
HPOlib Documentation
Release 1

Matthias Feurer, Katharina Eggensperger

Sep 20, 2018

Contents

1 Installation Instructions For HPOlib 3
1.1 Installing inside an virtualenv . 3

2 Algorithms and Datasets 7
2.1 Benchmarks Overview . 7
2.2 Description . 7

3 Manual 11
3.1 How to run listed benchmarks . 11
3.2 How to run your own benchmarks . 14
3.3 Configure the HPOlib . 16
3.4 How to run your own optimizer . 19
3.5 Convert Search Spaces . 21
3.6 Test/Validate the Best Configuration(s) . 21
3.7 Dispatchers: Different ways to invoke the Target Algorithm . 21

4 Optimization algorithms 23
4.1 Configuration Runner . 23

5 Plotting results 25
5.1 Exporting results . 25

6 The HPOlib Structure 27

7 Citing the HPOlib 29

8 Indices and tables 31

i

ii

HPOlib Documentation, Release 1

This package is discontinued. We have merged all changes that we have done since the initial release into the master
branch, hoping that they are useful for some of you. The current software has several known bugs, which can be found
in the issue tracker. In case someone wants to continue working on HPOlib, we’re happy to accept and merge pull
requests. If you’re looking for a set of benchmarks, please use the predecessor HPOlib2. HPOlib2 does not contain
any optimization packages. We will add a list of Bayesian optimization packages to the documentation of HPOlib2.

HPOlib is a package which aiming to simplify the development and use of hyperparameter optimization algorithms.
It features benchmarks which have been used in papers introducing state-of-the-art hyperparameter optimization tools
like spearmint and hyperopt. Furthermore, it provides a common interface to several Bayesian optimization packages
as well as the possibility to add your own optimization package.

Contents:

Contents 1

http://github.com/automl/HPOlib2

HPOlib Documentation, Release 1

2 Contents

CHAPTER 1

Installation Instructions For HPOlib

First:

git clone https://github.com/automl/HPOlib.git

1.1 Installing inside an virtualenv

1. Get virtualenv, then load a freshly created virtualenv. (If you are not familiar with virtualenv, you might want to
read more about it)

pip install virtualenv
virtualenv virtualHPOlib
source virtualHPOlib/bin/activate

3. Install numpy, scipy, matplotlib, as this doesn’t work through setup.py.

pip install numpy
pip install scipy
pip install matplotlib

This may take some time. Afterwards you can verify having those libs installed with:

pip freeze

4. run setup.py

python setup.py install

This will install HPOlib and some requirements (networkx, protobuf, pymongo). Be sure your system is
connected to the internet, so setup.py can download optimizer and runsolver code. Your environment now
looks like that

3

http://www.virtualenv.org/en/latest/virtualenv.html#installation
http://www.virtualenv.org/en/latest/virtualenv.html)

HPOlib Documentation, Release 1

pip freeze

HPOlib==0.0.1
argparse==1.2.1
backports.ssl-match-hostname==3.4.0.2
distribute==0.7.3
matplotlib==1.3.1
networkx==1.8.1
nose==1.3.0
numpy==1.8.0
protobuf==2.5.0
pymongo==2.6.3
pyparsing==2.0.1
python-dateutil==2.2
scipy==0.13.3
six==1.5.2
tornado==3.2
wsgiref==0.1.2

and

ls optimizers/smac
smac_2_10_00-dev_parser.py smac_2_10_00-dev.py smac_2_10_00-dev_src

→˓smac_2_10_00-devDefault.cfg

5. You can now run, e.g. smac with 200 evaluations on the branin function:

cd benchmarks/branin
HPOlib-run -o ../../optimizers/smac/smac_2_10_00-dev -s 23

This takes depending on your machine ~2 minutes. You can now plot the results of your first experiment:

HPOlib-plot FIRSTRUN smac_2_10_00-dev_23_*/smac_*.pkl -s `pwd`/Plots/

You can test the other optimizers (spearmint will take quite longer 30min):

HPOlib-run -o ../../optimizers/tpe/h -s 23
HPOlib-run -o ../../optimizers/spearmint/spearmint_april2013 -s 23

and again:

HPOlib-plot SMAC smac_2_10_00-dev_23_*/smac_*.pkl TPE hyperopt_august2013_mod_23_
→˓*/hyp*.pkl SPEARMINT spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

and to check the general performance on this super complex benchmark:

HPOlib-plot BRANIN smac_2_10_00-dev_23_*/smac_*.pkl hyperopt_august2013_mod_23_*/
→˓hyp*.pkl spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

Problems during installation

python setup.py crashes with ImportError: cannot import name Feature during installing py-
mongo. This happens due to pymongo using a deprecated feature :python:’Feature’, which is not available in the
setuptools version (>2.2). This error is fixed, but not yet available on PYPI.

Solution: Downgrade setuptools with pip install setuptools==2.2 and try again or install pymongo
manually.

Updating optimizers We also provide an updated and adjusted version of spearmint. To also install this version do:

4 Chapter 1. Installation Instructions For HPOlib

HPOlib Documentation, Release 1

cd optimizers
rm spearmint_gitfork_mod_src
git clone https://github.com/automl/spearmint.git
mv spearmint spearmint_gitfork_mod_src

1.1. Installing inside an virtualenv 5

HPOlib Documentation, Release 1

6 Chapter 1. Installation Instructions For HPOlib

CHAPTER 2

Algorithms and Datasets

2.1 Benchmarks Overview

To run these algorithms and datasets with hyperparameter optimizers you need to install

1. the HPOlib software from here

2. the benchmark data: An algorithm and depending on the benchmark a wrapper and/or data

Then the benchmarks can easily be used, as described here; Our software allows to integrate your own benchmarks as
well. Here is the HowTo.

NOTE: For all bechmarks crossvalidation is possible, but not extra listed. Although possible, it obviously makes no
sense to do crossvalidation on functions like Branin and pre-computed results like the LDA ongrid. Whether it makes
sense to do so is indicated in the column CV.

2.2 Description

2.2.1 Branin, RKHS, Hartmann 6d, Michalewicz and Camelback Function

This benchmark already comes with the basic HPOlib bundle.

Dependencies: None Recommended: None

Branin, RKHS, Camelback, Michalewicz and the Hartmann 6d function are five simple test functions, which are easy
and cheap to evaluate. More test functions can be found here.

Branin has three global minima at (-pi, 12.275), (pi, 2.275), (9.42478, 2.475) where f(x)=0.397887.

RKHS has single global minima at x=0.89235 where f(x)=5.73839.

Camelback has two global minima at (0.0898, -0.7126) and (-0.0898, 0.7126) where f(x) = -1.0316

Hartmann 6d is more difficult with 6 local minima and one global optimum at (0.20169, 0.150011, 0.476874, 0.275332,
0.311652, 0.6573) where f(x)=3.32237.

7

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

HPOlib Documentation, Release 1

Michalewicz is usually evaluated on the hypercube xi [0, pi], for all i = 1, . . . , d. For d=10 its global minima value is
f(x) = -9.66015.

2.2.2 LDA ongrid/SVM ongrid

This benchmark already comes with the basic HPOlib bundle.

Dependencies: None Recommended: None

Online Latent Dirichlet Allocation (LDA) is a very expensive algorithm to evaluate. To make this less time consuming,
a 6x6x8 grid of hyperparameter configurations resulting in 288 data points was preevaluated. This grid forms the search
space.

Same holds for the Support Vector Machine task, which has 1400 evaluated configurations.

The Online LDA code is written by Hoffman et. al. and the procedure is explained in Online Learning for Latent
Dirichlet Allocation. Latent Structured Support Vector Machine code is written by Kevin Mill et. al. and explained in
the paper Max-Margin Min-Entropy Models. The grid search was performed by Jasper Snoek and previously used in
Practical Bayesian Optimization of Machine Learning Algorithms.

Logistic Regression

Dependencies: theano, scikit-data Recommended: CUDA

NOTE: scikit-data downloads the dataset from the internet when using the benchmark for the first time. NOTE: This
benchmarks can use a gpu, but this feature is switched off to run it off-the-shelf. To use a gpu you need to change the
THEANO flags in config.cfg. See the HowTo for changing to gpu and for further information about the THEANO
configuration here NOTE: In order to run the benchmark you must adjust the paths in the config files.

You can download this benchmark by clicking here or running this command from a shell:

wget http://www.automl.org/logreg.tar.gz
tar -xf logistic.tar.gz

This benchmark performs a logistic regression to classifiy the popular MNIST dataset. The implementation is Theano
based, so that a GPU can be used. The software is written by Jasper Snoek and was first used in the paper Practical
Bayesian Optimization of Machine Learning Algorithms.

NOTE: This benchmark comes with the version of hyperopt-nnet which we used for our experiments. There might be
a newer version with improvements.

HP-NNet and HP-DBNet

Dependencies: theano, scikit-data Recommended: CUDA

NOTE: This benchmark comes with the version of hyperopt-nnet which we used for our experiments. There might
be a newer version with improvements. NOTE: scikit-data downloads the dataset from the internet when using the
benchmark for the first time. NOTE: In order to run the benchmark you must adjust the paths in the config files.

You can download this benchmark by clicking here or running this command from a shell:

The HP-Nnet (HP-DBNet) is a Theano based implementation of a (deep) neural network. It can be run on a CPU, but
is drastically faster on a GPU (please follow the theano flags instructions of the logistic regression example). Both of
them are written by James Bergstra and were used in the papers Random Search for Hyper-Parameter Optimization
and Algorithms for Hyper-Parameter Optimization.

8 Chapter 2. Algorithms and Datasets

http://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
http://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
http://jmlr.org/proceedings/papers/v22/miller12/miller12.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
http://deeplearning.net/software/theano/
http://jaberg.github.io/skdata/
https://developer.nvidia.com/cuda-downloads
http://deeplearning.net/software/theano/library/config.html#envvar-THEANO_FLAGS
http://www.automl.org/logreg.tar.gz
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
https://github.com/hyperopt/hyperopt-nnet
http://deeplearning.net/software/theano/
http://jaberg.github.io/skdata/
https://developer.nvidia.com/cuda-downloads
https://github.com/hyperopt/hyperopt-nnet
http://www.automl.org/hpnnet.tar.gz
http://jmlr.org/papers/v13/bergstra12a.html
http://books.nips.cc/papers/files/nips24/NIPS2011_1385.pdf

HPOlib Documentation, Release 1

AutoWEKA

NOTE: AutoWEKA is not yet available for download!

2.2. Description 9

HPOlib Documentation, Release 1

10 Chapter 2. Algorithms and Datasets

CHAPTER 3

Manual

3.1 How to run listed benchmarks

After having succesfully installed the basic HPOlib you can download more benchmarks or create your own. Each
benchmarks resides in an own directory and consists of an algorithm (+ wrapper if necessary), a configuration file and
several hyperparameter configuration descriptions. If you want to use one of the benchmarks listed here, follow these
steps:

Let’s say you want to run the Reproducing Kernel Hilbert space (RKHS) function:

1. RKHS is located with other benchmarks inside HPOlib/benchmarks folder. To run the benchmark first go
inside that folder.

cd HPOlib/benchmarks/rkhs

2. Inside this folder you can run one the optimizers (smac, tpe or spearmint) on RKHS function using HPOlib :

HPOlib-run -o ../../optimizers/smac/smac_2_10_00-dev -s 23
HPOlib-run -o ../../optimizers/tpe/h -s 23
HPOlib-run -o ../../optimizers/spearmint/spearmint_april2013 -s 23

Or more generally

HPOlib-run /path/to/optimizers/<tpe/hyperopt|smac|spearmint|tpe/random> [-s seed]
→˓[-t title]

By default, the optimizers will run 200 evaluations on the function. For smac and tpe this will take about 2 mins
but for spearmint it will be longer than 45 mins, so change number_of_jobs parameter in config.cfg
file in same folder to 50 or less.

[SMAC]
p = params.pcs

[TPE]

(continues on next page)

11

https://github.com/iassael/function-rkhs

HPOlib Documentation, Release 1

(continued from previous page)

space = space.py

[SPEARMINT]
config = config.pb

[HPOLIB]
console_output_delay = 2.0
function = python ../rkhs.py
number_of_jobs = 200 #Change this to 50.
result_on_terminate = 1000

3. Now you can plot results for the experiment in different ways:

Plot the results of only one optimizer:

HPOlib-plot FIRSTRUN smac_2_10_00-dev_23_*/smac_*.pkl -s `pwd`/Plots/

The Plots can be found inside folder named Plots in current working directory (HPOlib/benchmarks/
rkhs)

and if you have run all optimizers and want to compare their results:

HPOlib-plot SMAC smac_2_10_00-dev_23_*/smac_*.pkl TPE hyperopt_august2013_mod_23_
→˓*/hyp*.pkl SPEARMINT spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

12 Chapter 3. Manual

HPOlib Documentation, Release 1

and to check the general performance on this super complex benchmark:

HPOlib-plot RKHS smac_2_10_00-dev_23_*/smac_*.pkl hyperopt_august2013_mod_23_*/
→˓hyp*.pkl spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

3.1. How to run listed benchmarks 13

HPOlib Documentation, Release 1

3.2 How to run your own benchmarks

To run your own benchmark you basically need the software for the benchmark and a search space description for the
optimizers smac, spearmint and tpe. In order to work with HPOlib you must put these files into a special directory
structure. It is the same directory structure as for the benchmarks which you can download on this website and is
explained in the list below. The following lines will guide you through the creation of such a benchmark. Here is a
rough guide on what files you need:

• One directory having the name of the optimizer for each optimizer you want to use. Currently,
these are hyperopt_august2013_mod, random_hyperopt2013_mod, smac_2_10_00-dev and
spearmint_april2013_mod.

• One search space for each optimizer. This must be placed in the directory with the name of the optimizer. You
can convert your searchspace to other formats with HPOlib_convert from and to all three different optimizers.

• An executable which implements the HPOlib interface. Alternatively, this can be a wrapper which parser the
command line arguments, calls your target algorithm and returns the result to the HPOlib.

• A configuration file config.cfg. See the section on configuring the HPOlib for details.

3.2.1 Example

First, create a directory myBenchmark inside the HPOlib/benchmarks directory. The executable HPOlib/
benchmarks/myBenchmark/myAlgo.py with the target algorithm can be as easy as

import math
import time

import HPOlib.benchmark_util as benchmark_util

def myAlgo(params, **kwargs):
Params is a dict that contains the params
As the values are forwarded as strings you might want to convert and check them

if not params.has_key('x'):
raise ValueError("x is not a valid key in params")

x = float(params["x"])

if x < 0 or x > 3.5:
raise ValueError("x not between 0 and 3.5: %s" % x)

**kwargs contains further information, like
for crossvalidation
kwargs['folds'] is 1 when no cv
kwargs['fold'] is the current fold. The index is zero-based

Run your algorithm and receive a result, you want to minimize
result = -math.sin(x)

return result

if __name__ == "__main__":
starttime = time.time()
Use a library function which parses the command line call
args, params = benchmark_util.parse_cli()

(continues on next page)

14 Chapter 3. Manual

HPOlib Documentation, Release 1

(continued from previous page)

result = myAlgo(params, **args)
duration = time.time() - starttime
print "Result for this algorithm run: %s, %f, 1, %f, %d, %s" % \

("SAT", abs(duration), result, -1, str(__file__))

As you can see, the script parses command line arguments, calls the target function which is implemented in myAlgo,
measures the runtime of the target algorithm and prints a return string to the command line. All relevant information
is then extracted by the HPOlib. If you write a new algorithm/wrapper script, you must parse the following call:

target_algorithm_executable --fold 0 --folds 1 --params [[-param1 value1]]

The return string must take the following form:

Result for this algorithm run: SAT, <duration>, 1, <result>, -1, <additional
→˓information>

This return string is not yet optimal and exists for historic reasons. It’s subject to change in one of the next versions of
HPOlib.

Next, create HPOlib/benchmarks/myBenchmark/config.cfg, which is the configuration file. It tells the
HPOlib everything about the benchmark and looks like this:

[TPE]
space = mySpace.py

[HPOLIB]
function = python ../myAlgo.py
number_of_jobs = 200
worst possible result
result_on_terminate = 0

Since the hyperparameter optimization algorithm must know about the variables and their possible values for
your target algorithms, the next step is to specify these in a so-called search space. Create a new directory
hyperopt_august2013_mod inside the HPOlib/benchmarks/myBenchmark directory and save these two
lines of python in a file called mySpace.py. If you look at the config.cfg, we already the use of the newly
created search space. As problems get more complex, you may want to specify more complex search spaces. It is
recommended to do this in the TPE format, then translate it into the SMAC format which can then be translated into
the spearmint format. More information on how to write search spaces in the TPE format can be found in this paper
and the hyperopt wiki.

from hyperopt import hp
space = {'x': hp.uniform('x', 0, 3.5)}

Now you can run your benchmark with tpe. The command (which has to be executed from HPOlib/benchmarks/
myBenchmark) is

HPOlib-run -o ../../optimizers/tpe/hyperopt_august2013_mod

Further you can run your benchmark with the other optimizers:

mkdir smac
python path/to/hpolib/format_converter/TpeSMAC.py tpe/mySpace.py >> smac/params.pcs
python path/to/wrapping.py smac
mkdir spearmint
python path/to/hpolib/format_converter/SMACSpearmint.py >> spearmint/config.pb
python path/to/wrapping.py spearmint

3.2. How to run your own benchmarks 15

http://www.coxlab.org/pdfs/2013_bergstra_hyperopt.pdf
https://github.com/hyperopt/hyperopt/wiki/FMin

HPOlib Documentation, Release 1

3.3 Configure the HPOlib

The config.cfg is a file, which contains necessary settings about your experiment. It is designed such that as little as
possible information needs to be given. This means all values for optimizers and the wrapping software are set to
the default values, except you want to change them. Default values are stored in a file called config_parser/
generalDefault.cfg. The following table describes the values you must provide: The file is divided into sec-
tions. You only need to fill in values for the [HPOLIB] section.

Key Description
function The executeable for the target algorithm. The path can either be either absolute or relative to an opti-

mizer directory in your benchmark folder (if the executeable is not found you can try to prepend the
parent directory to the path)

num-
ber_of_jobs

number of evaluations that are performed by the optimizers. NOTE:When using k-fold-crossvalidation,
SMAC will use k * number_of_jobs evaluations

re-
sult_on_terminate

If your algorithms crashes, is killed, takes too long etc. This result is given to the optimizer. Should be
the worst possible, but realistic result for a problem

An example can be found in the section [adding your own benchmark](manual.html#config_example). The following
parameters can be specified:

16 Chapter 3. Manual

HPOlib Documentation, Release 1

Sec-
tion

Parameter De-
fault
value

Description

HPOLIBnum-
ber_cv_folds

1 number of folds for a crossvalidation

HPOLIBmax_crash_per_cv3 If some runs of the crossvalidation fail, stop the crossvalidation for this configuration
after max_crash_per_cv failed folds.

HPOLIBre-
move_target_algorithm_output

True Per default, the target algorithm output is deleted. Set to False to keep the output. This
is useful for debugging.

HPOLIBcon-
sole_output_delay

1.
0

HPOlib reads the experiment pickle periodically to print the current status to the com-
mand line interface. Doing this often can inhibit performance of your hard-drive
(espacially if perform a lot of HPOlib experiments in parallel) so you might want to
increase this number if you experience delay when accessing your hard drive.

HPOLIBrun-
solver_time_limit,
mem-
ory_limit,
cpu_limit

Enforce resource limits to a target algorithm run. If these limits are exceeded, the
target algorithm will be killed by the runsolver. This can be used to ensure e.g. a
runtime per algorithm or make sure an algorithm does not use too much space on a
computing cluster.

HPOLIBto-
tal_time_limit

Enforce a total time limit on the hyperparameter optimization.

HPOLIBlead-
ing_runsolver_info

Important when using THEANO and CUDA, see Configure theano for gpu and open-
Blas usage

HPOLIBuse_HPOlib_time_measurementTrue When set to True (the default), the runsolver time measurement is saved. Otherwise,
the time measured by the target algorithm is saved.

HPOLIBnum-
ber_of_concurrent_jobs

1 WARNING: this only works for spearmint and SMAC and is not tested!

HPOLIBfunc-
tion_setup

An executable which is called before the first target algorithm call. This can be for
example check if everything is installed properly.

HPOLIBfunc-
tion_teardown

An executable which is called after the last target algorithm call. This can be for
example delete temporary directories.

HPOLIBexperi-
ment_directory_prefix

Adds a prefix to the automatically generated experiment directory. Can be useful if
one experiments is run several times with different parameter settings.

HPOLIBhandles_cv This flag determines whether optimization_interceptor or the optimizer handles cross
validation. This is only set to 1 for SMAC and must only be used by optimization
algorithm developers.

The following keys change the behaviour of the integrated hyperparameter optimization packages:

3.3. Configure the HPOlib 17

HPOlib Documentation, Release 1

Sec-
tion

Pa-
rame-
ter

Default
value
Descrip-
tion

TPE space space.
py

Name of the search space for tpe

TPE path_to_optimizer./
hyperopt_august2013_mod_src

Please consult the SMAC documentation.

SMACp smac/
params.
pcs

Please consult the SMAC documentation.

SMACrun_obj QUALITY Please consult the SMAC documentation.
SMACin-

tra_instance_obj
MEAN Please consult the SMAC documentation.

SMACrf_full_tree_bootstrapFalse Please consult the SMAC documentation.
SMACrf_split_min10 Please consult the SMAC documentation.
SMACadap-

tive_capping
false Please consult the SMAC documentation.

SMACmax_incumbent_runs2000 Please consult the SMAC documentation.
SMACnum_iterations2147483647Please consult the SMAC documentation.
SMACdeter-

minis-
tic

True Please consult the SMAC documentation.

SMACretry_target_algorithm_run_count0 Please consult the SMAC documentation.
SMACinten-

sifica-
tion_percentage

0 Please consult the SMAC documentation.

SMACvalida-
tion

false Please consult the SMAC documentation.

SMACpath_to_optimizer./
smac_2_06_01-dev_src

Please consult the SMAC documentation.

SPEARMINTconfig config.
pb

SPEARMINTmethod GPEIOptChooserThe spearmint chooser to be used. Please consult the spearmint documentation for
possible choices. WARNING: Only the GPEIOptChooser is tested!

SPEARMINTmethod_args Pass arguments to the chooser method. Please consult the spearmint documentation
for possible choices.

SPEARMINTgrid_size 20000 Length of the Sobol sequence spearmint uses to optimize the Expected Improvement.
SPEARMINTspearmint_polling_time3.0 Spearmint reads its experiment pickle and checks for finished jobs periodically to

find out whether a new job has to be started. For very short functions evaluations,
this value can be decreased. Bear in mind that this puts load on your hard drive
and can slow down your system if the experiment pickle becomes large (e.g. for the
AutoWeka benchmark) or you run a lot of parallel jobs (>100).

SPEARMINTpath_to_optimizer./
spearmint_april2013_mod_src

The config parameters can also be set via the command line. A use case for this feature is to run the same experiment
multiple times, but with different parameters. The syntax is:

HPOlib-run -o spearmint/spearmint_april2013_mod --SECTION:argument value

To set for example the spearmint grid size to 40000, use the following call

18 Chapter 3. Manual

HPOlib Documentation, Release 1

HPOlib-run -o spearmint/spearmint_april2013_mod --SPEARMINT:grid_size 40000

If your target algorithm is a python script, you can also load the config file from within your tar-
get algorithm. This allows you to specify extra parameters for your target algorithm in the config file.
Simply import HPOlib.wrapping_util in your python script and call HPOlib.wrapping_util.
load_experiment_config_file(). The return value is a python config parser object.

3.3.1 Configure theano for gpu and openBlas usage

The THEANO-based benchmarks can be speed-up by either running them on a nvidia GPU or with an optimized
BLAS library. Theano is either configured with theano flags, by changing the value of a variable in the target program
(not recommended as you have to change source code) or by using a .theanorc file. The .theanorc file is good
for global configurations and you can find more information on how to use it on the theano config page. For a more
fine-grained control of theano you have to use theano flags.

Unfortunately, setting them in the shell before invoking HPOlib-run does not work and therefore these parameters
have to be added set via the config variable leading_runsolver_info. This is already set to a reasonable default
for the respective benchmarks but has to be changed in order to speed up calculations.

For openBlas, change the paths in the following paragraph and replace the value of the config variable
leading_runsolver_info. In case you want to change more of the theano behaviour (e.g. the compile di-
rectory) you must append these flags to the config variable.

OPENBLAS_NUM_THREADS=2 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/the/openBLAS/lib
→˓LIBRARY_PATH=$LIBRARY_PATH:/path/to/the/openBLAS/lib THEANO_FLAGS=floatX=float32,
→˓device=cpu,blas.ldflags=-lopenblas

If you want to use CUDA on your nvidia GPU, you have to change device=cpu to device=gpu and add cuda.
root=/usr/local/cuda to the THEANO flags. Change cuda.root to your cuda installation directory if you
did not install cuda to the default location. For that, replace the path cuda.root=/usr/local/cuda with the
path to your CUDA installation.

3.4 How to run your own optimizer

Before you integrate your own optimization algorithm, make sure that you know how the HPOlib is structured and read
the section The HPOlib Structure. The interface to include your own optimizer is straight-forward. Let’s assume that
you have written a hyperparameter optimization package called BayesOpt2. You tell the HPOlib to use your software
with the command line argument -o or --optimizer. A call to HPOlib-run -o /path/to/BayesOpt2
should the run an experiment with your newly written software.

But so far, the HPOlib does not know how to call your software. To let the HPOlib know about the interface to your
optimizer, you need to create the three following files (replace BayesOpt2 if your optimization package has a different
name):

• BayesOpt2.py: will create all files your optimization package needs in order to run

• BayesOpt2_parser.py: a parser which can change the configuration of your optimization algorithm based
on HPOlib defaults

• BayesOpt2Default.cfg: default configuration for your optimization algorithm

Moreover, your algorithm has to call a script of the HPOlib namely optimization_interceptor.py, which
does bookkeeping and manages a potential cross validation. The rest of this section will explain how to call
optimization_interceptor.py and the interface your scripts must provide and the functionality which they
must perform.

3.4. How to run your own optimizer 19

https://docs.python.org/2/library/configparser.html
http://deeplearning.net/software/theano/
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://deeplearning.net/software/theano/library/config.html

HPOlib Documentation, Release 1

3.4.1 Calling optimization_interceptor.py

3.4.2 BayesOpt2.py

To run BayesOpt2, HPOlib will call the main function of the script bayesopt2.py. The function signature is as
follows:

(call_string, directory) = optimizer_module.main(config=config, options=args,
→˓experiment_dir=experiment_dir, experiment_directory_prefix=experiment_directory_
→˓prefix)

Argument config is of type ConfigParser, options of type ArgumentParser and experiment_dir is a string
to the experiment directory. The return value is a tuple (call_string, directory). call_string must be
a valid (bash) shell command which calls your hyperparameter optimization package in the way you intend. You can
construct the call string based on the information in the config and the options you are provided with. directory
must be a new directory in which all experiment output will be stored. HPOlib-run will the change in to the output
directory which your function returned and execute the call string. Your script must therefore do the following in the
main function:

1. Set up an experiment directory and return the path to the experiment directory. It is highly recommended to
create a directory with the following name:

<experiment_directory_prefix><bayesopt2><time_string>

2. Return a valid bash shell command, which will be used to call your optimizer from the command line interface.
The target algorithm you want to optimize is mostly called optimization_interceptor.py, except
for SMAC which handles crossvalidation on its own. Calling optimization_interceptor.py allows
optimizer independend bookkeeping. The actual function call is the invoked by the HPOlib. Its interface is

python optimization_interceptor.py -param_name1 'param_value' -x '5' -y '3.0'`

etc. . . The function simply prints the loss to the command line. If your hyperparameter optimization package is
written in python, you can also directly call the method doForTPE(params), where the params argument is
a dictionary with all parameter values (both key and value being strings).

Have a look at the bundled scripts smac_2_06_01-dev.py, spearmint_april2013_mod.py and
hyperopt_august2013_mod.py to get an idea what can/must be done.

3.4.3 BayesOpt2_parser.py

The parser file implements a simple interface which only allows the manipulation of the config file:

config = manipulate_config(config)

See the python documentation for the documentation of the config object. Common usage of manipulate_config
is to check if mandatory arguments are provided. This is also the recommended place to convert values from the
HPOLIB section to the appropriate values of the optimization package.

3.4.4 BayesOpt2Default.cfg

A configuration file for your optimization package as described in the configuration section.

20 Chapter 3. Manual

http://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/argparse.html
http://docs.python.org/2/library/configparser.html

HPOlib Documentation, Release 1

3.5 Convert Search Spaces

3.6 Test/Validate the Best Configuration(s)

To get an unbiased performance estimate of the best configuration(s) found, HPOlib offers a script to run a test function
with these configurations. The scripts is called like:

HPOlib-testbest --all|--best|--trajectory --cwd path/to/the/optimization/directory

HPOlib-testbest will open the experiment pickle file which is used for HPOlib bookkeeping, extract the hyperparame-
ters for the best configuration and call the test function specified in the configuration file. The result of the test function
is then stored in the experiment pickle and can be further processed. The first argument (either --all, --best or
--trajectory determines for which configurations the HPOlib will call the test script.

• --all: Will call the test-script for all configurations. This is can be very expensive.

• --best: Call the test-script only for the best configuration.

• --trajectory: Not yet implemented!

The second argument --cwd tells HPOlib in which experiment directory it should run test the configurations. As
an example, consider the usecase that we ran SMAC to optimize the logistic regression and want to get the test
performance for the best configuration.

HPOlib-testbest --best --cwd logreg/nocv/smac_2_08_00-master_2000_2014-11-7--16-49-28-
→˓166127/

Further options are:

• --redo-runs: If argument is given, previous runs will be executed again and the previous results will be
overwritten.

• --n-jobs: Number of parallel function evaluations. You should not set this number higher than the number
of cores in your computer.

3.7 Dispatchers: Different ways to invoke the Target Algorithm

3.7.1 Runsolver Wrapper

3.7.2 Python Function

3.5. Convert Search Spaces 21

HPOlib Documentation, Release 1

22 Chapter 3. Manual

CHAPTER 4

Optimization algorithms

HPOlib ships several optimization packages by default. These are:

• ConfigurationRunner Executes configurations which are saved in a csv file.

• SMAC v2.06.01 Includes the ROAR and SMAC algorithm (Hutter et al., 2011).

• SMAC v2.08.00 Includes the ROAR and SMAC algorithm (Hutter et al., 2011).

• SMAC v2.10.00 Includes the ROAR and SMAC algorithm (Hutter et al., 2011).

• Spearmint (github clone from april 2013) Performs Bayesian optimization with Gaussian Processes as de-
scribed in Snoek et al. (2012).

• Hyperopt (github clone from august 2013) Includes random search (Bergstra and Bengio, 2012) and the Tree
Parzen Estimator (Bergstra et al., 2011)

4.1 Configuration Runner

The ConfigurationRunner is an optimizer which runs configurations saved in a csv file. It is useful to evaluate config-
urations which do not come from an optimization algorithm and still benefit from HPOlib’s functionality.

By default, it expects a csv file called configurations as input. The first line determines the names of the hyperparam-
eters, every following line determines a single configuration.

The following is an example file for the branin function:

x,y
0,0
1,1
2,2
3,3
4,4
5,5
6,6
7,7

(continues on next page)

23

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

HPOlib Documentation, Release 1

(continued from previous page)

8,8
9,9
10,10

WARNING: ConfigurationRunner does not check if the configurations adhere to any configuration space. This must
be done by the user.

Furthermore, ConfigurationRunner can execute the function evaluations in parallel. This is governed by the argument
n_jobs and only useful if the target machine has enough processors/cores or the jobs are distributed across several
machines.

24 Chapter 4. Optimization algorithms

CHAPTER 5

Plotting results

5.1 Exporting results

To process results with programming languages different than python we provide a script called HPOlib-export,
which can convert HPOlib experiment pickles into different formats:

HPOlib-export input output [-t|--type output_type]

5.1.1 Example

HPOlib-export benchmarks/branin/smac_2_06_01-dev_1_2014-11-24--16-6-19-290280/smac_2_
→˓06_01-dev.pkl output/smac_branin_seed1 -t json

The output looks something like this:

{"instance_order": [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0], [6, 0], [7, 0],
→˓[8, 0], [9, 0]], "cv_endtime": [1416846588.037684, 1416846588.714215, 1416846589.
→˓185275, 1416846589.71545, 1416846590.240511, 1416846590.645061, 1416846591.157578,
→˓1416846591.588725, 1416846592.075068, 1416846592.565032], "optimizer_time": [],
→˓"title": null, "folds": 1, "total_wallclock_time": 89.56732000000001, "trials": [{
→˓"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_
→˓duration": 3.9904310000000001, "instance_results": [0.0906], "test_std": 0.0,
→˓"additional_data": {"0": "../logreg.py"}, "test_instance_durations": [3.
→˓9904310000000001], "params": {"batchsize": "0", "l2_reg": "0", "lrate": "0", "n_
→˓epochs": "0"}, "result": 0.0906, "test_instance_status": [3], "duration": 3.
→˓9904310000000001, "test_status": 3, "test_result": 0.0906, "test_instance_results":
→˓[0.0906], "instance_status": [3], "instance_durations": [3.9904310000000001]}, {
→˓"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_
→˓duration": 2.6245590000000001, "instance_results": [0.20121], "test_std": 0.0,
→˓"additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.
→˓6245590000000001], "params": {"batchsize": "4", "l2_reg": "6", "lrate": "3", "n_
→˓epochs": "0"}, "result": 0.20121, "test_instance_status": [3], "duration": 2.
→˓6245590000000001, "test_status": 3, "test_result": 0.20121, "test_instance_results
→˓": [0.20121], "instance_status": [3], "instance_durations": [2.6245590000000001]}, {
→˓"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_
→˓duration": 3.3856489999999999, "instance_results": [0.15843699999999999], "test_std
→˓": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [3.
→˓3856489999999999], "params": {"batchsize": "5", "l2_reg": "2", "lrate": "3", "n_
→˓epochs": "1"}, "result": 0.15843699999999999, "test_instance_status": [3], "duration
→˓": 3.3856489999999999, "test_status": 3, "test_result": 0.15843699999999999, "test_
→˓instance_results": [0.15843699999999999], "instance_status": [3], "instance_
→˓durations": [3.3856489999999999]}, {"status": 3, "std": 0.0, "test_additional_data
→˓": {"0": "../logreg.py"}, "test_duration": 16.756257000000002, "instance_results":
→˓[0.13843800000000001], "test_std": 0.0, "additional_data": {"0": "../logreg.py"},
→˓"test_instance_durations": [16.756257000000002], "params": {"batchsize": "5", "l2_
→˓reg": "1", "lrate": "6", "n_epochs": "7"}, "result": 0.13843800000000001, "test_
→˓instance_status": [3], "duration": 16.756257000000002, "test_status": 3, "test_
→˓result": 0.13843800000000001, "test_instance_results": [0.13843800000000001],
→˓"instance_status": [3], "instance_durations": [16.756257000000002]}, {"status": 3,
→˓"std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.
→˓7620979999999999, "instance_results": [0.13769999999999999], "test_std": 0.0,
→˓"additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.
→˓7620979999999999], "params": {"batchsize": "2", "l2_reg": "10", "lrate": "2", "n_
→˓epochs": "0"}, "result": 0.13769999999999999, "test_instance_status": [3], "duration
→˓": 2.7620979999999999, "test_status": 3, "test_result": 0.13769999999999999, "test_
→˓instance_results": [0.13769999999999999], "instance_status": [3], "instance_
→˓durations": [2.7620979999999999]}, {"status": 3, "std": 0.0, "test_additional_data
→˓": {"0": "../logreg.py"}, "test_duration": 3.5262229999999999, "instance_results":
→˓[0.272984], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_
→˓instance_durations": [3.5262229999999999], "params": {"batchsize": "4", "l2_reg": "7
→˓", "lrate": "9", "n_epochs": "0"}, "result": 0.272984, "test_instance_status": [3],
→˓"duration": 3.5262229999999999, "test_status": 3, "test_result": 0.272984, "test_
→˓instance_results": [0.272984], "instance_status": [3], "instance_durations": [3.
→˓5262229999999999]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../
→˓logreg.py"}, "test_duration": 2.293974, "instance_results": [0.28349999999999997],
→˓"test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations
→˓": [2.293974], "params": {"batchsize": "1", "l2_reg": "8", "lrate": "3", "n_epochs
→˓": "1"}, "result": 0.28349999999999997, "test_instance_status": [3], "duration": 2.
→˓293974, "test_status": 3, "test_result": 0.28349999999999997, "test_instance_results
→˓": [0.28349999999999997], "instance_status": [3], "instance_durations": [2.293974]},
→˓ {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_
→˓duration": 2.1435740000000001, "instance_results": [0.23150000000000001], "test_std
→˓": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.
→˓1435740000000001], "params": {"batchsize": "1", "l2_reg": "1", "lrate": "10", "n_
→˓epochs": "1"}, "result": 0.23150000000000001, "test_instance_status": [3], "duration
→˓": 2.1435740000000001, "test_status": 3, "test_result": 0.23150000000000001, "test_
→˓instance_results": [0.23150000000000001], "instance_status": [3], "instance_
→˓durations": [2.1435740000000001]}, {"status": 3, "std": 0.0, "test_additional_data
→˓": {"0": "../logreg.py"}, "test_duration": 5.0202150000000003, "instance_results":
→˓[0.275781], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_
→˓instance_durations": [5.0202150000000003], "params": {"batchsize": "7", "l2_reg": "0
→˓", "lrate": "8", "n_epochs": "2"}, "result": 0.275781, "test_instance_status": [3],
→˓"duration": 5.0202150000000003, "test_status": 3, "test_result": 0.275781, "test_
→˓instance_results": [0.275781], "instance_status": [3], "instance_durations": [5.
→˓0202150000000003]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../
→˓logreg.py"}, "test_duration": 2.2806799999999998, "instance_results": [0.
→˓13469999999999999], "test_std": 0.0, "additional_data": {"0": "../logreg.py"},
→˓"test_instance_durations": [2.2806799999999998], "params": {"batchsize": "1", "l2_
→˓reg": "1", "lrate": "3", "n_epochs": "4"}, "result": 0.13469999999999999, "test_
→˓instance_status": [3], "duration": 2.2806799999999998, "test_status": 3, "test_
→˓result": 0.13469999999999999, "test_instance_results": [0.13469999999999999],
→˓"instance_status": [3], "instance_durations": [2.2806799999999998]}], "experiment_
→˓name": "smac_2_06_01-dev", "starttime": [1416846586.877219], "cv_starttime":
→˓[1416846587.882512, 1416846588.544788, 1416846589.009884, 1416846589.546839,
→˓1416846590.061855, 1416846590.515719, 1416846590.983617, 1416846591.416308,
→˓1416846591.905041, 1416846592.386514], "optimizer": "/home/feurerm/mhome/HPOlib/
→˓Software/HPOlib/optimizers/smac/smac_2_06_01-dev", "endtime": [1416846592.735704,
→˓1416846608.662255], "max_wallclock_time": ""}

(continues on next page)

25

HPOlib Documentation, Release 1

(continued from previous page)

Currently supported output types/formats are:

• json

26 Chapter 5. Plotting results

http://www.json.org/

CHAPTER 6

The HPOlib Structure

To be written. . .

27

HPOlib Documentation, Release 1

28 Chapter 6. The HPOlib Structure

CHAPTER 7

Citing the HPOlib

If you use the HPOlib for your research, please cite our paper introducing the HPOlib:

Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters[pdf] [poster]

NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt ‘13)

with the following Bibtex file:

@inproceedings{eggensperger2013,
title = {Towards an Empirical Foundation for Assessing Bayesian Optimization of

→˓Hyperparameters},
booktitle = {{NIPS} workshop on Bayesian Optimization in Theory and Practice},
author = {Eggensperger, K. and Feurer, M. and Hutter, F. and Bergstra, J. and

→˓Snoek, J. and Hoos, H. and Leyton-Brown, K.},
year = {2013}

}

29

http://www.automl.org/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://www.automl.org/papers/13-BayesOpt_EmpiricalFoundation_poster.pdf

HPOlib Documentation, Release 1

30 Chapter 7. Citing the HPOlib

CHAPTER 8

Indices and tables

• search

31

	Installation Instructions For HPOlib
	Installing inside an virtualenv

	Algorithms and Datasets
	Benchmarks Overview
	Description

	Manual
	How to run listed benchmarks
	How to run your own benchmarks
	Configure the HPOlib
	How to run your own optimizer
	Convert Search Spaces
	Test/Validate the Best Configuration(s)
	Dispatchers: Different ways to invoke the Target Algorithm

	Optimization algorithms
	Configuration Runner

	Plotting results
	Exporting results

	The HPOlib Structure
	Citing the HPOlib
	Indices and tables

