
HPixLib Documentation
Release 0.1

Maurizio Tomasi

June 30, 2014

Contents

1 Introduction 3
1.1 The standard Healpix implementation . 3
1.2 Purpose of HPixLib with respect to Healpix . 4

2 Installing HPixLib 5

3 Using the library 7

4 Pixel functions 9
4.1 Converting NSIDE into the number of pixels and back . 9
4.2 Converting among angles, vectors and pixel centers . 10
4.3 Converting RING into NESTED and back . 13

5 The hpix_map_t type 15
5.1 Basic types . 16
5.2 Map creation/distruction . 17
5.3 Loading and saving maps . 17
5.4 Accessing map information . 19

6 Mathematical operations on map pixels 21
6.1 In-place transformations . 21
6.2 Statistical estimators . 22

7 Drawing maps 23
7.1 Introduction: a poor-man clone of map2fig . 24
7.2 Available projections . 25
7.3 Bitmapped graphics . 26
7.4 Projection properties . 27
7.5 Painting functions . 27
7.6 Color palettes . 27
7.7 Vector graphics . 31

8 Command-line utilities 33
8.1 map2fig . 33

9 Indices and tables 35

i

ii

HPixLib Documentation, Release 0.1

Copyright (c) 2011-2012 Maurizio Tomasi.

Contents:

Contents 1

HPixLib Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

This manual describes HPixLib, a C library that implements the Healpix spherical tesselation scheme described by
Górski et al. (The Astrophysical Journal, 622:759-771, 2005).

The purpose of HEALPix is to divide a sphere into patches of equal area which have desirable properties for a number
of calculations. It is mostly used in astrophysics and cosmology, e.g.:

• Computation of the spherical Fourier transforms for a random field on the sphere;

• Efficient nearest-neighbour searches of pixels.

Traditionally, there has always been one implementation of the HEALPix tesselation scheme: the so-called
standard HEALPix library.

1.1 The standard Healpix implementation

The standard implementation of the HEALPix tesselation scheme is the HEALPix library developed by Gorski et al.
(http://healpix.jpl.nasa.gov/). It provides a number of functions in Fortran, C, C++, IDL and Java and is so far the most
complete, tested and widely used implementation.

HPixLib has not been designed to compete with the Healpix library. It should instead be considered as an orthogonal
project, which tries to address some of the following issues, without trying to re-implement everything:

• In Healpix there are no connections among the language bindings. (In fact, instead of speaking of “bindings”
– which imply that there is one library and many interfaces that binds to it – one would rather speak of four
different implementations: one for each language.) Apart from some code duplication, this has had the effect of
reducing the momentum in developing some of them. The C bindings appear to be the most neglected, for there
is no facility for reading/saving/doing calculations on 𝑎ℓ𝑚 coefficients. This is particularly limiting for those
developers wanting to create bindings to other languages by exploiting Foreign Function Interfaces (FFIs), as C
is the lingua franca used for FFIs.

• The fact that the C binding is the most neglected is however unfortunate, as this is the standard de facto for
writing bindings to other languages (e.g. Python, GNU R...).

• The installation of HEALPix is not straightforward: the library requires the user to install CFITSIO first, which
is a rather large library if compared with what Healpix uses (the largest part of the CFITSIO code implements
functions for reading/writing images, while HEALPix only reads and write binary tables). Moreover, there
is no standard facility for a program using HEALPix to find and link the Healpix library (i.e. no support for
pkg-config).

• No facilities to draw maps are provided in the C/C++ library. (A shortcut is to can use the standalone programs
map2tga or map2gif to create a file which you then read back in your program.)

3

http://healpix.jpl.nasa.gov/

HPixLib Documentation, Release 0.1

1.2 Purpose of HPixLib with respect to Healpix

HPixLib is meant to solve these issues. Of course, in order to do this I had to do a few compromises, so that a number
of users of the Górski’s library should stay with it. Here are the advantages of HPixLib:

• Only the C language is supported, and functions are more “low-level”. This reduces the size of the library and
eases its development, at the expense of loosing the majority of the scientists (which usually use Fortran, IDL
or Python).

• It only supports maps of double values (the C++ bindings of the Healpix library use template and the user can
therefore create maps of ints, booleans and so on). Since any 32-bit integer can be represented exactly in a
8-byte double, this means that precision is rarely an issue. However, using this approach you can easily waste
lot of memory.

• Although it is meant as a basis for creating bindings to other languages, HPixLib itself only provides C bindings
(i.e. no Fortran/IDL support). Also, even if you can use HPixLib in a C++ program, the library is not going to
use all those nice features of C++ like std::vector and templates.

• The library provides an extensible interface to draw maps (as well as a standalone program, map2fig, which is
able to produce bitmapped graphics as well as vector graphics).

• The library uses the GNU Autotools to configure itself and supports pkg-config.

4 Chapter 1. Introduction

CHAPTER 2

Installing HPixLib

HPixLib uses the GNU Autotools for compiling its sources (http://en.wikipedia.org/wiki/GNU_build_system), so
there are relatively little dependencies to satisfy in order to bootstrap the compilation.

If you obtained a .tar.gz file, you should simply untar it somewhere in your home, enter the directory hpixlib-???
(where ??? is the version number) and run the following commands:

./configure make && sudo make install

If you have cloned the Git repository (https://github.com/ziotom78/hpixlib), then you first have to run autogen.sh:

./autogen.sh ./configure make && sudo make install

This step requires your system to have the autotools (i.e. autoconf, automake, libtool and m4) already installed.

5

http://en.wikipedia.org/wiki/GNU_build_system
https://github.com/ziotom78/hpixlib

HPixLib Documentation, Release 0.1

6 Chapter 2. Installing HPixLib

CHAPTER 3

Using the library

To use HPixLib in your C/C++ program, include the header file hpixlib/hpix.h at the beginning of your code:

#include <hpixlib/hpix.h>

To compile the library, you can use pkg-config:

cc my_program.c ‘pkg-config --cflags --libs libhpix‘

Some parts of HPixLib can take advantage of the Cairo library. To use them, you need to refer to the pkg-config file
libhpix_cairo (instead of just libhpix) and include the header file hpixlib/hpix-cairo.h as well:

#include <hpixlib/hpix.h>
#include <hpixlib/hpix-cairo.h>

7

HPixLib Documentation, Release 0.1

8 Chapter 3. Using the library

CHAPTER 4

Pixel functions

In this section we describe the functions implemented by HPixLib that allow to associate points on the sky sphere with
pixels in the HEALPix tessellation. These functions are the core of the library; HPixLib uses the same algorithms
implemented in the C++ bindings (version 3.00) of the reference Healpix library.

4.1 Converting NSIDE into the number of pixels and back

The Healpix tessellation subdivides the sphere in a set of pixels of equal area. The number of pixels is uniquely
specified through a positive integer parameter, nside, which is related to the number of pixels through a well-defined
mathematical expression, implemented by the function hpix_nside_to_npixel() (the inverse calculation is
implemented by hpix_npixel_to_nside()). The value of nside must be an integer power of two. To check if a
given integer value satisfies these condition, HPixLib implements the function hpix_valid_nside():

hpix_nside_t nside;
printf("Enter a value for nside: ");
scanf("%u", &nside);
if(hpix_valid_nside(nside)) {

printf("The number of pixels in the map is %u\n",
hpix_nside_to_npixel(nside));

} else {
printf("Invalid value for nside.\n");

}

_Bool hpix_valid_nside(hpix_nside_t nside)
Return nonzero if the value of nside satisfies the following conditions:

1.It is an integer greater than zero;

2.It is an integer power of two.

hpix_pixel_num_t hpix_nside_to_npixel(hpix_nside_t)
Given a value for the nside parameter (any positive power of two), return the number of pixels the sky sphere is
divided into. If nside is not valid, the function returns zero.

This function is the inverse of hpix_npixel_to_nside().

hpix_pixel_num_t num;
assert((num = hpix_nside_to_npixel(8)) > 0);

hpix_nside_t hpix_npixel_to_nside(hpix_pixel_num_t)
Given the number of pixels in the sky sphere, this function returns the value of NSIDE uniquely associated with
it. The function does not accept arbitrary values for num_of_pixels: any invalid value will make the function
return zero.

9

HPixLib Documentation, Release 0.1

This function is the inverse of hpix_nside_to_npixel().

4.2 Converting among angles, vectors and pixel centers

The following functions implement conversions between three different representations of points on a sphere:

1. Angular positions. These are expressed by theta (colatitude, from 0 to pi) and phi (longitude, from 0 to 2pi).

2. Versors (vectors normalized to have length one). These are expressed by three coordinates, x, y, z, with the
constraint that x*x + y*y + z*z == 1.0.

3. Index of pixel centers. These can either be expressed using Healpix’ RING or NEST numbering scheme, so
technically it is not one but two representations.

It is important to note that any conversion involving pixel centers is only approximate, e.g. you cannot convert theta
and phi into a pixel index and then back to theta and phi, and expect to get the same values.

The following example shows how to identify the pixel in a map which corresponds to a given coordinate pair. Note
that you must ensure that the map is expressed in the same coordinate system as the angle you are providing: in the
example, the position of M42 is specified in Galactic coordinates, and therefore the map must have been created using
this coordinate system as well.

const hpix_nside_t NSIDE = 64;
const double DEG2RAD = 0.01745;
hpix_resolution_t resol;

/* Position of OriA in Galactic coordinates (degrees) */
double M42_position[] = { 209.01, -19.38 };

/* Convert the latitude in colatitude */
M42_position[0] = M42_position[0] - 180.0;

/* Here we assume to work with maps in RING order */
hpix_init_resolution_from_nside(NSIDE, &resol);
hpix_pixel_num_t pixel_index =

hpix_angles_to_ring_pixel(&resol,
M42_position[0] * DEG2RAD,
M42_position[1] * DEG2RAD);

The key data structure is hpix_resolution_t, which contains the value of NSIDE as well as a number of other
values derived from it and useful in the calculations.

void hpix_init_resolution_from_nside(hpix_nside_t nside, hpix_resolution_t * resolution)
Initialize the fields of resolution with values corresponding to the NSIDE parameter specified by nside. The
object resolution can be allocated either on the stack or on the heap. (In the latter case, you must free it by
yourself.)

4.2.1 Converting angular positions

The functions described in this paragraph convert angular positions (theta, phi) into some other representation.

void hpix_angles_to_vector(double theta, double phi, double * x, double * y, double * z)
Convert the pair of angles theta, phi into a versor (one-length vector) x, y, z. The function normalizes the angles
before applying the conversion (e.g. if phi is equal to 3pi, it is converted into pi).

See also hpix_vector_to_angles().

10 Chapter 4. Pixel functions

HPixLib Documentation, Release 0.1

hpix_pixel_num_t hpix_angles_to_ring_pixel(const hpix_resolution_t * resolution, double theta,
double phi)

Convert the pair of angles theta, phi into the RING index of the pixel for which the specified direction falls
within.

See also hpix_angles_to_nest_pixel().

hpix_pixel_num_t hpix_angles_to_nest_pixel(const hpix_resolution_t * resolution, double theta,
double phi)

Convert the pair of angles theta, phi into the NESTED index of the pixel for which the specified direction falls
within.

See also hpix_angles_to_ring_pixel().

typedef hpix_pixel_num_t hpix_angles_to_pixel_fn_t(const hpix_resolution_t *, double, double)
This defines a name for the prototype of the two functions hpix_angles_to_ring_pixel() and
hpix_angles_to_nest_pixel(). It is useful if you plan to call many times one of the two functions,
but you do not know in advance which one you’ll use. Here’s an example:

void
function(const hpix_resolution_t * resolution,

hpix_ordering_t order,
const double * thetas,
const double * phis,
size_t num_of_pixels)

{
size_t idx;
hpix_angles_to_pixel_fn_t * ang2pix_fn;
if(order == HPIX_ORDER_RING)

ang2pix_fn = hpix_angles_to_ring_pixel;
else

ang2pix_fn = hpix_angles_to_nest_pixel;

for(idx = 0; idx < num_of_pixels; ++idx)
{

hpix_pixel_num_t pix_num;
/* Since ang2pix_fn has already been assigned, we

* avoid using a ‘if‘ within the ‘for‘ cycle.

*/
pix_num = ang2pix_fn(resolution, thetas[idx], phis[idx]);

/* Here you use ‘pix_num‘ */
}

}

4.2.2 Converting 3D vectors

The functions described in this paragraph convert 3D vectors into some other representation. The vector does not need
to have length one.

void hpix_vector_to_angles(double x, double y, double z, double * theta, double * phi)
Convert the vector x, y, z into the pair of angles theta, phi. It is not necessary for the vector to have length one.
The two angles will be properly normalized (i.e. theta will be within 0 and pi, and phi will be within 0 and 2pi).

See also hpix_angles_to_vector().

hpix_pixel_num_t hpix_vector_to_ring_pixel(const hpix_resolution_t * resolution, double x, dou-
ble y, double z)

Convert the vector x, y, z into the RING index of the pixel for which the specified direction falls within.

4.2. Converting among angles, vectors and pixel centers 11

HPixLib Documentation, Release 0.1

See also hpix_ring_pixel_to_vector().

hpix_pixel_num_t hpix_vector_to_nest_pixel(const hpix_resolution_t * resolution, double x, dou-
ble y, double z)

Convert the vector x, y, z into the NESTED index of the pixel for which the specified direction falls within.

See also hpix_nest_pixel_to_vector().

typedef hpix_pixel_num_t hpix_vector_to_pixel_fn_t(hpix_nside_t, double, double, double)
This defines a name for the prototype of the two functions hpix_vector_to_ring_pixel() and
hpix_vector_to_nest_pixel(). It is useful if you plan to call many times one of the two functions, but
you do not know in advance which one you’ll use. See hpix_angles_to_pixel_fn_t for a nice example.

4.2.3 Converting pixel indexes

The functions described in this paragraph convert pixel indices, either in RING or NESTED scheme, into some other
representation.

void hpix_ring_pixel_to_angles(const hpix_resolution_t * resolution, hpix_pixel_num_t pixel, dou-
ble * theta, double * phi)

Convert the direction of the center of the pixel with RING index pixel into the two angles theta (colatitude) and
phi (longitude).

See also hpix_angles_to_ring_pixel().

void hpix_nest_pixel_to_angles(const hpix_resolution_t * resolution, hpix_pixel_num_t pixel, dou-
ble * theta, double * phi)

Convert the direction of the center of the pixel with NESTED index pixel into the two angles theta (colatitude)
and phi (longitude).

See also hpix_angles_to_nest_pixel().

typedef void hpix_pixel_to_angles(const hpix_resolution_t *, hpix_pixel_num_t, double *, double *)
This defines a name for the prototype of the two functions hpix_ring_pixel_to_angles() and
hpix_nest_pixel_to_angles(). It is useful if you plan to call many times one of the two functions, but
you do not know in advance which one you’ll use. See hpix_angles_to_pixel_fn_t for a nice example.

void hpix_ring_pixel_to_vector(const hpix_resolution_t * resolution, double * x, double * y, double
* z)

Convert the direction of the center of the pixel with RING index pixel into the components of a vector x, y, z. It
is guaranteed that x*x + y*y + z*z == 1.0.

See also hpix_vector_to_ring_pixel().

void hpix_nest_pixel_to_vector(const hpix_resolution_t * resolution, double * x, double * y, double
* z)

Convert the direction of the center of the pixel with RING index pixel into the components of a vector x, y, z. It
is guaranteed that x*x + y*y + z*z == 1.0.

See also hpix_vector_to_ring_pixel().

typedef void hpix_pixel_to_vector(const hpix_resolution_t *, hpix_pixel_num_t, double *, double *,
double *)

This defines a name for the prototype of the two functions hpix_ring_pixel_to_vector() and
hpix_nest_pixel_to_vector(). It is useful if you plan to call many times one of the two functions, but
you do not know in advance which one you’ll use. See hpix_angles_to_pixel_fn_t for a nice example.

12 Chapter 4. Pixel functions

HPixLib Documentation, Release 0.1

4.3 Converting RING into NESTED and back

The following functions allow you to switch between the RING and NESTED schemes. Each scheme has its own
advantages: RING is good when you want to decompose the map in spherical harmonics (because pixels on the same
latitude are contiguous), NESTED is useful if you apply wavelet transforms or are looking for point sources (neighbour
points are easy to find with this scheme).

hpix_pixel_num_t hpix_nest_to_ring_idx(const hpix_resolution_t * resolution,
hpix_pixel_num_t nest_index)

Convert the index of pixel nest_index from NESTED to RING.

hpix_pixel_num_t hpix_ring_to_nest_idx(const hpix_resolution_t * resolution,
hpix_pixel_num_t ring_index)

Convert the index of pixel nest_index from NESTED to RING.

void hpix_switch_order(hpix_map_t * map)

Switch the order of the map from RING to NESTED or vice versa, depending on the current ordering of the map
(see hpix_map_ordering()). Note that the reordering is done in-place: this means that no additional memory is
needed during the conversion, but if you want to access both maps you have to copy it somewhere else before calling
this function.

4.3. Converting RING into NESTED and back 13

HPixLib Documentation, Release 0.1

14 Chapter 4. Pixel functions

CHAPTER 5

The hpix_map_t type

In this section we introduce the hpix_map_t type, which is used to hold information about a map, as well as a
number of ancillary types and functions.

The following example (examples/mapinfo.c) is a program which shows information about a set of FITS temperature
maps specified from the command line. It is a good example of the way HPixLib functions are meant to be used in a
real program (albeit as simple as this is). In the rest of this section a detailed documentation of every function used in
the example will be provided.

#include <hpixlib/hpix.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>

/* Compute the peak-to-peak difference of the value of the
pixels in the map */

double peak_to_peak_amplitude(const hpix_map_t * map)
{

size_t idx;
double min, max;
double * pixels;

assert(map);

pixels = hpix_map_pixels(map);
min = max = pixels[0];
for(int idx = 1; idx < hpix_map_num_of_pixels(map); ++idx)
{
if(isnan(pixels[idx])) /* Skip unseen pixels */

continue;

if(min > pixels[idx])
min = pixels[idx];

if(max < pixels[idx])
max = pixels[idx];

}

return max - min;
}

int main(int argc, char ** argv)
{

15

HPixLib Documentation, Release 0.1

char * error_message = NULL;

/* Skip the program name */
++argv; --argc;

if(argc == 0) {
fputs("Usage: mapinfo FILE1 [FILE2...]\n", stderr);
return EXIT_SUCCESS;

}

while(argc--) {
int cfitsio_status = 0;
hpix_map_t * map;

hpix_load_fits_component_from_file(argv[0], 1, &map, &cfitsio_status);

if(map)
{

printf("File name: %s\n", *argv);
printf("NSIDE: %u\n", hpix_map_nside(map));
printf("Ordering: %s\n",

hpix_map_ordering_scheme(map) == HPIX_ORDER_SCHEME_RING ?
"RING" : "NEST");

printf("Peak-to-peak variation: %.4g\n",
peak_to_peak_amplitude(map));

hpix_free_map(map);
} else {

fprintf(stderr, "Error: %s\n", error_message);
hpix_free(error_message);

}

++argv;
}

return EXIT_SUCCESS;
}

5.1 Basic types

hpix_ordering_scheme_t
This enum type specifies the ordering scheme of the map. It can assume the values
HPIX_ORDER_SCHEME_RING or HPIX_ORDER_SCHEME_NEST.

hpix_coordinates_t
This enum type specifies the coordinate system used by the map. It can either be HPIX_COORD_GALACTIC
(Galactic coordinates), HPIX_COORD_ECLIPTIC (ecliptic coordinates), HPIX_COORD_CELESTIAL or
HPIX_COORD_CUSTOM (custom Euler rotation).

hpix_resolution_t
This structure is conceptually equivalent to a nside value, but it keeps a number of mathematical quantities (all
derived by nside itself) that are handy for manipulating Healpix maps at that resolution. (It basically caches
these values in order to save time in computations.)

hpix_map_t
This is the basic type used to hold information about a Healpix map. It is a structure that should consid-

16 Chapter 5. The hpix_map_t type

HPixLib Documentation, Release 0.1

ered to be opaque, i.e. accessing its members is forbidden. You should instead use access functions like
hpix_map_ordering(), hpix_map_nside() and hpix_map_pixels(). See below for a complete
list.

5.2 Map creation/distruction

Functions hpix_create_map() and hpix_create_map_from_array() create a map in memory. The first
one is useful when you do now know in advance the value of the pixels you’re going to put into the pixel. The
second one is handy if you were able to retrieve pixel values from some medium and want to “wrap” them into a
hpix_map_t structure in order to use them with HPixLib.

hpix_map_t * hpix_create_map(hpix_nside_t nside, hpix_ordering_scheme_t ordering)
Create a zero-filled Healpix map with a resolution of nside and a ordering scheme equal to ordering (see
hpix_ordering_scheme_t for more information about the accepted values).

hpix_map_t * hpix_create_map_from_array(double * array, size_t num_of_elements,
hpix_ordering_scheme_t ordering)

Create a Healpix map using the values in array. The value of nside is calculated from num_of_pixels using
hpix_npixel_to_nside(). By default, the map is considered to be in Galactic coordinates.

void hpix_free_map(hpix_map_t * map)
Free any memory associated with map. Once the function exits, map is no longer available.

hpix_map_t * hpix_create_copy_of_map(const hpix_map_t * map)
Return a pointer to a copy of map. This is useful if you plan to modify map inplace (e.g. by means of a call
to hpix_scale_pixels_by_constant_inplace()) but you want to keep a copy of the map as it was
before the modification. Once no longer used, the new copy must be disposed using hpix_free_map() as
usual.

5.3 Loading and saving maps

The following functions are used to load and save Healpix maps into FITS files. Such files are fully compatible with
those produced by the standard Healpix library.

int hpix_load_fits_component_from_fitsptr(fitsptr * fptr, unsigned short column_number,
hpix_map_t ** map, int * status)

Load one component (I, Q, or U) from the FITS file specified by fptr, which must have been properly initialized
using one of CFITSIO’s functions, e.g. fits_open_table() and fits_movabs_hdu().

If any error occurs, the function returns zero. Otherwise, it makes map pointing to a new hpix_map_t object
that must be freed using hpix_free_map() when it is no longer useful. Moreover, if status is not null, then
it will be initialized with the appropriate CFITSIO error code.

Note that pixels marked as UNSEEN are converted to NaN. This is different from what the standard Healpix
library does.

int hpix_load_fits_component_from_file(const char * file_name, unsigned short column_number,
hpix_map_t ** map, int * status)

Wrapper to hpix_load_fits_component_from_fitsptr() which automatically opens the FITS file
named file_name and moves to the first binary table HDU.

int hpix_create_empty_fits_table_for_map(fitsfile * fptr, const hpix_map_t * template_map, un-
signed short num_of_components, const char * mea-
sure_unit, int * status)

Create a new HDU in an already-opened FITS file pointed by fptr and write a set of keywords that describe the

5.2. Map creation/distruction 17

HPixLib Documentation, Release 0.1

shape of a map like template_map. The parameter num_of_components tells how many TDOUBLE columns the
HDU will have: it must be a number between 1 and 3. (No checking is done on this.)

The parameter measure_unit should be a string identifying the unit of measure of all the columns. You should
use short names, e.g. K instead of Kelvin.

If the function is successful, it returns nonzero. If there is an error and status is not null, then it will be initialized
with the appropriate CFITSIO code.

Note that write-access must be granted to fptr, otherwise the function will fail.

int hpix_save_fits_component_to_fitsfile(const char * file_name, const hpix_map_t * map,
int data_type, int * status)

Save map into a FITS file named file_name. The value of data_type is one of the possible types accepted by
CFITSIO (e.g. TINT, refer to the CFITSIO documentation for a full list).

As for hpix_load_fits_component_from_file(), if something went wrong then the function returns
zero and initializes error_status with a newly-created string describing the error. (In this case you must free it
using hpix_free().) Note that error_status can be set to NULL: in this case, no information about the error
type will be available.

If there are NaN values in the map pixels, they will be converted into the standard Healpix’s UNSEEN value.

int hpix_save_fits_component_to_file(const char * file_name, const hpix_map_t * map,
int data_type, int * status)

Wrapper to hpix_save_fits_component_to_fitsptr() which automatically create a FITS file
named file_name.

int hpix_load_fits_pol_from_file(const char * file_name, hpix_map_t ** map_i, hpix_map_t
** map_q, hpix_map_t ** map_u, char ** error_status)

Load the three components of a IQU map from a FITS file named file_name. The three components are read
from the first table extension of the FITS file. Note that it is an error to call this function on temperature-only
maps.

The double pointers map_i, map_q and map_u must point to hpix_map_t * variables, which are automati-
cally allocated by the function, and they must be freed using hpix_free_map().

If any error occurs, the function returns NULL, otherwise it returns a new hpix_map_t object that must be
freed using hpix_free_map() when it is no longer useful. Moreover, if status is not null, then it will be
initialized with the appropriate CFITSIO error code.

Note that pixels marked as UNSEEN are converted to NaN. This is different from what the standard Healpix
library does.

int hpix_save_fits_pol_to_file(const char * file_name, const hpix_map_t * map_i, const
hpix_map_t * map_q, const hpix_map_t * map_u, int data_type,
char ** error_status)

Save the three I, Q, U maps into a FITS file named file_name. The value of data_type is one of the possible
types accepted by CFITSIO (e.g. TINT, refer to the CFITSIO documentation for a full list).

As for hpix_load_fits_pol_from_file(), if something went wrong and status is not null, then it will
be initialized with the appropriate CFITSIO error code.

If there are NaN values in the map pixels, they will be converted into the standard Healpix’s UNSEEN value.

int hpix_is_iqu_fits_map(const char * file_name)
This helper functions can be used to establish if the FITS file named file_name contains a temperature map (I
Stokes component) or a temperature+polarization map (I, Q and U Stokes components).

This function can be useful to determine if you can call hpix_load_fits_pol_map() or not.

18 Chapter 5. The hpix_map_t type

HPixLib Documentation, Release 0.1

5.4 Accessing map information

The following functions provide a quick access to a hpix_map_t type. They run in constant time and are therefore
pretty cheap to call.

hpix_ordering_scheme_t hpix_map_ordering(const hpix_map_t * map)
Return the ordering of the map. See the definition of hpix_ordering_scheme_t for an explanation of the
return value.

hpix_coordinates_t hpix_map_coordinate_system(const hpix_map_t * map)
Return the coordinate system used by the map. See the definition of hpix_coordinates_t for an explana-
tion of the return value.

hpix_nside_t hpix_map_nside(const hpix_map_t * map)
Return the value of nside for map.

size_t hpix_num_of_pixels(const hpix_map_t * map)
Return the number of pixels in map. This is always equal to
hpix_nside_to_npixel(hpix_map_nside(map)).

const hpix_resolution_t * hpix_map_resolution(const hpix_map_t * map)
Return a const pointer to a hpix_resolution_t structure.

5.4. Accessing map information 19

HPixLib Documentation, Release 0.1

20 Chapter 5. The hpix_map_t type

CHAPTER 6

Mathematical operations on map pixels

This section describes the HPixLib functions that perform mathematical calculations on the pixels of a map. The num-
ber of calculations implemented here are surely not exhaustive, but they are the most used operations. Nevertheless,
any non-trivial operation on the pixels can be implemented by directly accessing the array containing the pixel values
through the function hpix_map_pixels().

The following simple example uses hpix_scale_pixels_by_constant_inplace() to optionally converts
a map containing pixel temperatures in K into a map where temperatures are expressed in muK.

hpix_map_t * map;

/* Read/initialize ‘map’ in some way... */
...

char choice;
printf("Do you want values to be expressed as microK (y/n)? ");
scanf("%c", &choice);

if(choice == ’y’) {
const double KELVIN_TO_MICROKELVIN = 1.0e6;
hpix_scale_pixels_by_constant_inplace(map, KELVIN_TO_MICROKELVIN);

}

/* Do some calculations on ‘map’ */
...

6.1 In-place transformations

The following functions change the value of the pixels in a map. If you are interested in keeping the old values, you
should copy the map before calling them.

hpix_map_t * hpix_scale_pixels_by_constant_inplace(hpix_map_t * map, double constant)
Multiply the value of every unmasked pixel in map by the floating-point number constant. Masked pixels are
left as they are.

hpix_map_t * hpix_add_constant_to_pixels_inplace(hpix_map_t * map, double constant)
Add constant to the value of every pixel in map.

void hpix_remove_monopole_from_map_inplace(hpix_map_t * map)
Subtract the average value of the unmasked pixels from the map.

21

HPixLib Documentation, Release 0.1

6.2 Statistical estimators

double hpix_average_pixel_value(const hpix_map_t * map)
Return the average value of the unmasked pixels in the map.

22 Chapter 6. Mathematical operations on map pixels

CHAPTER 7

Drawing maps

In this section we describe the most complex part of the library, that is the code that produces a graphical representation
of a map. To better understand the difficulties of such task, let us consider how this is accomplished by the standard
HEALPix library and by Healpy, a Python wrapper to HEALPix. The “standard” Healpix implementation is able to
plot maps in a number of ways:

• The IDL library contains roughly 7,600 lines of code which implement MOLLVIEW() and similar functions.
Such functions are written in pure IDL and use the IDL plotting functions.

• Two standalone programs, map2gif and map2tga, convert a map saved in a FITS file into a GIF/TGA image.
The first one is written in Fortran90 and is roughly 1,200 lines of code, plus the source code of the gifdraw
library (roughly 12,000 lines of code, in the directory src/f90/lib of the tarball). The same figures apply
to map2tga as well.

Because of this situation, the creators of the Healpy Python library decided to implement a set of plotting routines from
scratch. More than 2,000 lines of code are needed to implement functions like mollview() and mollzoom(); they
are based on the well-known matplotlib library.

Our approach is to implement a very generic interface for map plotting in HPixLib (i.e. one that is agnostic to the tool
actually used to draw the map: Quartz, Gtk+, Cairo . . .). Depending on the graphics library, there are two possible
approaches for drawing a map:

• Generate a bitmap. (This is the approach followed by the Healpix library and by Healpy.) The output of the
process is a 𝑁 × 𝑀 matrix of pixels whose elements are calculated using a ray-tracing algorithm. The image
has a fixed resolution, which implies that it shows poor results when enlarged. The ray-tracing algorithm has
the advantage of being quite fast, and bitmaps can be displayed and saved quickly. When saved, the size of the
file scales with the number of elements in the matrix, but it is independent of the number of pixels in the map.

• Generate a vector image. This solution has the drawback of producing very large files when nside is large, but
vector maps scale very well when enlarged. The typical formats used to store such maps are Postscript and PDF.

HPixLib will provide two sets of functions to ease the production of bitmapped and vector maps. (Such functions
need to be wrapped with some glue code which actually writes the map on disk or display it on the screen.) Currently
HPixLib supports the creation of bitmapped images; the veneration of vector images is considered less important and
will be implemented in future releases of the library.

The library provides a program, map2fig, which is similar to the two programs provided in the Healpix distribution,
map2gif and map2tga. However, being based on the Cairo graphics library, it allows to save maps in vector formats as
well. (The map itself is a bitmapped image embedded in the EPS/PDF/SVG file, but the title, the color bar and every
other element is a vector.) This allows e.g. to modify these maps within vector drawing programs like Inkscape or
Adobe Illustrator.

23

https://github.com/healpy/healpy
http://matplotlib.sourceforge.net/
http://www.gtk.org/
http://www.cairographics.org

HPixLib Documentation, Release 0.1

7.1 Introduction: a poor-man clone of map2fig

We begin with a full example of how to use the drawing/palette functions provided by HPixLib. The
following program reads a map from a file and then outputs to stdout a bitmap in PPM format
(http://netpbm.sourceforge.net/doc/ppm.html):

#include <stdio.h>
#include <hpixlib/hpix.h>

void output_map_to_file(const hpix_map_t * map,
hpix_color_palette_t * palette,

FILE * out)
{

/* Keeping it double makes calculations more efficient */
const double max_color_level = 255.0;

hpix_bmp_projection_t * proj =
hpix_create_bmp_projection(640, 320);

hpix_set_mollweide_projection(proj);

double min, max;
double * bitmap = hpix_bmp_projection_trace(proj, map, &min, &max);

/* Write the PPM header */
fprintf(out, "P3\n%u %u\n%u\n",

hpix_bmp_projection_width(proj),
hpix_bmp_projection_height(proj),
(unsigned) max_color_level);

double *restrict cur_pixel = bitmap;
for(unsigned y = 0; y < hpix_bmp_projection_height(proj); ++y)
{

for(unsigned x = 0; x < hpix_bmp_projection_width(proj); ++x)
{

hpix_color_t pixel_color;
hpix_palette_color(palette,

(*cur_pixel++ - min) / (max - min),
&pixel_color);

fprintf(out, "%3u %3u %3u\t",
(unsigned) (hpix_red_from_color(&pixel_color) * max_color_level),
(unsigned) (hpix_green_from_color(&pixel_color) * max_color_level),
(unsigned) (hpix_blue_from_color(&pixel_color) * max_color_level));

}

fputc(’\n’, out);
}

hpix_free(bitmap);
hpix_free_bmp_projection(proj);

}

int main(int argc, const char ** argv)
{

if(argc != 2)
{

fputs("You must specify the name of a FITS file on the command line\n",
stderr);

return 1;

24 Chapter 7. Drawing maps

http://netpbm.sourceforge.net/doc/ppm.html

HPixLib Documentation, Release 0.1

}

hpix_map_t * map;
const char * file_name = argv[1];
int status;
if(! hpix_load_fits_component_from_file(file_name, 1, &map, &status))
{

fprintf(stderr, "Unable to read map %s\n", file_name);
return 1;

}

hpix_color_palette_t * palette = hpix_create_planck_color_palette();
output_map_to_file(map, palette, stdout);
hpix_free_color_palette(palette);
hpix_free_map(map);

}

The typical usage is to produce a bitmap, then use min_value and max_value to scale it from the map measure unit
into a color space. (You can find the source code of this program in the file examples/map2ppm.c).

7.2 Available projections

HPixLib implements a number of cartographic projections. You can either access the low-level projection functions
or rely on the library to directly produce a map.

The low-level projection functions allow to perform one of the following tasks:

1. Convert the coordinate of a 2-D plane into a direction towards the sky and vice-versa. (Example:
hpix_mollweide_xy_to_angles().)

2. Check if a point on a 2-D plane is visible or not within the bitmap’s rectangle. (Example:
hpix_mollweide_is_xy_inside().)

The latter point is important for those projections like the Mollweide’s, which is enclosed in a shape which is not a
rectangle like the bitmap’s (ellipse).

The cartographic projections implemented by HPixLib are listed in the enumerated type
hpix_projection_type_t.

_Bool hpix_mollweide_xy_to_angles(const hpix_bmp_projection_t * proj, unsigned int x, unsigned
int y, double * theta, double * phi)

This function calculates the direction towards the sky that corresponds to the (x, y) point in the 2-D bitmap
projection pointed by proj. If there is no point which corresponds to (x, y), i.e., if these coordinates are outside
Mollweide’s ellipse, then the function returns FALSE, otherwise TRUE.

_Bool hpix_mollweide_is_xy_inside(const hpix_bmp_projection_t * proj, unsigned int x, unsigned
int y)

This function checks that the point (x, y) in the bitmap lies within Mollweide’s ellipse. If it does, return TRUE.
(The return value has therefore the same meaning as hpix_mollweide_xy_to_angles().)

_Bool hpix_equirectangular_xy_to_angles(const hpix_bmp_projection_t * proj, unsigned int x,
unsigned int y, double * theta, double * phi)

This function calculates the direction towards the sky that corresponds to the (x, y) point in the 2-D bitmap
projection pointed by proj. If there is no point which corresponds to (x, y), then the function returns FALSE,
otherwise TRUE. This happens only if x or y fall outside the rectangle enclosing the bitmap.

_Bool hpix_equirectangular_is_xy_inside(const hpix_bmp_projection_t * proj, unsigned int x,
unsigned int y)

This function checks that the point (x, y) in the bitmap lies within the bitmap’s region. If it does, return TRUE.

7.2. Available projections 25

HPixLib Documentation, Release 0.1

(The return value has therefore the same meaning as hpix_equirectangular_xy_to_angles().)

7.3 Bitmapped graphics

The interface provided by CHealpix for the generation of bitmapped graphics clearly shows the ray-tracing algorithm
on whom it is grounded. In the following discussion we try to prevent the ambiguity between a “pixel” in a Healpix
map and a “pixel” in a bitmap by referring to the second as “an element in the 𝑁 ×𝑀 matrix,” or “matrix element”
for short. All the functions implemented in this section have their name beginning with hpix_bmp_.

hpix_bmp_projection_t
This type contains all the information needed to transform a Healpix map into a bi-dimensional bitmapped pro-
jection. It is an opaque structure, which means that you are not allowed to directly access/modify its members:
you need to rely on functions defined in this section, like e.g. hpix_projection_width().

Projection type Enumeration constant
No projection HPIX_PROJ_NULL
Mollweide (equal area) HPIX_PROJ_MOLLWEIDE
Equirectangular HPIX_PROJ_EQUIRECTANGULAR

You can retrieve the cartographic projection used by a hpix_bmp_projection_t variable using the func-
tion hpix_bmp_projection_type().

hpix_bmp_projection_t * hpix_create_bmp_projection(unsigned int width, unsigned int height)
Create a new hpix_bmp_projection_t object and initialize its width and height. This object must be
deallocated using hpix_free_bmp_projection().

Once this function is called, there is no cartographic projection associated with it. You must call one of the
hpix_set_*_projection functions listed below (e.g., hpix_set_mollweide_projection()) in
order to effectively trace bitmaps.

void hpix_free_bmp_projection(hpix_bmp_projection_t * proj)
Free all the memory associated with proj, which therefore can no longer be used.

hpix_projection_type_t hpix_bmp_projection_type(const hpix_bmp_projection_t * proj)
Return the code identifying the cartographic projection associated with proj.

void hpix_set_equirectangular_projection(hpix_bmp_projection_t * proj)
Configure proj to use an equirectangular cartographic projection. This kind of projection is very useful if you
plan to wrap the bitmap around a 3D sphere, e.g., using a ray-tracing program.

void hpix_set_mollweide_projection(hpix_bmp_projection_t * proj)
Configure proj to use a Mollweide cartographic projection. Most of the full-sky CMB maps are usually produced
using this kind of projection.

_Bool hpix_bmp_projection_is_xy_inside(const hpix_bmp_projection_t * proj, unsigned int x, un-
signed int y)

Determine if the bitmap coordinates (x, y) fall within the map or not. The function inter-
nally calls the appropriate function for the cartographic projection associated with proj. For
instance, if you called hpix_set_mollweide_projection(), it acts as a wrapper to
hpix_mollweide_is_xy_inside().

_Bool hpix_bmp_projection_xy_to_angles(const hpix_bmp_projection_t * proj, unsigned int x, un-
signed int y, double * theta, double * phi)

Convert the bitmap coordinates (x, y) into a par (theta, phi), that is, colatitude and longitude.
The function internally calls the appropriate function for the cartographic projection associated with
proj. For instance, if you called hpix_set_mollweide_projection(), it acts as a wrapper to
hpix_mollweide_xy_to_angles().

26 Chapter 7. Drawing maps

HPixLib Documentation, Release 0.1

7.4 Projection properties

As said above, hpix_bmp_projection_t is an opaque structure and as such you cannot read/modify its members
directly: you have to use the facilities provided by the library.his.

unsigned int hpix_projection_width(const hpix_bmp_projection_t * proj)
Return the width of the bitmap, i.e. the number of columns.

unsigned int hpix_projection_height(const hpix_bmp_projection_t * proj)
Return the height of the bitmap, i.e. the number of rows.

7.5 Painting functions

double * hpix_bmp_projection_trace(const hpix_bmp_projection_t * proj, const hpix_map_t * map,
double * min_value, double * max_value)

This function creates a bitmap (rectangular array of numbers) containing a Mollweide projection of map. The
details of the projection are specified by the proj parameter (size of the bitmap, set of coordinates to be used and
so on). The bitmap is an array of floating-point values, each using the same scale as in the original map (i.e. if
the map represents a set of temperatures in Kelvin, then each pixel in the bitmap will be measured in Kelvin as
well).

Note that the Mollweide projection must have an aspect ratio 2:1, i.e., the width of the image should be twice
its height. HPixLib does not enforce such requirement on the width and height of the bitmap, as the true aspect
ratio of the image depends on the pixel aspect ratio of the device where the bitmap will be displayed as well.
However, a good rule of thumb is to pick a width which is roughly twice the height, as most of the display
devices in use today have a pixel aspect ratio which is close to 1:1.

When the bitmap returned by this function is no longer useful, you must free it using hpix_free().

7.6 Color palettes

Functions like hpix_bmp_projection_trace() create a bitmapped representation of a map in which each
matrix element of the bitmap is expressed in the same units as the map (e.g., if a map represents some measured sky
flux in Jy, then the matrix elements of the bitmap will be expressed in Jy too).

In order to properly display the bitmap on a device, HPixLib provides a number of functions which convert floating-
point values (in arbitrary scales) into colors. Moreover, HPixLib is able to handle color sets, called color palette, that
represent gradients used to attribute specific colors to each pixel in a map.

7.6.1 Color types and functions

The representation of colors used by HPixLib (through the type hpix_color_t) uses the classical RGB decomposi-
tion, i.e., each color is expressed as a mixture of red, green, and blue levels (RGB), where each level is a floating-point
value between 0.0 (absence) to 1.0 (saturation).

hpix_color_t
This type is a structure made up by three fields: red, green, and blue. Each element is a floating-point value
normalized to unity.

The value of the red, green, and blue fields should be between 0.0 (lack of shade) and 1.0 (saturated shade).
HPixLib however does not enforce such limits, since it is quite common in computer graphics to represent
saturated values using levels greater than 1.0. (E.g., this effect is used in ray-tracing programs like POV-Ray to
create very bright light sources.)

7.4. Projection properties 27

HPixLib Documentation, Release 0.1

The structure is not opaque, therefore it can be created on-the-fly using the facilities of the C99 language:

/* This will work in C99, but not in C89 */
hpix_color_t red_color =

(hpix_color_t) { .red = 1.0, .green = 0.0, .blue = 0.0 };

Although the members of hpix_color_t can be accessed directly, HPixLib provides getter/setter functions in order
to ease the creation of binding libraries in other languages.

hpix_color_t hpix_create_color(double red, double green, double blue)
Return a hpix_color_t structure initialized to the specified values of red, green, and blue.

hpix_red_from_color(const hpix_color_t * color)
Return the red level of the color.

hpix_green_from_color(const hpix_color_t * color)
Return the green level of the color.

hpix_blue_from_color(const hpix_color_t * color)
Return the blue level of the color.

7.6.2 Color palettes

A color palette is a set of colors and rules which specify how to combine the colors in order to provide a continuous
and smooth palette. The idea is that every floating-point number falling within some predefined range can then be
converted into a RGB color and displayed on a device.

The original Healpix color palette shows an example. The palette is made by six colors, each with an associated
floating-point number between 0 and 1. The library is able to blend the colors (using linear interpolation) to produce
a smooth transition between them. The programmer can create custom color palettes using the functions described in
this section.

Figure 7.1: The original Healpix color palette

hpix_color_palette_t
The type hpix_color_palette_t is an opaque type that holds the information which represents a color
palette:

1.An array of levels and colors (hpix_color_t). This array always contains at least two elements: the
one at level 0 (left side) and the one at level 1 (right side).

2.The color to be used for unseen pixels.

HPixLib provides a few functions that create nice-looking palettes
ready to use: hpix_create_grayscale_color_palette() and
hpix_create_healpix_color_palette(). When a palette is no longer used, the program
must call hpix_free_color_palette().

Note that, being an opaque type, hpix_color_palette_t can be accessed only using the setter/getter
functions described here.

hpix_color_palette_t * hpix_create_black_color_palette(void)
Create a black color palette. This is never used in real-world examples, but it can be a good
starting point for creating custom palettes using hpix_set_color_for_step_in_palette() and
hpix_add_step_to_color_palette().

When the palette is no longer used, the program must call hpix_free_color_palette().

28 Chapter 7. Drawing maps

HPixLib Documentation, Release 0.1

hpix_color_palette_t * hpix_create_grayscale_color_palette(void)
Create a color palette made by gray shades. (The color used for unseen pixels has a reddish tint, in order to
make it distinguishable from the others.)

When the palette is no longer used, the program must call hpix_free_color_palette().

hpix_color_palette_t * hpix_create_healpix_color_palette(void)
Create a color palette that mimics the one used by the original Healpix library. When the palette is no longer
used, the program must call hpix_free_color_palette().

hpix_color_palette_t * hpix_create_planck_color_palette(void)
Create a color palette that mimics the one used in the first Planck data release. When the palette is no longer
used, the program must call hpix_free_color_palette().

void hpix_free_color_palette(hpix_color_palette_t * palette)
Release any memory associated with the palette.

The color to be used for unseen/masked/bad pixels can be read using
hpix_color_for_unseen_pixels_in_palette() and set using hpix_set_color_for_unseen_pixels_in_palette().

void hpix_set_color_for_unseen_pixels_in_palette(hpix_color_palette_t * palette,
hpix_color_t new_color)

Set the color to be used for unseen pixels in the specified palette.

hpix_color_t hpix_set_color_for_unseen_pixels_in_palette(hpix_color_palette_t * palette)
Retrieve from the palette the color to be used for unseen pixels.

It is possible to add color levels and to modify the existing ones. Note however that it is not possible to delete levels
from a hpix_color_palette_t variable.

void hpix_add_step_to_color_palette(hpix_color_palette_t * palette, double level,
hpix_color_t color)

Add a new color and a new level to the color palette. The new color will be appended to the list of existing color
steps. Before using the palette, you must ensure that hpix_sort_levels_in_color_palette() has
been called, so that all the levels are in ascending order.

Note that the code does not check if the level you are specifying in the call is already present in the palette. If
this is the case, the library might behave unexpectedly (including divisions by zero).

size_t hpix_num_of_steps_in_color_palette(const hpix_color_palette_t * palette)
Return the number of color steps in the palette. This number is useful if you want to cy-
cle over the steps using e.g. calls to hpix_color_for_step_in_palette() and
hpix_level_for_step_in_palette().

hpix_color_t hpix_color_for_step_in_palette(const hpix_color_palette_t * palette,
size_t zero_based_index)

Return the color associated with the given step in the palette. The value of zero_based_index ranges from 0 to
the value returned by hpix_num_of_steps_in_color_palette().

double hpix_level_for_step_in_palette(const hpix_color_palette_t * palette,
size_t zero_based_index)

Return the level associated with the given step in the palette. This level should always be be-
tween 0.0 and 1.0. The value of zero_based_index ranges from 0 to the value returned by
hpix_num_of_steps_in_color_palette().

void hpix_set_color_for_step_in_palette(hpix_color_palette_t * palette,
size_t zero_based_index, hpix_color_t new_color)

Change the color associated with the given step in the palette.

See also hpix_color_for_step_in_palette().

7.6. Color palettes 29

HPixLib Documentation, Release 0.1

void hpix_set_level_for_step_in_palette(hpix_color_palette_t * palette,
size_t zero_based_index, double new_level)

Change the level associated with the given step in the palette. Use with care! You must ensure that the new level
does not coincide with other levels in the palette, and that the first and last level in the array of steps are still 0.0
and 1.0.

See also hpix_level_for_step_in_palette().

Here is an example of how to use these functions to dump the definition of a palette to stdout:

size_t num_of_steps = hpix_num_of_steps_in_color_palette(palette);

for(size_t index = 0; index < num_of_steps; ++index)
{

double level = hpix_level_for_step_in_palette(palette, index);
hpix_color_t color = hpix_color_for_step_in_palette(palette, index);

printf("Level: %.2f -- R: %.2f, G: %.2f, B: %.2f\n",
color.red, color.green, color.blue);

}

If palette were the result of a call to hpix_create_healpix_color_palette(), the output of the code above
would have been the following:

Level: 0.00 -- R: 0.00, G: 0.00, B: 0.50
Level: 0.15 -- R: 0.00, G: 0.00, B: 1.00
Level: 0.40 -- R: 0.00, G: 1.00, B: 1.00
Level: 0.70 -- R: 1.00, G: 1.00, B: 0.00
Level: 0.90 -- R: 1.00, G: 0.33, B: 0.00
Level: 1.00 -- R: 0.50, G: 0.00, B: 0.00

void hpix_sort_levels_in_color_palette(hpix_color_palette_t * palette)
Sort all the steps in the palette in increasing order with respect to their level. (The sort is done inplace using the
Standard C library function qsort: depending on the implementation, it might require or not additional memory.)

Sorting the steps in the palette is crucial for allowing the algorithm implemented in
hpix_palette_color() to work. For efficiency reasons, the function is never called automatically
by HPixLib.

hpix_palette_color(const hpix_color_palette_t * palette, double level, hpix_color_t * color)
Set the fields of color so that it represents the specified level in the given color palette. The function uses a linear
interpolation of the color steps in the palette.

The palette must be properly sorted using hpix_sort_levels_in_color_palette(). This
condition is already satisfied for the palettes returned by hpix_create_black_color_palette(),
hpix_create_grayscale_color_palette(), and hpix_create_healpix_color_palette().

Before using a palette in a call to hpix_get_color_palette() or any function that implicitly calls it (e.g.,
hpix_bmp_projection_to_cairo_surface()), you must ensure these rules apply:

1. The first color step in the palette has level 0.

2. The last color step in the palette has level 1.

3. All the color steps are sorted in increasing order according to their level.

4. There must not be two color steps with the same value for the level.

HPixLib does not enforce any of these rules. To ensure that you comply with them, here is a set of rules:

• After you call hpix_add_step_to_color_palette(), call hpix_sort_levels_in_color_palette()
to sort the list. If you make multiple calls to hpix_add_step_to_color_palette(), you can sort the
list after the last call (which is very efficient).

30 Chapter 7. Drawing maps

HPixLib Documentation, Release 0.1

• Never use hpix_set_level_for_step_in_palette() to change the level of the color steps with level
0.0 and 1.0.

• When adding new color steps with hpix_add_step_to_color_palette(), ensure that the level you
are specifing was never used in the palette.

• If you want to change the color at one of the edges of the palette, the right way to do is to call
hpix_set_color_for_step_in_palette(), as shown in the following example:

/* This might be unnecessary, but it does not harm. */
hpix_sort_levels_in_color_palette(palette);

size_t num_of_steps = hpix_num_of_steps_in_color_palette(palette);

/* Change the color for level 0 */
hpix_set_color_for_step_in_palette(0, hpix_create_color(0.0, 1.0, 1.0));
/* Change the color for level 1 */
hpix_set_color_for_step_in_palette(num_of_steps - 1, hpix_create_color(1.0, 1.0, 1.0));

7.7 Vector graphics

Not implemented yet.

7.7. Vector graphics 31

HPixLib Documentation, Release 0.1

32 Chapter 7. Drawing maps

CHAPTER 8

Command-line utilities

In the utilities directory there are a few non-trivial programs using HPixLib. They are automatically build and installed
with the library, and provide a few useful utilities that can be used e.g. in bash scripts.

8.1 map2fig

This utility is compiled only if an useable version of the Cairo library (http://www.cairographics.org) is found at
compilation time. It converts a map in FITS format into a figure. It can support the following formats:

• PNG (bitmapped format)

• PostScript and Encapsulated PostScript (EPS, a vector format)

• PDF (Adobe Portable Document Format, a vector format)

• SVG (Scalar Vector Graphics, a vector format)

(Some formats might not be available, depending on settings used in compiling the Cairo library.) Vector formats
contain a bitmapped representation of the map, but the text and color bar are vector elements that can be modified by
vector drawing programs like e.g. Inkscape (http://inkscape.org).

Run map2fig –help for a list of options.

33

http://www.cairographics.org
http://inkscape.org

HPixLib Documentation, Release 0.1

34 Chapter 8. Command-line utilities

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

35

	Introduction
	The standard Healpix implementation
	Purpose of HPixLib with respect to Healpix

	Installing HPixLib
	Using the library
	Pixel functions
	Converting NSIDE into the number of pixels and back
	Converting among angles, vectors and pixel centers
	Converting RING into NESTED and back

	The hpix_map_t type
	Basic types
	Map creation/distruction
	Loading and saving maps
	Accessing map information

	Mathematical operations on map pixels
	In-place transformations
	Statistical estimators

	Drawing maps
	Introduction: a poor-man clone of map2fig
	Available projections
	Bitmapped graphics
	Projection properties
	Painting functions
	Color palettes
	Vector graphics

	Command-line utilities
	map2fig

	Indices and tables

