
Hovercraft! Documentation
Release 1.0

Lennart Regebro

October 15, 2016

Contents

1 Introduction 3
1.1 GUI tools are limiting . 3
1.2 Pan, rotate and zoom . 3
1.3 Hovercraft! . 3

2 Using Hovercraft! 5
2.1 Parameters . 5
2.2 Built in templates . 6

3 Making presentations 7
3.1 A note on terminology . 7
3.2 Hovercraft! syntax . 7
3.3 External files . 8
3.4 Styling your Presentation . 8
3.5 impress.js fields . 9
3.6 Hovercraft! specialities . 10
3.7 Relative positioning . 11
3.8 Automatic positioning . 11
3.9 SVG Paths . 11
3.10 Examples . 12

4 Designing your presentations 15
4.1 Take it easy . 15
4.2 Custom fonts . 15
4.3 Test with different browsers . 16

5 Templates 17
5.1 The template configuration file . 17
5.2 The template file . 18

i

ii

Hovercraft! Documentation, Release 1.0

Contents:

Contents 1

Hovercraft! Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

1.1 GUI tools are limiting

I used to do presentations with typical slideshow software, such as OpenOffice/LibreOffice Impress, but these tools
felt restricted and limiting. I need to do a lot of reorganizing and moving around, and that might mean changing things
from bullet lists to headings to text to pictures and back to bullet lists over again. This happens through the whole
process. I might realize something that was just a bullet point needs to be a slide, or that a set of slides for time reasons
need to be shortened down to bullet points. Much of the reorganization comes from seeing what fits on one slide and
what does not, and how I need to pace the presentation, and to some extent even what kinda of pictures I can find to
illustrate what I try to say, and if the pictures are funny or not.

Presentation software should give you complete freedom to reorganize your presentation on every level, not
only by reorganizing slides.

The solution for me and many others, is to use a text-markup language, like reStructuredText, Markdown or similar,
and then use a tool that generates an HTML slide show from that.

Text-markup gives you the convenience and freedom to quickly move parts around as you like.

I chose reStructuredText, because I know it and because it has a massive feature set. When I read the documentations
of other text-markup langages it was not obvious if they has the features I needed or not.

1.2 Pan, rotate and zoom

The tools that exist to make presentations from text-markup will make slideshows that has a sequence of slides from
left to right. But the fashion now is to have presentations that rotate and zoom in and out. One open source solution
for that is impress.js.

With impress.js you can make modern cool presentations.

But impress.js requires you to write your presentation as HTML, which is annoying, and the markup isn’t flexible
enough to let you quickly reorganize things from bullet points to headings etc.

You also have to position each slide separately, and if you insert a new slide in the middle, you have to reposition all
the slides that follow.

1.3 Hovercraft!

So what I want is a tool that takes the power, flexibility and convenience of reStructuredText and allows me to generate
pan, rotate and zoom presentations with impress.js, without having to manually reposition each slide if I reorganize a

3

http://docutils.sourceforge.net/docs/index.html
http://github.com/bartaz/impress.js

Hovercraft! Documentation, Release 1.0

little bit of the presentation. I couldn’t find one, so I made Hovercraft.

Hovercraft’s power comes from the combination of reStructuredText’s convenience with the cool of impress.js, to-
gether with a flexible and powerful solution to position the slides.

There are four ways to position slides:

1. Absolute positioning: You simply add X and Y coordinates to a slide, in pixels. Doing only this will not be fun,
but someone might need it.

2. Relative positioning: By specifying x and/or y with with a starting r, you specify the distance from the previous
slide. By using this form of positioning you can insert a slide, and the other slides will just move to make space
for the new slide.

3. Automatically: If you don’t specify any position the slide will have the same settings as the previous slide.
With a relative positioning, this means the slide will move as long as the previous slide moved. This defaults
to moving 1600px to the right, which means that if you supply no positions at all anywhere in the presentation,
you get the standard slide-to-the-left presentation.

4. With an SVG path: In this last way of positioning, you can take an SVG path from an SVG document and stick
it into the presentation, and that slide + all slides following that has no explicit positioning will be positioned
on that path. This can be a bit fiddly to use, but can create awesome results, such as positioning the slides as
snaking Python or similar.

Hovercraft! also includes impress-console, a presenter console that will show you your notes, slide previews and the
time, essential tools for any presentation.

4 Chapter 1. Introduction

https://github.com/regebro/impress-console

CHAPTER 2

Using Hovercraft!

You can either use Hovercraft! to generate the presentation as HTML in a target directory, or you can let Hovercraft!
serve the presentation from its builtin webserver.

The latter have several benefits. One is that most webbrowsers will be very reluctant to open popup-windows from
pages served from the file system. This is a security measure which can be changed, but it’s easier to just point the
browser to http://localhost:8000 instead.

The second benefit is that Hovercraft! will monitor the source files for the presentation, and if they are modified
Hovercraft! will generate the presentation again automatically. That way you don’t have to run Hovercraft! everytime
you save a file, you only need to refresh the browser.

2.1 Parameters

hovercraft [-h] [-t TEMPLATE] [-c CSS] [-a] [-s] [-n] [-p PORT] <presentation>
[<targetdir>]

Positional arguments:

<presentation> The path to the reStructuredText presentation file.

<targetdir> The directory where the presentation is saved. Will be created if it does not exist. If you
do not specify a targetdir Hovercraft! will instead start a webserver and serve the presentation from
that server.

Optional arguments:

-h, --help Show this help.

-t TEMPLATE, --template TEMPLATE Specify a template. Must be a .cfg file, or a directory
with a template.cfg file. If not given it will use a default template.

-c CSS, --css CSS An additional CSS file for the presentation to use. See also the :css: settings
of the presentation.

-a, --auto-console Open the presenter console automatically. This is useful when you are
rehearsing and making sure the presenter notes are correct. You can also set this by having
:auto-console: true first in the presentation.

-s, --skip-help Do not show the initial help popup. You can also set this by having
:skip-help: true first in the presentation.

-n, --skip-notes Do not include presenter notes in the output.

5

http://localhost:8000

Hovercraft! Documentation, Release 1.0

-p PORT, --port PORT The address and port that the server uses. Ex 8080 or 127.0.0.1:9000.
Defaults to 0.0.0.0:8000.

2.2 Built in templates

There are two templates that come with Hovercraft! One is called default and will be used unless you specify a
template. This is the template you will use most of the time.

The second is called simple and it doesn’t have a presenter console. This template is especially useful if you combine
it with the --skip-notes parameter to prepare a version of your presentation to be put online.

6 Chapter 2. Using Hovercraft!

CHAPTER 3

Making presentations

3.1 A note on terminology

Traditionally a presentation is made up of slides. Calling them “slides” is not really relevant in an impress.js context,
as they can overlap and doesn’t necessarily slide. The name “steps” is better, but it’s also more ambiguous. Hence
impress.js uses the terms “slide” and “step” as meaning the same thing, and so does Hovercraft!

3.2 Hovercraft! syntax

Presentations are reStructuredText files. If you are reading this documentation from the source code, then you are
looking at a reStructuredText document already.

It’s fairly simple, you underline headings to mark them as headings:

This becomes a h1
=================

And this a h2

The different ways of underlining them doesn’t mean anything, instead the order of them is relevant, so the first type
of underline encountered in the file will make a level 1 heading, the second type a level 2 heading and so on. In this
file = is used for level 1, and - for level 2.

You can also mark text as italic or bold, with *single asterixes* or **double asterixes** respectively.

You can also have bullet lists:

* Bullet 1

* Bullet 1.1

* Bullet 2

* Bullet 3

And numbered lists:

1. Item 1

1.1. Item 1.1

7

Hovercraft! Documentation, Release 1.0

2. Item 2

3. Item 3

You can include images:

.. image:: path/to/image.png
:height: 600px
:width: 800px

As you see you can also specify height and width and loads of other parameters, but they are all optional.

And you can mark text as being preformatted. You do that by ending the previous row with double colons, or have a
row of double colons by itself:

::

This code here will be preformatted
and shown with a monospaced font

and all spaces preserved.

If you want to add source code, you can use the code directive, and get syntax highlighting:

.. code:: python

def some_example_code(foo):
return foo * foo

The syntax highlighting is done by Pygments and supports lots and lots of languages.

You are also likely to want to put a title on the presentation. You do that by having a .. title:: statement before
the first slide:

.. title:: This is the presentation title

That is the most important things you’ll need to know about reStructuredText for making presentations. There is a lot
more to know, and a lot of advanced features like links, footnotes, and more. It is in fact advanced enough so you can
write a whole book in it, but for all that you need to read the documentation.

3.3 External files

Any image file referenced in the presentation by a relative path will be copied to the target directory, keeping it’s
relative path to the presentation. The same goes for images or fonts referenced in any CSS files used by the presentation
or the template.

Images or fonts referenced by absolute paths or URI’s will not be copied.

3.4 Styling your Presentation

The css that is included by the default template are three files.

• impressConsole.css contains the CSS needed for the presenter console to work,

• highlight.css contains a default style for code syntax highlighting, as that otherwise would be a lot of
work. If you don’t like the default colors or styles in the highlighting, this is the file you should copy and
modify.

8 Chapter 3. Making presentations

http://docutils.sourceforge.net/docs/ref/rst/directives.html#images
http://pygments.org/
http://pygments.org/docs/lexers/
http://python3porting.com/
http://docutils.sourceforge.net/docs/index.html

Hovercraft! Documentation, Release 1.0

• hovercraft.css, which only includes the bare minimum: It hides the impress.js fallback message, the
presenter notes, and sets up a useful default of having a step width be 1000 pixels wide.

For this reason you want to include your own CSS to style your slides. To include a CSS file you add a :css:-field
at the top of the presentation:

:css: css/presentation.css

You can also optionally specify that the css should be only valid for certain CSS media:

:css-screen,projection: css/presentation.css
:css-print: css/print.css

You can specify any number of css files in this way. You can also add one extra CSS-file via a command-line parameter:

hovercraft –extra-css=my_extra.css presentationfile.rst outdir/

3.4.1 Styling a specific slide

If you want to have specific styling for a specific slide, it is a good idea to give that slide a unique ID:

:id: the-slide-id

You can then style that slide specifically with:

div#the-slide-id {
/* Custom CSS here */

}

If you don’t give it a specific ID, it will get an ID based on its sequence number. And that means the slide’s ID will
change if you insert or remove slides that came before it, and in that case your custom stylings of that slide will stop
working.

3.4.2 Portable presentations

Since Hovercraft! generates HTML5 presentations, you can use any computer that has a modern browser installed to
view or show the presentation. This allows you both to put up the presentation online and to use a borrowed computer
for your conference or customer presentation.

When you travel you don’t know what equipment you have to use when you show your presentaton, and it’s surpris-
ingly common to encounter a projector that refuses to talk to your computer. It is also very easy to forget your dongle
if you have a MacBook, and there have even been cases of computers going completely black and dead when you
connect them to a projector, even though all other computers seem to work fine.

The main way of making sure your presentation is portable is to try it on different browsers and different computers.
But the latter can be unfeasible, not everyone has both Windows, Linux and OS X computers at home. To help make
your presentations portable it is a good idea to define your own @font-face’s and use them, so you are sure that the
target browser will use the same fonts as you do. Hovercraft! will automatically find @font-face definitions and copy
the font files to the target directory.

3.5 impress.js fields

The documentation on impress.js is contained as comments in the demo html file. It is not always very clear, so here
comes a short summary for convenience.

The different data fields that impress.js will use in 0.5.3, which is the current version, are the following:

3.5. impress.js fields 9

https://github.com/bartaz/impress.js/blob/master/index.html

Hovercraft! Documentation, Release 1.0

• data-transition-duration: The time it will take to move from one slide to another. Defaults to 1000 (1 second).
This is only valid on the presentation as a whole.

• data-perspective: Controls the “perspective” in the 3d effects. It defaults to 500. Setting it to 0 disables 3D
effects.

• data-x: The horizontal position of a slide in pixels. Can be negative.

• data-y: The vertical position of a slide in pixels. Can be negative.

• data-scale: Sets the scale of a slide, which is what creates the zoom. Defaults to 1. A value of 4 means the slide
is four times larger. In short: Lower means zooming in, higher means zooming out.

• data-rotate-z: The rotation of a slide in the x-axis, in degrees. This will cause the slide to be rotated clockwise
or counter-clockwise.

• data-rotate: The same as data-rotate-z.

• data-rotate-x: The rotation of a slide in the x-axis, in degrees. This means you are moving the slide in a third
dimension compared with other slides. This is generally cool effect, if used right.

• data-rotate-y: The rotation of a slide in the x-axis, in degrees.

• data-z: This controls the position of the slide on the z-axis. Setting this value to -3000 means it’s positioned
-3000 pixels away. This is only useful when you use data-rotate-x or data-rotate-y, otherwise it will only give
the impression that the slide is made smaller, which isn’t really useful.

3.6 Hovercraft! specialities

Hovercraft! has some specific ways it uses reStructuredText. First of all, the reStructuredText “transition” is used to
mark the separation between different slides or steps. A transition is simply a line with four or more dashes:

You don’t have to use dashes, you can use any of the characters used to underline headings, = - ‘ : . ’ " ~
^ _ * + #. And just as width headings, using different characters indicates different “levels”. In this way you can
make a hierarchical presentation, with steps and substeps. However, impress.js does not support that, so this is only
useful if you make your own templates that uses another Javascript library, for example Reveal.js. If you have more
than one transition level with the templates included with Hovercraft, the resulting presentation may behave strangely.

All reStructuredText fields are converted into attributes on the current tag. Most of these will typically be ignored by
the rendering to HTML, but there is two places where the tags will make a difference, and that is by putting them first
in the document, or first on a slide.

Any fields you put first in a document will be rendered into attributes on the main impress.js <div>. The only ones
that Hovercraft! will use are data-transition-duration, skip-help and auto-console.

Any fields you put first in a slide will be rendered into attributes on the slide <div>. This is used primarily to
set the position/zoom/rotation of the slide, either with the data-x, data-y and other impress.js settings, or the
hovercraft-path setting, more on that later.

Hovercraft! will start making the first slide when it first encounters either a transition or a header. Everything that
comes before that will belong to the presentation as a whole.

A presentation can therefore look something like this:

:data-transition-duration: 2000
:skip-help: true

.. title: Presentation Title

10 Chapter 3. Making presentations

http://lab.hakim.se/reveal-js/

Hovercraft! Documentation, Release 1.0

This is the first slide
=======================

Here comes some text.

:data-x: 300
:data-y: 2000

This is the second slide
========================

#. Here we have

#. A numbered list

#. It will get correct

#. Numbers automatically

3.7 Relative positioning

Hovercraft! gives you the ability to position slides relative to each other. You do this by starting the coordinates with
“r”. This will position the slide 500 pixels to the right and a thousand pixels above the previous slide:

:data-x: r500
:data-y: r-1000

Relative paths allow you to insert and remove slides and have other slides adjust automatically. It’s generally the most
useful way of positioning.

3.8 Automatic positioning

If you don’t specify an attribute, the slide settings will be the same as the previous slide. This means that if you used
relative positioning, the next slide will move the same distance.

This gives a linear movement, and your slides will end up in a straight line.

By default the movement is 1600 pixels to the right, which means that if you don’t position any slides at all, you get a
standard presentation where the slides will simply slide from right to left.

3.9 SVG Paths

Hovercraft! supports positioning slides along an SVG path. This is handy, as you can create a drawing in a software
that supports SVG, and then copy-paste that drawings path into your presentation.

You specify the SVG path with the :hovercraft-path: field. For example:

:hovercraft-path: m275,175 v-150 a150,150 0 0,0 -150,150 z

3.7. Relative positioning 11

Hovercraft! Documentation, Release 1.0

Every following slide that does not have any explicit positioning will be placed on this path.

There are some things you need to be careful about when using SVG paths.

3.9.1 Relative and absolute coordinates

SVG coordinates can either be absolute, with a reference to the page origin; or relative, which is in reference to the
last point. Hovercraft! can handle both, but what it can not handle very well is a mixture of them.

Specifically, if you take an SVG path that starts with a relative movement and extract that from the SVG document,
you will lose the context. All coordinates later must then also be relative. If you have an absolute coordinate you then
suddenly regain the context, and everything after the first absolute coordinate will be misplaced compared to the points
that come before.

Most notable, the open source software “Inkscape” will mix absolute and relative coordinates, if you allow it to use
relative coordinates. You therefore need to go into it’s settings and uncheck the checkbox that allows you to use relative
coordinates. This forces Inkscape to save all coordinates as absolute, which will work fine.

3.9.2 Start position

By default the start position of the path, and hence the start position of the first slide, will be whatever the start position
would have been if the slide had no positioning at all. If you want to change this position then just include :data-x:
or :data-y: fields. Both relative and absolute positioning will work here.

In all cases, the first m or M command of the SVG path is effectively ignored, but you have to include it anyway.

3.9.3 SVG transforms

SVG allows you to draw up path and then transform it. Hovercraft! has no support for these transforms, so before you
extract the path you should make sure the SVG software doesn’t use transforms. In Inkscape you can do this by the
“Simplify” command.

3.9.4 Other SVG shapes

Hovercraft! doesn’t support other SVG shapes, just the path. This is because organising slides in squares, etc, is quite
simple anyway, and the shapes can be made into paths. Usually in the software you will have to select the shape and
tell your software to make it into a path. In Inkscape, transforming an object into a path will generally mean that
the whole path is made of CubicBezier curves, which are unnecessarily complex. Using the “Simplify” command in
Inkscape is usually enough to make the shapes into paths.

3.9.5 Shape-scaling

Hovercraft! will scale the path so that all the slides that need to fit into the path will fit into the path. If you therefore
have several paths in your presentation, they will not keep their relative sizes, but will be resized so the slides fit. If
you need to have the shapes keep their relative sizes, you need to combine them into one path.

3.10 Examples

To see how to use Hovercraft! in practice, there are three example presentations included with Hovercraft!

12 Chapter 3. Making presentations

Hovercraft! Documentation, Release 1.0

hovercraft.rst The demo presentation you can see at http://regebro.github.com/hovercraft

tutorial.rst A step by step guide to the features of Hovercraft!

positions.rst An explanation of how to use the positioning features.

3.10. Examples 13

http://regebro.github.com/hovercraft

Hovercraft! Documentation, Release 1.0

14 Chapter 3. Making presentations

CHAPTER 4

Designing your presentations

There are several tricks to making presentations. I certainly do not claim to be an expert, but here are some beginners
hints.

4.1 Take it easy

Don’t go too heavy on the zoom. Having a difference between two slides in scale of more than 5 is rarely going to
look good. It would make for a nice cool zooming effect if it did, but this is not what browsers are designed for, so it
won’t.

And the 3D effects can be really cool if used well. But not all the time, it gets tiring for the audience.

Try, if you can, to use the zoom and 3D effects when they make sense in the presentation. You can for example
mention the main topics on one slide, and then zoom in on each topic when you discuss it in more detail. That way
the effects help clarify the presentation, rather than distract from it.

4.2 Custom fonts

Browsers tend to render things subtly differently.

They also have different default fonts, and different operating systems have different implementations of the same
fonts. So to make sure you have as much control over the design as possible, you should always include fonts with the
presentation. A good source for free fonts are Google Webfonts. Those fonts are free and open source, so you can use
them with no cost and no risk of being sued. They can also be downloaded or included online.

4.2.1 Online vs Downloaded

If you are making a presentation that is going to run on your computer at a conference or customer meeting, always
download the fonts and have them as a part of the presentation. Put them in a folder called fonts under the folder
where your presentation is.

You also need to define the font-family in your CSS. Font Squirrel‘s webfont generator will provide you with a
platform-independent toolkit for generating both the varius font formats and the CSS.

If the presentation is online only, you can put an @include-statement in your CSS to include Googles webfonts
directly:

@import url(http://fonts.googleapis.com/css?family=Libre+Baskerville|Racing+Sans+One|Satisfy);

15

http://www.google.com/webfonts
http://www.fontsquirrel.com/

Hovercraft! Documentation, Release 1.0

But don’t use this for things you need to show on your computer, as it requires you to have internet access.

4.3 Test with different browsers

If you are putting the presentation online, test it with a couple of major browsers, to make sure nothing breaks and that
everything still looks good. Not only are there subtle differences in how things may get positioned, different browsers
are also good at different things.

I’ve tested some browsers, all on Ubuntu, and it is likely that they behave differently on other operating systems, so
you have to try for yourself.

4.3.1 Firefox

Firefox 18 is quite slow to use with impress.js, especially for 3D stuff, so it can have very jerky movements from slide
to slide. It does keep text looking good no matter how much you zoom. On the other hand, it refuses to scale text
infinitely, so if you scale too much characters will not grow larger, they will instead start moving around.

Firefox 19 is better, but for 3D stuff it’s still a bit slow.

4.3.2 Chrome

Chrome 24 is fast, but will not redraw text in different sizes, but will instead create an image of them and rescale them,
resulting in the previous slide having a fuzzy pixelated effect.

4.3.3 Epiphany

Epiphany 3.4.1 is comparable to Firefox 19, possibly a bit smoother, and the text looks good. But it has bugs in how it
handles 3D data, and the location bar is visible in fullscreen mode, making it less suitable for any sort of presentation.

16 Chapter 4. Designing your presentations

CHAPTER 5

Templates

Luckily, for most cases you don’t need to create your own template, as the default template is very simple and most
things you need to do is doable with css. However, I don’t want Hovercraft! to set up a wall where it isn’t flexible
enough for your needs, so I added support to make your own templates.

You need to create your own template if you are unsatisfied with the HTML that Hovercraft! generates, for example if
you need to use another version of HTML or if the reStructuredText you are using isn’t being rendered in a way that
is useful for you. Although if you aren’t happy with the HTML generated from the reStructuredText that could very
well be a bug, so open an issue on Github for discussion.

Hovercraft! generates presentations by converting the reStructuredText into XML and then using XSLT to translate
the XML into HTML.

Templates are directories with a configuration file, a template XSL file, and any number of CSS, JS and other resource
files.

5.1 The template configuration file

The configuration file is normally called template.cfg, but if you have several configuration files in one template
directory, you can specify which one to use by specifying the full path to the configuration file. However, if you just
specify the template directory, template.cfg will be used.

Template files are in configparser format, which is an extended ini-style format. They are very simple, and have only
one section, [hovercraft]. Any other sections will be ignored. Many of the parameters are lists that often do
not fit on one line. In that case you can split the line up over several lines, but indenting the lines. The amount of
indentation doesn’t make any difference, except aesthetically.

The parameters in the [hovercraft] section are:

• template The name of the xsl template.

• css A list of CSS filenames separated by whitespace. These files will get included in the final file with “all” as
the media specification.

• css-<media> A list of CSS filenames separated by whitespace. These files will get included in the final file
with the media given in the parameter. So the files listed for the parameter “css-print” will get “print” as their
media specification and a key like “css-screen,print” will return media “screen,print”.

• js-header A list of filenames separated by whitespace. These files will get included in the target file as
header script links.

• js-body A list of filenames separated by whitespace. These files will get included in the target file as script
links at the end of the file. The files impress.js, impressConsole.js and hovercraft.js typically need to be included
here.

17

https://github.com/regebro/hovercraft

Hovercraft! Documentation, Release 1.0

• resource A list of filenames separated by whitespace that will be copied to the target directory, but nothing
else is done with them. Images and fonts used by CSS will be copied anyway, but other resources may be added
here.

An example:

[hovercraft]
template = template.xsl

css = css/screen.css
css/impressConsole.css

css-print = css/print.css

js-header = js/dateinput.js

js-body = js/impress.js
js/impressConsole.js
js/hovercraft.js

resource = images/back.png
images/forward.png
images/up.png
images/down.png

5.2 The template file

The file specified with the template parameters is the actual XSLT template that will perform the translation from
XML to HTML.

Most of the time you can just copy the default template file in hovercraft/templates/default/template.xsl
and modify it. XSLT is very complex, but modifying the templates HTML is quite straightforward as long as you
don’t have to touch any of the <xsl:...> tags.

Also, the HTML that is generated is XHTML compatible and quite straightforward, so for the most case all you would
need to generate another version of HTML, for example strict XHTML, would be to change the doctype.

But if you need to add or change the main generated HTML you can add and change HTML statements in this main
file as you like. See for example how the little help-popup is added to the bottom of the HTML.

If you want to change the way the reStructuredText is rendered things get slightly more complex. The XSLT rules that
convert the reStructuredText XML into HTML are contained in a separate file, reST.xsl. For the most part you can
just include it in the template file with the following code:

<xsl:import href="resource:templates/reST.xsl" />

The resource: part here is not a part of XSLT, but a part of Hovercraft! It tells the XSLT translation that
the file specified should not be looked up on the file system, but as a Python package resource. Currently the
templates/reST.xsl file is the only XSLT resource import available.

If you need to change the way reStructuredText is rendered you need to make a copy of that file and modify it. You
then need to make a copy of the main template and change the reference in it to your modified XSLT file.

None of the XSLT files need to be copied to the target, and should not be listed as a resource in the template configu-
ration file.

18 Chapter 5. Templates

	Introduction
	GUI tools are limiting
	Pan, rotate and zoom
	Hovercraft!

	Using Hovercraft!
	Parameters
	Built in templates

	Making presentations
	A note on terminology
	Hovercraft! syntax
	External files
	Styling your Presentation
	impress.js fields
	Hovercraft! specialities
	Relative positioning
	Automatic positioning
	SVG Paths
	Examples

	Designing your presentations
	Take it easy
	Custom fonts
	Test with different browsers

	Templates
	The template configuration file
	The template file

