common.FileMirror(original, hdfs, worker)
Bases: object

Simple class to store location of mirrored files: the original, the copy of HDFS, and the copy on the worker
node.

htcondenser.common.check_certificate()
Check the user’s grid certificate is valid, and > 1 hour time left.

Raises RuntimeError – If certificate not valid. If certificate valid but has < 1 hour remaining.

htcondenser.common.check_dir_create(directory)
Check to see if directory exists, if not create it.

Parameters directory (str) – Name of directory to check and create.

Raises IOError – If ‘directory’ already exists but is a file.

htcondenser.common.check_good_filename(filename)
Checks the filename isn’t rubbish e.g. blank, a period

Raises OSError – If bad filename

htcondenser.common.cp_hdfs(src, dest, force=True)
Copy file between src and destination, allowing for one or both to be on HDFS.

Uses the hadoop commands if possible to ensure safe transfer.

Parameters

• src (str) – Source filepath. For files on HDFS, use the full filepath, /hdfs/...

• dest (str) – Destination filepath. For files on HDFS, use the full filepath, /hdfs/...

• force (bool, optional) – If True, will overwrite destination file if it already exists.

htcondenser.common.date_now(fmt=’%d %B %Y’)
Get current date as a string.

Parameters fmt (str, optional) – Format string for time. Default is %d %B %Y. See strftime
docs.

17

htcondenser Documentation, Release 0.2.0

Returns Current date.

Return type str

htcondenser.common.date_time_now(fmt=’%H:%M:%S %d %B %Y’)
Get current date and time as a string.

Parameters fmt (str, optional) – Format string for time. Default is %H:%M:%S %d %B
%Y. See strftime docs.

Returns Current date and time.

Return type str

htcondenser.common.time_now(fmt=’%H:%M:%S’)
Get current time as a string.

Parameters fmt (str, optional) – Format string for time. Default is %H:%M:%S. See strf-
time docs.

Returns Current time.

Return type str

6.1.2 htcondenser.dagman module

DAGMan class to handle DAGs in HTCondor.

class htcondenser.dagman.DAGMan(filename=’jobs.dag’, status_file=’jobs.status’, sta-
tus_update_period=30, dot=None, other_args=None)

Bases: object

Class to implement DAG, and manage Jobs and dependencies.

Parameters

• filename (str) – Filename to write DAG jobs. This cannot be on /users, must be on
NFS drive, e.g. /storage.

• status_file (str, optional) – Filename for DAG status file. See
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031012000000000000000

• status_update_period (int or str, optional) – Refresh period for DAG
status file in seconds.

• dot (str, optional) – Filename for dot file. dot can then be used to generate a pictoral
representation of jobs in the DAG and their relationships.

• other_args (dict, optional) – Dictionary of {variable: value} for other DAG op-
tions.

JOB_VAR_NAME
str

Name of variable to hold job arguments string to pass to condor_worker.py, required in both DAG file and
condor submit file.

JOB_VAR_NAME = ‘jobOpts’

add_job(job, requires=None, job_vars=None, retry=None)
Add a Job to the DAG.

Parameters

• job (Job) – Job object to be added to DAG

18 Chapter 6. htcondenser package

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031012000000000000000

htcondenser Documentation, Release 0.2.0

• requires (str, Job, iterable[str], iterable[Job], optional) –
Individual or a collection of Jobs or job names that must run first before this job can
run. i.e. the job(s) specified here are the parents, whilst the added job is their child.

• job_vars (str, optional) – String of job variables specifically for the DAG. Note
that program arguments should be set in Job.args not here.

• retry (int or str, optional) – Number of retry attempts for this job. By default
the job runs once, and if its exit code != 0, the job has failed.

Raises

• KeyError – If a Job with that name has already been added to the DAG.

• TypeError – If the job argument is not of type Job. If requires argument is not of type
str, Job, iterable(str) or iterable(Job).

check_job_acyclic(job)
Check no circular requirements, e.g. A ->- B ->- A

Get all requirements for all parent jobs recursively, and check for the presence of this job in that list.

Parameters job (Job or str) – Job or job name to check

Raises RuntimeError – If job has circular dependency.

check_job_requirements(job)
Check that the required Jobs actually exist and have been added to DAG.

Parameters job (Job or str) – Job object or name of Job to check.

Raises

• KeyError – If job(s) have prerequisite jobs that have not been added to the DAG.

• TypeError – If job argument is not of type str or Job, or an iterable of strings or Jobs.

generate_dag_contents()
Generate DAG file contents as a string.

Returns DAG file contents

Return type str

generate_job_requirements_str(job)
Generate a string of prerequisite jobs for this job.

Does a check to make sure that the prerequisite Jobs do exist in the DAG, and that DAG is acyclic.

Parameters job (Job or str) – Job object or name of job.

Returns Job requirements if prerequisite jobs. Otherwise blank string.

Return type str

Raises TypeError – If job argument is not of type str or Job.

generate_job_str(job)
Generate a string for job, for use in DAG file.

Includes condor job file, any vars, and other options e.g. RETRY. Job requirements (parents) are handled
separately in another method.

Parameters job (Job or str) – Job or job name.

Returns name – Job listing for DAG file.

Return type str

6.1. Submodules 19

htcondenser Documentation, Release 0.2.0

Raises TypeError – If job argument is not of type str or Job.

get_jobsets()
Get a list of all unique JobSets managing Jobs in this DAG.

Returns name – List of unique JobSet objects.

Return type list

submit(force=False, submit_per_interval=10)
Write all necessary submit files, transfer files to HDFS, and submit DAG. Also prints out info for user.

Parameters

• force (bool, optional) – Force condor_submit_dag

• submit_per_interval (int, optional) – Number of DAGMan submissions
per interval. The default 10 every 5 seconds.

Raises CalledProcessError – If condor_submit_dag returns non-zero exit code.

write()
Write DAG to file and causes all Jobs to write their HTCondor submit files.

6.1.3 htcondenser.job module

Classes to describe individual job, as part of a JobSet.

class htcondenser.job.Job(name, args=None, input_files=None, output_files=None, quantity=1,
hdfs_mirror_dir=None)

Bases: object

One job instance in a JobSet, with defined arguments and inputs/outputs.

Parameters

• name (str) – Name of this job. Must be unique in the managing JobSet, and DAGMan.

• args (list[str] or str, optional) – Arguments for this job.

• input_files (list[str], optional) – List of input files to be transferred across
before running executable. If the path is not on HDFS, a copy will be placed on HDFS under
hdfs_store/job.name. Otherwise, the original on HDFS will be used.

• output_files (list[str], optional) – List of output files to be transferred
across to HDFS after executable finishes. If the path is on HDFS, then that will be the
destination. Otherwise hdfs_mirror_dir will be used as destination directory.

e.g. myfile.txt => Job.hdfs_mirror_dir/myfile.txt, results/myfile.txt =>
Job.hdfs_mirror_dir/myfile.txt, /hdfs/A/B/myfile.txt => /hdfs/A/B/myfile.txt

• quantity (int, optional) – Quantity of this Job to submit.

• hdfs_mirror_dir (str, optional) – Mirror directory for files to be put on HDFS.
If not specified, will use hdfs_mirror_dir/self.name, where hdfs_mirror_dir is taken from
the manager. If the directory does not exist, it is created.

Raises

• KeyError – If the user tries to create a Job in a JobSet which already manages a Job with
that name.

• TypeError – If the user tries to assign a manager that is not of type JobSet (or a derived
class).

20 Chapter 6. htcondenser package

htcondenser Documentation, Release 0.2.0

generate_job_arg_str()
Generate arg string to pass to the condor_worker.py script.

This includes the user’s args (in self.args), but also includes options for input and output files, and automat-
ically updating the args to account for new locations on HDFS or worker node. It also includes common
input files from managing JobSet.

Returns Argument string for the job, to be passed to condor_worker.py

Return type str

manager
Returns the Job’s managing JobSet.

setup_input_file_mirrors(hdfs_mirror_dir)
Attach a mirror HDFS location for each non-HDFS input file. Also attaches a location for the worker node,
incase the user wishes to copy the input file from HDFS to worker node first before processing.

Will correctly account for managing JobSet’s preference for share_exe_setup. Since input_file_mirrors is
used for generate_job_arg_str(), we need to add the exe/setup here, even though they don’t get transferred
by the Job itself.

Parameters hdfs_mirror_dir (str) – Location of directory to store mirrored copies.

setup_output_file_mirrors(hdfs_mirror_dir)
Attach a mirror HDFS location for each output file.

Parameters hdfs_mirror_dir (str) – Location of directory to store mirrored copies.

transfer_to_hdfs()
Transfer files across to HDFS.

Auto-creates HDFS mirror dir if it doesn’t exist, but only if there are 1 or more files to transfer.

Will not transfer exe or setup script if manager.share_exe_setup is True. That is left for the manager to do.

6.1.4 htcondenser.jobset module

Class to describe groups of jobs sharing common settings, that becomes one condor submit file.

class htcondenser.jobset.JobSet(exe, copy_exe=True, setup_script=None, filename=’jobs.condor’,
out_dir=’logs’, out_file=’$(cluster).$(process).out’,
err_dir=’logs’, err_file=’$(cluster).$(process).err’,
log_dir=’logs’, log_file=’$(cluster).$(process).log’, cpus=1,
memory=‘100MB’, disk=‘100MB’, certificate=False,
transfer_hdfs_input=True, share_exe_setup=True, com-
mon_input_files=None, hdfs_store=None, dag_mode=False,
other_args=None)

Bases: object

Manages a set of Jobs, all sharing a common submission file, log locations, resource request, and setup proce-
dure.

Parameters

• exe (str) – Name of executable for this set of jobs. Note that path must be specified, e.g.
‘./myexe’

• copy_exe (bool, optional) – If True, copies the executable to HDFS. Set False for
builtins e.g. awk

6.1. Submodules 21

htcondenser Documentation, Release 0.2.0

• setup_script (str, optional) – Shell script to execute on worker node to setup
necessary programs, libs, etc.

• filename (str, optional) – Filename for HTCondor job description file.

• out_dir (str, optional) – Directory for STDOUT output. Will be automatically
created if it does not already exist. Raises an OSError if already exists but is not a directory.

• out_file (str, optional) – Filename for STDOUT output.

• err_dir (str, optional) – Directory for STDERR output. Will be automatically
created if it does not already exist. Raises an OSError if already exists but is not a directory.

• err_file (str, optional) – Filename for STDERR output.

• log_dir (str, optional) – Directory for log output. Will be automatically created if
it does not already exist. Raises an OSError if already exists but is not a directory.

• log_file (str, optional) – Filename for log output.

• cpus (int, optional) – Number of CPU cores for each job.

• memory (str, optional) – RAM to request for each job.

• disk (str, optional) – Disk space to request for each job.

• certificate (bool, optional) – Whether the JobSet requires the user’s grid cer-
tificate.

• transfer_hdfs_input (bool, optional) – If True, transfers input files on HDFS
to worker node first. Auto-updates program arguments to take this into account. Otherwise
files are read directly from HDFS. Note that this does not affect input files not on HDFS -
they will be transferred across regardlass.

• share_exe_setup (bool, optional) – If True, then all jobs will use the same exe
and setup files on HDFS. If False, each job will have their own copy of the exe and setup
script in their individual job folder.

• common_input_files (list[str], optional) – List of common input files for
each job. Unlike Job input files, there will only be 1 copy of this input file made on HDFS.
Not sure if this will break anything...

• hdfs_store (str, optional) – If any local files (on /user) needs to be transferred to
the job, it must first be stored on /hdfs. This argument specifies the directory where those
files are stored. Each job will have its own copy of all input files, in a subdirectory with the
Job name. If this directory does not exist, it will be created.

• other_args (dict, optional) – Dictionary of other job options to write to HTCon-
dor submit file. These will be added in before any arguments or jobs.

Raises

• OSError – If any of out_file, err_file, or log_file, are blank or ‘.’.

• OSError – If any of out_dir, err_dir, log_dir, hdfs_store cannot be created.

add_job(job)
Add a Job to the collection of jobs managed by this JobSet.

Parameters job (Job) – Job object to be added.

Raises

• TypeError – If job argument isn’t of type Job (or derived type).

• KeyError – If a job with that name is already governed by this JobSet object.

22 Chapter 6. htcondenser package

htcondenser Documentation, Release 0.2.0

generate_file_contents(template, dag_mode=False)
Create a job file contents from a template, replacing necessary fields and adding in all jobs with necessary
arguments.

Can either be used for normal jobs, in which case all jobs added, or for use in a DAG, where a placeholder
for any job(s) is used.

Parameters

• template (str) – Job template as a single string, including tokens to be replaced.

• dag_mode (bool, optional) – If True, then submit file will only contain place-
holder for job args. This is so it can be used in a DAG. Otherwise, the submit file will
specify each Job attached to this JobSet.

Returns Completed job template.

Return type str

Raises IndexError – If the JobSet has no Jobs attached.

setup_common_input_file_mirrors(hdfs_mirror_dir)
Attach a mirror HDFS location for each non-HDFS input file. Also attaches a location for the worker node,
incase the user wishes to copy the input file from HDFS to worker node first before processing.

Parameters hdfs_mirror_dir (str) – Location of directory to store mirrored copies.

submit(force=False)
Write HTCondor job file, copy necessary files to HDFS, and submit. Also prints out info for user.

Parameters force (bool, optional) – Force condor_submit

Raises CalledProcessError – If condor_submit returns non-zero exit code.

transfer_to_hdfs()
Copy any necessary input files to HDFS.

This transfers both common exe/setup (if self.share_exe_setup == True), and the individual files required
by each Job.

write(dag_mode)
Write jobs to HTCondor job file.

6.2 Module contents

A simple library for submitting jobs on the DICE system at Bristol.

6.2. Module contents 23

htcondenser Documentation, Release 0.2.0

24 Chapter 6. htcondenser package

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

htcondenser Documentation, Release 0.2.0

26 Chapter 7. Indices and tables

Python Module Index

h
htcondenser, 23
htcondenser.common, 17
htcondenser.dagman, 18
htcondenser.job, 20
htcondenser.jobset, 21

27

htcondenser Documentation, Release 0.2.0

28 Python Module Index

Index

A
add_job() (htcondenser.dagman.DAGMan method), 18
add_job() (htcondenser.jobset.JobSet method), 22

C
check_certificate() (in module htcondenser.common), 17
check_dir_create() (in module htcondenser.common), 17
check_good_filename() (in module htcon-

denser.common), 17
check_job_acyclic() (htcondenser.dagman.DAGMan

method), 19
check_job_requirements() (htcon-

denser.dagman.DAGMan method), 19
cp_hdfs() (in module htcondenser.common), 17

D
DAGMan (class in htcondenser.dagman), 18
date_now() (in module htcondenser.common), 17
date_time_now() (in module htcondenser.common), 18

F
FileMirror (class in htcondenser.common), 17

G
generate_dag_contents() (htcondenser.dagman.DAGMan

method), 19
generate_file_contents() (htcondenser.jobset.JobSet

method), 22
generate_job_arg_str() (htcondenser.job.Job method), 20
generate_job_requirements_str() (htcon-

denser.dagman.DAGMan method), 19
generate_job_str() (htcondenser.dagman.DAGMan

method), 19
get_jobsets() (htcondenser.dagman.DAGMan method),

20

H
htcondenser (module), 23
htcondenser.common (module), 17
htcondenser.dagman (module), 18

htcondenser.job (module), 20
htcondenser.jobset (module), 21

J
Job (class in htcondenser.job), 20
JOB_VAR_NAME (htcondenser.dagman.DAGMan at-

tribute), 18
JobSet (class in htcondenser.jobset), 21

M
manager (htcondenser.job.Job attribute), 21

S
setup_common_input_file_mirrors() (htcon-

denser.jobset.JobSet method), 23
setup_input_file_mirrors() (htcondenser.job.Job method),

21
setup_output_file_mirrors() (htcondenser.job.Job

method), 21
submit() (htcondenser.dagman.DAGMan method), 20
submit() (htcondenser.jobset.JobSet method), 23

T
time_now() (in module htcondenser.common), 18
transfer_to_hdfs() (htcondenser.job.Job method), 21
transfer_to_hdfs() (htcondenser.jobset.JobSet method),

23

W
write() (htcondenser.dagman.DAGMan method), 20
write() (htcondenser.jobset.JobSet method), 23

29

	htcondenser
	What is it?
	What do I need?
	How do I install it?
	1 via pip
	2 by hand

	How do I update it?
	How do I get started?
	Monitoring jobs/DAGs
	A bit more detail
	Full documentation
	Common pitfalls
	But I want XYZ!
	I want to help

	Usage
	Some basic rules/principles
	Basic non-DAG jobs
	Input and output file arguments
	DAG jobs
	Logging

	DAGstatus
	Usage
	Customisation

	FAQ
	Changelog
	v0.3.0 (27th October 2016)
	v0.2.0 (14th June 2016)
	v0.1.0 (12th May 2016)

	htcondenser package
	Submodules
	htcondenser.common module
	htcondenser.dagman module
	htcondenser.job module
	htcondenser.jobset module

	Module contents

	Indices and tables
	Python Module Index

