

HPC-UiT Services User Documentation

 Tweets by @hpc_uit

Attention

Stallo is getting old and will be shutdown this year.
Hardware failures cause more and more nodes to fail due to high age.
The shutdown date has been postponed to help us prepare
the infrastructure for the switch.
The system will stay in production and continue service until
at least 31. December 2020.

We will help you with finding alternatives to your computational and
storage needs and with moving your workflows and data to one of our
other machines like Betzy, Saga and Fram.
As we move closer to the shutdown, news, updated information and howtos
will be published on the official Sigma2 migration page [https://www.sigma2.no/migrating-stallo-and-vilje]
and here.

If you have questions, special needs or problems, please contact us at
migration@metacenter.no

 Getting started

Getting started

Here you will get the basics to work with Stallo. Please study carefully the links at the end of each paragraph to get more detailed information.

Get an account

If you are associated with UiT The Arctic University of Norway, you may apply locally. How to get a local account on Stallo

You can also apply for an account for Stallo or any of the other Norwegian computer clusters at the Metacenter account application [https:/www.metacenter.no/user/application/form/notur/]. This is also possible if you already have a local account. Getting an account

Change temporary password

The password you got by SMS has to be changed on MAS [https://www.metacenter.no/user/login/?next=/user/password/] within one week, or else the loginaccount will be closed again - and you need to contact us for reopening.
You can’t use the temporary password for logging in to Stallo.

Connect to Stallo

You may connect to Stallo via SSH to stallo.uit.no. This means that on Linux and OSX you may directly connect by opening a terminal and writing ssh username@stallo.uit.no. From Windows, you may connect via PuTTY which is available in the Software Center. X-forwarding for graphical applications is possible. There exists also a webinterface to allow easy graphical login. Please see the following link for details to all mentioned methods. Logging in for the first time

On nodes and files

When you login, you will be on a login node. Do not run any long-lasting programs here. The login node shall only be used for job preparation (see below) and simple file operations.

You will also be in your home directory /home/username. Here, you have 300 GB at your disposal that will be backed up regularly. For actual work, please use the global work area at /global/work/username. This space is not backed up, but it has a good performance and is 1000 TB in size. Please remove old files regularly. Storage and backup

To move files from your computer to Stallo or vice versa, you may use any tool that works with ssh. On Linux and OSX, these are scp, rsync, or similar programs. On Windows, you may use WinSCP. Transferring files to/from Stallo

Run a program

There are many programs pre-installed. You may get a list of all programs by typing module avail. You can also search within that list. module avail blast will search for Blast (case-insensitive). When you found your program of choice, you may load it using module load BLAST+/2.7.1-intel-2017b-Python-2.7.14. All program files will now be available, i.e. you can now simply call blastp -version to run Blast and check the loaded version. You can also compile your own software, if necessary. Software Module Scheme

To eventually run the program, you have to write a job script. In this script, you can define how long the job (i.e. the program) will run and how much memory and compute cores it needs. For the actual computation, you need to learn at least the basics of Linux shell scripting. You can learn some basics here: Linux command line.

When you wrote the job script, you can start it with sbatch jobscript.sh. This will put the script in the queue, where it will wait until an appropriate compute node is available. You can see the status of your job with squeue -u username. Batch system and Job script examples

Every job that gets started will be charged to your quota. Your quota is calculated in hours of CPU time and is connected to your specific project. To see the status of your quota account(s), type cost CPU-hour quota and accounting

Get help

Do you need help with Stallo? Write us an email to support@metacenter.no. You can also request new software (either an update or entirely new software), suggest changes to this documentation, or send us any other suggestions or issues concerning Stallo to that email address. Please also read the rest of this documentation.

Happy researching!

 News and notifications

[image: ../_images/tag.jpg]

Found in Via Notari, Pisa; (c) Roberto Di Remigio.

News and notifications

News about planned/unplanned downtime, changes in hardware, and important
changes in software will be published on the HPC UiT twitter account
https://twitter.com/hpc_uit and on the login screen of stallo.
For more information on the different situations see below.

System status and activity

You can get a quick overview of the system load on Stallo on the
Sigma2 hardware page [https://www.sigma2.no/hardware/status].
More information on the system load, queued jobs, and node states can
be found on the jobbrowser page [http://stallo-login2.uit.no/slurmbrowser/html/squeue.html]
(only visible from within the UiT network).

Planned/unplanned downtime

In the case of a planned downtime, a reservation will be made in the
queuing system, so new jobs, that would not finish until the downtime,
won’t start. If the system goes down, running jobs will be restarted,
if possible. We apologize for any inconveniences this may cause.

 Contact

Contact

If you need help, please file a support request via support@metacenter.no, and
our local team of experts will try to assist you as soon as possible. Please
state in the email that the request is about Stallo.

[image: ../_images/rtfm.png]
Credit: https://xkcd.com/293/

Postal address

Seksjon for digital forskningstjeneste/HPC
Nofima
Muninbakken 9-13
UiT Norges Arktiske Universitet
9037 Tromsø

Find us on Mazemap [https://use.mazemap.com/?v=1&campusid=5&desttype=point&dest=18.97468,69.68186,3&zoom=17]

 How to write good support requests

How to write good support requests

Writing good support requests is not only good for the support team, it is also
better for you! Due to us having lots of help requests, the time to understand
each problem is at a premium. The easier it is to understand yours, the faster
we will get to it.
Below is a list of good practices.

Never send support requests to staff members directly

Always send them to support@metacenter.no and staff members will pick them
up there. On support@metacenter.no they get tracked and have higher visibility.
Some staff members work on the support line only part time.
Sending the request to support@metacenter.no makes sure that somebody will pick
it up. Please note in the request that it is about Stallo, as there are more
clusters that are handled with this email address.

Do not manhandle us as simple “Let me Google that for you” assistants

Seriously: have you searched the internet with the exact error message and the
name of your application…? Other scientists may have had the very same problem
and might have been successful in solving it.
By the way: that’s almost always how we start to research, too…

Give descriptive subject

Your subject line should be descriptive. “Problem on Stallo” is not a good
subject line since it could be valid for basically every support email we get.
The support staff is a team. The subjects are the first thing that we see. We
would like to be able to classify emails according to subjects before even
opening the email.

Include actual commands and error messages

We cover this below, but it’s so important it needs to be mentioned at
the top, too: include the actual command you run and actual error
messages. Copy and paste. If you don’t include this, we will be
slightly annoyed and immediately ask this.

Please, do not screen shoot your ssh terminal and send us pictures (jpg, png, tiff…)
of what you saw on your monitor! From these, we would be unable to cut & paste commands
or error messages, unnecessarily slowing down our research on your problem.
Your sample output does not need at all to “look good”, and we don’t need to know
what fancy ssh- or terminal software you have: a simple text-based cut & paste directly
into the mail or ticket is the best we can work on with.

New problem–new email

Do not send support requests by replying to unrelated issues. Every issue gets a
number and this is the number that you see in the subject line. Replying to
unrelated issues means that your email gets filed under the wrong thread and
risks being overlooked.

The XY problem

This is a classic problem. Please read http://xyproblem.info. Often we know
the solution but sometimes we don’t know the problem.

In short (quoting from http://xyproblem.info):

	User wants to do X.

	User doesn’t know how to do X, but thinks they can fumble their way to a solution if they can just manage to do Y.

	User doesn’t know how to do Y either.

	User asks for help with Y.

	Others try to help user with Y, but are confused because Y seems like a strange problem to want to solve.

	After much interaction and wasted time, it finally becomes clear that the user really wants help with X, and that Y wasn’t even a suitable solution for X.

To avoid the XY problem, if you struggle with Y but really what you are after
is X, please also tell us about X. Tell us what you really want to achieve.
Solving Y can take a long time. We have had cases where after enormous effort
on Y we realized that the user wanted X and that Y was not the best way to
achieve X.

Tell us also what worked

Rather often we get requests of the type “I cannot get X to run on two nodes”. The
request then does not mention whether it worked on one node or on one core or
whether it never worked and that this was the first attempt.
Perhaps the problem has even nothing to do with one or two nodes.
In order to better
isolate the problem and avoid wasting time with many back and forth emails,
please tell us what actually worked so far. Tell us what you have tried to
isolate the problem. This requires some effort from you but this is what we
expect from you.

Specify your environment

Have you or your colleague compiled the code? Which modules were loaded?
If you use non-default modules and you do not tell us about it, we will
waste time when debugging with in a different environment.

Simple cases: Be specific, include commands and errors

Whatever you do, don’t say that “X didn’t work”. Exactly give the
commands you ran, environment (see above), and output error messages.
The actual error messages mean a lot - include all the output, it is
easy to copy and paste it.

The better you describe the problem the less we have to guess and ask.

Sometimes, just seeing the actual error message is enough to give an
useful answer. For all but the simplest cases, you will need to make
the problem reproducible, which you should always try anyway. See
the following points.

Complex cases: Create an example which reproduces the problem

Create an example that we can ideally just copy paste and run and which
demonstrates the problem. It is otherwise very time consuming if the support
team needs to write input files and run scripts based on your possibly
incomplete description. See also next point. Make this example available to
us. We do not search and read read-protected files without your permission.

Make the example as small and fast as possible

You run a calculation which crashes after running for one week. You are tempted
to write to support right away with this example but this is not a good idea.
Before you send a support request with this example, first try to reduce it.
Possibly and probably the crash can be reproduced with a much smaller example
(smaller system size or grid or basis set). It is so much easier to schedule
and debug a problem which crashes after few seconds compared to a run which
crashes after hours. Of course this requires some effort from you but this is
what we expect from you in order to create a useful support request.
Often when isolating the problem, the problem and solution crystallize before
even writing the support request.

 Frequently asked questions

Frequently asked questions

Passwords

I forgot my password - what now?

You can reset it here: https://www.metacenter.no/user/

How do I change my password on Stallo?

The password can be changed on the
password metacenter page [https://www.metacenter.no/user/password/], log in using your
username on Stallo and the NOTUR domain.

The passwd command known from other Linuxes does not work.
The Stallo system is using a centralised database for user management.
This will override the password changes done locally on Stallo.

What is the ssh key fingerprint for stallo.uit.no?

The SHA256 key fingerprint is: SHA256:YJpwZ91X5FNXTc/5SE1j9UR1UAAI4FFWVwNSoWoq6Hc

The MD5 key fingerprint is: MD5:36:a8:c5:f3:21:24:bb:bc:07:6f:af:4a:fe:3e:cb:9a

If you are more of a visual person, use ssh -o VisualHostKey=yes stallo.uit.no and compare it to this visual key:

+---[RSA 1024]----+
| oo+ooo**BO^|
| . + ..+ o.BO|
| . . * . o . +.=|
| o * o.|
| o S . .|
| . o |
| . . . |
| . ..E |
| .. . |
+----[SHA256]-----+

Installing software

I need Python package X but the one on Stallo is too old or I cannot find it

You can choose different Python versions with either the module system or using Anaconda/Miniconda. See here: Software Module Scheme and Python, R, Matlab and Perl.

In cases where this still doesn’t solve your problem or you would like to install a package yourself, please read the next section below about installing without sudo rights.

If we don’t have it installed, and installing it yourself is not a good solution for you, please contact us and we will do our best to help you.

Can I install Python software as a normal user without sudo rights?

Yes. Please see Python, R, Matlab and Perl.

Compute and storage quota

How can I check my disk quota and disk usage?

To check how large your disk quota is, and how much of it you have used,
you can use the following command:

$ quota -s

Only home and project partitions have quota.

How many CPU hours have I spent?

For a simple summary, you can use the command cost,
for more details, you can use:

$ gstatement --hours --summarize -p PROSJEKT -s YYYY-MM-DD -e YYYY-MM-DD

For a detailed overview over usage you can use:

$ gstatement --hours -p PROSJEKT -s YYYY-MM-DD -e YYYY-MM-DD

For more options see:

$ gstatement --help

Connecting via ssh

How can I export the display from a compute node to my desktop?

If you need to export the display from a compute node to your desktop you should

	First login to Stallo with display forwarding.

	Then you should reserve a node, with display forwarding, trough the
queuing system.

Here is an example:

$ ssh -Y stallo.uit.no # log in with port forwarding
$ srun -N 1 -t 1:0:0 --pty bash -I # reserve and log in on a compute node

This example assumes that you are running an X-server on your local
desktop, which should be available for most users running Linux, Unix
and Mac Os X. If you are using Windows you must install some X-server
on your local PC.

How can I access a compute node from the login node?

Log in to stallo.uit.no and type e.g.:

$ ssh compute-1-3

or use the shorter version:

$ ssh c1-3

My ssh connections are dying / freezing

How to prevent your ssh connections from dying / freezing.

If your ssh connections more or less randomly are dying / freezing, try
to add the following to your local ~/.ssh/config file:

ServerAliveCountMax 3
ServerAliveInterval 10

(local means that you need to make these changes to your computer,
not on stallo)

The above config is for OpenSSH [https://www.openssh.org], if you’re
using
PUTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html]
you can take a look at this page explaining
keepalives [https://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter4.html#config-keepalive]
for a similar solution.

Jobs and queue system

I am not able to submit jobs longer than two days

Please read about Partitions (queues) and services.

Where can I find an example of job script?

You can find job script examples in Job script examples.

Relevant application specific examples (also for beginning users) for a few applications can be found in
Application guides.

When will my job start?

How can I find out when my job will start?

To find out approximately when the job scheduler thinks your job will
start, use the command:

squeue --start -j <job_id>

This command will give you information about how many CPUs your job requires,
for how long, as well as when approximately it will start and complete. It
must be emphasized that this is just a best guess, queued jobs may start
earlier because of running jobs that finishes before they hit the walltime
limit and jobs may start later than projected because new jobs are submitted
that get higher priority.

How can I see the queing situation?

How can I see how my jobs are doing in the queue, if my jobs are idle, blocked,
running?

On the webpage http://stallo-login2.uit.no/slurmbrowser/html/squeue.html you
can find information about the current load on stallo, some information about
the nodes, and the information you would get from the showq command, which is
described below. You can also find information about your job and if you the
job is running, you can find graphs about its usage of the CPUs, memory and so
on.

If you prefer to use the command line, to see the job queue use:

$ squeue

Why does my job not start or give me error feedback when submitting?

Most often the reason a job is not starting is that Stallo is full at the moment and there are many jobs waiting in the queue. But sometimes there is an error in the job script and you are asking for a configuration that is not possible on Stallo. In such a case the job will not start.

To find out how to monitor your jobs and check their status see Monitoring your jobs.

Below are a few cases of why jobs don’t start or error messages you might get:

Memory per core

“When I try to start a job with 2GB of memory pr. core, I get the following error:
sbatch: error: Batch job submission failed: Requested node configuration is not available
With 1GB/core it works fine. What might be the cause to this?”

On Stallo we have two different configurations available; 16 core and 20 core nodes - with both a
total of 32 GB of memory/node. If you ask for full nodes by
specifying both number of nodes and cores/node together with 2 GB of memory/core, you will ask
for 20 cores/node and 40 GB of memory. This configuration does not exist on Stallo. If you ask
for 16 cores, still with 2GB/core, there is a sort of buffer within SLURM no allowing you
to consume absolutely all memory available (system needs some to work). 2000MB/core works
fine, but not 2 GB for 16 cores/node.

The solution we want to push in general is this:

#SBATCH -ntasks=80 # (number of nodes * number of cores, i.e. 5*16 or 4*20 = 80)

If you then ask for 2000MB of memory/core, you will be given 16 cores/node and a total
of 16 nodes. 4000MB will give you 8 cores/node - everyone being happy. Just note the
info about PE CPU-hour quota and accounting; mem-per-cpu 4000MB will cost you twice as much as
mem-per-cpu 2000MB.

Please also note that if you want to use the whole memory on a node, do not ask
for 32GB, but for 31GB or 31000MB as the node needs some memory for the system itself.
For an example, see here: Example on how to allocate entire memory on one node

Step memory limit

“Why do I get slurmstepd: Exceeded step memory limit in my log/output?”

For slurm, the memory flag is a hard limit, meaning that when each core
tries to utilize more than the given amount of memory, it is killed by the slurm-deamon.
For example $SBATCH --mem-per-cpu=2GB means that you maximum can use 2 GB of memory per
core. With memory intensive applications like Comsol or VASP, your job will likely be
terminated. The solution to this problem is to specify the
number of tasks irrespectively of cores/node and ask for as much memory you will need.

For instance:

#SBATCH --ntasks=20
#SBATCH --time=0-24:05:00
#SBATCH --mem-per-cpu=6000MB

QOSMaxWallDurationPerJobLimit

QOSMaxWallDurationPerJobLimit means that MaxWallDurationPerJobLimit has been exceeded. Basically, you have asked for more time than allowed for the given QOS/Partition. Please have a look at Partitions (queues) and services

Priority vs. Resources

Priority means that resources are in principle available, but someone else has higher priority in the queue. Resources means the at the moment the requested resources are not available.

Why is my job not starting on highmem nodes although the highmem queue is empty?

To prevent the highmem nodes from standing around idle, normal jobs may use them as well, using only 32 GB of the available memory. Hence, it is possible that the highmem nodes are busy, although you do not see any jobs queuing or running on squeue -p highmem.

How can I customize emails that I get after a job has completed?

Use the mail command and you can customize it to your liking but make sure
that you send the email via the login node.

As an example, add and adapt the following line at the end of your script:

echo "email content" | ssh stallo-1.local 'mail -s "Job finished: ${SLURM_JOBID}" firstname.lastname@uit.no'

How can I run many short tasks?

The overhead in the job start and cleanup makes it unpractical to run
thousands of short tasks as individual jobs on Stallo.

The queueing setup on stallo, or rather, the accounting system generates
overhead in the start and finish of a job of about 1 second at each end
of the job. This overhead is insignificant when running large parallel
jobs, but creates scaling issues when running a massive amount of
shorter jobs. One can consider a collection of independent tasks as one
large parallel job and the aforementioned overhead becomes the serial or
unparallelizable part of the job. This is because the queuing system can
only start and account one job at a time. This scaling problem is
described by Amdahls Law [https://en.wikipedia.org/wiki/Amdahl's_law].

If the tasks are extremly short, you can use the example below. If you want to
spawn many jobs without polluting the queueing system, please have a look at
Running many sequential jobs in parallel using job arrays.

By using some shell trickery one can spawn and load-balance multiple
independent task running in parallel within one node, just background
the tasks and poll to see when some task is finished until you spawn the
next:

#!/usr/bin/env bash

Jobscript example that can run several tasks in parallel.
All features used here are standard in bash so it should work on
any sane UNIX/LINUX system.
Author: roy.dragseth@uit.no
#
This example will only work within one compute node so let's run
on one node using all the cpu-cores:
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20

We assume we will (in total) be done in 10 minutes:
#SBATCH --time=0-00:10:00

Let us use all CPUs:
maxpartasks=$SLURM_TASKS_PER_NODE

Let's assume we have a bunch of tasks we want to perform.
Each task is done in the form of a shell script with a numerical argument:
dowork.sh N
Let's just create some fake arguments with a sequence of numbers
from 1 to 100, edit this to your liking:
tasks=$(seq 100)

cd $SLURM_SUBMIT_DIR

for t in $tasks; do
 # Do the real work, edit this section to your liking.
 # remember to background the task or else we will
 # run serially
 ./dowork.sh $t &

 # You should leave the rest alone...

 # count the number of background tasks we have spawned
 # the jobs command print one line per task running so we only need
 # to count the number of lines.
 activetasks=$(jobs | wc -l)

 # if we have filled all the available cpu-cores with work we poll
 # every second to wait for tasks to exit.
 while [$activetasks -ge $maxpartasks]; do
 sleep 1
 activetasks=$(jobs | wc -l)
 done
done

Ok, all tasks spawned. Now we need to wait for the last ones to
be finished before we exit.
echo "Waiting for tasks to complete"
wait
echo "done"

And here is the dowork.sh script:

#!/usr/bin/env bash

Fake some work, $1 is the task number.
Change this to whatever you want to have done.

sleep between 0 and 10 secs
let sleeptime=10*$RANDOM/32768

echo "Task $1 is sleeping for $sleeptime seconds"
sleep $sleeptime
echo "Task $1 has slept for $sleeptime seconds"

 Support staff

Support staff

Our vision

Give our users a competitive advantage in the international science race.

Goal

Contribute to make our scientists the most efficient users of High Performance
Computing (HPC), by creating the best support environment for any HPC user,
and present them to the most efficient solutions to support their highest
demands in HPC.

Services

The HPC-Group works within three areas:

	Technical and Operational computing resource support to the national
program, and local initiatives.

	Basic and Advanced user support to projects and research groups that
utilizes HPC or is expecting to do so in the future.

	Involvement in national development projects and initiatives, for instance
in GRID Computing and new technology areas.

National resource site

Since 2000 UiT has been a Resource Site in the National High Performance
Computing Consortium (NOTUR), a joint mission between the four Norwegian
Universities in Bergen, Oslo, Trondheim and Tromsø. Since December 2014
UNINETT Sigma2 manages the national infrastructure and offers High Performance
Computing and Data Storage.

Regional resource site

The HPC group at UiT also has a role to play as a regional resource site
within HPC, offering HPC services to other institutions in Northern Norway. A
strategic collaboration between UiT and the Norwegian Polar Institute within
HPC has been ongoing since 1998.

Our team

	Radovan Bast [http://bast.fr]

	Roy Dragseth [https://uit.no/om/enhet/ansatte/person?p_document_id=42529&p_dimension_id=88223]

	Steinar Henden [https://uit.no/om/enhet/ansatte/person?p_document_id=43772&p_dimension_id=88223]

	Stig Rune Jensen [https://uit.no/om/enhet/ansatte/person?p_document_id=168046&p_dimension_id=88139]

	Dan Jonsson [https://uit.no/om/enhet/ansatte/person?p_document_id=44087&p_dimension_id=88223]

	Espen Tangen [https://uit.no/om/enhet/ansatte/person?p_document_id=43808&p_dimension_id=88223]

	Ilia Zhakun [https://uit.no/om/enhet/ansatte/person?p_document_id=522532&p_dimension_id=88223]

	Jørn Dietze [https://uit.no/om/enhet/ansatte/person?p_document_id=486227&p_dimension_id=88223]

 Open Question & Answer Sessions for All Users

Open Question & Answer Sessions for All Users

Learn new tricks and ask & discuss questions

Meet the HPC staff, discuss problems and project ideas, give feedback or suggestions on how to improve services, and get advice for your projects.

Join us on Zoom [https://uit.zoom.us/j/65284253551], get yourself a coffee or tea and have a chat. It doesn’t matter from which institute or university you are, you are welcome to join at any time.

This time we will start with a short seminar about “Helpful Tools & Services we offer you might not know about”.
Afterwards we have the open question and answer session.

We can talk about:
- Problems/questions regarding the Stallo/Vilje shutdown and migration
- Questions regarding data storage and management
- Help with programming and software management
- Help with project organization and data management
- Anything else
If you think you might have a challenging question or topics for us, you can also send them to us before, so we can come prepared and help you better. If you have general or specific questions about the event: jorn.dietze@uit.no

Next event

	2020-10-13, 13:00 - 15:00, online Zoom meeting [https://uit.zoom.us/j/65284253551]

Past events

	2020-10-10, 13:00 - 15:00, online Zoom meeting

	2020-04-23, 13:00 - 15:00, online Zoom meeting

	2020-02-19, 10:00 - 12:00, main kantina [http://bit.ly/36Fhd9y]

	2019-11-12, 14:00 - 16:00, main kantina [http://bit.ly/36Fhd9y]

	2019-09-11, 10:00 - 12:30, MH bygget atrium

Similar events which serve as inspiration

	https://scicomp.aalto.fi/news/garage.html

	https://openworking.wordpress.com/2019/02/04/coding-problems-just-pop-over/

 Stallo Shutdown

Stallo Shutdown

Stallo is getting old and will be shutdown this year.
Hardware failures cause more and more nodes to fail due to high age.
The system will stay in production and continue service until
at least 31. December 2020.

We will help you with finding alternatives to your computational and
storage needs and with moving your workflows and data to one of our
other machines like Betzy, Saga and Fram.

If you have questions, special needs or problems, please contact us at
migration@metacenter.no

Alternatives

For an overview of alternatives especially for local projects, please
have look this presentation [https://docs.google.com/presentation/d/1tkXTj9L_9grOYKXcaKmP12jF5_5YzIuj6g4y8X78IUw/edit?usp=sharing]

Computional resources

	Betzy [https://documentation.sigma2.no/hpc_machines/betzy.html]

	Saga [https://documentation.sigma2.no/hpc_machines/saga.html]

	Fram [https://documentation.sigma2.no/hpc_machines/fram.html]

	Kubernetes based cloud infrastructure:
NIRD toolkit [https://www.sigma2.no/nird-toolkit]

Storage

	NIRD [https://documentation.sigma2.no/files_storage/nird.html]

	UiT research storage [https://uit.no/infrastruktur/enhet?p_document_id=668862] for short- to mid-term storage of work in progress datasets
(only for UiT researchers)

	UiT Research Data Portal [https://en.uit.no/forskning/art?p_document_id=548687] for publishing final datasets and results

	Overview over public research data repositories

 About Stallo

About Stallo

Resource description

Key numbers about the Stallo cluster: compute nodes, node interconnect,
operating system, and storage configuration.

	
	Aggregated

	Per node

	Peak performance

	312 Teraflop/s

	332 Gigaflop/s / 448 Gigaflops/s

	

Nodes

	
304 x HP BL460 gen8 blade servers

328 x HP SL230 gen8 servers

	
1 x HP BL460 gen8 blade servers

1 x. HP SL230 gen8 servers

	

CPU’s / # Cores

	
608 / 4864

656 / 6560

	
2 / 16

2 / 20

	

Processors

	
608 x 2.60 GHz Intel Xeon E5 2670

656 x 2.80 GHz Intel Xeon E5 2680

	
2 x 2.60 GHz Intel Xeon E5 2670

2 x 2.80 Ghz Intel Xeon E5 2680

	Total memory

	26.2 TB

	32 GB (32 nodes with 128 GB)

	Internal storage

	155.2 TB

	500 GB (32 nodes with 600GB raid)

	Centralized storage

	2000 TB

	2000 TB

	Interconnect

	Gigabit Ethernet + Infiniband 1

	Gigabit Ethernet + Infiniband 1

	Compute racks

	11

	Infrastructure racks

	2

	Storage racks

	3

1) All nodes in the cluster are connected with Gigabit Ethernet and
QDR Infiniband.

Stallo - a Linux cluster

This is just a quick and brief introduction to the general features of Linux Clusters.

A Linux Cluster - one machine, consisting of many machines

On one hand you can look at large Linux Clusters as rather large and powerful supercomputers, but on the other hand you can look at them as just a large bunch of servers and some storage system(s) connected with each other through a (high speed) network. Both of these views are fully correct, and it’s therefore important to be aware of the strengths and the limitations of such a system.

Clusters vs. SMP’s

Until July 2004, most of the supercomputers available to Norwegian HPC users were more or less large Symmetric Multi Processing (SMP’s) systems; like the HP Superdome’s at UiO and UiT, the IBM Regatta at UiB and the SGI Origion and IBM p575 systems at NTNU.

On SMP systems most of the resources (CPU, memory, home disks, work disks, etc) are more or less uniformly accessible for any job running on the system. This is a rather simple picture to understand, it’s nearly as your desktop machine – just more of everything: More users, more CPU’s, more memory, more disks etc.

On a Linux Cluster the picture is quite different. The system consists of several independent compute nodes (servers) connected with each other through some (high speed) network and maybe hooked up on some storage system. So the HW resources (like CPU, memory, disk, etc) in a cluster are in general distributed and only locally accessible at each server.

Linux operating system (Rocks): http://www.rocksclusters.org/

Since 2003, the HPC-group at has been one of five international
development sites for the Linux operating system Rocks. Together with
people in Singapore, Thailand, Korea and USA, we have developed a tool
that has won international recognition, such as the price for “Most
important software innovation ” both in 2004 and 2005 in HPCWire. Now
Rocks is a de-facto standard for cluster-management in Norwegian
supercomputing.

Stallo - Sami mythology

In the folklore of the Sami, a Stallo (also Stallu or Stalo) is a sami wizard.
“The Sami traditions up North differ a bit from other parts of Norwegian
traditions. You will find troll and draug and some other creatures as well,
but the Stallo is purely Sami. He can change into all kinds of beings,;
animals, human beings, plants, insects, bird – anything. He can also “turn”
the landscape so you miss your direction or change it so you don’t recognise
familiar surroundings. Stallo is very rich and smart, he owns silver and
reindeers galore, but he always wants more. To get what he wants he tries to
trick the Samis into traps, and the most popular Sami stories tell how people
manage to fool Stallo.” NB! Don’t mix Stallo with the noaide! He is a real
wizard whom people still believe in.

 Guidelines for use of computer equipment at the UiT The Arctic University of Norway

Guidelines for use of computer equipment at the UiT The Arctic University of Norway

Definitions

Explanation of words and expressions used in these guidelines.

	users:

	Every person who has access to and who uses the University’s
computer equipment. This includes employees students and others who
are granted access to the computer equipment.

	user contract:

	Agreement between users and department(s) at the University who
regulate the user’s right of access to the computer equipment. The
user contract is also a confirmation that these guidelines are
accepted by the user.

	data:

	All information that is on the computer equipment. This includes
both the contents of data files and software.

	computer network:

	Hardware and/or software which makes it possible to establish a
connection between two or more computer terminals. This includes
both private, local, national and international computer networks
which are accessible through the computer equipment.

	breakdown:

	Disturbances and abnormalities which prevent the user from
(stoppage) maximum utilization of the computer equipment.

	computer equipment:

	This includes hardware, software, data, services and computer
network.

	hardware:

	Mechanical equipment that can be used for data processing.

	private data:

	Data found in reserved or private areas or that are marked as
private. The data in a user’s account is to be regarded as private
irrespective of the rights attached to the data.

	resources:

	Resources refers to the computer equipment including time and the
capacity available for the persons who are connected to the
equipment.

Purpose

The purpose of these guidelines is to contribute towards the development of a
computer environment in which the potential provided by the computer equipment
can be utilized in the best possible way by the University and by society at
large. This is to promote education and research and to disseminate knowledge
about scientific methods and results.

Application

These guidelines apply to the use of the University’s computer equipment and
apply to all users who are granted access to the computer equipment. The
guidelines are to be part of a user contract and are otherwise to be accessible
at suitable places such as the terminal room. The use of the computer equipment
also requires that the user knows any possible supplementary regulations.

Good Faith

Never leave any doubt as to your identity and give your full name in addition
to explaining your connection to the University. A user is always to identify
him/ herself by name, his/ her own user identity, password or in another
regular way when using services on the computer network. The goodwill of
external environments is not to be abused by the user accessing information not
intended for the user, or by use of the services for purposes other than that
for which they are intended. Users are to follow the instructions from system
administrators about the use of computer equipment. Users are also expected to
familiarize themselves with the user guides, manuals, documentation etc. in
order to reduce the risk of breakdowns or loss of data or equipment (through
ignorance). On termination of employment or studies, it is the users
responsibility to ensure that copies of data owned or used by the University
are secured on behalf of the University.

Data Safety

Users are obliged to take the necessity measures to prevent the loss of data
etc. by taking back-up copies, careful storage of media, etc. This can be done
by ensuring that the systems management take care of it. Your files are in
principle personal but should be protected so that they cannot be read by
others. Users are obliged to protect the integrity of their passwords or other
safety elements known to them, in addition to preventing unauthorized people
from obtaining access to the computer equipment. Introducing data involves the
risk of unwanted elements such as viruses. Users are obliged to take measures
to protect the computer equipment from such things. Users are obliged to report
circumstances that may have importance for the safety or integrity of the
equipment to the closest superior or to the person who is responsible for data
safety.

Respect for Other Users Privacy

Users may not try to find out another persons password, etc., nor try to obtain
unauthorized access to another persons data. This is true independent of
whether or not the data is protected. Users are obliged to familiarize
themselves with the special rules that apply to the storage of personal
information (on others). If a user wishes to register personal information, the
user concerned is obliged to ensure that there is permission for this under the
law for registration of information on persons or rules authorized by the law
or with acceptance of rights given to the University. In cases where
registration of such information is not permitted by these rules the user is
obliged to apply for (and obtain?) the necessary permission. Users are bound
by the oaths of secrecy concerning personal relationships of which the user
acquires knowledge through use of computer equipment, ref. to the definition in
section 13 second section of the Administration Law, (forvaltningslovens
section 13 annet ledd).

Proper Use

The computer equipment of the University may not be used to advance slander or
discriminating remarks, nor to distribute pornography or spread secret
information, or to violate the peace of private life or to incite or take part
in illegal actions. This apart, users are to restrain from improper
communication on the network.

The computer equipment is to be used in accordance with the aims of the
University. This excludes direct commercial use.

Awareness of the Purposes for Use of Resources

The computer equipment of the University is to strengthen and support
professional activity, administration, research and teaching. Users have a
co-responsibility in making the best possible use of the resources.

Rights

Data is usually linked to rights which make their use dependent on agreements
with the holder of the rights. Users commit themselves to respecting other
people’s rights. This applies also when the University makes data accessible.
The copying of programs in violation of the rights of use and/or license
agreement is not permitted.

Liability

Users themselves are responsible for the use of data which is made accessible
via the computer equipment. The University disclaims all responsibility for any
loss that results from errors or defects in computer equipment, including for
example, errors or defects in data, use of data from accessible databases or
other data that has been obtained through the computer network etc. The
University is not responsible for damage or loss suffered by users as a
consequence of insufficient protection of their own data.

Surveillance

The systems manager has the right to seek access to the individual user’s
reserved areas on the equipment for the purpose of ensuring the equipment’s’
proper functioning or to control that the user does not violate or has not
violated the regulations in these guidelines. It is presupposed that such
access is only sought when it is of great importance to absolve the University
from responsibility or bad reputation. If the systems manager seeks such
access, the user should be warned about it in an appropriate way. Ordinarily
such a warning should be given in writing and in advance. If the use of a
workstation, terminal or other end user equipment is under surveillance because
of operational safety or other considerations, information about this must be
given in an appropriate way. The systems managers are bound by oaths of secrecy
with respect to information about the user or the user’s activity which they
obtain in this way, the exception being that circumstances which could
represent a violation of these guidelines may be reported to superior
authorities.

Sanctions

Breach of these guidelines can lead to the user being denied access to the
University’s data services, in addition to which there are sanctions that the
University can order, applying other rules. Breach of privacy laws, oaths of
secrecy etc. can lead to liability or punishment. The usual rules for dismissal
or (forced) resignation of employees or disciplinary measures against students,
apply to users who misuse the computer equipment. The reasons for sanctions
against a user are to be stated, and can be ordered by the person who has
authority given by the University. Disciplinary measures against students are
passed by the University Council, ref. section 47 of the University law.

Complaints

Complaints about sanctions are to be directed to the person(s) who order
sanctions. If the complaint is not complied with, it is sent on to the
University Council for final decision. Complaints about surveillance have the
same procedure as for sanctions. The procedure for complaints about dismissal
or resignation of employees are the usual rules for the University, and rules
otherwise valid in Norwegian society. Decisions about disciplinary measures
against students cannot be complained about, See § 47 of the University law.

 Getting an account

Getting an account

Getting started on the machine (account, quota, password)

Before you start using Stallo, please read the UiT The Arctic University of Norway’s Guidelines for use of computer equipment at the UiT The Arctic University of Norway.

A general introduction to Sigma2 be found at www.sigma2.no [https://www.sigma2.no]

How to get an account and a CPU quota on Stallo

To be able to work on Stallo you must have an account and you must have
been granted CPU time on the system. There are two ways to achieve this:

Research Council Quota

National users (including users from UiT) may apply for an account and
a CPU quota from the Research Councils share of Stallo. If you want to
apply for such a quota please use this National quota form [https://www.metacenter.no/mas/application/project/].

UiT Quota

“Local users” (i.e. users from UiT and users affiliated with UiT in some way) can apply for an account and
a quota from UiT’s share of Stallo. If you want to apply for such a quota follow the instructions here:

	How to get a local account on Stallo

Please note that most users who are allowed to apply for a UiT quota
also are allowed to apply for a quota from the Research Council –
at the same time!

Before you start using Stallo, please read the UiT The Arctic University of Norway’s Guidelines for use of computer equipment at the UiT The Arctic University of Norway.

 How to get a local account on Stallo

How to get a local account on Stallo

To get a local account on Stallo, you need to provide us with:

	Your full name, date of birth, and nationality.

	Your position (master student, PhD, PostDoc, staff member, visitor/guest).

	Your mobile phone number. This is necessary for recovery of passwords.

	Your institutional mail address (i.e. your work email at the research institution to which you belong)

	The name and address of the instruction you belong to; also including name of the center, institute etc.

	A preferred username. Note: If you already have a Notur user account name, please enter that one. A username is defined as a sequence of two to thirty lowercase alphanumeric characters where the first letter may only be a lowercase letter.

	Necessary additional group and account memberships.

	Optional: If you know in advance, please let us know: how many CPU hours you expect to use, how much long-term storage space (GB) you will need, and what software you will use. Partial answers are also welcome. The more we know about the needs of our users, the better services we can provide and the better we can plan for the future.

	If you are a staff member and need to get a local project, we need information about the project:

	
	Name of the project

	Brief description of the project

	Field of science for the project

	Name of additonal members of the project

If you are a student, PhD or post-doc, you need to also provide us with the name of your advisor and name of the project you are to be a member of.

Compile this list in a proper manner and send to support@metacenter.no with a comment that the application is for a local account on Stallo.

 Logging in for the first time

Logging in for the first time

Log in with SSH

An SSH client (Secure SHell) is the required tool to connect to Stallo. An SSH client provides secure encrypted communications between two hosts over an insecure network.

If you already have ssh installed on your UNIX-like system, have a user account and password on a Notur system, login may be as easy as typing

ssh <machine name> (for instance: ssh stallo.uit.no)

into a terminal window.

If your user name on the machine differs from your user name on the local machine, use the -l option to specify the user name on the machine to which you connect. For example:

ssh <machine name> -l [username]

And if you need X-forwarding (for instance, if you like to run Emacs in it’s own window) you must log in like this:

ssh -X -Y <machine name>

No matter how you login, you will need to confirm that the connection shall be trusted. The SHA256 key fingerprint of stallo.uit.no is:

SHA256:YJpwZ91X5FNXTc/5SE1j9UR1UAAI4FFWVwNSoWoq6Hc

So you should get precisely this message the first time you login via ssh:

The authenticity of host 'stallo.uit.no (129.242.2.68)' can't be established.
RSA key fingerprint is SHA256:YJpwZ91X5FNXTc/5SE1j9UR1UAAI4FFWVwNSoWoq6Hc.
Are you sure you want to continue connecting (yes/no)?

If you see this message with precisely this code, you can continue by typing yes and pressing Enter. If you connect to Stallo for the first time and ssh does not show you this key, please contact support@metacenter.no immediately.

Log in with an ssh key

To avoid entering your password every time you login and to increase security, you can log in with an ssh keypair. This keypair consists of a private key that you have to store on your computer and a public key that you can store on Stallo. On Linux or OSX simply type:

ssh-keygen

and follow the instructions on the screen. Please use a good passphrase. You will have to enter this passphrase the first time you log in after a reboot of the computer, but not anymore afterwards. To copy the public key to Stallo, type:

ssh-copy-id <username>@stallo.uit.no

To learn more about ssh keys, have a look at this [https://wiki.archlinux.org/index.php/SSH_keys] page.

On Windows, you can use PuTTYgen that comes with PuTTY. More information on ssh.com [https://www.ssh.com/ssh/putty/windows/puttygen].

SSH clients for Windows and Mac

At the OpenSSH page [https://www.openssh.com] you will find several SSH alternatives for both Windows and Mac.

Please note that Mac OS X comes with its own implementation of OpenSSH, so you don’t need to install any third-party software to take advantage of the extra security SSH offers. Just open a terminal window and jump in.

Learning more about SSH

To learn more about using SSH, please also consult the OpenSSH page [https://www.openssh.com] page and take a look at the manual page on your system (man ssh).

Obtain a new password

When you have been granted an account on stallo.uit.no, your username and password is sent to you separately.
The username by email and the password by SMS. The password you receive by SMS is temporally and only valid for 7 days.

The passwd command does not seem to work. My password is reset back to the old one after a while. Why is this happening?

The Stallo system is using a centralised database for user management.
This will override the password changes done locally on Stallo.

The password can be changed here [https://www.metacenter.no/user/password/], log in using your
username on stallo and the NOTUR domain.

Logging on the compute nodes

Information on how to log in on a compute node.

Some times you may want to log on a compute node (for instance to check
out output files on the local work area on the node), and this is also
done by using SSH. From stallo.uit.no you can log in to
compute-x-y the following way:

ssh -Y compute-x-y (for instance: ssh compute-5-8)

or short

ssh -Y cx-y (for instance: ssh c5-8)

If you don’t need display forwarding you can omit the “-Y” option
above.

If you for instance want to run a program interactively on a compute
node, and with display forwarding to your desktop you should in stead do
something like this:

	first login to Stallo with display forwarding,

	then you should reserve a node through the
queuing system

Below is an example on how you can do this:

1) Log in on Stallo with display forwarding.

 $ ssh -Y stallo.uit.no

2) Reserve and log in on a compute node with display forwarding.
 (start an interactive job.)

 $ srun -N 1 -t 1:0:0 --pty bash -i

3) Open a new terminal window, type squeue -j <jobid> (it shows you which node(s) was allocated
 to that specific job). Then ssh -Y <nodename> to that node and start your preferred gui.

Graphical logon to Stallo

If you want to run applications with graphical user interfaces we recommend you to use the
remote desktop service [http://stallo-gui.uit.no/vnc/]
on Stallo.

If you have a new account and you have never logged in on Stallo before, first log in with a classical ssh connection (see above). Afterwards you can use the graphical logon. Otherwise it can happen that your /home will not be created and you will get an error message of the type: “Could not chdir to home directory /home/your_user_name: No such file or directory”

Important:

If you are connecting from outside the networks of UNINETT and partners you need to log into
stallo-gui.uit.no with ssh to verify that you have a valid username and password on the Stallo system.
After a successful login the service will automatically allow you to connect from the ip-address
your client currently has. The connection will be open for at least 5 minutes after you log in.
There is no need to keep the ssh-connection open after you have connected to the remote desktop,
in fact you will be automatically logged off after 5 seconds.

 CPU-hour quota and accounting

CPU-hour quota and accounting

CPU quota

To use the batch system you have to have a cpu quota, either local or
national. For every job you submit we check that you have sufficient
quota to run it and you will get a warning if you do not have sufficient
cpu-hours to run the job. The job will be submitted to queue, but will
not start until you have enough cpu-hours to run it.

Resource charging

We charge for used resources, both cpu and memory.
The accounting system charges for used processor equivalents (PE)
times used walltime, so if you ask for more than (total memory pr. node)/(total cores pr. node)
- in the example below 32GB/20cores = 1.6 GB.

The concept of PE defines a processor equivalent as the resource unit 1 core and 1 unit of memory.
For a node with 2 GB og memory pr core, i.e. 32 GB of memory and 16 cores - 1 PE equals to 1 core and
2GB of memory. Currently there is no common definition on the memory unit, other than the one specified
above.

The best way to explain the concept of PE is by example:
Assume that you have a node with 20 cpu-cores and 32 GB memory:

if you ask for less than 1.6GB memory per core then PE will equal the cpu count.

if you ask for 3.2GB memory per core then PE will be twice the cpu-count.

if you ask for 32 GB memory then PE=20 as you only can run one cpu per compute node.

The available memory and core settings for Stallo are explained here: About Stallo

Inspecting your quota

You can use the cost command to check how much cpu-hours are left on
your allocation:

[user@stallo-1 ~]$ cost
Id Name Amount Reserved Balance CreditLimit Deposited Available Percentage
--- ------- --------- -------- -------- ----------- --------- --------- ----------
272 nnXXXXk 168836.65 96272.00 72564.65 0.00 290000.00 72564.65 58.22
10 nnYYYYk 4246.04 0.00 4246.04 0.00 150000.00 4246.04 2.83

The column meaning is

	Amount:

	The number of hours available for new jobs.

	Reserved:

	The number of hours reserved for currently running jobs.

	Balance:

	Amount - Reserved.

	CreditLimit:

	Allocated low-pri quota.

	Deposited:

	Allocated normal quota

Inspecting historic use

You can view the accounting history of your projects using:

gstatement --hours --summarize -s YYYY-MM-DD -e YYYY-MM-DD -p nnXXXXk

for more detail see:

gstatement --man

 Dos and don’ts

Dos and don’ts

	Never run calculations on the home disk

	Always use the SLURM queueing system

	The login nodes are only for editing files and submitting jobs

	Do not run calculations interactively on the login nodes

 Batch system

Batch system

The Stallo system is a resource that is shared between many of users and to
ensure fair use everyone must do their computations by submitting jobs through
a batch system that will execute the applications on the available resources.

The batch system on Stallo is SLURM [https://slurm.schedmd.com/] (Simple
Linux Utility for Resource Management.)

Creating a job script

To run a job on the system you need to create a job script. A job script is a
regular shell script (bash) with some directives specifying the number of CPUs,
memory, etc., that will be interpreted by the batch system upon submission.

You can find job script examples in Job script examples.

After you wrote your job script as shown in the examples, you can start it with:

sbatch jobscript.sh

How to pass command-line parameters to the job script

It is sometimes convenient if you do not have to edit the job script every time you want
to change the input file. Or perhaps you want to submit hundreds of jobs and
loop over a range of input files. For this it is handy to pass command-line
parameters to the job script.
For an overview of the different possible parameters, see SLURM Parameter.

In SLURM you can do this:

$ sbatch myscript.sh myinput myoutput

And then you can pick the parameters up inside the job script:

#!/bin/bash

#SBATCH ...
#SBATCH ...
...

argument 1 is myinput
argument 2 is myoutput
mybinary.x < ${1} > ${2}

For recommended sets of parameters see also Settings for OpenMP and MPI jobs.

Walltime

We recommend you to be as precise as you can when specifying the
parameters as they will inflict on how fast your jobs will start to run.
We generally have these rules for prioritizing jobs:

	Large jobs, that is jobs with high CPUcounts, are prioritized.

	Short jobs take precedence over long jobs.

	Use fairshare. This means that users with many jobs running will get a
decreased priority compared to other users.

To find out whether all users within one project share the same priority, run:

$ sshare -a -A nnNNNNk

For a given account (project) consider the column “RawShares”. If the RawShares
for the users is “parent”, they all share the same fairshare priority. If it is
a number, they have individual priorities.

 Job script examples

Job script examples

Basic examples

General blueprint for a jobscript

You can save the following example to a file (e.g. run.sh) on Stallo. Comment
the two cp commands that are just for illustratory purpose (lines 46 and 55)
and change the SBATCH directives where applicable. You can then run the script
by typing:

$ sbatch run.sh

Please note that all values that you define with SBATCH directives are hard
values. When you, for example, ask for 6000 MB of memory (--mem=6000MB) and
your job uses more than that, the job will be automatically killed by the manager.

#!/bin/bash -l

##############################
Job blueprint
##############################

Give your job a name, so you can recognize it in the queue overview
#SBATCH --job-name=example

Define, how many nodes you need. Here, we ask for 1 node.
Each node has 16 or 20 CPU cores.
#SBATCH --nodes=1
You can further define the number of tasks with --ntasks-per-*
See "man sbatch" for details. e.g. --ntasks=4 will ask for 4 cpus.

Define, how long the job will run in real time. This is a hard cap meaning
that if the job runs longer than what is written here, it will be
force-stopped by the server. If you make the expected time too long, it will
take longer for the job to start. Here, we say the job will take 5 minutes.
d-hh:mm:ss
#SBATCH --time=0-00:05:00

Define the partition on which the job shall run. May be omitted.
#SBATCH --partition normal

How much memory you need.
--mem will define memory per node and
--mem-per-cpu will define memory per CPU/core. Choose one of those.
#SBATCH --mem-per-cpu=1500MB
##SBATCH --mem=5GB # this one is not in effect, due to the double hash

Turn on mail notification. There are many possible self-explaining values:
NONE, BEGIN, END, FAIL, ALL (including all aforementioned)
For more values, check "man sbatch"
#SBATCH --mail-type=END,FAIL

You may not place any commands before the last SBATCH directive

Define and create a unique scratch directory for this job
SCRATCH_DIRECTORY=/global/work/${USER}/${SLURM_JOBID}.stallo-adm.uit.no
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

You can copy everything you need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/myfiles*.txt ${SCRATCH_DIRECTORY}

This is where the actual work is done. In this case, the script only waits.
The time command is optional, but it may give you a hint on how long the
command worked
time sleep 10
#sleep 10

After the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

In addition to the copied files, you will also find a file called
slurm-1234.out in the submit directory. This file will contain all output that
was produced during runtime, i.e. stdout and stderr.

After everything is saved to the home directory, delete the work directory to
save space on /global/work
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

Finish the script
exit 0

Running many sequential jobs in parallel using job arrays

In this example we wish to run many similar sequential jobs in parallel using job arrays.
We take Python as an example but this does not matter for the job arrays:

#!/usr/bin/env python

import time

print('start at ' + time.strftime('%H:%M:%S'))

print('sleep for 10 seconds ...')
time.sleep(10)

print('stop at ' + time.strftime('%H:%M:%S'))

Save this to a file called “test.py” and try it out:

$ python test.py

start at 15:23:48
sleep for 10 seconds ...
stop at 15:23:58

Good. Now we would like to run this script 16 times at the same time.
For this we use the following script:

#!/bin/bash -l

#####################
job-array example
#####################

#SBATCH --job-name=example

16 jobs will run in this array at the same time
#SBATCH --array=1-16

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

500MB memory per core
this is a hard limit
#SBATCH --mem-per-cpu=500MB

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/job-array-example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

cp ${SLURM_SUBMIT_DIR}/test.py ${SCRATCH_DIRECTORY}

each job will see a different ${SLURM_ARRAY_TASK_ID}
echo "now processing task id:: " ${SLURM_ARRAY_TASK_ID}
python test.py > output_${SLURM_ARRAY_TASK_ID}.txt

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp output_${SLURM_ARRAY_TASK_ID}.txt ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

Submit the script and after a short while you should see 16 output files
in your submit directory:

$ ls -l output*.txt

-rw------- 1 user user 60 Oct 14 14:44 output_1.txt
-rw------- 1 user user 60 Oct 14 14:44 output_10.txt
-rw------- 1 user user 60 Oct 14 14:44 output_11.txt
-rw------- 1 user user 60 Oct 14 14:44 output_12.txt
-rw------- 1 user user 60 Oct 14 14:44 output_13.txt
-rw------- 1 user user 60 Oct 14 14:44 output_14.txt
-rw------- 1 user user 60 Oct 14 14:44 output_15.txt
-rw------- 1 user user 60 Oct 14 14:44 output_16.txt
-rw------- 1 user user 60 Oct 14 14:44 output_2.txt
-rw------- 1 user user 60 Oct 14 14:44 output_3.txt
-rw------- 1 user user 60 Oct 14 14:44 output_4.txt
-rw------- 1 user user 60 Oct 14 14:44 output_5.txt
-rw------- 1 user user 60 Oct 14 14:44 output_6.txt
-rw------- 1 user user 60 Oct 14 14:44 output_7.txt
-rw------- 1 user user 60 Oct 14 14:44 output_8.txt
-rw------- 1 user user 60 Oct 14 14:44 output_9.txt

Packaging smaller parallel jobs into one large parallel job

There are several ways to package smaller parallel jobs into one large parallel
job. The preferred way is to use Job Arrays. Browse the web for many examples
on how to do it. Here we want to present a more pedestrian alternative which
can give a lot of flexibility.

In this example we imagine that we wish to run 5 MPI jobs at the same time,
each using 4 tasks, thus totalling to 20 tasks. Once they finish, we wish to
do a post-processing step and then resubmit another set of 5 jobs with 4 tasks
each:

#!/bin/bash

#SBATCH --job-name=example
#SBATCH --ntasks=20
#SBATCH --time=0-00:05:00
#SBATCH --mem-per-cpu=500MB

cd ${SLURM_SUBMIT_DIR}

first set of parallel runs
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &

wait

here a post-processing step
...

another set of parallel runs
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &
mpirun -n 4 ./my-binary &

wait

exit 0

The wait commands are important here - the run script will only continue
once all commands started with & have completed.

Example on how to allocate entire memory on one node

#!/bin/bash -l

###
Example for a job that consumes a lot of memory
###

#SBATCH --job-name=example

we ask for 1 node
#SBATCH --nodes=1

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

total memory for this job
this is a hard limit
note that if you ask for more than one CPU has, your account gets
charged for the other (idle) CPUs as well
#SBATCH --mem=31000MB

turn on all mail notification
#SBATCH --mail-type=ALL

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

we copy everything we need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/my_binary.x ${SCRATCH_DIRECTORY}

we execute the job and time it
time ./my_binary.x > my_output

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

How to recover files before a job times out

Possibly you would like to clean up the work directory or recover
files for restart in case a job times out. In this example we ask Slurm
to send a signal to our script 120 seconds before it times out to give
us a chance to perform clean-up actions.

#!/bin/bash -l

job name
#SBATCH --job-name=example

replace this by your account
#SBATCH --account=...

one core only
#SBATCH --ntasks=1

we give this job 4 minutes
#SBATCH --time=0-00:04:00

asks SLURM to send the USR1 signal 120 seconds before end of the time limit
#SBATCH --signal=B:USR1@120

define the handler function
note that this is not executed here, but rather
when the associated signal is sent
your_cleanup_function()
{
 echo "function your_cleanup_function called at $(date)"
 # do whatever cleanup you want here
}

call your_cleanup_function once we receive USR1 signal
trap 'your_cleanup_function' USR1

echo "starting calculation at $(date)"

the calculation "computes" (in this case sleeps) for 1000 seconds
but we asked slurm only for 240 seconds so it will not finish
the "&" after the compute step and "wait" are important
sleep 1000 &
wait

OpenMP and MPI

You can download the examples given here to a file (e.g. run.sh) and start it with:

$ sbatch run.sh

Example for an OpenMP job

#!/bin/bash -l

#############################
example for an OpenMP job
#############################

#SBATCH --job-name=example

we ask for 1 task with 20 cores
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=20

exclusive makes all memory available
#SBATCH --exclusive

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

turn on all mail notification
#SBATCH --mail-type=ALL

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

we copy everything we need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/my_binary.x ${SCRATCH_DIRECTORY}

we set OMP_NUM_THREADS to the number of available cores
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

we execute the job and time it
time ./my_binary.x > my_output

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

Example for a MPI job

#!/bin/bash -l

##########################
example for an MPI job
##########################

#SBATCH --job-name=example

80 MPI tasks in total
Stallo has 16 or 20 cores/node and therefore we take
a number that is divisible by both
#SBATCH --ntasks=80

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

500MB memory per core
this is a hard limit
#SBATCH --mem-per-cpu=500MB

turn on all mail notification
#SBATCH --mail-type=ALL

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

we copy everything we need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/my_binary.x ${SCRATCH_DIRECTORY}

we execute the job and time it
time mpirun -np $SLURM_NTASKS ./my_binary.x > my_output

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

Example for a hybrid MPI/OpenMP job

#!/bin/bash -l

#######################################
example for a hybrid MPI OpenMP job
#######################################

#SBATCH --job-name=example

we ask for 4 MPI tasks with 10 cores each
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=10

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

500MB memory per core
this is a hard limit
#SBATCH --mem-per-cpu=500MB

turn on all mail notification
#SBATCH --mail-type=ALL

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

we copy everything we need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/my_binary.x ${SCRATCH_DIRECTORY}

we set OMP_NUM_THREADS to the number cpu cores per MPI task
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

we execute the job and time it
time mpirun -np $SLURM_NTASKS ./my_binary.x > my_output

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

If you want to start more than one MPI rank per node you can
use --ntasks-per-node in combination with --nodes:

#SBATCH --nodes=4 --ntasks-per-node=2 --cpus-per-task=8

This will start 2 MPI tasks each on 4 nodes, where each task can use up to 8 threads.

 SLURM Workload Manager

SLURM Workload Manager

SLURM is the workload manager and job scheduler used for Stallo.

There are two ways of starting jobs with SLURM; either interactively with srun
or as a script with sbatch.

Interactive jobs are a good way to test your setup before you put it into a script
or to work with interactive applications like MATLAB or python.
You immediately see the results and can check if all parts behave as you expected.
See Interactive jobs for more details.

SLURM Parameter

SLURM supports a multitude of different parameters.
This enables you to effectivly tailor your script to your need when using Stallo
but also means that is easy to get lost and waste your time and quota.

The following parameters can be used as command line parameters with sbatch and
srun or in jobscript, see Job script examples.
To use it in a jobscript, start a newline with #SBTACH followed by the parameter.
Replace <….> with the value you want, e.g. --job-name=test-job.

Basic settings:

	Parameter

	Function

	–job-name=<name>

	Job name to be displayed by for example squeue

	–output=<path>

	
Path to the file where the job (error) output is written to

	–mail-type=<type>

	
Turn on mail notification; type can be one of BEGIN, END, FAIL, REQUEUE or ALL

	–mail-user=<email_address>

	Email address to send notifications to

Requesting Resources

	Parameter

	Function

	–time=<d-hh:mm:ss>

	Time limit for job. Job will be killed by SLURM after time has run out. Format days-hours:minutes:seconds

	–nodes=<num_nodes>

	Number of nodes. Multiple nodes are only useful for jobs with distributed-memory (e.g. MPI).

	–mem=<MB>

	Memory (RAM) per node. Number followed by unit prefix, e.g. 16G

	–mem-per-cpu=<MB>

	Memory (RAM) per requested CPU core

	–ntasks-per-node=<num_procs>

	Number of (MPI) processes per node. More than one useful only for MPI jobs. Maximum number depends nodes (number of cores)

	–cpus-per-task=<num_threads>

	CPU cores per task. For MPI use one. For parallelized applications benchmark this is the number of threads.

	–exclusive

	Job will not share nodes with other running jobs. You will be charged for the complete nodes even if you asked for less.

Accounting

See also Partitions (queues) and services.

	Parameter

	Function

	–account=<name>

	Project (not user) account the job should be charged to.

	–partition=<name>

	Partition/queue in which o run the job.

	–qos=devel

	On stallo the devel QOS (quality of servive) can be used to submit short jobs for testing and debugging.

Advanced Job Control

	Parameter

	Function

	–array=<indexes>

	Submit a collection of similar jobs, e.g. --array=1-10. (sbatch command only). See official SLURM documentation [https://slurm.schedmd.com/job_array.html]

	–dependency=<state:jobid>

	Wait with the start of the job until specified dependencies have been satified. E.g. –dependency=afterok:123456

	–ntasks-per-core=2

	Enables hyperthreading. Only useful in special circumstances.

Differences between CPUs and tasks

As a new users writing your first SLURM job script the difference between
--ntasks and --cpus-per-taks is typically quite confusing.
Assuming you want to run your program on a single node with 16 cores which
SLURM parameters should you specify?

The answer is it depends whether the your application supports MPI.
MPI (message passing protocol) is a communication interface used for developing
parallel computing programs on distributed memory systems.
This is necessary for applications running on multiple computers (nodes) to be able to
share (intermediate) results.

To decide which set of parameters you should use, check if your application utilizes
MPI and therefore would benefit from running on multiple nodes simultaneously.
On the other hand you have an non-MPI enables application or made a mistake in
your setup, it doesn’t make sense to request more than one node.

Settings for OpenMP and MPI jobs

Single node jobs

For applications that are not optimized for HPC (high performance computing) systems
like simple python or R scripts and a lot of software which is optimized for desktop PCs.

Simple applications and scripts

Many simple tools and scripts are not parallized at all and therefore won’t profit from
more than one CPU core.

	Parameter

	Function

	–nodes=1

	Start a unparallized job on only one node

	–ntasks-per-node=1

	For OpenMP, only one task is necessary

	–cpus-per-task=1

	Just one CPU core will be used.

	–mem=<MB>

	Memory (RAM) for the job. Number followed by unit prefix, e.g. 16G

If you are unsure if your application can benefit from more cores try a higher number and
observe the load of your job. If it stays at approximately one there is no need to ask for more than one.

OpenMP applications

OpenMP (Open Multi-Processing) is a multiprocessing library is often used for programs on
shared memory systems. Shared memory describes systems which share the memory between all
processing units (CPU cores), so that each process can access all data on that system.

	Parameter

	Function

	–nodes=1

	Start a parallel job for a shared memory system on only one node

	–ntasks-per-node=1

	For OpenMP, only one task is necessary

	–cpus-per-task=<num_threads>

	Number of threads (CPU cores) to use

	–mem=<MB>

	Memory (RAM) for the job. Number followed by unit prefix, e.g. 16G

Multiple node jobs (MPI)

For MPI applications.

Depending on the frequency and bandwidth demand of your setup, you can either just start a number of MPI tasks or request whole nodes.
While using whole nodes guarantees that a low latency and high bandwidth it usually results in a longer queuing time compared to cluster wide job.
With the latter the SLURM manager can distribute your task across all nodes of stallo and utilize otherwise unused cores on nodes which for example run a 16 core job on a 20 core node. This usually results in shorter queuing times but slower inter-process connection speeds.

We strongly advice all users to ask for a given set of cores when submitting
multi-core jobs. To make sure that you utilize full nodes, you should ask for
sets that adds up to both 16 and 20 (80, 160 etc) due to the hardware specifics
of Stallo i.e. submit the job with --ntasks=80 if your application
scales to this number of tasks.

This will make the best use of the resources and give the most predictable
execution times. If your job requires more than the default available memory per
core (32 GB/node gives 2 GB/core for 16 core nodes and 1.6GB/core for 20 core
nodes) you should adjust this need with the following command: #SBATCH
--mem-per-cpu=4GB When doing this, the batch system will automatically allocate
8 cores or less per node.

To use whole nodes

	Parameter

	Function

	–nodes=<num_nodes>

	Start a parallel job for a distributed memory system on several nodes

	–ntasks-per-node=<num_procs>

	Number of (MPI) processes per node. Maximum number depends nodes (16 or 20 on Stallo)

	–cpus-per-task=1

	Use one CPU core per task.

	–exclusive

	Job will not share nodes with other running jobs. You don’t need to specify memory as you will get all available on the node.

To distribute your job

	Parameter

	Function

	–ntasks=<num_procs>

	Number of (MPI) processes in total. Equals to the number of cores

	–mem-per-cpu=<MB>

	Memory (RAM) per requested CPU core. Number followed by unit prefix, e.g. 2G

Scalability

You should run a few tests to see what is the best fit between minimizing
runtime and maximizing your allocated cpu-quota. That is you should not ask for
more cpus for a job than you really can utilize efficiently. Try to run your
job on 1, 2, 4, 8, 16, etc., cores to see when the runtime for your job starts
tailing off. When you start to see less than 30% improvement in runtime when
doubling the cpu-counts you should probably not go any further. Recommendations
to a few of the most used applications can be found in Application guides.

Job related environment variables

Here we list some environment variables that are defined when you run a job
script. These is not a complete list. Please consult the SLURM documentation
for a complete list.

Job number:

SLURM_JOBID
SLURM_ARRAY_TASK_ID # relevant when you are using job arrays

List of nodes used in a job:

SLURM_NODELIST

Scratch directory:

SCRATCH # defaults to /global/work/${USER}/${SLURM_JOBID}.stallo-adm.uit.no

We recommend to not use $SCRATCH but to construct a variable yourself and use that in your script, e.g.:

SCRATCH_DIRECTORY=/global/work/${USER}/my-example/${SLURM_JOBID}

The reason for this is that if you forget to sbatch your job script, then $SCRATCH may suddenly be undefined and you risk erasing your
entire /global/work/${USER}.

Submit directory (this is the directory where you have sbatched your job):

SUBMITDIR
SLURM_SUBMIT_DIR

Default number of threads:

OMP_NUM_THREADS=1

Task count:

SLURM_NTASKS

Partitions (queues) and services

SLURM differs slightly from the previous Torque system with respect to
definitions of various parameters, and what was known as queues in Torque may
be covered by both --partition=... and --qos=....

We have the following partitions:

	normal:

	The default partition. Up to 48 hours of walltime.

	singlenode:

	If you ask for less resources than available on one single node, this will be the partition your job
will be put in. We may remove the single-user policy on this partition in the future.
This partition is also for single-node jobs that run for longer than 48 hours.

	multinode:

	Request this partition if you ask for more resources than you will find on
one node and request walltime longer than 48 hrs.

	highmem:

	Use this partition to use the high memory nodes with 128 GB. You will have to apply for access to this partition by sending us an email explaining why you need these high memory nodes.

To figure out the walltime limits for the various partitions, type:

$ sinfo --format="%P %l" # small L

As a service to users that needs to submit short jobs for testing and debugging, we have a service called devel.
These jobs have higher priority, with a maximum of 4 hrs of walltime and no option for prolonging runtime.

Jobs in using devel service will get higher priority than any other jobs
in the system and will thus have a shorter queue delay than regular
jobs. To prevent misuse the devel service has the following limitations:

	Only one running job per user.

	Maximum 4 hours walltime.

	Only one job queued at any time, remark this is for the whole queue.

You submit to the devel-service by typing:

#SBATCH --qos=devel

in your job script.

General job limitations

The following limits are the default per user in the batch system. Users
can ask for increased limits by sending a request to support@metacenter.no.

	Limit

	Value

	Max number of running jobs

	1024

	Maximum cpus per job

	2048

	Maximum walltime

	28 days

	Maximum memory per job

	No limit [1]

[1] There is a practical limit of 128GB per compute node used.

Remark: Even if we impose a 28 day run time limit on Stallo we only give
a weeks warning on system maintenance. Jobs with more than 7 days walltime,
will be terminated and restarted if possible.

See About Stallo chapter of the documentation if you need more information on the system architecture.

 Interactive jobs

Interactive jobs

Starting an interactive job

You can run an interactive job like this:

$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i

Here we ask for a single core on one interactive node for one hour with the
default amount of memory. The command prompt will appear as soon as
the job starts.

This is how it looks once the interactive job starts:

srun: job 12345 queued and waiting for resources
srun: job 12345 has been allocated resources

Exit the bash shell to end the job. If you exceed the time or memory
limits the job will also abort.

Interactive jobs have the same policies as normal batch jobs, there
are no extra restrictions. You should be aware that you might be
sharing the node with other users, so play nice.

Some users have experienced problems with the command, then it has helped to specify the cpu account:

$ srun --account=<NAME_OF_MY_ACCOUNT> --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i

Keeping interactive jobs alive

Interactive jobs die when you disconnect from the login node either by choice or by
internet connection problems. To keep a job alive you can use a terminal multiplexer
like tmux.

tmux allows you to run processes as usual in your standard bash shell

You start tmux on the login node before you get a interactive slurm session with
srun and then do all the work in it. In case of a disconnect you simply reconnect
to the login node and attach to the tmux session again by typing:

tmux attach

or in case you have multiple sessions running:

tmux list-session
tmux attach -t SESSION_NUMBER

As long as the tmux session is not closed or terminated (e.g. by a server restart) your
session should continue. One problem with our systems is that the tmux session is bound
to the particular login server you get connected to. So if you start a tmux session on
stallo-1 and next time you get randomly connected to stallo-2 you first have to connect
to stallo-1 again by:

ssh login-1

To log out a tmux session without closing it you have to press CTRL-B (that the Ctrl key
and simultaneously “b”, which is the standard tmux prefix) and then “d” (without the
quotation marks). To close a session just close the bash session with either CTRL-D or
type exit. You can get a list of all tmux commands by CTRL-B and the ? (question mark).
See also this page [https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/]
for a short tutorial of tmux.
Otherwise working inside of a tmux session is almost the same as a normal bash session.

 Managing jobs

Managing jobs

The lifecycle of a job can be managed with as little as three different
commands:

	Submit the job with sbatch <script_name>.

	Check the job status with squeue. (to limit the display to only
your jobs use squeue -u <user_name>.)

	(optional) Delete the job with scancel <job_id>.

You can also hold the start of a job:

	scontrol hold <job_id>

	Put a hold on the job. A job on hold will not start or block other jobs from starting until you release the hold.

	scontrol release <job_id>

	Release the hold on a job.

Job status descriptions in squeue

When you run squeue (probably limiting the output with squeue -u <user_name>), you will get a list of all jobs currently running or waiting to start. Most of the columns should be self-explaining, but the ST and NODELIST (REASON) columns can be confusing.

ST stands for state. The most important states are listed below. For a more comprehensive list, check the squeue help page section Job State Codes [https://slurm.schedmd.com/squeue.html#lbAG].

	R

	The job is running

	PD

	The job is pending (i.e. waiting to run)

	CG

	The job is completing, meaning that it will be finished soon

The column NODELIST (REASON) will show you a list of computing nodes the job is running on if the job is actually running. If the job is pending, the column will give you a reason why it still pending. The most important reasons are listed below. For a more comprehensive list, check the squeue help page section Job Reason Codes [https://slurm.schedmd.com/squeue.html#lbAF].

	Priority

	There is another pending job with higher priority

	Resources

	The job has the highest priority, but is waiting for some running job to finish.

	QOS*Limit

	This should only happen if you run your job with --qos=devel. In developer mode you may only have one single job in the queue.

	launch failed requeued held

	Job launch failed for some reason. This is normally due to a faulty node. Please contact us via support@metacenter.no stating the problem, your user name, and the jobid(s).

	Dependency

	Job cannot start before some other job is finished. This should only happen if you started the job with --dependency=...

	DependencyNeverSatisfied

	Same as Dependency, but that other job failed. You must cancel the job with scancel JOBID.

 Monitoring your jobs

Monitoring your jobs

SLURM commands

To monitor your jobs, you can use of of those commands. For details run them
with the --help option:

scontrol show jobid -dd <jobid> lists detailed information for a job (useful for troubleshooting).

sacct -j <jobid> --format=JobID,JobName,MaxRSS,Elapsed will give you
statistics on completed jobs by jobID. Once your job has
completed, you can get additional information that was not available during
the run. This includes run time, memory used, etc.

From our monitoring tool Ganglia, you can watch live status information
on Stallo:

	Load situation [http://stallo-adm.uit.no/ganglia/]

	Job queue [http://stallo-login2.uit.no/slurmbrowser/html/squeue.html]

CPU load and memory consumption of your job

Stallo has only limited resources and usually a high demand.
Therefore using the available resources as efficient as possible is paramount to have short queueing times
and getting most out of your quota.

Accessing slurmbrowser

In order to find out the CPU load and memory consumption of your running jobs or jobs
which have finished less than 48 hours ago, please use the job browser [http://stallo-login2.uit.no/slurmbrowser/html/squeue.html] (accessible from within the UNINETT
network).

For users from outside of UNINETT, you have to setup a ssh tunnel to stallo with:

ssh -L8080:localhost:80 stallo-login2.uit.no

After that you can access slurmbrowser at http://localhost:8080/slurmbrowser/html/squeue.html

Detecting inefficient jobs

You can filter for a slurm job ID, account name or user name with the search bar in the upper left corner.

For single- or multinode jobs the AvgNodeLoad is an important indicator if your jobs runs efficiently,
at least with respect to CPU usage. If you use the whole node, the average node load should be close to number
of CPU cores of that node (so 16 or 20 on Stallo).
In some cases it is totally acceptable to have a low load if you for instance need a lot of memory but in general
either CPU or memory load should be high.
Otherwise you are wasting your quota and experience probably longer than necessary queuing times.

If you detect inefficient jobs you either look for ways to improve the resource usage of your job or ask for less
resources in your SLURM script.

Understanding your job status

When you look at the job queue through the job browser [http://stallo-login2.uit.no/slurmbrowser/html/squeue.html], or you use the
squeue command, you will see that the queue is divided in 3 parts: Active
jobs, Idle jobs, and Blocked jobs.

Active jobs are the jobs that are running at the moment. Idle jobs are next in
line to start running, when the needed resources become available. Each user
can by default have only one job in the Idle Jobs queue.

Blocked jobs are all other jobs. Their state can be Idle, Hold, or
Deferred. Idle means that they are waiting to get to the Idle queue. They
will eventually start when the resources become available. The jobs with the
Hold state have been put on hold either by the system, or by the user. F.e.
if you have one job in the Idle queue, that is not very important to you, and
it is blocking other, more urgent, jobs from starting, you might want to put
that one job on hold. Jobs on hold will not start until the hold is released.
Deferred jobs will not start. In most cases, the job is deferred because it
is asking for a combination of resources that Stallo can not provide.

Please contact the support staff, if you don’t understand why your job has a
hold or deferred state.

Summary of used resources

Slurm will append a summary of used resources to the slurm-xxx.out file. The fields are:

	Task and CPU usage stats

	AllocCPUS: Number of allocated CPUs

	NTasks: Total number of tasks in a job or step.

	MinCPU: Minimum CPU time of all tasks in job (system + user).

	MinCPUTask: The task ID where the mincpu occurred.

	AveCPU: Average CPU time of all tasks in job (system + user)

	Elapsed: The jobs elapsed time in format [DD-[HH:]]MM:SS.

	ExitCode: The exit code returned by the job script. Following the colon is the signal that caused the process to terminate if it was terminated by a signal.

	Memory usage stats

	MaxRSS: Maximum resident set size of all tasks in job.

	MaxRSSTask: The task ID where the maxrss occurred.

	AveRSS: Average resident set size of all tasks in job.

	MaxPages: Maximum number of page faults of all tasks in job.

	MaxPagesTask: The task ID where the maxpages occurred.

	AvePages: Average number of page faults of all tasks in job.

	Disk usage stats

	MaxDiskRead: Maximum number of bytes read by all tasks in job.

	MaxDiskReadTask: The task ID where the maxdiskread occurred.

	AveDiskRead: Average number of bytes read by all tasks in job.

	MaxDiskWrite: Maximum number of bytes written by all tasks in job.

	MaxDiskWriteTask: The task ID where the maxdiskwrite occurred.

	AveDiskWrite: Average number of bytes written by all tasks in job.

 Running MPI jobs

Running MPI jobs

There are two available MPI implementations on Stallo:

	OpenMPI provided by the foss module, e.g. module load foss/2016b

	Intel MPI provided by the intel module, e.g. module load intel/2016b

There are several ways of launching an MPI application within a SLURM
allocation, e.g. srun, mpirun, mpiexec and mpiexec.hydra.
Unfortunately, the best way to launch your program depends on the MPI
implementation (and possibly your application), and choosing the wrong command
can severly affect the efficiency of your parallel run. Our recommendation is
the following:

Intel MPI

With Intel MPI, we have found that mpirun can incorrectly distribute the
MPI ranks among the allocated nodes. We thus recommend using srun:

$ srun --mpi=pmi2 ./my_application

OpenMPI

With OpenMPI, mpirun seems to be working correctly. Also, it seems that
srun fails to launch your application in parallel, so here we recommend
using mpirun:

$ mpirun ./my_application

NOTE: If you’re running on the multinode partition you automatically
get the --exclusive flag, e.i. you get allocated (and charged for) full
nodes, even if you explicitly ask for less resources per node. This is not the
case for the normal partition.

 Which software is installed on Stallo

Which software is installed on Stallo

To find out what software packages are available, type:

module avail

Changes in application software

News about planned/unplanned downtime, changes in hardware, and important
changes in software will be published on the HPC UiT twitter account
https://twitter.com/hpc_uit and on the login screen of stallo.
For more information on the different situations see news.

The easiest way to check which software and versions available is to use
the module command.
List all software available:

module avail

List all version of a specific software:

module avail software-name

Missing or new software

If there is any software missing on this list that you would like to have
installed on Stallo, or you need help to install your own software, please
feel free to contact the support personal about this: support@metacenter.no.

If there is software missing on Stallo that you would like to have, there are
different options to install it:
* Use our installation framework EasyBuild
* Use a package manager like Conda or especially for bioinformatic software Bioconda
* Compile it yourself and install into your home directory
* Ask us to install for you

In this document we will show some ways of installing a new software.
If you run into problems, need help or have question, please
feel free to contact the support personal about this: support@metacenter.no.

Installing new software using EasyBuild

Our building and installation framework, EasyBuild [https://easybuild.readthedocs.io/en/latest/Using_the_EasyBuild_command_line.html]
can be used by you to install software into your own home directory.
This is especially interesting for you if you need a software but it is probably
not used by other users of Stallo, so a systemwide installation doesn’t make much sense.

To see if your software is available via the EasyBuild system have a look into the
easyconfig github repository [https://github.com/easybuilders/easybuild-easyconfigs].
if you can find a version of your software there.
Alternatively use the search function of EasyBuild:

eb -S REGEX

Let’s assume you want to install the genome aligner Kraken2.
We find a easyconfig file with the name Kraken2-2.0.7-beta-foss-2018b-Perl-5.28.0.eb [https://github.com/easybuilders/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/k/Kraken2/Kraken2-2.0.7-beta-foss-2018b-Perl-5.28.0.eb]
in the easyconfig repository.

Before we start the installation process we first have to load the necessary modules:

ml purge
ml EasyBuild

Before we actually build we can check the building process by adding
–dry-run-short or -D to the build command:

eb Kraken2-2.0.7-beta-foss-2018b-Perl-5.28.0.eb --dry-run-short

As you probably see, a long list of packages is printed with some packages being marked as missing. To automatically install all necessary dependencies we can add –robot and then
run the installation:

eb Kraken2-2.0.7-beta-foss-2018b-Perl-5.28.0.eb --robot

Before we can load your newly installed module, we have to add the path to the Lmod search path.
You might have to do this from time to time, or even every time you use your software, as your local cache is regularly updated.

ml use ~/.local/easybuild/modules/all
ml Kraken2/2.0.7

Conda/ Bioconda

Many software packages, especially if they are python based, can be easily installed using
the Conda package manager.
For many bioinformatics software, Bioconda has become a nice solution.

A small tutorial can be found in the Python section of this documentation.

 Software Module Scheme

Software Module Scheme

Since a HPC cluster is shared among many users, and also holds a significant size in contrast to most desktop compute machinery around, the amount of installed software spans many applications in many different versions and quite a few of them are installed typically non-standard places for easier maintenance (for admin crew), practical and security reasons. It is not possible (nor
desirable) to use them all at the same time, since different versions of the
same application may conflict with each other. Therefore, it is practical to provide the production environment for a given application outside of the application itself. This is done using a set of instructions and variable settings that are specific for the given application called an application module. This also simplifies control of which application versions are available in a specific session.

We are also using the Easybuild system for installing software on Stallo (see https://easybuilders.github.io/easybuild/).

The main command for using this system is the module command. You can find a
list of all its options by typing:

module --help

We use the lmod module system; for more info see https://lmod.readthedocs.io/en/latest/ on Stallo. Below we listed the most commonly used options, but also feel free to ivestigate options in this toolset more thoroughly on developers site.

Which modules are currently loaded?

To see the modules currently active in your session, use the
command:

module list

Which modules are available?

In order to see a complete list of available modules, issue the
command:

module avail

The resulting list will contain module names conforming to the following
pattern:

	name of the module

	/

	version

	(default) if default version

How to load a module

In order to make, for instance, the NetCDF library available issue the command:

module load netCDF

This will load the default NetCDF version. To load a specific version,
just include the version after a slash:

module load netCDF/4.3.3.1-intel-2016a

How to unload a module

Keeping with the above example, use the following command to unload the
NetCDF module again:

module unload netcdf

Which version of a module is the default?

In order to see, for instance, which version of NetCDF is loaded by the
module, use:

module show netcdf

This will show the version and path of the module.

How do I switch to a different version of a module?

Switching to another version is similar to loading a specific version. As an
example, if you want to switch from the default (current) Intel compilers
version to version 2016b (aka 2016.3), type:

module switch intel intel/2016b

Beware: by default on Stallo, you are not able to have two conflicting modules - f.e. openmpi and impi - loaded at the same time. This is only partially true for these new packages. With the new packages it is also more common that when you load one package it will automatically load several other packages that it needs to function. We recommend doing ml after every load and unloading any conflicting packages.

 Python, R, Matlab and Perl

Python, R, Matlab and Perl

Scripting languages often support modules or libraries for additional functionality or convenience functions. We encourage users to install modules locally for only the current user.

Python

You can install many python and non-python packages yourself using
conda [https://docs.conda.io/en/latest/] or especially for bioinformatics
software bioconda [https://bioconda.github.io/].

Conda enables you to easily install complex packages and software.
Creating multiple enviroments enables you to have installations of the
same software in different versions or incompatible software collections
at once.
You can easily share a list of the installed packages with
collaborators or colleagues, so they can setup the same
eniviroment in a matter of minutes.

Setup

First you load the miniconda module which is like a python and r package
manager.
Conda makes it easy to have multiple environments for example one python2 and
one python3 based parallel to each other without interfering.

Start by removing all preloaded modules which can complicate things. We then
display all installed version and load the newest one (4.6.14):

ml purge
ml avail Miniconda
ml Miniconda3/4.6.14

To install packages we first have to add the package repository to conda
(we only have to do this once) and set up a new conda environment which we
will call e.g. “python3” where we also specify which python version we want
and which packages should be installed (matplotlib numpy):

conda config --add channels defaults
conda config --add channels conda-forge

conda create --name python3 python=3 matplotlib numpy

If you want install bioinformatics packages you should also add
the bioconda channel:

conda config --add channels bioconda

In case you want to install the conda environment in another directory than the
home, you can add –prefix PATH. This enables multiple users of a project to
share the conda environment by installing it into their project folder instead
of the users home.

To suppress the warning that a newer version of conda exists which is usually
not important for most users and will be fixed by us by installing a new module:

conda config --set notify_outdated_conda false

Daily usage

To load this environment you have to use the following commands either on the
command line or in your job script:

ml purge
ml Miniconda3/4.6.14
conda activate python3

Then you can use all software as usual.

To deactivate the current environment:

conda deactivate

If you need to install additional software or packages,
we can search for it with:

conda search SOMESOFTWARE

and install it with:

conda install -n python3 SOMESOFTWARE

If the python package you are looking for is not available in conda
you can use **pip** [https://pip.pypa.io/en/stable/] like usually
from within a conda environment to install additional python packages:

pip install SOMEPACKAGE

To update the a single package with conda:

conda update -n python3 SOMESOFTWARE

or to update all packages:

conda update -n python3 --all

Share your environment

To export a list of all packages/programs installed with conda
in a certain environment (in this case “python3”):

conda list --explicit --name python3 > package-list.txt

To setup a new environment (let’s call it “newpython”)
from ab exported package list:

conda create --name newpython --file package-list.txt

Additional Conda information

Cheatsheet and built-in help

See this cheatsheet [https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf]
for an overview over the most important conda commands.

In case you get confused by the conda commands and command line options
you can get help by adding –help to any conda command or have a look
at the conda documentation [https://conda.io/projects/conda/en/latest/user-guide/getting-started.html].

Miniconda vs. Anaconda

Both Miniconda and Anaconda are distributions of the conda repository
managment system.
But while Miniconda brings just the managment system (the conda command),
Anaconda comes with a lot of built-in packages.

Both are installed on Stallo but we advise the use of Miniconda.
By explicitly installing packages into your own enviroment the chance
for unwanted effects and errors due to wrong or incomaptible versions is
reduced. Also you can be sure that everything that happens with your setup is
controlled by yourself.

Virtual Environments (deprecated)

We recommend using Conda , but there is another way to install modules locally is using
virtual environments [https://docs.python.org/3/tutorial/venv.html]

As an example we install the Biopython package (and here we use
the Python/3.6.4-intel-2018a module as an example):

$ module load Python/3.6.4-intel-2018a
$ virtualenv venv
$ source venv/bin/activate
$ pip install biopython

Next time you log into the machine you have to activate
the virtual environment:

$ source venv/bin/activate

If you want to leave the virtual environment again, type:

$ deactivate

And you do not have to call it “venv”. It is no problem to have many
virtual environments in your home directory. Each will start as a clean
Python setup which you then can modify. This is also a great system to have
different versions of the same module installed side by side.

If you want to inherit system site packages into your virtual
environment, do this instead:

$ virtualenv --system-site-packages venv
$ source venv/bin/activate
$ pip install biopython

R

Load R

Using R on Stallo is quite straightforward.
First check which versions are available:

ml avail -r '^R/'

To load a version:

ml R/3.5.0-iomkl-2018a-X11-20180131

Now you can use R from the command line just as you would on your local computer.

Install Packages

To install R packages use install.packages().
First open the R command line and then install a package e.g. “tidyverse”:

R
install.packages("tidyverse")

Note: The first time you install new packages, R will ask you
whether it should install these packages into your home folder.
Confirm both questions with y and then choose a close download mirror

MATLAB

Load MATLAB

To use MATLAB simply load the module at the start of your jobscript or type them on
the command line:

ml purge
ml avail matlab # To display all installed versions
ml MATLAB/R2018a-foss-2017a # or any other version you want

Interactice Shell

On the login nodes you can start a normal MATLAB session with an graphical user interface (GUI). You can use this to visualize and look at data. Just type matlab.

But remember NOT to run calculations on the login nodes as this might slow down the system for all stallo users. If this happens we will kill the process without prior warning.

You can also start an interactive matlab shell on the command line without graphical user interface (headless) with:

matlab -nodesktop -nodisplay -nosplash

See matlab -h for all command line options.
If you are on a compute node matlab always starts a headless matlab shell.

Running MATLAB Scripts

You can run a matlab script by:

matlab -r -nodisplay -nosplash -r 'run("SCRIPT.m")'

In some instances it might be necessary to use an absolute file path to the script.

Tips

	You can reduce the memory usage by starting matlab without java support, just add -nojvm.

	To get a graphical interface when starting matlab on a login node, you need to activate X11 forwarding for your ssh connection to stallo.
If you connect to stallo from a linux machine use ssh -X to tunnel graphical output to your computer.

Perl

We will use Perl 5.28 and use the standard paths.
This follows the general instruction given here: https://metacpan.org/pod/local::lib.

$ module load Perl/5.28.0-GCCcore-7.3.0
$ mkdir my_perl_installs # or however you want to call this temporary folder
$ cd my_perl_installs

Check the newest version on metacpan.org and search for local::lib
$ wget https://cpan.metacpan.org/authors/id/H/HA/HAARG/local-lib-2.000024.tar.gz

$ tar xzf local-lib-2.000024.tar.gz
$ cd local-lib-2.000024
$ perl Makefile.PL --bootstrap
$ make test
$ make install
$ echo 'eval "$(perl -I$HOME/perl5/lib/perl5 -Mlocal::lib)"' >> ~/.bashrc
$ source ~/.bashrc

Now, the module local::lib is installed and the ~/.bashrc changed such that Perl should now recognize your local folder as module folder.
All future modules will be installed to ~/perl5.

If you want to install, for example, the module Math::Vector::Real, just call cpan:

$ cpan Math::Vector::Real

Remember to load the right Perl version first (module load ...).
The first time you call cpan, it will ask you to do some configurations.
Just press enter (let it do its configurations).

 Linux command line

Linux command line

New on Linux systems?

This page contains some tips on how to get started using the Stallo cluster on
UiT if you are not too familiar with Linux/ Unix. The information is intended
for both users that are new to Stallo and for users that are new to
Linux/UNIX-like operating systems. Please consult the rest of the user guide
for information that is not covered in this chapter.

For details about the hardware and the operating system of stallo, and basic
explanation of Linux clusters please see the About Stallo part of this
documentation.

To find out more about the storage and file systems on the machines, your disk
quota, how to manage data, and how to transfer file to/from Stallo, please read
the Transferring files to/from Stallo section.

ssh

The only way to connect to Stallo is by using ssh. Check
the Logging in for the first time in this documentation to learn more about ssh.

scp

The machines are stand-alone systems. The machines do not (NFS-)mount remote
disks. Therefore you must explicitly transfer any files you wish to use to the
machine by scp. For more info, see Transferring files to/from Stallo.

Running jobs on the machine

You must execute your jobs by submitting them to the batch system. There is a
dedicated section Batch system in our user guide that explain how to use the
batch system. The pages explains how to write job scripts, and how to submit,
manage, and monitor jobs. It is not allowed to run long or large memory jobs
interactively (i.e., directly from the command line).

Common commands

	pwd

	Provides the full pathname of the directory you are currently in.

	cd

	Change the current working directory.

	ls

	List the files and directories which are located in the directory you are currently in.

	find

	Searches through one or more directory trees of a file system, locates files based on some user-specified
criteria and applies a user-specified action on each matched file. e.g.:

find . -name 'my*' -type f

The above command searches in the current directory (.) and below it, for files and directories with names starting with my.
“-type f” limits the results of the above search to only regular files, therefore excluding directories,
special files, pipes, symbolic links, etc. my* is enclosed in single quotes (apostrophes) as otherwise the
shell would replace it with the list of files in the current directory starting with “my”.

	grep

	Find a certain expression in one or more files, e.g:

grep apple fruitlist.txt

	mkdir

	Create new directory.

	rm

	Remove a file. Use with caution.

	rmdir

	Remove a directory. Use with caution.

	mv

	Move or rename a file or directory.

	vi/vim or emacs

	Edit text files, see below.

	less/ more

	View (but do not change) the contents of a text file one screen at a time, or, when combined with other commands (see below)
view the result of the command one screen at a time. Useful if a command prints several screens of information on
your screen so quickly, that you don’t manage to read the first lines before they are gone.

	|

	Called “pipe” or “vertical bar” in English. Group 2 or more commands together, e.g.:

ls -l | grep key | less

This will list files in the current directory (ls), retain only the lines of ls output containing the string “key” (grep),
and view the result in a scrolling page (less).

More info on manual pages

If you know the UNIX-command that you would like to
use but not the exact syntax, consult the manual pages on the system to
get a brief overview. Use ‘man [command]’ for this. For example, to
get the right options to display the contents of a directory, use ‘man
ls’. To choose the desired options for showing the current status of
processes, use ‘man ps’.

Text editing

Popular tools for editing files on Linux/UNIX-based
systems are ‘vi’ and ‘emacs’. Unfortunately the commands within both
editors are quite cryptic for beginners. It is probably wise to spend
some time understanding the basic editing commands before starting to
program the machine.

	vi/vim

	Full-screen editor. Use ‘man vi’ for quick help.

	emacs

	Comes by default with its own window. Type ‘emacs -nw’ to
invoke emacs in the active window. Type ‘Control-h i’ or follow the
menu ‘Help->manuals->browse-manuals-with-info’ for help. ‘Control-h
t’ gives a tutorial for beginners.

Environment variables

The following variables are automatically available after you log in:

$USER your account name
$HOME your home directory
$PWD your current directory

You can use these variables on the command line or in shell scripts by
typing $USER, $HOME, etc. For instance: ‘echo $USER’. A complete
listing of the defined variables and their meanings can be obtained by
typing ‘printenv ‘.

You can define (and redefine) your own variables by typing:

export VARIABLE=VALUE

Aliases

If you frequently use a command that
is long and has for example many options to it, you can put an alias
(abbreviation) for it in your ~/.bashrc file. For example, if you
normally prefer a long listing of the contents of a directory with the
command ‘ls -laF | more’, you can put following line in your ~/.bashrc file:

alias ll='ls -laF | more'

You must run ‘source ~/.bashrc’ to update your
environment and to make the alias effective, or log out and in :-). From
then on, the command ‘ll’ is equivalent to ‘ls -laF | more’.
Make sure that the chosen abbreviation is not already an existing
command, otherwise you may get unexpected (and unwanted) behavior. You
can check the existence and location of a program, script, or alias by
typing:

which [command]
whereis [command]

~/bin

If you frequently use a self-made or self-installed program or script that you
use in many different directories, you can create a directory ~/bin in which
you put this program/script. If that directory does not already exist, you can
do the following. Suppose your favorite little program is called ‘myscript’ and is
in your home ($HOME) directory:

mkdir -p $HOME/bin
cp myscript $HOME/bin
export PATH=$PATH:$HOME/bin

PATH is a colon-separated list of directories that are searched in the
order in which they are specified whenever you type a command. The first
occurrence of a file (executable) in a directory in this PATH variable
that has the same name as the command will be executed (if possible). In
the example above, the ‘export’ command adds the ~/bin directory to
the PATH variable and any executable program/script you put in the
~/bin directory will be recognized as a command. To add the ~/bin
directory permanently to your PATH variable, add the above
‘export’ command to your ~/.bashrc file and update your environment
with ‘source ~/.bashrc’.

Make sure that the names of the programs/scripts are not already
existing commands, otherwise you may get unexpected (and unwanted)
behaviour. You can check the contents of the PATH variable by typing:

printenv PATH
echo $PATH

 General comments about licenses

General comments about licenses

This is an attempt to describe the different licenses we have on Stallo and for the entire NOTUR system when it comes to chemistry and material science codes.

Here, I will only address the codes with a certain access limitation. For free, open source codes without any limitations, I do not really see the point in commenting. But, the reader should be aware that “free” not allways means “unrestricted access”.

Also, due to a choice of policy, I am only adressing the issues of academic access. For commercial licenses, the user or user groups needs to investigate consequences and prices themselves. For any given code, the license model and related issues is more in depth described as a part of the standard documentation.

There is in general 6 different categories of access limitations for software on Stallo:

	Licenses paid entirely by the users.

	Licenses paid partially by the users and partly by national bodies.

	Licenses paid partly or entirely by institutions.

	Licenses paid entirely by national bodies.

	Licenses available only on a machine or a service (machine-license).

	Free licenses that requires an agreement with the vendor before using the code.

Category 1 is what is the “bring your own license” group. Either the vendor does not provide computer centre license, or pricing is somewhat outside the boundaries of acceptance for NOTUR. VASP is in this category, where NOTUR does administer a certain level of access based on feedback from the VASP vendor. Other examples is Petrel, Molpro (previously).

Category 2 is a joint funding model, where users have to add to the total pool of finance in order to provide a certain level of license tokens available. For instance, the Schrodinger small molecule drug discovery suite license is split into a “national” and a “local” part, with one common license server and unlimited tokens available for everyone. NOTUR provides support and manages the license tokens on behalf of the community, up until now as a part of DS Chem (predecessor to the Application Managment project). The license is monitored, in order to ensure a minimum level of fairness. If a user crosses a certain level of usage without representing one of the groups contributing to funding - access will be denied until finance formalities has been settled.

Category 3 is the group of software where your respective host institution has implication for access or not. Codes like COMSOL, MATLAB, STATA, ANSYS, STAR-CCM+, IDL, Mathematica are all in this category.

Category 4 is a lot more complex than you might anticipate. Codes like ADF and Turbomole are in this category. ADF is currently entirely funded by Sigma2, but how long this will continue is unknown. For ADF, we have a national license - meaning that anyone can request a download and install the code suite as long as they are members on a Norwegian Grant degreeing institution. Turbomole has currently the form of a national machine type license, as a part of prevoiously mentioned DS Chem. As long as on person has the responsibility of installing Turbomole on all the national academic high performance compute clusters, we only have to by one common license for all these machines. Currently, the national body has paid for a two group Crystal license, in order to map interest and need. We have (or at least had when the license was bought) an agreement that if the interest came to the level where we needed to grant access to more people, we could transform the license into a machine type license by only paying the difference in license fee. Gaussian has the appearance of a national license, and is paid by NOTUR - but it really is 4 site licenses making a total of “access license for those who comes from one of the four original norwegian academic hpc host sites - NTNU, UiB, UiO, UiT”. It also means that others that do hold a valid Gaussian license will be allowed access. This licensing is limited to main version (G09, G16 etc) and may explain limitations on the more recent versions. The intel tools and compiler suites for use on the national academic hpc cluster is also in this category.

Category 5 is the group of software that is only available on a single installation/machine. On Stallo we have NBO6 and the nbo6 plug in for ADF. On Abel they have an installation of Molpro which is both machine type and site type licensed.

Category 6 In this group, we have Molcas, ORCA. (and maybe Dalton and Dirac). Some vendors, even if they offer their software free for academic usage in general, or for limited areas (Molcas is free for academics from Nordic institutions), they still want to have a certain control over the software distribution.

and, of course, category 7 is the entire group of software where this is not really a problem;-).

You will find more info in the application guides or in the respective module files. The latter info you get access to by typing:

 New software and module scheme

New software and module scheme

On the 9th-10th of May 2017, the default module setup changed. It is likely that you will have problems loading modules and jobs waiting to start might crash. Jobs already running should not be affected.

What this means:
We have many new software packages installed, that were not visible by default,
though they were already accessible. On the afore mentioned days we made these packages visible by default. There are several big changes that you will experience, and sadly this might break your job scripts and cause you error messages when trying to load modules. Jobs that are waiting to start might crash at start because they can not load modules, but already running jobs should run without problems. We apologize for these problems and we believe that this way of switching is still a better alternative than shutting Stallo down.

If you have trouble or questions, please, check this manual and contact us.

Here are the main changes you will experience:

Change of software module names

You will still be able to use the “old” software you used before, but many names of sw packages will change.
The name changes are in using mixed case instead of just small case, f.e. “python” is will become “Python”, “openmpi” becomes “OpenMPI”, and so on. The version of the modules has also changed. In most modules the version now contains some basic information on what it was compiled with - f.e. intel/2016a or foss/2016a (Free Open Source Software, commonly referred to as GNU) - and in some cases also information on some dependency - f.e. Python/2.7.12. In the new installation, the name “intel” has a somewhat different meaning from the old installations: loading intel/13.0 will give you the intel module, and you will have icc and ifort available to you; loading intel/2016a will load several packages including icc, ifort, imkl and impi. More information on this coming soon.

If you are looking for a package, try:

$ module avail <package_name>

This command is case insensitive, and lists you all modules, which you can load for this package
(both from the new and the old installations). If you get too many results because the name of your package is part of other names (f.e. “R”, “intel”, or “Python”) add a “/” at the end of the name:

$ module avail <package_name>/

Behavior of potentially conflicting modules

Another important change is behavior of potentially conflicting modules. In the “old setup” you are
not able to have two conflicting modules - f.e. openmpi and impi - loaded at the same time.
This is only partially true for the “new scheme” and you will need to pay more attention to this.
With the new packages, it is also more common that when you load one package it will automatically
load several other packages that it needs to function.
Check what you have currently loaded with:

$ module load

or ml for short, and unload conflicting modules, or do:

$ module purge

to remove all loaded packages and start over.

StdEnv and StdMod

By default, you will have StdEnv and StdMod loaded. StdEnv sets up the paths and other variables for you to have a working module environment. It has a “sticky” tag and will not be unloaded with a module purge or a module unload StdEnv. We strongly recommend keeping it loaded.
StdMod loads the default system modules. You are welcome to unload it, if you wish, and both module unload StdMod or module purge will unload it.

Lmod warning “rebuild your saved collection”

Lmod allows a user to save a bundle of modules as a collection using module save <collection_name> and module restore <collection_name>. This enables you to quickly get the same list of modules loaded if you tend to use the same modules over and over.
With a new module scheme came a different system MODULEPATH. For this reason, if you have some module collections saved, you will experience the following warning: “Lmod Warning: The system MODULEPATH has changed: please rebuild your saved collection.”
To solve this you need to remove your old collections and create them again. We apologize for the inconvenience.

If you are already using “mod_setup.sh” or “/home/easybuild/”

If you have already started using the new modules by loading the “notur” module and sourcing “mod_setup.sh”, simply remove these two steps and continue working as normal. The same goes for any references to /home/easybuild/. We kept these options working for now to reduce the number of potentially crashing jobs, but we plan to remove them in the near future, so we recommend removing those lines from any new jobs you launch. You do not need the module “varset” any more, StdEnv has taken over its functionality. If the only reason you were using the “notur” module was to access the newer installations, you do not need it either. If you were using the “notur” module to run ADF or other software, then you still need to continue using it.

 Application guides

Application guides

For a general explanation on how to make an application available for use,
the module system, and information about changes in application software see Software Module Scheme.

	The Amsterdam Density Functional modeling suite
	First time you run an ADF job?

	Amsterdam Density Functional program

	The periodic DFT code Band

	First time you run a Band job?

	Information for advanced users

	Dalton
	First time you run a Dalton job?

	Gaussian and GaussView
	Gaussian job example

	Memory and number of cores

	GaussView

	Molcas
	First time you run a Molcas job?

	ORCA

	Schrödinger Product Suites
	Running Schrodinger jobs on Stallo

	Installing Schrodinger on your local client machine

	The TURBOMOLE program system
	TURBOMOL runscript example

	VASP (Vienna Ab initio Simulation Package)
	First time you run a VASP job?

	About the VASP install on Stallo

	The COMSOL Multiphysics software suite
	First time you run an COMSOL job?

 The Amsterdam Density Functional modeling suite

The Amsterdam Density Functional modeling suite

This page contains general information about the ADF modeling suite installed on Stallo:

Related information

	First time you run an ADF job?

	Amsterdam Density Functional program

	The periodic DFT code Band

	First time you run a Band job?

	Information for advanced users

General Information

Description

The DFT code ADF is used in many areas of chemistry and materials science, and consists of the following parts:

	The pure DFT code based on Slater type orbitals; ADF.

	The periodic DFT code BAND shares a lot of functionality with ADF.d for treating large periodic molecular systems.

	DFTB and MOPAC are fast approximate methods to study large molecules and big periodic systems, employing DFT-based and semi-empirical data, respectively.

	Reaction dynamics in large complex systems can be studied with bond order based ReaxFF.

	COSMO-RS uses quantum mechanical data from ADF to predict thermodynamic properties of solutions and mixtures (LogP, VLE, pKa, …)

Online info from vendor

	Homepage: https://www.scm.com

	Documentation: https://www.scm.com/doc

The support people in NOTUR, do not provide trouble shooting guides anymore, due to a national agreement that it is better for the community as a whole to add to the community info/knowledge pool where such is made available. For ADF/BAND we advise to search in general documentation, sending emails to support (either metacenter or scm) or trying the ADF mailing list (see https://www.scm.com/Support for more info).

License and access policy

The license of ADF/Band is commercial.

NOTUR holds a national license of the ADF program system, making usage of ADF/BAND available for all academic scientists in Norway.

We have a national license for the following packages:

	ADF & ADFGUI

	BAND &BANDGUI

	CRS

	DFTB & DFTBGUI

	GUI

	REAXFF & REAXFFGUI

	NBO6 (on Stallo only, but machine license available for all users of Stallo).

Please note that this is an academic type license; meaning that research institutes not being part of Norwegian Universities must provide their own license to be able to use and publish results obtained with this code on NOTUR installlations.

Citation

When publishing results obtained with the referred software referred, please do check the developers web page in order to find the correct citation(s).

 First time you run an ADF job?

First time you run an ADF job?

This page contains info aimed at first time
users of ADF on Stallo, but may also be usefull to
more experienced users. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, download the copies of the scripts and put them
into your test job folder (which I assume you have created in advance).

ADF input example

title Caffeine for scale testing
integration 6.0
units
length angstrom
end
symmetry Nosym
atoms cartesian
C 1.179579 0.000000 -0.825950
C 2.359623 0.000000 0.016662
C 2.346242 0.000000 1.466600
N 1.092573 0.000000 2.175061
C 0.000000 0.000000 1.440000
N 0.000000 0.000000 0.000000
N 3.391185 0.000000 1.965657
C 4.217536 0.000000 1.154419
N 3.831536 0.000000 0.062646
C 4.765176 -0.384157 -0.964164
C 1.058378 -0.322767 3.578004
O -1.345306 0.000000 1.827493
C -1.260613 -0.337780 -0.608570
O 1.192499 0.000000 -2.225890
H -1.997518 -0.535233 0.168543
H -1.598963 0.492090 -1.227242
H -1.138698 -1.225644 -1.227242
H 0.031688 -0.271264 3.937417
H 1.445570 -1.329432 3.728432
H 1.672014 0.388303 4.129141
H 4.218933 -0.700744 -1.851470
H 5.400826 0.464419 -1.212737
H 5.381834 -1.206664 -0.604809
H 5.288201 0.000000 1.353412
end

BASIS
Type TZ2P
End

geometry
end
scf
end
unrestricted

charge 0 0

xc
gga PW91
end

noprint frag sfo

endinput

This file can also be downloaded here: Caffeine input for ADF.

Place this file in a job folder of choice, say ADFFIRSTJOB in your home directory on Stallo.

then, copy the job-script as seen here:

#!/bin/bash -l

################### ADF Job Batch Script Example ###################
Section for defining queue-system variables:
#-------------------------------------
This script asks for a given set of cores nodes and cores. Stallo has got 16 or 20 cores/node,
asking for something that adds up to both is our general recommodation (80, 160 etc), you would
then need to use --ntasks instead of --nodes and --ntasks-per-node. (replace both).
Runtime for this job is 59 minutes; syntax is hh:mm:ss.
Memory is set to the maximum advised for a full node, 1500MB/core - giving a total
of 30000MB/node and leaving some for the system to use. Memory
can be specified pr core, virtual or total pr job (be carefull).
#-------------------------------------
SLURM-section
#SBATCH --job-name=adf_runex
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=20
#SBATCH --time=00:59:00
#SBATCH --mem-per-cpu=1500MB # Be ware of memory needs, might be a lot higher if you are running Zora basis, for example.
#SBATCH --output=adf_runex.log
#SBATCH --mail-type=ALL
#SBATCH --exclusive
#SBATCH --partition=multinode

######################################
Section for defining job variables and settings:

input=caffeine # Name of input without extention
ext=adf # We use the same naming scheme as the software default, also for extention
cores=$SLURM_NTASKS # Number of cores potentially used by mpi engine in submit procedure

We load all the default program system settings with module load:

module --quiet purge
module load ADF/adf2017.108

Now we create working directory and temporary scratch for the job(s):
Necessary variables are defined in the notur and the software modules.

export SCM_TMPDIR=/global/work/$USER/$SLURM_JOBID
mkdir -p $SCM_TMPDIR

Preparing and moving inputfiles to tmp:

submitdir=$SLURM_SUBMIT_DIR

cp ${input}.${ext} $SCM_TMPDIR
cd $SCM_TMPDIR

In case necessary, set SCM_IOBUFFERSIZE
#export SCM_IOBUFFERSIZE=1024 # Or higher if necessary.

######################################
Section for running the program and cleaning up:

Running the program:

time adf -n $cores < ${input}.${ext} > adf_$input.out

Cleaning up and moving files back to home/submitdir:
Make sure to move all essential files specific for the given job/software.

cp adf_$input.out $submitdir/adf_$input.out
cp TAPE21 $submitdir/$input.t21

To zip some of the output might be a good idea!
#gzip $input.t21
#mv $input.t21.gz $submitdir/

Investigate potentially other files to keep:
echo $(pwd)
echo $(ls -ltr)

ALWAYS clean up after yourself. Please do uncomment the following line
#cd $submitdir
#rm -r $tempdir/*

echo "Job finished at"
date
################### Job Ended ###################
exit 0

(Can also be downloaded from here: job_adf.sh)

Place this script in the same folder and type:

sbatch job_adf.sh

You may now have submitted your first adf job.

These files are also available on Stallo

module load ADF/adf2017.108
cd <to whatever you call your test folder> # for instance ADFFIRSTJOB
cp -R /global/hds/software/notur/apprunex/ADF/* .

To verify that the jobs has worked fine, check the outputfile. If it says EXIT and print Bond Energies at the end of the file, you are likely on the safe side.

Check the Bond Energy in adf_caffeine.out. The value should ideally be close to -156.75317227 eV. When this is the case, you may alter variables in the shell script as much as you like to adapt to your own jobs.

NB: ADF is installed as precompiled binaries, they come with their own mpi (intel MPI). So if you are not using the provided runscript example and/or loading the newer modules - please make sure that you load an intelmpi module and also preferably a rather recent intel compiler.

Also note that, on Stallo, we hold the nbo6 plug in license that allows users of adf to produce files that can be read with the nb06 software.

Good luck with your chemistry!

 Amsterdam Density Functional program

Amsterdam Density Functional program

Information regarding the quantum chemistry code ADF on Stallo

General Information

Description

According to the vendor, ADF (Amsterdam Density Functional) is a DFT program particularly strong in understanding and predicting structure, reactivity, and spectra of molecules. It is a Fortran program for calculations on atoms and molecules (in gas phase or solution). It can be used for the study of such diverse fields as molecular spectroscopy, organic and inorganic chemistry, crystallography and pharmacochemistry.

The underlying theory is the Kohn-Sham approach to Density-Functional Theory (DFT). The software is a DFT-only first-principles electronic structure calculations program system, and consists of a rich variety of packages.

Online documentation from vendor

	Documentation: https://www.scm.com/doc/ADF

Usage

The ADF/BAND suite of software is currently installed as precompiled binaries on Stallo. We install the intel-mpi version, since it has proven to collaborate the better with our mpi setup. We generally advise to run ADF on more than one node, unless you do know that your particular problem does not make the code scale well.

Use

$ module avail ADF

to see which versions of ADF which are available. Use

$ module load ADF/<version> # i.e adf2017.108

to get access to any given version of ADF.

 The periodic DFT code Band

The periodic DFT code Band

Information regarding the periodic DFT code Band on Stallo. You may also be interested in this: First time you run a Band job?.

General Information

Description

BAND is an atomic-orbital based DFT program for periodic systems (crystals, slabs, chains and molecules).

The Amsterdam Density Functional Band-structure program - BAND - can be used for calculations on periodic systems, i.e. polymers, slabs and crystals, and is supplemental to the molecular ADF program for non-periodic systems. It employs density functional theory in the Kohn-Sham approach. BAND is very similar to ADF in the chosen algorithms, although important differences remain.

BAND makes use of atomic orbitals, it can handle elements throughout the periodic table, and has several analysis options available. BAND can use numerical atomic orbitals, so that the core is described very accurately. Because of the numerical orbitals BAND can calculate accurate total energies. Furthermore it can handle basis functions for arbitrary l-values.

Online info from vendor

	Documentation: https://www.scm.com/doc/BAND

Usage

The ADF/BAND suite of software is currently installed as precompiled binaries on Stallo. We install the intel-mpi version, since it has proven to collaborate the better with our mpi setup. We generally advise to run Band on more than one node, unless you do know that your particular problem does not make the code scale well.

Use

$ module avail ADF

to see which versions of Band which are available. Use

$ module load ADF/<version> # i.e adf2017.108

to get access to any given version of Band.

 First time you run a Band job?

First time you run a Band job?

This page contains info aimed at first time
users of Band on Stallo, but may also be usefull to
more experienced users. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, download the copies of the scripts and put them
into your test job folder (which I assume you have created in advance).

Band input example

TITLE Untitled

NumericalQuality Normal

UNITS
 length Angstrom
 angle Degree
END

ATOMS
 Si -0.67875 -0.67875 -0.67875
 Si 0.67875 0.67875 0.67875
END

Lattice
 0.0 10.860 10.860
 10.860 0.0 10.860
 10.860 10.860 0.0
End

DOS
Enabled True
End

BasisDefaults
BasisType DZ
Core Large
End

XC
LDA SCF VWN
END

GeoOpt
UseVariableTrustRadius false
End

BZSTRUCT
 Enabled True
END

end input

This file can also be downloaded here: Silicone input for Band.

Place this file in a job folder of choice, say BANDFIRSTJOB in your home directory on Stallo.

then, copy the job-script as seen here:

#!/bin/bash -l

################### ADF Job Batch Script Example ###################
Section for defining queue-system variables:
#-------------------------------------
This script asks for a given set of cores nodes and cores. Stallo has got 16 or 20 cores/node,
asking for something that adds up to both is our general recommodation (80, 160 etc), you would
then need to use --ntasks instead of --nodes and --ntasks-per-node. (replace both).
Runtime for this job is 59 minutes; syntax is hh:mm:ss.
Memory is set to the maximum advised for a full node,
of 30000MB/node and leaving some for the system to use. Memory
can be specified pr core, virtual or total pr job (be carefull).
#-------------------------------------
SLURM-section
#SBATCH --job-name=band_runex
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=20
#SBATCH --time=00:59:00
#SBATCH --mem-per-cpu=1500MB # Be ware of memory needs!
#SBATCH --output=band_runex.log
#SBATCH --mail-type=ALL
#SBATCH --exclusive
#SBATCH --partition=multinode

######################################
Section for defining job variables and settings:

input=silicone # Name of input without extention
ext=adf # We use the same naming scheme as the software default, also for extention
cores=40 # Number of cores potentially used by mpi engine in submit procedure

We load all the default program system settings with module load:

module --quiet purge
module load ADF/adf2017.108

Now we create working directory and temporary scratch for the job(s):
Necessary variables are defined in the notur and the software modules.

export SCM_TMPDIR=/global/work/$USER/$SLURM_JOBID
mkdir -p $SCM_TMPDIR

Preparing and moving inputfiles to tmp:

submitdir=$SLURM_SUBMIT_DIR
tempdir=$SCM_TMPDIR

cd $submitdir
cp ${input}.${ext} $tempdir
cd $tempdir

In case necessary, set SCM_IOBUFFERSIZE
#export SCM_IOBUFFERSIZE=1024 # Or higher if necessary.

######################################
Section for running the program and cleaning up:

Running the program:

time band -n $cores < ${input}.${ext} > band_$input.out

Cleaning up and moving files back to home/submitdir:
Make sure to move all essential files specific for the given job/software.

cp band_$input.out $submitdir/band_$input.out
cp TAPE21 $submitdir/$input.t21

To zip some of the output might be a good idea!
#gzip $input.t21
#mv $input.t21.gz $submitdir/

Investigate potentially other files to keep:
echo $(pwd)
echo $(ls -ltr)

ALWAYS clean up after yourself. Please do uncomment the following line
#cd $submitdir
#rm $tempdir/*
#rmdir $tempdir

echo "Job finished at"
date
################### Job Ended ###################
exit 0

(Can also be downloaded from here: job_band.sh)

Place this script in the same folder and type:

sbatch job_band.sh

You may now have submitted your first adf job.

These files are also available on Stallo

module load ADF/adf2017.108
cd <to whatever you call your test folder> # for instance BANDFIRSTJOB
cp -R /global/hds/software/notur/apprunex/ADF/* .

To verify that the jobs has worked fine, check the outputfile. If it says EXIT and print Energy of Formation at the end of the file, you are likely on the safe side.

#Check the ENERGY OF FORMATION in band_silicone.out. The value should ideally be close to -4.2467 eV. When this is the case, you may alter variables in the shell script as much as you like to adapt to your own jobs.

NB: The ADF modeling suite is installed as precompiled binaries, they come with their own mpi (intel MPI). So if you are not using the provided runscript example and/or loading the newer modules - please make sure that you load an intelmpi module and also preferably a rather recent intel compiler.

Good luck with your chemistry!

 Information for advanced users

Information for advanced users

Scaling behaviour

Since ADF is a very complex code, able to solve a vast range of chemistry problems - giving a unified advice regarding scaling is difficult. We will try to inspect scaling behaviour related to most used areas of application. For a standard geometry optimization, it seems to scale well in the region of 4-6 full nodes (60-100 cores) at least. For linear transit we would currently stay at no more than 4 full nodes or less currently.Unless having tests indicating otherwise, users who want to run large jobs should allocate no more than the prescribed numbers of processors. More information will come.

Memory allocation

On Stallo there are 32 GB and 128GB nodes. Pay close attention to memory usage of job on the nodes where you run, and if necessary redistribute the job so that it uses less than all cores on the node until the limit of 32 GB/core. More than that, you will need to ask for access to the highmem-queue. As long as you do not ask for more than 2 GB/core, using the pmem-flag for torque does in principle give no meaning.

How to restart an ADF job

	In the directory where you started your job, rename or copy the job-output t21 file into $SCM_TMPDIR/TAPE21.

	In job.inp file, put RESTART TAPE21 just under the comment line.

	Submit job.inp file as usual.

This might also be automized, we are working on a solution for restart after unexpected downtime.

How to run ADF using fragments

This is a brief introduction to how to create fragments necessary for among other things, BSSE calculations and proper broken symmetry calculations.

Running with fragments:

	Download and modify script for fragment create run, e.g. this template: Create.TZP.sh (modify ACCOUNT, add desired atoms and change to desired basis and desired functional)

	Run the create job in the same folder as the one where you want to run your main job(s) (sbatch Create.TZP.sh).

	Put the line cp $init/t21.* . in your ADF run script (in your $HOME/bin directory)

	In job.inp, specify correct file name in FRAGMENT section, e.g. “H t21.H_tzp”. * Submit job.inp as usual.

Running with fragments is only necessary when you want to run a BSSE calculations or manipulate charge and/or atomic mass for a given atom (for instance modeling heavy isotope labelled samples for frequency calculations).

 Dalton

Dalton

Related information

	First time you run a Dalton job?

General information

Description

Dalton is an ab initio quantum chemistry computer program. It is capable of calculating various molecular properties using the Hartree-Fock, MP2, MCSCF and coupled cluster theories. Dalton also supports density functional theory calculations.

Online information from vendor

	Homepage: http://daltonprogram.org/

	Documentation: http://daltonprogram.org/documentation/

	For download: http://daltonprogram.org/download/

License and access policy

Dalton is licensed under the GPL 2. That basically means that everyone may freely use the program.

Citation

When publishing results obtained with the referred software referred, check the following page to find the correct citation(s): http://daltonprogram.org/citation/

Usage

You load the application by typing:

module load Dalton/2016-130ffaa0-intel-2017a

For more information on available versions of Dalton, type:

module avail Dalton

 First time you run a Dalton job?

First time you run a Dalton job?

This page contains info aimed at first time
users of Dalton on Stallo. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, copy the input example and the job script example shown below
into your test job folder (which I assume you have created in advance).

Dalton needs one molecule file and one input file. For simplicity, we have tarred them together and you
may download them here: Dalton files

Molcas runscrip example

#!/bin/bash -l

Write the account to be charged here
(find your account number with `cost`)
#SBATCH --account=nnXXXXk

#SBATCH --job-name=daltonexample

we ask for 20 cores
#SBATCH --ntasks=20

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

500MB memory per core
this is a hard limit
#SBATCH --mem-per-cpu=500MB

Remove percentage signs to turn on all mail notification
#%%%SBATCH --mail-type=ALL

You may not place bash commands before the last SBATCH directive!

Load Dalton
You can find all installed Dalton installations with:
module avail dalton
module load Dalton/2013.2

Define the input files
molecule_file=caffeine.mol
input_file=b3lyp_energy.dal

Define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/daltonexample/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

Define and create a temp directory
TEMP_DIR=${SCRATCH_DIRECTORY}/temp
mkdir -p ${TEMP_DIR}

copy input files to scratch directory
cp ${SLURM_SUBMIT_DIR}/${input_file} ${SLURM_SUBMIT_DIR}/${molecule_file} ${SCRATCH_DIRECTORY}

run the code
dalton -N ${SLURM_NTASKS} -t ${TEMP_DIR} ${input_file} ${molecule_file}

copy output and tar file to submit dir
cp *.out *.tar.gz ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

You can also download the runscript file here: Dalton run script

The runscript example and the input are also on Stallo

Type:

cd <whatever_test_folder_you_have> # For instance testdalton
cp -R /global/hds/software/notur/apprunex/dalton/* .

When you have all the necessary files in the correct folders, submit the job by typing:

sbatch job_dalton.sh

Good luck.

 Gaussian and GaussView

Gaussian and GaussView

	Gaussian job example

	Memory and number of cores

	GaussView

Gaussian [http://gaussian.com] is a popular computational chemistry program.
Official documentation: http://gaussian.com/man

License and access

The license is commercial/proprietary and constitutes of 4 site licenses for the 4 current host
institutions of NOTUR installations; NTNU, UiB, UiO, UiT. Only
persons from one of these institutions have access to the Gaussian Software
system installed on Stallo. Note that users that do not come from one of the
above mentioned institutions still may be granted access, but they need to
document access to a valid license for the version in question first.

	To get access to the code, you need to be in the gaussian group of users.

	To be in the gaussian group of users, you need be qualified for it - see above.

Citation

For the recommended citation, please consult http://gaussian.com/citation/.

 Gaussian job example

Gaussian job example

To run this example create a directory, step into it, create the input file and submit the script with:

$ sbatch gaussian-runscript.sh

Input example

Direct download link: input example

%chk=example
%mem=500MB
#p b3lyp/cc-pVDZ opt

benzene molecule example

0 1
C 0.00000 1.40272 0.00000
C 0.00000 -1.40272 0.00000
C 1.21479 0.70136 0.00000
C 1.21479 -0.70136 0.00000
C -1.21479 0.70136 0.00000
C -1.21479 -0.70136 0.00000
H 0.00000 2.49029 0.00000
H 0.00000 -2.49029 0.00000
H 2.15666 1.24515 0.00000
H 2.15666 -1.24515 0.00000
H -2.15666 1.24515 0.00000
H -2.15666 -1.24515 0.00000

Runscript example

Direct download link: runscript example

#!/bin/bash -l

#SBATCH --account=nn....k

#SBATCH --job-name=example
#SBATCH --output=example.log

Stallo nodes have either 16 or 20 cores: 80 is a multiple of both
#SBATCH --ntasks=80

make sure no other job runs on the same node
#SBATCH --exclusive

syntax is DD-HH:MM:SS
#SBATCH --time=00-00:30:00

allocating 30 GB on a node and leaving a bit over 2 GB for the system
#SBATCH --mem-per-cpu=1500MB

##
no bash commands above this line
all sbatch directives need to be placed before the first bash command

name of the input file without the .com extention
input=example

flush the environment for unwanted settings
module --quiet purge
load default program system settings
module load Gaussian/g16_B.01

set the heap size for the job to 20 GB
export GAUSS_LFLAGS2="--LindaOptions -s 20000000"

split large temporary files into smaller parts
lfs setstripe –c 8 .

create scratch space for the job
export GAUSS_SCRDIR=/global/work/${USER}/${SLURM_JOB_ID}
tempdir=${GAUSS_SCRDIR}
mkdir -p ${tempdir}

copy input and checkpoint file to scratch directory
cp ${SLURM_SUBMIT_DIR}/${input}.com ${tempdir}
if [-f "${SLURM_SUBMIT_DIR}/${input}.chk"]; then
 cp ${SLURM_SUBMIT_DIR}/${input}.chk ${tempdir}
fi

run the code
cd ${tempdir}
time g16.ib ${input}.com > ${input}.out

copy output and checkpoint file back
cp ${input}.out ${SLURM_SUBMIT_DIR}
cp ${input}.chk ${SLURM_SUBMIT_DIR}

remove the scratch directory after the job is done
cd ${SLURM_SUBMIT_DIR}
rm -rf /global/work/${USER}/${SLURM_JOB_ID}

exit 0

 Memory and number of cores

Memory and number of cores

This page contains info about special features related to
the Gaussian install made on Stallo, but also general issues
related to Gaussian only vaguely documented elsewhere.

Choosing the right version

To see which versions of Gaussien are available, use:

$ module avail Gaussian/

To load a specific version of Gaussian, use for instance:

$ module load Gaussian/g16_B.01

Gaussian over Infiniband

First note that the Gaussian installation on Stallo is the Linda parallel
version, so it scales somewhat initially. On top of this, Gaussian is installed
with a little trick, where the loading of the executable is intercepted before
launched, and an alternative socket library is loaded. This enables the
running Gaussian natively on the Infiniband network giving us
two advantages:

	The parallel fraction of the code scales to more cores.

	The shared memory performance is significantly enhanced (small scale performance).

But since we do this trick, we are greatly depending on altering the specific
node address into the input file: To run gaussian in parallel requires the
additional keywords %LindaWorkers and %NProcshared in the Link 0 part of the
input file. This is taken care of by a wrapper script around the
original binary in each individual version folder. This
is also commented in the job script example. Please use
our example when when submitting jobs.

We have also taken care of the rsh/ssh setup in our installation procedure, to
avoid .tsnet.config dependency for users.

Parallel scaling

Gaussian is a rather large program system with a range of different binaries,
and users need to verify whether the functionality they use is parallelized and
how it scales.

Due to the preload Infiniband trick, we have a somewhat more generous policy
when it comes to allocating cores/nodes to Gaussian jobs but before computing a
table of different functionals and molecules, we strongly advice users to first
study the scaling of the code for a representative system.

Please do not reuse scripts inherited from others without studying the
performance and scaling of your job. If you need assistance with this, please
contact the user support.

We do advice people to use up to 256 cores (--tasks). We have observed
acceptable scaling of the current Gaussian install beyond 16 nodes for the jobs
that do scale outside of one node (i.e. the binaries in the $gXXroot/linda-exe
folder). Linda networking overhead seems to hit hard around this amount of
cores, causing us to be somewhat reluctant to advice going beyond 256 cores.

Since we have two different architectures with two different core counts on
Stallo, the --exclusive flag is important to ensure that the distribution
of jobs across the whole system are done in a rather flexible and painless way.

Memory allocation

Gaussian takes care of memory allocation internally.

That means that if the submitted job needs more memory per core than what is in
average available on the node, it will automatically scale down the number of
cores to mirror the need. This also means that you always should ask for full
nodes when submitting Gaussian jobs on Stallo! This is taken care of by the
--exclusive flag and commented in the job script example.

The %mem allocation of memory in the Gaussian input file means two things:

	In general it means memory/node – for share between nprocshared, and
additional to the memory allocated per process. This is also documented by
Gaussian.

	For the main process/node it also represents the network
buffer allocated by Linda since the main Gaussian process takes a part
and Linda communication process takes a part equally sized – thus you should
never ask for more than half of the physical memory on the nodes, unless they
have swap space available - which you never should assume.
The general %mem limit will always be half of the physical memory
pool given in MB instead of GB - 16000MB instead of 16GB since this leaves a
small part for the system. That is why we would actually advise to use 15GB as
maximum %mem size.

Large temporary outputs on Stallo

As commented here Storage and backup there is an issue related to very
large temporary files on Stallo. Please read up on it at act accordingly. This
issue is also commented in the job script example.

 GaussView

GaussView

Gaussview is a visualization program that can be used to open Gaussian output
files and checkpoint files (.chk) to display structures, molecular orbitals,
normal modes, etc. You can also set up jobs and submit them directly.

Official documentation: https://gaussian.com/gaussview6/

GaussView on Stallo

To load and run GaussView on Stallo, load the relevant Gaussian module, and
then call GaussView:

$ module avail Gaussian
$ module load Gaussian/g16_B.01
$ gview

 Molcas

Molcas

Related information

	First time you run a Molcas job?

General information

Description

Molcas is an ab initio quantum chemistry software package developed by scientists to be used by scientists. The basic philosophy is is to be able to treat general electronic structures for molecules consisting of atoms from most of the periodic table. As such, the primary focus of the package is on multiconfigurational methods with applications typically connected to the treatment of highly degenerate states.

Key aspects of Molcas:

	SCF/DFT, CASSCF/RASSCF, CASPT2/RASPT2

	Fast, accurate, and robust code

Online information from vendor

	Homepage: http://molcas.org/

	Documentation: http://molcas.org/documentation/manual/

	For download: http://molcas.org/download.html

License and access policy

Molcas comes with a non-free computer center license, though it is free for academic employees from the Nordic region.
The HPC group @ UiT have an agreement with Molcas as a part of the old application management project, that we do make a central
install of the code - but users who wants access needs to document that they have made an agreement with Molcas. This proof of agreement should
then be mailed (e or non-e) to support@metacenter.no to be granted membership of the molcas group on Stallo.

For the future, we are considering establishing the same policy as for ORCA, especially since the vendor has done a substantial job at decomplicating
the install procedure using CMake.

Citation

When publishing results obtained with the referred software referred, please do check the developers web page in order to find the correct citation(s).

Usage

You load the application by typing:

module load Molcas/molcas82-intel-2015a

For more information on available versions of Molcas, type:

module avail Molcas

 First time you run a Molcas job?

First time you run a Molcas job?

This page contains info aimed at first time
users of Molcas on Stallo. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, copy the input example and the job script example shown below
into your test job folder (which I assume you have created in advance).

Molcas comes with one input file and one geometry file. For simplicity, we have tarred them together and you
may download them here: Ethane-input

Molcas runscrip example

#!/bin/bash -l

################### VASP Job Batch Script Example ###################
Section for defining queue-system variables:
#-------------------------------------
This script asks for a given set of cores nodes and cores. Stallo has got 16 or 20 cores/node,
asking for something that adds up to both is our general recommodation (80, 160 etc), you would
then need to use --ntasks instead of --nodes and --ntasks-per-node. (replace both).
Runtime for this job is 59 minutes; syntax is hh:mm:ss.
Memory is set to the maximum advised for a full node, 1500MB/core - giving a total
of 30000MB/node and leaving some for the system to use. Memory
can be specified pr core, virtual or total pr job (be carefull).
#-------------------------------------
SLURM-section
#SBATCH --job-name=molcas_runex
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
##SBATCH --ntasks=20
#SBATCH --time=00:59:00
#SBATCH --mem-per-cpu=1500MB
#SBATCH --output=molcas_runex.log
#SBATCH --mail-type=ALL
#SBATCH --exclusive

######################################
Section for defining job variables and settings:

proj=ehtane # Name of project/folder
input=C2H6 # Name of job input

We load all the default program system settings with module load:

module --quiet purge
module load Molcas/molcas82-intel-2015a
You may check other available versions with "module avail Molcas"

Now we create working directory and temporary scratch for the job(s):
Necessary variables are defined in the notur and the software modules.

export MOLCAS_WORKDIR=/global/work/$USER/$SLURM_JOBID
mkdir -p $MOLCAS_WORKDIR

Preparing and moving inputfiles to tmp:

submitdir=$SLURM_SUBMIT_DIR
tempdir=$MOLCAS_WORKDIR

cd $submitdir
cp ${input}.* $tempdir
cd $tempdir

######################################
Section for running the program and cleaning up:

Running the program:
time molcas Project=${proj} -f ${input}*.input

Cleaning up and moving files back to home/submitdir:
Make sure to move all essential files specific for the given job/software.

cp * $submitdir

To zip some of the output might be a good idea!
#gzip $resultszip
#mv $resultzip.gz $SUBMITDIR/

Investigate potentially other files to keep:
echo $(pwd)
echo $(ls -ltr)

ALWAYS clean up after yourself. Please do uncomment the following line
#cd $submitdir
#rm $tempdir/*
#rmdir $tempdir

echo "Job finished at"
date
################### Job Ended ###################
exit 0

NB: Note that some of Molcas´s various modules are not mpi scalable. Consult the vendor-provided manual for scaling issues. Our example is based on a single-node all cores job.

You can also download the runscript file here: Molcas run script

The runscript example and the input are also on Stallo

Type:

module load Molcas/molcas82-intel-2015a
cd <whereevertestfolderyouhave> # For instance testmolcas
cp -R /global/hds/software/notur/apprunex/Molcas/* .

When you have all the necessary files in the correct folders, submit the job by typing:

sbatch job_molcas.sh

To verify that nothing has gone wrong, check the status file. If it concludes “happy landing” you are on the safe side, most probably. Good luck.

 ORCA

ORCA

Some users have requested an installation of the ORCA quantum chemistry program
on Stallo. Unfortunately, ORCA does not come with a computer center license,
which basically means that we cannot easily install it globally on Stallo.
However, the code is free of charge and available for single users or at
research group level, provided compliance with the ORCA End User License
Agreement. This means that interested users can download the precompiled
executables from the ORCA web page themselves, and run the code on Stallo.

	Homepage: https://orcaforum.kofo.mpg.de

Installation

The following has been tested for version 4.2.1 on Stallo:

	Go to the ORCA forum page and register as user

	Wait for activation e-mail (beware of spam filters…)

	Log in and click on Downloads in the top menu

	Download the Linux x86-64 complete archive and place it somewhere in your home folder

	Extract the tarball: $ tar xf orca_4_2_1_linux_x86-64_openmpi314.tar.xz

	The orca executable is located in the extracted archive and should work out of the box

Usage

In order to run ORCA in parallel the OpenMPI module must be loaded, and it is
important to use the full path to the executable

$ module load OpenMPI/3.1.3-GCC-8.2.0-2.31.1
$ /full/path/to/orca orca.inp >orca.out

Note that the calculation should not be launched by mpirun, but you should use
the input keyword nprocs. A very simple example input file is provided below.
Please refer to the ORCA manual (can be downloaded from the same download page
on the ORCA forum) for details on how to run the code for your application.

ORCA input example

! HF def2-TZVP

%pal
nprocs 4 # parallel execution
end

* xyz 0 1
C 0.0 0.0 0.0
O 0.0 0.0 1.13
*

 Schrödinger Product Suites

Schrödinger Product Suites

A description of the Schrödinger product suites that are available for norwegian academic users

Related information

	Running Schrodinger jobs on Stallo

	Installing Schrodinger on your local client machine

General Information

NOTUR is, together with the user community, funding a national license of Schrödinger´s Small Molecule Drug Discovery Suite and PyMol. This implies that users are allowed to download and install their own copies of the software, and using the license server for providing license tokens. More about that in another document: Installing Schrodinger on your local client machine.

Online info from vendor

	Homepage: https://www.schrodinger.com/

About the suites:

	Small Molecule Drug Discovery Suite: https://www.schrodinger.com/suites/small-molecule-drug-discovery-suite

	PyMol: https://www.schrodinger.com/pymol

For documentation, you need to create an account (free) and log in. Documentation is also available in the software home folder:

$ module load Schrodinger/{version}
$ cd $SCRODINGER/docs

Remeber to point a pdf-reader or html reader to the documentation if you plan to read it on Stallo.

Support people in NOTUR do not provide trouble shooting guides anymore. For Schrödinger suites, the vendor company is giving good support on a system level. Problems related to running schrodinger on a NOTUR facility should be adressed to us.

Citation

When publishing results obtained with the referred software, please do check the developers web page in order to find the correct citation(s).

License and access policy

The licenses of Schrödinger Product Suites are commercial.

NOTUR is, together with the user community, funding a national license of Schrödinger´s Small Molecule Drug Discovery Suite and PyMol. The licenses are administered by a license server based on flexlm. The adress for this license setup is available upon request to support@metacenter.no.

The outtake of license tokens is monitored on regular basis, and we try to catch those who seems to use the suite for regular scientific production and ask them to contribute financially to the overall deal. So far, this policy have worked fairly well.

All members of the co-funding research groups have unlimited access to the Schrödinger´s Small Molecule Drug Discovery Suite and PyMol license tokens.

Please note that this is an academic type license; meaning that research institutes not being part of Norwegian Universities must provide their own license to be able to use and publish results obtained with this code on NOTUR installlations.

Usage

The most commot usage of schrodinger on Stallo is through the Maestro gui. Log in with x11-tunneling enabled, or through the web-interface http://stallo-gui.uit.no/.
Load the module of choice:

Use

$ module avail Schrodinger

to see which versions of Schrodinger are available.

Use

$ module load Schrodinger/<version> # i.e 2017-2-intel-2016a

to get access to Schrodinger. The batch resource allocation system is integrated with the gui through a schrodinger.hosts file which is centrally administered.

Please do not hold a local copy!

For examples on how to submit Schrodinger jobs on Stallo, look here Running Schrodinger jobs on Stallo.

Finding available licenses

This should in principle be obsolete for users, since we are promised unlimited licenses in the national system. But still, for the curious souls:

If you want to know about avaible licenses; do the following

(after loading the schrodinger module)

$ licadmin STAT

This command will give you information about license status for the national Schrodinger suite licenses.

Access to PyMOL

For users that wants/needs access to PyMOL, please fill out the following form: https://skjema.uio.no/pymol-access.

Please not that this strategy replaces old habits of sending personal emails in this regard.

 Running Schrodinger jobs on Stallo

Running Schrodinger jobs on Stallo

This page contains info about how to submit Schrodinger jobs on Stallo, based
on two sets of examples - one for docking and one for molecular dynamics -
provided to us by users.

Pay enhanced attention to the ssh -Y c1-2 in examples below; this represents the adviced behaviour on how to run jobs on Stallo for your benefit solely!

A more thorough explanation to this, is that maestro starts a distribution and surveilance process that creates the jobs that enters the shared resources allocation (aka batch) system. If this process dies, the underlying jobs dies disregarding their computational status. This could have been solved by just running this on the login node, but imagine how it would have been with 1000 simultanious users sharing two login nodes and 50 of those ran 20-40 simultaneous perl and python processes each on the login nodes. So, please do as told.

Submitting jobs through the maestro interface

Log in to Stallo with either x11-tunnelling enabled or through stallo-gui.uit.no.

To get download the jobscript example(s), type the following:Direct log in via ssh:

$ module load Schrodinger/2017-2-intel-2016a
$ cp -r /global/hds/software/notur/apprunex/Schrodinger/* ~
Be sure this do not overwrite any folder or info you may want to keep in your home.

Note: This suite is quite extensive in features, and we generally advice you to either join tutorial courses, talk to experts in your proximity or read the vendor-provided documentation if you have absolutely no knowledge about how to use this suite of software. Here we only provide a couple of rough startup examples to get you up running.

Then;

If you want to test the molecular dynamics package

Do the following:

$ ssh -Y c1-2
$ module load Schrodinger/2017-2-intel-2016a
$ cd example_md
$ maestro -SGL

and start a Molecular Dynamics task from the Tasks menu bar. Load model system from file, choose desmond_md_example.cms

Set all settings to your satisfaction.

Open the job settings; you should only be presented the following options

	localhost (only for job-setups)

	batch-normal (2 days (=48hrs) of walltime/1000 cpus)

	batch-long (21 days (504 hrs) of walltime/1000cpus)

Make sure that only one option is highlighted (only one of the batch-XXX´s). Press the run button and supervise running.

(This test case is provided us by Vladimir Pomogaev.)

If you want to test the docking package

Do the following:

$ ssh -Y c1-2
$ module load Schrodinger/2017-2-intel-2016a
$ cd example_docking
$ maestro -SGL

and start a Docking task from the Tasks menu bar.

Choose abl1-kinase-t316i_glide-grid.zip as grid

Use ligands from file; if you want to run a very short test - choose abl1-kinase-t316i_minimized.mae, for a longer test browse for SD and choose Asinex-50000-3D-minimized.sdf set of ligands. Set all settings to your satisfaction. For job settings, see example above.

(This test case is provided us by Bjorn Dalhus.)

If you want to run vsw routines from the command line

The Schrodinger suite is shipped with scripts that connects the software installation with the system batch resource allocation setup, making it possible to submit glide jobs from the linux command line.

Examples of valid command line submissions using the vsw-tool on Stallo:

vsw *.inp -DRIVERHOST batch-normal -host_glide batch-normal:100 -NJOBS 1 –adjust

If you are worried that you will not refind your files for emergency startup:

Note the following details:

	When the Schrodinger module is loaded on Stallo, the Schrodinger software folder is set in path, making $SCHRODINGER unecessary.

	The Schrodinger setup on Stallo writes to the scratch file system by default, potentially making both the -LOCAL and the -SAVE flags uneccesary.

	We do not recommend the -REMOTEDRIVER flag due to the risk of loosing jobs related to the admin process running out allocated time.

 Installing Schrodinger on your local client machine

Installing Schrodinger on your local client machine

This page contains info about how to download and install the Schrodinger suite on your local client machine.

Getting an account on www.schrodinger.com

You need to create an account (free) and log in with the password you create. Then you download the relevant software for your machine and follow install procedures that comes with the software.

Getting access to the national license

Since we have a joint funding of license tokens between user community and national bodies, members of the funding research groups are entiteled to get access to the license from their client machines. The easiest way to do this is by downloading the following license file:

SERVER Lisens-Schrodinger.uit.no 0050569f5819 27008
VENDOR SCHROD PORT=53000
USE_SERVER

(Can also be downloaded from here: License_Schrodinger.txt)

This should be sufficient to make your personal copy of Schrodinger Small Molecule Drug Discovery suite work on your machine.

Note: It is a known bug that the configure setup of Schrodinger reports no license found even if the program suite works well. Please ignore.

 The TURBOMOLE program system

The TURBOMOLE program system

Information regarding the quantum chemistry program system TURBOMOLE.

Related information

	TURBOMOL runscript example

General Information

Description

TURBOMOLE is a quantum chemical program package, initially developed in the
group of Prof. Dr. Reinhart Ahlrichs at the University of Karlsruhe and at the
Forschungszentrum Karlsruhe. In 2007, the TURBOMOLE GmbH (Ltd) was founded by
the main developers of the program, and the company took over the responsibility
for the coordination of the scientific development of the program, to which it
holds all copy and intellectual property rights.

Online info from vendor

	Homepage: http://www.turbomole-gmbh.com

	Documentation: http://www.turbomole-gmbh.com/turbomole-manuals.html

License information

Sigma2 holds a national TURBOMOLE license covering all computing centers in Norway.

Citation

When publishing results obtained with this software, please check with the
developers web page in order to find the correct citation(s).

TURBOMOLE on Stallo

Usage

To see which versions of TURBOMOLE are available

$ module avail turbomole

Note that the latest (as of May 2018) version 7.2 comes in three different
parallelization variants

	TURBOMOLE/7.2

	TURBOMOLE/7.2.mpi

	TURBOMOLE/7.2.smp

where the latter two correspond to the old separation between distributed memory
(mpi) and shared memory (smp) implementations that some users may know from
previous versions of the program. We recommend, however, to use the new hybrid
parallelization scheme (new in v7.2) provided by the TURBOMOLE/7.2 module.

In order to run efficiently in hybrid parallel the SLURM setup must be correct
by specifying CPUs rather than tasks per node

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=20

i.e. do NOT specify --ntasks=40. Also, some environment variables must be
set in the run script

export TURBOTMPDIR=/global/work/${USER}/${SLURM_JOBID}
export PARNODES=${SLURM_NTASKS}
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

See the TURBOMOLE example for more details.

NOTE: The new hybrid program (v7.2) will launch a separate server process in
addition to the requested parallel processes, so if you run e.g. on 20 cores
each on two nodes you will find one process consuming up to 2000% CPU on each
node plus a single process on the first node consuming very little CPU.

NOTE: We have found that the hybrid program (v7.2) runs efficiently only if
full nodes are used, e.i. you should always ask for --cpus-per-node=20,
and scale the number of nodes by the size of the calculation.

 TURBOMOL runscript example

TURBOMOL runscript example

#!/bin/bash -l
#SBATCH --job-name=turbomole
#SBATCH --account=nnXXXXk
#SBATCH --time=1:00:00
#SBATCH --mem-per-cpu=1000MB
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=20
#SBATCH --mail-type=ALL
#SBATCH --partition=multinode

For TURBOMOLE v7.2:
--nodes : scale by the size of the calculation
--ntasks-per-node : always a singel task per node
--cpus-per-task : always full nodes

load modules
module --quiet purge
module load TURBOMOLE/7.2

TURBOMOLE needs this variable
export TURBOTMPDIR=/global/work/${USER}/${SLURM_JOBID}
workdir=${TURBOTMPDIR}
submitdir=${SLURM_SUBMIT_DIR}

copy files to work
mkdir -p $workdir
cd $workdir
cp $submitdir/* $workdir

set parallel environment
export PARNODES=${SLURM_NTASKS}
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

run jobex calculation
dscf > dscf.out

copy files back
mv * $submitdir

clean up
rm -r $workdir

exit 0

TURBOMOL example on Stallo

The above runscript can be found on Stallo along with the necessary input files
to perform a simple DFT calculation. To get access to the examples directory,
load the notur module

$ module load notur
$ cp -r /global/hds/software/notur/apprunex/TURBOMOLE .

From this directory you can submit the example script (you need to specify a
valid account in the script first)

$ sbatch job_turbo.sh

The calculation should take less than 2 min, but may spend much more than this
in the queue. Verify that the output file dscf.out ends with

**** dscf : all done ****

Please refer to the TURBOMOLE manual for how to setup different types of
calculations.

 VASP (Vienna Ab initio Simulation Package)

VASP (Vienna Ab initio Simulation Package)

Information regarding the Vienna Ab initio Simulation Package (VASP) installed on Stallo.

Related information

	First time you run a VASP job?

	About the VASP install on Stallo

General information

Description

VASP is a complex package for performing ab-initio quantum-mechanical molecular dynamics (MD) simulations using pseudopotentials or the projector-augmented wave method and a plane wave basis set. The approach implemented in VASP is based on the (finite-temperature) local-density approximation with the free energy as variational quantity and an exact evaluation of the instantaneous electronic ground state at each MD time step.

VASP uses efficient matrix diagonalisation schemes and an efficient Pulay/Broyden charge density mixing. These techniques avoid all problems possibly occurring in the original Car-Parrinello method, which is based on the simultaneous integration of electronic and ionic equations of motion.

The interaction between ions and electrons is described by ultra-soft Vanderbilt pseudopotentials (US-PP) or by the projector-augmented wave (PAW) method. US-PP (and the PAW method) allow for a considerable reduction of the number of plane-waves per atom for transition metals and first row elements. Forces and the full stress tensor can be calculated with VASP and used to relax atoms into their instantaneous ground-state.

There are various type plug ins and added functionality to VASP. On Stallo, we have added support for the Texas transition state tools (vTST [http://theory.cm.utexas.edu/vtsttools/]), the VASPsol [http://vaspsol.mse.ufl.edu] implicit solvation model made by Hennig and Mathew from University of Florida and the Bayesian Error Estimation Functionals [https://suncat.stanford.edu/about/facilities/software] from the SUNCAT center, Standford.

Online information from vendor

	Homepage: https://www.vasp.at

	Documentation: https://cms.mpi.univie.ac.at/wiki/index.php/The_VASP_Manual

License and access policy

The VASP license is proprietary and commercial. It is based on group license policy, and for NOTUR systems VASP packages falls in the “bring your own license” category. See General comments about licenses.

The Vasp program is not distributed via site licences. However, HPC-staff in NOTUR have access to the VASP code to be able to support any research groups that have a valid VASP license.

VASP is a commercial software package that requires a license for all who wants use it. To run VASP:

	Your group must have a valid licence. To acquire a licence, please consult this link: https://www.vasp.at/index.php/faqs/71-how-can-i-purchase-a-vasp-license.

	We need to get a confirmation from a VASP representative to confirm that you have access to the license. Your group representative needs to contact Dr. Doris Vogtenhuber (doris.vogtenhuber@univie.ac.at) from the VASP team and ask her to send a confirmation email to us (support@metacenter.no) to confirm that you have a valid licence. Once we get a confirmation email we will grant you access to run VASP.

The support people in NOTUR, do not provide trouble shooting guides anymore, due to a national agreement that it is better for the community as a whole to add to the community info/knowledge pool where such is made available. Also, HPC staff from UiT does not provide any support to VASP 4 anymore, basically due to age of the code.

Citation

When publishing results obtained with the referred software referred, please do check the developers web page in order to find the correct citation(s).

Usage

You load the application by typing:

$ module load VASP

This command will give you the default version.

For more information on available versions, type:

$ module avail VASP

Experiencewise, VASP is a rather memory intensive code. Users are advised to read up on the general job script example(s) for SLURM and Stallo, and also how to specify memory in SLURM [https://slurm.schedmd.com].

About the VASP version(s) installed on Stallo

Since the installation we made on Stallo is rather taylor made, we have gathered information about this here: About the VASP install on Stallo.

Here we also adress compilation relevant information for those who would like to do it themselves.

 First time you run a VASP job?

First time you run a VASP job?

This page contains info aimed at first time
users of VASP on Stallo, but may also be usefull to
more experienced users. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, download the copies of the scripts and put them
into your test job folder (which I assume you have created in advance).

VASP input example

Download the tarred job CeO2job-files.

move this file to your test job folder on Stallo and type

tar -zxf CeO2.tar.gz

Then; download the job-script as seen here:

#!/bin/bash -l

################### VASP Job Batch Script Example ###################
Section for defining queue-system variables:
#-------------------------------------
This script asks for a given set of nodes and cores. cores. Stallo has got
16 or 20 cores/node, so you need to know what you want.
Runtime for this job is 59 minutes; syntax is hh:mm:ss.
Memory si set to the maximum amound adviced when asking for a full node, it
adds up to 30 000MB, leaving a small part for the system to use. Memory
can be specified pr core, virtual or total pr job (be carefull).
#-------------------------------------
SLURM-section
#SBATCH --job-name=vasp_runex
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=20
#SBATCH --time=02:00:00
##SBATCH --mem-per-cpu=1500MB
#SBATCH --output=vasp_runex.log
#SBATCH --mail-type=ALL
#SBATCH --exclusive
#SBATCH --partition=multinode

######################################
Section for defining job variables and settings:

When you use this test script, make sure, your folder structure is as follows:
./job_vasp.sh
./CeO2job/INCAR
./CeO2job/KPOINTS
./CeO2job/POTCAR
./CeO2job/POSCAR

proj=CeO2job # Name of job folder
input=$(ls ${proj}/{INCAR,KPOINTS,POTCAR,POSCAR}) # Input files from job folder

We load all the default program system settings with module load:

module --quiet purge
module load VASP/5.4.1.plain-intel-2016a
You may check other available versions with "module avail VASP"

Now we create working directory and temporary scratch for the job(s):
Necessary variables are defined in the notur and the software modules.

export VASP_WORKDIR=/global/work/$USER/$SLURM_JOB_ID

mkdir -p $VASP_WORKDIR

Preparing and moving inputfiles to tmp:

submitdir=$SLURM_SUBMIT_DIR

cp $input $VASP_WORKDIR
cd $VASP_WORKDIR

######################################
Section for running the program and cleaning up:

Running the program:

time mpirun vasp_std

Cleaning up and moving files back to home/submitdir:
Make sure to move all essential files specific for the given job/software.

cp OUTCAR $submitdir/${proj}.OUTCAR

To zip some of the output might be a good idea!
#gzip results.gz OUTCAR
#mv $results.gz $submitdir/

Investigate potentially other files to keep:
echo $(pwd)
echo $(ls -ltr)

ALWAYS clean up after yourself. Please do uncomment the following line
If we have to, we get really grumpy!
#cd $submitdir
#rm -r $VASP_WORKDIR/*

echo "Job finished at"
date
################### Job Ended ###################
exit 0

Download it here job_vasp.sh.

These files are also available on Stallo

module load VASP/5.4.1.plain-intel-2016a
cd <to whatever you call your test folder> # for instance testvasp
cp -R /global/hds/software/notur/apprunex/VASP/* .
sbatch job_vasp.sh

and you are up running. Happy hunting.

 About the VASP install on Stallo

About the VASP install on Stallo

This page contains information related to the installation of VASP on Stallo. Some of this is relevant also for self-compilation of the code, for those who want to give this a try.

VASP on Stallo

Note that the VASP installation on Stallo mainly follows the standard syntax introduced by the vASP team with their new installation scheme. Based on their system, we have added two binaries - as commented under.

If you do

module avail VASP

on Stallo, you will notice that for version 5.4.1 and onwards, there is a dramatic increase in the available binaries. And this might appear confusing.

First; All versions of VASP is compiled with the support for maximally-localised Wannier functions and the Wannier90 program and also the MPI flag in FPP (-DMPI)

Second; Each release of VASP is compiled in two different versions; “tooled” and “plain”.

	VASP/x.y.z.tooled is a version where all necessary support for Texas transition state tools (vTST) and the explicit solvation model (VSPsol) and BEEF is added.

	VASP/x.y.z.plain is the version without this support/ additions. (Relatively unmodified source).

The reason for this is that we are uncertain of effects on the tooles on calculated numbers, due to reproducibility, we have chosen to hold the different versions separate.

Then it starts getting interesting: For each version, there are 15 different binaries - consisting of 3 groups of 5.

	unmodified group; binaries without any additional name to them; vasp_std

	noshear: vasp_std_noshear

	abfix: vasp_std_abfix

The unmodified group is compiled on basis on the unmodified set of fortran files that comes with the code.
The noshear version is compiled with a modified version of the file constr_cell_relax.F file where shear forces are not calculated.
The abfix version is compiled with a modified version of the constr_cell_relax.F file where two lattice vectors are fixed.

There are 5 different binaries in each group, all compiled with the same FPP settings (mentioned below):

	vasp_std

	vasp_gam

	vasp_ncl

These are familiar from the standard build system that is provided with the code. In addtion to these, we have

	vasp_tbdyn

	vasp_gam_tbdyn

FPP settings for each binary

	vasp_std is compiled with the following additional FPP flag(s): -DNGZhalf

	vasp_gam is compiled with the following additional FPP flag(s): -DNGZhalf -DwNGZhalf

	vasp_ncl is compiled with the following additional FPP flag(s): no modifcations in FPP settings

	vasp_tbdyn is compiled with the following additional FPP flag(s): -DNGZhalf -Dtbdyn

	vasp_gam_tbdyn is compiled with the following additional FPP flag(s): -DNGZhalf -DwNGZhalf -Dtbdyn

We would be happy to provide a copy of our build scripts (patches) upon request.

About memory allocation for VASP

VASP is known to be potentially memory demanding. Quite often, you might experience to use less than the full number of cores on the node, but still all of the memory.

For core-count, node-count and amounts of memory on Stallo, see About Stallo.

There are two important considerations to make:

First: Make sure that you are using the SBATCH –exclusive flag in your run script.
Second: How to allocate all the memory:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	#!/bin/bash -l

###
Example for a job that consumes a lot of memory
###

#SBATCH --job-name=example

we ask for 1 node
#SBATCH --nodes=1

run for five minutes
d-hh:mm:ss
#SBATCH --time=0-00:05:00

total memory for this job
this is a hard limit
note that if you ask for more than one CPU has, your account gets
charged for the other (idle) CPUs as well
#SBATCH --mem=31000MB

turn on all mail notification
#SBATCH --mail-type=ALL

you may not place bash commands before the last SBATCH directive

define and create a unique scratch directory
SCRATCH_DIRECTORY=/global/work/${USER}/example/${SLURM_JOBID}
mkdir -p ${SCRATCH_DIRECTORY}
cd ${SCRATCH_DIRECTORY}

we copy everything we need to the scratch directory
${SLURM_SUBMIT_DIR} points to the path where this script was submitted from
cp ${SLURM_SUBMIT_DIR}/my_binary.x ${SCRATCH_DIRECTORY}

we execute the job and time it
time ./my_binary.x > my_output

after the job is done we copy our output back to $SLURM_SUBMIT_DIR
cp ${SCRATCH_DIRECTORY}/my_output ${SLURM_SUBMIT_DIR}

we step out of the scratch directory and remove it
cd ${SLURM_SUBMIT_DIR}
rm -rf ${SCRATCH_DIRECTORY}

happy end
exit 0

 The COMSOL Multiphysics software suite

The COMSOL Multiphysics software suite

Information regarding the computational physics program system COMSOL

Related information

	First time you run an COMSOL job?

General Information

Description

COMSOL Multiphysics® is a general-purpose software platform, based on advanced numerical methods, for modeling and simulating physics-based problems. It is highly visual, based on graphical interfaces - so users are adviced to use either the client installation on their client machine or the remote graphics solution on Stallo.

Online info from vendor

	Homepage: https://www.comsol.com

	Documentation/support: https://www.comsol.com/support

License information

The license of COMSOL is commercial/proprietary.

The installation of COMSOL on Stallo is for UiT users only. If you need/want access to COMSOL, you need to contact UiT support.

Citation

When publishing results obtained with the referred software referred, please do check the developers web page in order to find the correct citation(s).

Additional online info about COMSOL on Stallo:

Usage

COMSOL is a rather memory intensive code, so we would generally advice users to either run their jobs on the highmem-nodes (with 8GB/core of memory) or less than full nodes on the slim nodes.

Use

$ module avail COMSOL

to see which versions of COMSOL are available. Use

$ module load COMSOL/<version> # i.e 5.3-intel-2016a

to get access to any given version of COMSOL.

The license of comsol is installed as a floating network license type, meaning that there is a server checking out license tokens upon request.
If you want to know whether there are available license tokens or not, load the module as above. Then type

$ lmstat -c $LMCOMSOL_LICENSE_FILE -a

Happy calculations!

 First time you run an COMSOL job?

First time you run an COMSOL job?

This page contains info aimed at first time
users of COMSOL on Stallo, but may also be usefull to
more experienced users. Please look carefully through the
provided examples. Also note that the job-script example is rather richly
commented to provide additional and relevant info.

If you want to run this testjob, download the copies of the scripts and put them
into your test job folder (which I assume you have created in advance).

COMSOL input example

The file used in this example can also downloaded here: Small test for COMSOL.

Place this file in a job folder of choice, say COMSOLFIRSTJOB in your home directory on Stallo.

then, copy the job-script as seen here:

#!/bin/bash -l

Note that this is a setup for the highmem 128GB nodes. To run on the regular
nodes, change to the normal partition and reduce the memory requirement.
#####################################
#SBATCH --job-name=comsol_runex
#SBATCH --nodes=2
#SBATCH --cpus-per-task=16 # Highmem nodes have 16 cores
#SBATCH --mem-per-cpu=7500MB # Leave some memory for the system to work
#SBATCH --time=0-01:00:00 # Syntax is DD-HH:MM:SS
#SBATCH --partition=highmem # For regular nodes, change to "normal"
#SBATCH --mail-type=ALL # Notify me at start and finish
#SBATCH --exclusive # Not necessary, implied by the specs above
##SBATCH --account=nnXXXXk # Change to your account and uncomment
#####################################

define input
inp=$1 # First input argument: Name of input without extention
std=$2 # Second input argument: Type of study
ext=mph # We use the same naming scheme as the software default extention

define directories
submitdir=${SLURM_SUBMIT_DIR}
workdir=/global/work/${USER}/${SLURM_JOBID}

create work directory
mkdir -p ${workdir}

move input to workdir
cp ${inp}.${ext} ${workdir}

load necessary modules
module purge --quiet
module load COMSOL/5.3-intel-2016a

run calculation in workdir
cd ${workdir}
time comsol -nn ${SLURM_NNODES}\
 -np ${SLURM_CPUS_PER_TASK}\
 -mpirsh /usr/bin/ssh\
 -mpiroot $I_MPI_ROOT\
 -mpi intel batch\
 -inputfile ${inp}.${ext}\
 -outputfile ${inp}_out.${ext}\
 -study ${std}\
 -mlroot /global/apps/matlab/R2014a

move output back
mv *out* $submitdir

cleanup
cd $submitdir
rm -r ${workdir}

exit 0

(Can also be downloaded from here: run_comsol.sh)

Before you can submit a job, you need to know what “type” of study you want to perform (please read more about that on the vendor support page). For example purpose, I have chosed study 4 - named std04; and this is the second variable argument to the run script (see comments in script).

Place this script in the same folder and type:

sbatch run_comsol.sh comsol_smalltest std04

You may now have submitted your first COMSOL job.

Good luck with your (MULTI)physics!

 Storage and backup

Storage and backup

Available file system

Stallo has a “three folded” file system:

	Global accessible home area (user area): /home (64 TB)

	Global accessible work or scratch area: /global/work (1000 TB)

	Local accessible work or scratch area on each node: /local/work (~450 GB)

Home area

The file system for user home directories on Stallo. It is a 64 TB global file
system, which is accessible from both the login nodes and all the compute
nodes. The size of the home directory’s for each user is 300 GB. It is not
possible to extend the size. If you need more space, consider using
/global/work (see below).

The home area is for “permanent” storage only, so please do not use it for
temporary storage during production runs. Jobs using the home area for scratch
files while running may be killed without any warning.

Work/scratch areas

Warning

Due to stallo coming close to its storage limits, starting from July 2020
/global/work will be subject to a auto cleanup affecting all files
older than 21 days.

Starting from first of July we will move all files which haven’t been
accessed for more than 21 days to a trash folder from where they will
be deleted in due time.

We ask you to classify your data in /global/work and move all files you
need to keep to your home folder or other storage options like NIRD.
In order to save storage space consider archiving your data in
compressed form, see Compression of data.

In case you miss important files that have been moved, please write an
email to migration@metacenter.no as we keep the files for some time and
can restore them if needed.

 Transferring files to/from Stallo

Transferring files to/from Stallo

Only ssh type of access is open to stallo. Therefore to upload or
download data only scp and sftp can be used.

To transfer data to and from stallo use the following address:

stallo.uit.no

This address has nodes with 10Gb network interfaces.

Basic tools (scp, sftp)

Standard scp command and sftp clients can be used:

ssh stallo.uit.no
ssh -l <username> stallo.uit.no

sftp stallo.uit.no
sftp <username>@stallo.uit.no

Mounting the file system on you local machine using sshfs

For linux users:

sshfs [user@]stallo.uit.no:[dir] mountpoint [options]

eg.:

sshfs steinar@stallo.uit.no: /home/steinar/stallo-fs/

Windows users may buy and install
expandrive [https://www.expandrive.com/windows].

High-performance tools

NONE cipher

This cipher has the highest transfer rate. Keep in mind that data after
authentication is NOT encrypted, therefore the files can be sniffed and
collected unencrypted by an attacker. To use you add the following to
the client command line:

-oNoneSwitch=yes -oNoneEnabled=yes

Anytime the None cipher is used a warning will be printed on the screen:

"WARNING: NONE CIPHER ENABLED"

If you do not see this warning then the NONE cipher is not in use.

MT-AES-CTR

If for some reason (eg: high confidentiality) NONE cipher can’t be used,
the multithreaded AES-CTR cipher can be used, add the following to the
client command line (choose one of the numbers):

-oCipher=aes[128|192|256]-ctr

or:

-caes[128|192|256]-ctr.

Subversion and rsync

The tools subversion and rsync is also available for transferring files.

 Lustre FS performance tips

Lustre FS performance tips

How you can adjust Lustre depending on your application IO requirements.

Introduction

Lustre is a scalable, high performance, parallel I/O file system. More information about Lustre can be found on Wikipedia [https://en.wikipedia.org/wiki/Lustre_(file_system)] .

When using additional library for I/O (i.e. MPIIO, HDF5), reading and writing can be done in parallel from several nodes into single-shared file.

At the time of writing this guide Lustre is available on 2 NOTUR machines:

	Hexagon (/work)

	Stallo (/global/work)

All tests were performed on fully loaded machines, mean values of three repeats were used.

Lustre terminology and setup:

MDS is the MetaData Server which handles the information about files and directories.
OSS is a object storage server that store file data on one or more object storage targets (OSTs).
OST is the Object Storage Target, which is responsible for writing or reading the actual data to and from disk.

Striping

Lustre file striping defines the number of OSTs a file is written across. At the time of writing hexagon has 2 stripes with 1MB size. Stallo has by default 1 stripe (no striping).
You can manage striping with the following tools/commands:

lfs setstripe - a command to change striping parameters.
lfs getstripe - a command to get striping information.
llapi - a set of C commands to manipulate striping parameters from C programs (llapi_file_create, llapi_file_get_stripe).

Note that the changed striping can only take effect for newly created files or files that are copied (not moved) into the directory.

Examples:

lfs setstripe –size 2M “dir” # will set stripe size for “dir” to 2M.

lfs setstripe –count 12 “dir” # will set that each file inside “dir” will be striped across 12 OSTs.

Serial IO

This is when a file or set of files are accessed by one process. Below are charts representing Hexagon and Stallo serial IO performance with different number of OSTs and different chunk sizes.
It is true for both machines that to get better IO performance you have to stripe file across several OSTs, where for:

[image: ../_images/hexagon-serialIO-write.png]
[image: ../_images/stallo-serialIO.png]
Hexagon optimal is using 2-4 OSTs, depending on the stripe size. Increasing chunk size is not much affecting hexagon. This can be related to the interconnect, where 1MB transfer size is a minimal size to get optimal performance.

Stallo, by using 8 OSTs you will speedup your data IO from default 25MIB/s to almost 200MIB/s! Maximum performance you will get with bigger chunk size and enough number of OSTs (32MB chunk and 32OSTs will give you 428MIB/s).

Parallel IO

Many processes writing into single-shared file. You will need to write at offsets or use parallel IO library, like MPIIO, HDF5.
On both machines the same number of stripes as the number of clients have been used (up to the maximum number of OSTs).

[image: ../_images/hexagon-parallelIO-write.png]
[image: ../_images/stallo-parallelIO-write.png]
The general rule, like “many clients – do stripe” works on both machines.
Specific:
- Hexagon. One to one ratio of clients to OSTs works fine (up to the maximum number of OSTs). Increasing chunk size is not affecting performance.
- Stallo, to get most out of the file system you will have to increase the chunk size to 32MB and when you have up to 96 clients stripe over as many OSTs as you have clients, when you are over 96 clients, keep number of OSTs to 96 to avoid contention.

General Tips

General striping recommendation:

	Many clients and many files: Do NOT stripe.

	Many clients one file: Do stripe.

	Some clients and few large files: Do stripe.

In addition:

	Use parallel IO (HDF5, MPIIO), this is the only way to get full advantage of the Lustre filesystem.

	Open files read-only whenever is possible.

	Keep small files on the same OST.

It is highly recommended to read I/O Lustre tips from NICS (http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips).

 Compilers

Compilers

The default development environment on Stallo is provided by Intel Cluster
Studio XE. In general users are advised to use the Intel compilers and
MKL performance libraries, since they usually give the best performance.

Fortran compilers

The recommended Fortran compiler is the Intel Fortran Compiler: ifort.
The gfortran compiler is also installed, but we do not recommend it
for general usage.

Usage of the Intel ifort compiler

For plain Fortran codes (all Fortran standards) the general form
for usage of the Intel ifort compiler is as follows:

$ ifort [options] file1 [file2 ...]

where options represents zero or more compiler options, and fileN is a
Fortran source (.f .for .ftn .f90 .fpp .F .FOR .F90 .i .i90), assembly
(.s .S), object (.o), static library (.a), or an other linkable file.
Commonly used options may be placed in the ifort.cfg file.

The form above also applies for Fortran codes parallelized with OpenMP
(www.openmp.org [http://www.openmp.org/],
Wikipedia [https://en.wikipedia.org/wiki/OpenMP]); you only have to
select the necessary compiler options for OpenMP.

For Fortran codes parallelized with MPI the general form is quite
similar:

$ mpif90 [options] file1 [file2 ...]

The wrapper mpif90 is using the Intel ifort compiler and invokes all the
necessary MPI machinery automatically for you. Therefore, everything else is
the same for compiling MPI codes as for compiling plain Fortran codes.

C and C++ compilers

The recommended C and C++ compilers are the Intel Compilers; icc (C) and icpc
(C++). The gcc and g++ compilers are also installed, but we do not recommend
them for general usage due to performance issues.

Usage of the Intel C/C++ compilers

For plain C/C++ codes the general form for usage of the Intel
icc/icpc compilers are as follows:

$ icc [options] file1 [file2 ...] # for C
$ icpc [options] file1 [file2 ...] # for C++

where options represents zero or more compiler options, fileN is a
C/C++ source (.C .c .cc .cpp .cxx .c++ .i .ii), assembly (.s .S), object
(.o), static library (.a), or other linkable file. Commonly used options
may be placed in the icc.cfg file (C) or the icpc.cfg (C++).

The form above also applies for C/C++ codes parallelized with OpenMP
(www.openmp.org [http://www.openmp.org/],
Wikipedia [https://en.wikipedia.org/wiki/OpenMP]); you only have to
select the necessary compiler options for OpenMP.

For C/C++ codes parallelized with MPI the general form is quite
similar:

$ mpicc [options] file1 [file2 ...] # for C when using OpenMPI
$ mpiCC [options] file1 [file2 ...] # For C++ when using OpenMPI

Both mpicc and mpiCC are using the Intel compilers, they are just
wrappers that invoke all the necessary MPI machinery automatically for
you. Therefore, everything else is the same for compiling MPI codes as
for compiling plain C/C++ codes.

 Environment modules

Environment modules

The user’s environment, and which programs are available for immediate use, is
controlled by the module command. Many development libraries are dependant
on a particular compiler versions, and at times a specific MPI library. When
loading and/or unloading a compiler, module automatically unloads
incompatible modules and, if possible, reloads compatible versions.

Currently, not all libraries in all combinations of all compilers and MPI
implementations are supported. By using the default compiler and MPI library,
these problems can be avoided. In the future, we aim to automate the process so
that all possible (valid) permutations are allowed.

Read the Software Module Scheme section for an introduction on how to use modules.

 Profiling and optimization

Profiling and optimization

In general, in order to reach performances close to the theoretical
peak, it is necessary to write your algorithms in a form that allows the
use of scientific library routines, such as BLACS/LAPACK.

Arm Performance Reports

Arm Performance Reports [https://www.arm.com/products/development-tools/hpc-tools/cross-platform/performance-reports]
offers a nice and convenient way to get an overview profile for your run very quickly.
It will introduce a typically negligible runtime overhead
and all you need to do is to load the perf-reports module
and to launch your “normal” execution using the perf-report launcher.

Here is an example script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
#SBATCH --time=0-00:10:00

module load perf-reports/5.1

create temporary scratch area for this job on the global file system
SCRATCH_DIRECTORY=/global/work/$USER/$SLURM_JOBID
mkdir -p $SCRATCH_DIRECTORY

run the performance report
all you need to do is to launch your "normal" execution
with "perf-report"
cd $SCRATCH_DIRECTORY
perf-report mpiexec -n 20 $SLURM_SUBMIT_DIR/example.x

perf-report generates summary files in html and txt format
we copy result files to submit dir
cp *.html *.txt $SLURM_SUBMIT_DIR

clean up the scratch directory
cd /tmp
rm -rf $SCRATCH_DIRECTORY

What we do there is to profile an example binary located in $SLURM_SUBMIT_DIR/example.x.

The profiler generates summary files in html and txt format
and this is how an example html summary can look (open it in your browser):

[image: ../_images/perf-reports.jpg]

Performance tuning by Compiler flags

Quick and dirty

Use ifort/icc -O3.
We usually recommend that you use the ifort/icc compilers as
they give superior performance on Stallo. Using -O3 is a quick
way to get reasonable performance for most applications. Unfortunately,
sometimes the compiler break the code with -O3 making it crash
or give incorrect results. Try a lower optimization, -O2 or
-O1, if this doesn’t help, let us know and we will try to solve
this or report a compiler bug to INTEL. If you need to use -O2
or -O1 instead of -O3 please remember to add the
-ftz too, this will flush small values to zero. Doing this can
have a huge impact on the performance of your application.

Profile based optimization

The Intel compilers can do something called profile based
optimization. This uses information from the execution of the
application to create more effective code. It is important that you run
the application with a typical input set or else the compiler will tune
the application for another usage profile than you are interested in.
With a typical input set one means for instance a full spatial input
set, but using just a few iterations for the time stepping.

	Compile with -prof-gen.

	Run the app (might take a long time as optimization is turned off in
this stage).

	Recompile with -prof-use.
The simplest case is to compile/run/recompile in the same catalog or
else you need to use the -prof-dir flag, see the manual for
details.

Vtune

Intel Vtune Amplifier is a versatile serial and parallel profiler,
with features such as stack sampling, thread profiling and hardware
event sampling.

Totalview

Totalview [https://support.roguewave.com/documentation/tvdocs/en/current] is a source- and machine-level debugger for multi-process, multi-threaded programs.

 Debugging

Debugging

Debugging with TotalView

TotalView is a graphical, source-level, multiprocess debugger. It is the
primary debugger on Stallo and has excellent capabilities for debugging
parallel programs. When using this debugger you need to turn on X-forwarding,
which is done when you login via ssh. This is done by adding the -Y on newer
ssh version, and -X on older:

$ ssh -Y username@stallo.uit.no

The program you want to debug has to be compiled with the debug option.
This is the “-g” option, on Intel and most compilers. The executable
from this compilation will in the following examples be called
“filename”.

First, load the totalview module to get the correct environment
variables set:

$ module load TotalView

To start debugging run:

$ totalview MyProg

Which will start a graphical user interface.

Once inside the debugger, if you cannot see any source code, and keep the
source files in a separate directory, add the search path to this directory via
the main menu item File->Search path.

Source lines where it is possible to insert a breakpoint are marked with a box
in the left column. Click on a box to toggle a breakpoint.

Double clicking a function/subroutine name in a source file should open the
source file. You can go back to the previous view by clicking on the left arrow
on the top of the window.

The button “Go” runs the program from the beginning until the first breakpoint.
“Next” and “Step” takes you one line / statement forward. “Out” will continue
until the end of the current subroutine/function. “Run to” will continue until
the next breakpoint.

The value of variables can be inspected by right clicking on the name, then
choose “add to expression list”. The variable will now be shown in a pop up
window. Scalar variables will be shown with their value, arrays with their
dimensions and type. To see all values in the array, right click on the
variable in the pop up window and choose “dive”. You can now scroll through the
list of values. Another useful option is to visualize the array: after choosing
“dive”, open the menu item “Tools->Visualize” of the pop up window. If you did
this with a 2D array, use middle button and drag mouse to rotate the surface
that popped up, shift+middle button to pan, Ctrl+middle button to zoom in/out.

Running totalview on an interactive node:

$ mkdir -p /global/work/$USER/test_dir
$ cp $HOME/test_dir/a.out /global/work/$USER/test_dir
$ cd /global/work/$USER/test_dir
$ module load TotalView
$ totalview a.out

Replace [#procs] with the core-count for the job.

A window with name “New Program” should pop up. Under “Program” write
the name of the executable. Under “Parallel” choose “Open MPI” and
“Tasks” is the number of cores you are using ([#procs]).

You can also start Totalview with:

$ mpirun -tv a.out

The users guide and the quick start quide for Totalview can be found
on the RogueWave documentation page [https://support.roguewave.com/documentation/tvdocs/en/current].

Debugging with Valgrind

	A memory error detector

	A thread error detector

	A MPI error detector

	A cache and branch-prediction profiler

	A call-graph generating cache profiler

	A heap profiler

	Very easy to use

Valgrind is the best thing for developers since the invention of pre-sliced
bread!

Valgrind works by emulating one or more CPUs. Hence it can intercept and
inspect your unmodified, running program in ways which would not be otherwise
possible. It can for example check that all variables have actually been
assigned before use, that all memory references are within their allowed space,
even for static arrays and arrays on the stack.

What makes Valgrind so extremely powerful is that it will tell exactly where in
the program a problem, error or violation occurred. It will also give you
information on how many allocates/deallocates the program performed, and
whether there is any unreleased memory or memory leaks at program exit. In
fact, it goes even further and will tell you on what line the
unreleased/leaking memory was allocated. The cache profiler will give you
information about cache misses and where they occur.

The biggest downside to Valgrind is that it will make your program run much
slower. How much slower depends on what kind of, and how much, information you
request. Typically the program will run 10-100 times slower under Valgrind.

Simply start Valgrind with
the path to the binary program to be tested:

$ module load Valgrind
$ valgrind /path/to/prog

This runs Valgrind with the default “tool” which is called memcheck, which
checks memory consistency. When run without any extra flags, Valgrind will
produce a balanced, not overly detailed and informative output. If you need a
more detailed (but slower) report, run Valgrind with:

$ valgrind --leak-check=full --track-origins=yes --show-reachable=yes /path/to/prog

Of course, if you want to get all possible information about where in the
program something was inconsistent you must compile the program with debugging
flags switched on.

If you have a multi-threaded program (e.g. OpenMP, pthreads), and you are
unsure if there might be possible deadlocks or data races lurking in your
program, the Valgrind thread checker is your best friend. The thread checking
tool is called helgrind:

$ export OMP_NUM_THREADS=2
$ valgrind --tool=helgrind /path/to/prog

For more information on using Valgrind please refer to the man pages and the
Valgrind manual which can be found on the Valgrind website:
http://www.valgrind.org

 Index

Index

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/stallo-serialIO.png
miB.

450
40
350
300
20
200
150
100
50
0

Stallo serial 10
write performance

36372 366.85

AL

stipesize

39884

dl

42179

328

stripe count

nis
"3
LE]
o4
LE]
[ERE]

_images/tag.jpg

_images/rtfm.png
HELLO, QU1? T JUST TRIED T TOAST
SOME BREAD, AND THE TORSTER GREW
AN ARM AND STABBED ME IN THE FACE!

DID YOU READ THE
TORSTERS MAN PAGE Hksr?

WELL,NO, BUT ALL
T WANTED WAS—

C!
\ %é%

'

_images/stallo-parallelIO-write.png
write MiB

Stallo parallel 10
write performance

1000 som
o
800 stripe count /
&nr Ll number of clients
600 — =22
W44
400
s
200 1616
3232
0 6464
MB M8 4B 16vB 32MB W 9696
96128

stripe size N

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 HPC-UiT Services User Documentation

 		
 Getting started

 		
 Get an account

 		
 Change temporary password

 		
 Connect to Stallo

 		
 On nodes and files

 		
 Run a program

 		
 Get help

 		
 News and notifications

 		
 System status and activity

 		
 Planned/unplanned downtime

 		
 Contact

 		
 Postal address

 		
 How to write good support requests

 		
 Never send support requests to staff members directly

 		
 Do not manhandle us as simple “Let me Google that for you” assistants

 		
 Give descriptive subject

 		
 Include actual commands and error messages

 		
 New problem–new email

 		
 The XY problem

 		
 Tell us also what worked

 		
 Specify your environment

 		
 Simple cases: Be specific, include commands and errors

 		
 Complex cases: Create an example which reproduces the problem

 		
 Make the example as small and fast as possible

 		
 Frequently asked questions

 		
 Passwords

 		
 I forgot my password - what now?

 		
 How do I change my password on Stallo?

 		
 What is the ssh key fingerprint for stallo.uit.no?

 		
 Installing software

 		
 I need Python package X but the one on Stallo is too old or I cannot find it

 		
 Can I install Python software as a normal user without sudo rights?

 		
 Compute and storage quota

 		
 How can I check my disk quota and disk usage?

 		
 How many CPU hours have I spent?

 		
 Connecting via ssh

 		
 How can I export the display from a compute node to my desktop?

 		
 How can I access a compute node from the login node?

 		
 My ssh connections are dying / freezing

 		
 Jobs and queue system

 		
 I am not able to submit jobs longer than two days

 		
 Where can I find an example of job script?

 		
 When will my job start?

 		
 How can I see the queing situation?

 		
 Why does my job not start or give me error feedback when submitting?

 		
 Why is my job not starting on highmem nodes although the highmem queue is empty?

 		
 How can I customize emails that I get after a job has completed?

 		
 How can I run many short tasks?

 		
 Support staff

 		
 Our vision

 		
 Goal

 		
 Services

 		
 National resource site

 		
 Regional resource site

 		
 Our team

 		
 Open Question & Answer Sessions for All Users

 		
 Learn new tricks and ask & discuss questions

 		
 Next event

 		
 Past events

 		
 Similar events which serve as inspiration

 		
 Stallo Shutdown

 		
 Alternatives

 		
 Computional resources

 		
 Storage

 		
 About Stallo

 		
 Resource description

 		
 Stallo - a Linux cluster

 		
 A Linux Cluster - one machine, consisting of many machines

 		
 Clusters vs. SMP’s

 		
 Linux operating system (Rocks): http://www.rocksclusters.org/

 		
 Stallo - Sami mythology

 		
 Guidelines for use of computer equipment at the UiT The Arctic University of Norway

 		
 Definitions

 		
 Purpose

 		
 Application

 		
 Good Faith

 		
 Data Safety

 		
 Respect for Other Users Privacy

 		
 Proper Use

 		
 Awareness of the Purposes for Use of Resources

 		
 Rights

 		
 Liability

 		
 Surveillance

 		
 Sanctions

 		
 Complaints

 		
 Getting an account

 		
 Getting started on the machine (account, quota, password)

 		
 How to get an account and a CPU quota on Stallo

 		
 Research Council Quota

 		
 UiT Quota

 		
 Logging in for the first time

 		
 Log in with SSH

 		
 Log in with an ssh key

 		
 SSH clients for Windows and Mac

 		
 Learning more about SSH

 		
 Obtain a new password

 		
 The passwd command does not seem to work. My password is reset back to the old one after a while. Why is this happening?

 		
 Logging on the compute nodes

 		
 Graphical logon to Stallo

 		
 CPU-hour quota and accounting

 		
 CPU quota

 		
 Resource charging

 		
 Inspecting your quota

 		
 Inspecting historic use

 		
 Dos and don’ts

 		
 Batch system

 		
 Creating a job script

 		
 How to pass command-line parameters to the job script

 		
 Walltime

 		
 Job script examples

 		
 Basic examples

 		
 General blueprint for a jobscript

 		
 Running many sequential jobs in parallel using job arrays

 		
 Packaging smaller parallel jobs into one large parallel job

 		
 Example on how to allocate entire memory on one node

 		
 How to recover files before a job times out

 		
 OpenMP and MPI

 		
 Example for an OpenMP job

 		
 Example for a MPI job

 		
 Example for a hybrid MPI/OpenMP job

 		
 SLURM Workload Manager

 		
 SLURM Parameter

 		
 Basic settings:

 		
 Requesting Resources

 		
 Accounting

 		
 Advanced Job Control

 		
 Differences between CPUs and tasks

 		
 Settings for OpenMP and MPI jobs

 		
 Single node jobs

 		
 Multiple node jobs (MPI)

 		
 Scalability

 		
 Job related environment variables

 		
 Partitions (queues) and services

 		
 General job limitations

 		
 Interactive jobs

 		
 Starting an interactive job

 		
 Keeping interactive jobs alive

 		
 Managing jobs

 		
 Job status descriptions in squeue

 		
 Monitoring your jobs

 		
 SLURM commands

 		
 CPU load and memory consumption of your job

 		
 Accessing slurmbrowser

 		
 Detecting inefficient jobs

 		
 Understanding your job status

 		
 Summary of used resources

 		
 Running MPI jobs

 		
 Intel MPI

 		
 OpenMPI

 		
 Which software is installed on Stallo

 		
 Changes in application software

 		
 Missing or new software

 		
 Installing new software using EasyBuild

 		
 Conda/ Bioconda

 		
 Software Module Scheme

 		
 Which modules are currently loaded?

 		
 Which modules are available?

 		
 How to load a module

 		
 How to unload a module

 		
 Which version of a module is the default?

 		
 How do I switch to a different version of a module?

 		
 Python, R, Matlab and Perl

 		
 Python

 		
 Setup

 		
 Daily usage

 		
 Share your environment

 		
 Additional Conda information

 		
 Virtual Environments (deprecated)

 		
 R

 		
 Load R

 		
 Install Packages

 		
 MATLAB

 		
 Load MATLAB

 		
 Interactice Shell

 		
 Running MATLAB Scripts

 		
 Tips

 		
 Perl

 		
 Linux command line

 		
 New on Linux systems?

 		
 ssh

 		
 scp

 		
 Running jobs on the machine

 		
 Common commands

 		
 More info on manual pages

 		
 Text editing

 		
 Environment variables

 		
 Aliases

 		
 ~/bin

 		
 General comments about licenses

 		
 New software and module scheme

 		
 Change of software module names

 		
 Behavior of potentially conflicting modules

 		
 StdEnv and StdMod

 		
 Lmod warning “rebuild your saved collection”

 		
 If you are already using “mod_setup.sh” or “/home/easybuild/”

 		
 Application guides

 		
 The Amsterdam Density Functional modeling suite

 		
 Related information

 		
 Description

 		
 Online info from vendor

 		
 License and access policy

 		
 Citation

 		
 Dalton

 		
 Related information

 		
 General information

 		
 Usage

 		
 Gaussian and GaussView

 		
 Gaussian job example

 		
 Memory and number of cores

 		
 GaussView

 		
 License and access

 		
 Citation

 		
 Molcas

 		
 Related information

 		
 General information

 		
 Usage

 		
 ORCA

 		
 Installation

 		
 Usage

 		
 Schrödinger Product Suites

 		
 Related information

 		
 Online info from vendor

 		
 Citation

 		
 License and access policy

 		
 The TURBOMOLE program system

 		
 Related information

 		
 General Information

 		
 TURBOMOLE on Stallo

 		
 VASP (Vienna Ab initio Simulation Package)

 		
 Related information

 		
 General information

 		
 Usage

 		
 The COMSOL Multiphysics software suite

 		
 Related information

 		
 Description

 		
 Online info from vendor

 		
 License information

 		
 Citation

 		
 Usage

 		
 Storage and backup

 		
 Available file system

 		
 Home area

 		
 Work/scratch areas

 		
 Backup

 		
 Archiving data

 		
 Closing of user account

 		
 Privacy of user data

 		
 Management of lage files (> 200GB)

 		
 Management of many small files (> 10000)

 		
 Compression of data

 		
 Binary data and endianness

 		
 Transferring files to/from Stallo

 		
 Mounting the file system on you local machine using sshfs

 		
 High-performance tools

 		
 NONE cipher

 		
 Subversion and rsync

 		
 Lustre FS performance tips

 		
 How you can adjust Lustre depending on your application IO requirements.

 		
 Introduction

 		
 Striping

 		
 Serial IO

 		
 Parallel IO

 		
 General Tips

 		
 Compilers

 		
 Fortran compilers

 		
 Usage of the Intel ifort compiler

 		
 C and C++ compilers

 		
 Usage of the Intel C/C++ compilers

 		
 Environment modules

 		
 Profiling and optimization

 		
 Arm Performance Reports

 		
 Performance tuning by Compiler flags

 		
 Quick and dirty

 		
 Profile based optimization

 		
 Vtune

 		
 Totalview

 		
 Debugging

 		
 Debugging with TotalView

 		
 Debugging with Valgrind

_images/hexagon-serialIO-write.png
write MB

600

Hexagon serial IO
write performance

555.99

550.03

1MB

2MB

B 16MB 32vB
stripe size

stripe count

LAl

2

w4

m16
32
w36
m64
mg6
w128

_images/perf-reports.jpg
Summary: wave_c is Compute-bound in this configuration

compute soo [N T "y e e e o petormnce scton for s

MPI 0.1%

110 00%

‘Time spent in MPI calls. High values are usually bad.
This is very low; this code may benefit from a higher process count.

‘Time spent in filesystem /0. High values are usually bad.
‘This is negligible; there's no need to investigate IO performance.

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

section below.

As very little time is spent in 1471 calls, this code may also benefit from running at larger scales.

CPU

A br