

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	HOPE 0.6.1 documentation

HOPE - combine the ease of Python and the speed of C++

 [http://badge.fury.io/py/hope][image: https://travis-ci.org/cosmo-ethz/hope.svg?branch=master]
 [https://travis-ci.org/cosmo-ethz/hope][image: https://coveralls.io/repos/cosmo-ethz/hope/badge.svg?branch=master]
 [https://coveralls.io/r/cosmo-ethz/hope?branch=master][image: https://img.shields.io/badge/docs-latest-blue.svg?style=flat]
 [http://hope.readthedocs.org/en/latest][image: http://img.shields.io/badge/arXiv-1410.4345-brightgreen.svg?style=flat]
 [http://arxiv.org/abs/1410.4345]HOPE is a specialized method-at-a-time JIT compiler written in Python for translating Python source code into C++ and compiles this at runtime. In contrast to other existing JIT compliers, which are designed for general purpose, we have focused our development of the subset of the Python language that is most relevant for astrophysical calculations. By concentrating on this subset, HOPE is able to achieve the highest possible performance

By using HOPE, the user can benefit from being able to write common numerical code in Python and having the performance of compiled implementation. To enable the HOPE JIT compilation, the user needs to add a decorator to the function definition. The package does not require additional information, which ensures that HOPE is as non-intrusive as possible:

from hope import jit

@jit
def sum(x, y):
 return x + y

The HOPE package has been developed at ETH Zurich in the Software Lab of the Cosmology Research Group [http://www.cosmology.ethz.ch/research/software-lab.html] of the ETH Institute of Astronomy [http://www.astro.ethz.ch/], and is now publicly available at GitHub [https://github.com/cosmo-ethz/hope].

Further information on the package can be found in our paper [http://www.sciencedirect.com/science/article/pii/S2213133714000687], on readthedocs.org [http://hope.readthedocs.org/en/latest/] and on our website [http://hope.phys.ethz.ch].

Installation

The package has been uploaded to PyPI [https://pypi.python.org/pypi/hope] and can be installed at the command line via pip:

$ pip install hope

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv hope
$ pip install hope

Contents

	Documentation

	Language Specification

	Hope Architecture

	Contributing

	Credits

	History

Benchmarks

All the benchmarks have been made available online as IPython notebooks [http://refreweb.phys.ethz.ch/hope/benchmark.html] (also on GitHub [https://github.com/cosmo-ethz/hope/tree/master/benchmarks]). If you would like to run the benchmarks on your machine, you can download the notebooks in the nbviewer.

Note: Make sure to execute the native_cpp_gen the first time in order to generate the native C++ code and some Python utility modules.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

Documentation

	
hope.jit(fkt)[source]

	Compiles a function to native code and return the optimized function. The new function has the performance of a compiled function written in C.

	Parameters:	fkt (function) – function to compile to c

	Returns:	function – optimized function

This function can either be used as decorator

@jit
def sum(x, y):
 return x + y

or as a normal function

def sum(x, y):
 return x + y
sum_opt = jit(sum)

	
hope.serialize(obj, name)[source]

	Write a pickled representation of obj to a file named name inside hope.config.prefix

	Parameters:	
	obj (mixed) – arbitrary object to serialize

	name (str) – name of the object

	
hope.unserialize(name)[source]

	Read an object named name form hope.config.prefix. If the file does not exits unserialize returns None

	Parameters:	name (str) – name of the object

	Returns:	mixed – unserialized object

hope.config

	
hope.config.cxxflags = [u'-Wall', u'-Wno-unused-variable', u'-std=c++11']

	List of c++ compiler flags. Normally hope does determing the right flags itself.

	
hope.config.hopeless = False

	Disable hope. If hope.config.hopeless is True, hope.jit return the original function.
Use this function for debug purpos

	
hope.config.keeptemp = False

	Keep the intermediate c++ source and compiler output generated during compilation.

	
hope.config.optimize = False

	Use ‘’‘sympy’‘’ to simplify expression and exptract common subexpression detection

	
hope.config.prefix = u'.hope'

	Prefix of the folder hope saves all data in.

	
hope.config.rangecheck = False

	Check if indeces are out of bounds

	
hope.config.verbose = False

	Print a intermediate representation of each function during compilation.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

Language Specification

This document specifies the Python subset supported by HOPE.

Native Types

The following native types are supported

	bool

	int

	float

NumPy Types

The following NumPy types are supported

	bool_

	integer, signedinteger, byte, short, intc, intp, int0, int_, longlong

	int8, int16, int32, int64

	unsignedinteger, ubyte, ushort, uintc, uintp, uint0, uint_, ulonglong

	uint8, uint16, uint32, uint64

	single, float_

	float32, float64

	ndarray

Conditional Expressions

	If

	If/Else

	If/ElseIf/Else

Loops

The while statement is supported as well as for loops but only with range(stop) or range(start, stop) resp. xrange:

for i in range(start, stop):
 foo()

Return Statement

A function needs to have a fixed return type. HOPE currently supports scalar and array data types as return values.

The following code will not compile as the type of the return value may change depending on the execution:

@hope.jit
def incompatible_return(arg):
 if arg > 10:
 return 1
 else:
 return 2.3 # ERROR: Inconsistent return type

Call functions

Call to pure Python functions are supported if the function

	is accessible form the global scope of the function

	has no decorators

	only uses the subset of Python supported by HOPE

	has no recursive or cyclic calls

Then the called function is also compiled to c++ and included in the shared object
regardless where the function was defined originally.

Operators

Assignment

	Assign
	b = a

Unary operators

	UAdd
	+a

	USub
	-a

Binary operators

	Add
	a + b

	Sub
	a - b

	Mult
	a * b

	Div
	a / b

	FloorDiv
	a // b

	Pow
	a ** b

	Mod
	a % b

	LShift
	a << b

	RShift
	a >> b

	BitOr
	a | b

	BitXor
	a ^ b

	BitAnd
	a & b

Augmented assign statements

	AugAdd
	a += b

	AugSub
	a -= b

	AugMult
	a *= b

	AugDiv
	a /= b

	AugFloorDiv
	a /= b

	AugPow
	a **= b

	AugMod
	a %= b

	AugLShift
	a <<= b

	AugRShift
	a <<= b

	AugBitOr
	a | b

	AugBitXor
	a ^ b

	AugBitAnd
	a & b

Comparison Operators

	Eq
	a == b

	NotEq
	a != b

	Lt
	a < b

	LtE
	a <= b

	Gt
	a > b

	GtE
	a >= b

Bool Operators

	&&
	a and b

	||
	a or b

NumPy Array creation routines

	empty(shape[, dtype])
	Return a new array of given shape and type, without initializing entries.

	ones(shape[, dtype])
	Return a new array of given shape and type, filled with ones.

	zeros(shape[, dtype])
	Return a new array of given shape and type, filled with zeros.

NumPy Mathematical functions

Trigonometric functions

	sin(x)
	Trigonometric sine, element-wise.

	cos(x)
	Cosine elementwise.

	tan(x)
	Compute tangent element-wise.

	arcsin(x)
	Inverse sine, element-wise.

	arccos(x)
	Trigonometric inverse cosine, element-wise.

	arctan(x)
	Trigonometric inverse tangent, element-wise.

Hyperbolic functions

	sinh(x)
	Hyperbolic sine, element-wise.

	cosh(x)
	Hyperbolic cosine, element-wise.

	tanh(x)
	Compute hyperbolic tangent element-wise.

Exponents and logarithms

	exp(x)
	Calculate the exponential of all elements in the input array.

Miscellaneous

	sum(x)
	Return the sum of array elements.

	sqrt(x)
	Return the positive square-root of an array, element-wise.

	interp(x, xp, fp[, left, right])
	One-dimensional linear interpolation.

	ceil(x)
	Return the ceiling of the input, element-wise.

	floor(x)
	Return the floor of the input, element-wise.

	trunc(x)
	Return the truncated value of the input, element-wise.

	pi
	Returns the pi constant

	fabs
	Compute the absolute values element-wise

	sign
	Returns an element-wise indication of the sign of a number

Attributes of numpy.ndarray

No attributes are supported at the moment

Others

	Added cast operators for np.bool_, np.int_, np.intc, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float_, np.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

Hope Architecture

The Just-in-time compiling process undergoes several steps. Those steps are explained in the following and detailed in an example and in a dedicated optimization section:

[image: Flow diagram of the step executed during a function call decorated with HOPE.]
Start The Python interpreter loads a function or method previously decorated with the @hope.jit decorator.

Cache verification HOPE checks if a compiled version of the requested functions has previously been cached.

Parse function The first time the decorated function is called, the wrapper generates an abstract syntax tree (AST) by parsing the function definition using the Python built-in ast package.

Generate HOPE AST Using the visitor pattern, the Python AST is traversed and a corresponding HOPE specific AST is generated. During the traversal we use the Python built-in inspect package to infer the data types of the live objects such as parameters, variable and return values.

Numerical optimization HOPE traverses the new AST in order to identify numerical optimization possibilities and alters the tree accordingly.

Generate C++ code A C++ code is generated from the HOPE AST.

Compile code to shared object library The Python built-in setuptools package is then used to compile a shared object library from the generated code.

Add library to cache Using the extracted information from the function signature and a hash over the function body the compiled shared object library is cached for future calls.

Load library The shared object library is dynamically loaded into the runtime.

Execute compiled function A call to the function is directed to the function in the shared object library and executed with the passed parameters.

Subsequent function call HOPE analyzes the types of the passed arguments and queries the cache for a function matching the requested name and arguments.

Further reading

	Example

	Optimization

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

 	Hope Architecture

Example

Assume the following example:

poly.py

from hope import jit

def poly(x, y, a):
 x1 = x - a
 y[:] = x1 + x1 * x1

poly_hope = jit(poly)

Step-by-step evaluation

In the following we analyze the execution of the example.

call1.py

from poly import poly
import numpy as np

y = np.empty(1000, dtype=np.float32)
poly_hope(np.random.random(1000).astype(np.float32), y, 3.141)

Executing python call1.py will cause the following steps to happen:

When evaluating the statement poly_hope = jit(poly)

	HOPE checks if a shared object of a compiled version of poly is available. Since we run it the first time no object is available, so HOPE returns a wrapper function that contains a reference to the original function.

When evaluating the statement poly_hope(np.random.random(1000).astype(np.float32), y, 3.141)

	The wrapper function, which was returned by jit, is called

	A Python AST of poly is generated:

FunctionDef(
 name='poly'
 , args=arguments(args=[Name(id=x), Name(id=y), Name(id=a)])
 , body=[
 Assign(
 targets=[Name(id=x1)]
 , value=BinOp(left=Name(id=x), op=Sub, right=Name(id=a))
)
 , Assign(
 targets=[Subscript(value=Name(id=y)
 , slice=Slice(lower=None, upper=None, step=None))]
 , value=BinOp(left=Name(id=x1)
 , op=Add
 , right=BinOp(left=Name(id=x1)
 , op=Mult
 , right=Name(id=x1)))
)
]
)

	The arguments passed to poly are analyzed:

	x: numpy.float32, 1D

	y: numpy.float32, 1D

	a: numpy.float64, scalar (originally a has type float but this is equivalent to numpy.float64)

	HOPE generates an identification for the arguments: f1f1d

	HOPE generates a HOPE AST from the Python AST and the analyzed arguments:

Module(
 main=poly
 , functions=[
 FunctionDef(
 name='poly'
 , args=arguments(args=[
 Variable(id=x, shape=(0, x_0), dtype=numpy.float32
 , scope=signature, allocated=true)
 , Variable(id=y, shape=(0, y_0), dtype=numpy.float32
 , scope=signature, allocated=true)
 , Variable(id=a, shape=(), dtype=numpy.float64
 , scope=signature, allocated=true)
])
 , merged=[[(0, x_0), (0, y_0)]]
 , body=[
 Block(body=[
 Assign(
 target=Variable(id=x1, shape=(0, x_0), dtype=numpy.float32
 , scope=block, allocated=false)
 , value=BinOp(left=Variable(id=x, ...)
 , op=Sub, right=Variable(id=a, ...)
 , shape=(0, x_0), dtype=numpy.float32)
 , Assign(
 target=View(variable=Variable(id=y, ...)
 , extend=[0, y_0)
 , shape=(0, x_0), dtype=numpy.float32
 , value=BinOp(
 left=Variable(id=x, ...)
 , op=Sub
 , right=BinOp(left=Variable(id=x1, ...)
 , op=Mult, right=Variable(id=x1, ...)
 , shape=(0, x_0), dtype=numpy.float32)
 , shape=(0, x_0), dtype=numpy.float32
)
], shape=(0, x_0), dtype=numpy.float32)
]
)
]
)

Differences between the Python AST and the HOPE AST:

	The HOPE AST is statically typed, each token has a scalar type (dtype) and for a start, stop for each dimension (shape) where shape=(0, x_0) means start=0, stop=x.shape[0]

	The function definition has a property merged. This list of lists identifies all segments (each dimension of a shape is called segment), which are equal. This is determined as follow:

	the statement x1 = x - a implies that x1 has the same shape as x

	the statement zz y[:] = x1 + x1 * x1 is only valid if x1 and y have the same shape.

so x and y must have the same shape.

	The function body contains a Block token. This token is generated the following way:

	Each statement in the body is wrapped into a Block token. Each Block token has the shape of the statement

	All neighbor blocks with the same shape are merged

	Variables have a scope, which can either be:

	signature: variables that are passed on call

	body: variables, which occur in more than one Block

	block: variables, which occur only in one Block token

	HOPE traverses the new AST in order to identify numerical optimization possibilities optimization

	generate C++11 code from the HOPE AST. The Block taken above is translated into the following C++ code:

	the shape of x is stored in the sx array

	the C pointer to the data of x is stored cx, ca is a double value containing the value of a

for (npy_intp i0 = 0; i0 < sx[0] - 0; ++i0) {
 auto cx1 = (cx[i0] - ca);
 cy[i0] = (cx1 + (cx1 * cx1));
}

	The whole Block statement is turned into one loop over the shape of the block. This allows us to evaluate the operation element-wise, which improves cache locality.

	For variables with Block scope there is no need to allocate a whole array, we only allocate a scalar value.

	the C++ code is compiled into a shared object library

	the shared object library is dynamically imported and the compiled function is evaluated.

call2.py

from poly import poly
import numpy as np

y = np.empty(1000, dtype=np.float32)
poly_hope(np.random.random(1000).astype(np.float32), y, 3.141)

y = np.empty(1000, dtype=np.float64)
poly_hope(np.random.random(1000).astype(np.float64), y, 42)

Executing python call2.py will cause the following steps to happen:

When evaluating the statement poly_hope = jit(poly)

	checks if a shared object of a compiled version of poly is available. Since a shared object is available the shared object is dynamically loaded

	a callback function for unknown signatures is registered in the module

	the reference to the compiled poly function is returned

When evaluating the statement poly_hope(np.random.random(1000).astype(np.float32), y, 3.141)

	the compiled poly function is called

When evaluating the statement poly_hope(np.random.random(1000).astype(np.float64), y, 42)

	there is no compiled poly function for the passed argument types, so the registered callback is called

	the arguments which are passed to poly are analysed:

	x: numpy.float64, 1D

	y: numpy.float64, 1D

	a: numpy.int64, scalar (originally a has type int but this is equivalent to numpy.int64)

	The code is regenerated as described above, but this time with two different function signatures. Once for

	x: numpy.float32, 1D

	y: numpy.float32, 1D

	a: numpy.float64, scalar

and once for

	x: numpy.float64, 1D

	y: numpy.float64, 1D

	a: numpy.int64, scalar (originally a has type int but this is equivalent to numpy.int64)

	The new shared object library is dynamically imported and evaluated

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

 	Hope Architecture

Optimization

After the HOPE specific AST has been created the package performs a static recursive analysis of the expressions to introduce numerical optimization. The supported possibilities are divided into three groups:

Simplification of expressions

To simplify expression we have used the SymPy library [http://sympy.org]. SymPy is a Python library for symbolic mathematics and has been entirely written in Python. To apply the optimization, the AST expression is translated into SymPy syntax AST and passed to the simplify function. The function applies various different heuristics to reduce the complexity of the passed expression. The simplification is not exactly defined and varies depending on the input.

For instance, one example of simplification is that \(sin(x)^2 + cos(x)^2\) will be simplified to \(1\).

Factorizing out subexpressions

Furthermore the SymPy library is used to factorize out recurring subexpression (common subexpression elimination) using the previously created SymPy AST and SymPy‘s cse function.

Replacing the pow function for integer exponents

From C++11 on, the pow function in the C standard library is not overloaded for integer exponents [http://en.cppreference.com/w/cpp/numeric/math/pow]. The internal implementation of the computation of a base to the power of a double exponent is typically done using a series expansion, though this may vary depending on the compiler and hardware architecture. Generally this is efficient for double exponents but not necessarily for integer exponents.

HOPE therefore tries to identify power expressions with integer exponents and factorizes the expression into several multiplications e.g. \(y=x^5\) will be decomposed into \(x_2=x^2\) and \(y=x_2\times x_2 \times x\). This reduces the computational costs and increases the performance of the execution.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Implement Features

Write Documentation

HOPE could always use more documentation, whether as part of the
official HOPE docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, and 3.3.
make sure that the tests pass for all supported Python versions.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	HOPE 0.6.1 documentation

Credits

Development Lead

	Lukas Gamper <gamperl@gmail.com>

	Joel Akeret <jakeret@phys.ethz.ch>

Contributors

We would like to thank several people for helping to test this package before release.

	Alexandre Refregier

	Adam Amara

	Claudio Bruderer

	Chihway Chang

	Sebastian Gaebel

	Joerg Herbel

Citations

As you use HOPE for your exciting discoveries, please cite the paper that describes the package:

Akeret, J., Gamper, L., Amara, A. and Refregier, A., Astronomy and Computing (2015) [http://www.sciencedirect.com/science/article/pii/S2213133714000687]

Feedback

If you have any suggestions or questions about HOPE feel free to email me
at hope@phys.ethz.ch.

If you encounter any errors or problems with HOPE, please let me know!

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	HOPE 0.6.1 documentation

History

0.6.1 (2016-07-04)

	fixing bug when accessing class members for operations

0.6.0 (2016-04-19)

	Fixed bug in 2d array slicing

	Array slicing with negative index

	Fixed name clash bug with object attributes

	Replaced assignment with reference to object attributes

0.5.0 (2016-01-20)

	Fixed memory leak when creating array in jitted fkt

	Fixed incorrect bound handling in numpy.interp

0.4.0 (2015-02-04)

	Increased compilation speed for large functions

	Support for variable allocation within if-else

	Added support for numpy.sign

	Updated Cython implementation in benchmarks

	Fixed array allocation problem under OSX Yosemite (thx iankronquist)

0.3.1 (2014-10-24)

	Better support for Python 3.3 and 3.4

	Proper integration in Travis CI

	Improved support for Linux systems (accepting x86_64-linux-gnu-gcc)

	Avoiding warning on Linux by removing Wstrict-prototypes arg

	Supporting gcc proxied clang (OS X)

	Added set of examples

0.3.0 (2014-10-16)

	Language: scalar return values

	Shared libraries are written to hope.config.prefix

	Function call can have return values

	Fixed function calls to function with no arguments

	Make sure code is recompiled if the python code has changed

	Added config.optimize to simplify expression using sympy and replace pow

	Speed improvements for hope

	Added support for object properties

	Added support for object methods

	Addes support for True and False

	Addes support for While

	Addes support for numpy.sum

	Addes support for numpy.pi

	Added support for numpy.floor, numpy.ceil, numpy.trunc, numpy.fabs, numpy.log

	improved error messages

	Added config.rangecheck flag

	Support xrange in for loop

	Added cast operators for np.bool_, np.int_, np.intc, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float_, np.float32, np.float64,

	Added bool operators

	Added the following operators:

	FloorDiv
	a // b

	Mod
	a % b

	LShift
	a << b

	RShift
	a >> b

	BitOr
	a | b

	BitXor
	a ^ b

	BitAnd
	a & b

	AugFloorDiv
	a //= b

	AugPow
	a **= b

	AugMod
	a %= b

	AugLShift
	a <<= b

	AugRShift
	a <<= b

	AugBitOr
	a | b

	AugBitXor
	a ^ b

	AugBitAnd
	a & b

0.2.0 (2014-03-05)

	First release on private PyPI.

0.1.0 (2014-02-27)

	Initial creation.

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	HOPE 0.6.1 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 hope	

 	
 	
 hope.config	

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	HOPE 0.6.1 documentation

Index

 C
 | H
 | J
 | K
 | O
 | P
 | R
 | S
 | U
 | V

C

 	

 	cxxflags (in module hope.config)

H

 	

 	hope (module)

 	hope.config (module)

 	

 	hopeless (in module hope.config)

J

 	

 	jit() (in module hope)

K

 	

 	keeptemp (in module hope.config)

O

 	

 	optimize (in module hope.config)

P

 	

 	prefix (in module hope.config)

R

 	

 	rangecheck (in module hope.config)

S

 	

 	serialize() (in module hope)

U

 	

 	unserialize() (in module hope)

V

 	

 	verbose (in module hope.config)

 Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 _images/flow.jpg
_{ generate | [optimize]

HOPE AST | HOPE AST
p N \ complle to (l
T G | g |
41; | tocache | jectibrary | LG+
(‘execute com-
piled function

_static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		HOPE 0.6.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

modules.html

 Navigation

 		
 index

 		
 modules |

 		HOPE 0.6.1 documentation »

hope

		Documentation
		hope.config

 © Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		HOPE 0.6.1 documentation »

 All modules for which code is available

		hope.jit

		hope.serialization

 © Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_modules/hope/jit.html

 Navigation

 		
 index

 		
 modules |

 		HOPE 0.6.1 documentation »

 		Module code »

 Source code for hope.jit

Copyright (c) 2014 ETH Zurich, Institute of Astronomy, Lukas Gamper <lukas.gamper@usystems.ch>

from __future__ import print_function, division, absolute_import, unicode_literals

import os
import sys
import hashlib
import inspect
import warnings

from hope._wrapper import Wrapper
import hope._cache as cache
from hope import config
from hope import serialization
from hope._wrapper import get_config_attrs
from hope._wrapper import get_fkt_hash

TODO: add test for hope.pow
TODO: add test and doc for additional numpy functions
TODO: implement self, self.cost, self.fkt
TODO: replace function in global namespace by c pointer to get the native speed on the first run
TODO: make two versions for np.int_ and int
TODO: make hope.interp with retuns a callable object with 2^n basepoints and c pendant
TODO: if dtype of argument is alreadu correct, do not cast it in c code
TODO: add test for subscrpto with all types to get the same semantics
TODO: controll structures
TODO: check for PyArray_ISNOTSWAPPED
TODO: merge scalar blocks and search subexpressions in all lines
TODO: asserts of sizes
TODO: make class derived from tuple which can hold several parameters and be passed to hope functions
TODO: use int PyArrayObject.flags to check if data has to be copied http://docs.scipy.org/doc/numpy/reference/c-api.types-and-structures.html#PyArrayObject
TODO: use https://github.com/workhorsy/py-cpuinfo/blob/master/cpuinfo.py to detect features
TODO: other code generator: http://documen.tician.de/codepy/jit.html#module-codepy.jit
TODO: make ufunc decorator http://docs.scipy.org/doc/numpy/reference/ufuncs.html like numba http://numba.pydata.org/numba-doc/0.12.1/ufuncs.html
TODO: optimize pow with interger powers to multipications
TODO: make tests for _dump
TODO: add constants/class constants to hope
TODO: use sympy to simpify and Common Subexpression Detection
# 		http://docs.sympy.org/latest/modules/rewriting.html
# 		http://docs.sympy.org/latest/modules/core.html#module-sympy.core.sympify

[docs]def jit(fkt):
 """
 Compiles a function to native code and return the optimized function. The new function has the performance of a compiled function written in C.

 :param fkt: function to compile to c
 :type fkt: function
 :returns: function -- optimized function

 This function can either be used as decorator

 .. code-block:: python

 @jit
 def sum(x, y):
 return x + y

 or as a normal function

 .. code-block:: python

 def sum(x, y):
 return x + y
 sum_opt = jit(sum)
 """

 if config.hopeless:
 return fkt

 argspec = inspect.getargspec(fkt)
 if argspec.varargs is not None or argspec.keywords is not None:
 raise ValueError("Jitted functions should not have *args or **kwargs")

 hash = hashlib.sha224(inspect.getsource(fkt).encode('utf-8')).hexdigest()
 filename = "{0}_{1}".format(fkt.__name__, hash)

 if not os.path.exists(config.prefix):
 os.makedirs(config.prefix)

 if not config.prefix in sys.path:
 sys.path.append(os.path.abspath(config.prefix))

 wrapper = Wrapper(fkt, hash)

 try:
 state = serialization.unserialize(filename)
 if not state is None:
 _check_state(fkt, state)
 else:
 raise ImportError("No state found.")

 if sys.version_info[0] == 2:
 module = __import__(state["filename"], globals(), locals(), [], -1)
 else:
 import importlib
 module = importlib.import_module(state["filename"])

 if "bound" in state and state["bound"]:
 def _hope_callback(*args):
 return module.run(*args)
 setattr(cache, str(id(_hope_callback)), fkt)
 return _hope_callback
 else:
 module.set_create_signature(wrapper.create_signature)
 setattr(cache, str(id(module.run)), fkt)
 return module.run

 except LookupError as le:
 if config.verbose:
 warnings.warn("Recompiling... Reason: {0}".format(le))
 wrapper._recompile = True
 return wrapper.callback
 except ImportError as ie:
 return wrapper.callback

def _check_state(fkt, state):
 for name in get_config_attrs():
 if name not in state or state[name] != getattr(config, name):
 raise LookupError("State is inconsistent with config. Inconsistent state key: [{0}].".format(name))

 if "main" not in state or "called" not in state or state["main"] != fkt.__name__:
 raise LookupError("State is inconsistent")

 for name, value in list((state["called"] if "called" in state else {}).items()):
 if name not in fkt.__globals__:
 #TODO: FIX! state of globals depends on the order of function in module. If called function comes later in the code we raise the error
 raise LookupError("State is inconsistent. Called function '%s' cannot be found in %s's global scope."%(name, fkt.__name__))

 glob_fkt = fkt.__globals__[name]
 if isinstance(glob_fkt, Wrapper):
 if "filename" in state and get_fkt_hash(glob_fkt.fkt) != value:
 raise LookupError("State is inconsistent. Hash(sha224) has changed")
 elif inspect.isbuiltin(glob_fkt) and hasattr(cache, str(id(glob_fkt))):
 if "filename" in state and get_fkt_hash(getattr(cache, str(id(glob_fkt)))) != value:
 raise LookupError("State is inconsistent. Hash(sha224) has changed")
 elif inspect.isfunction(glob_fkt):
 if "filename" in state and get_fkt_hash(glob_fkt) != value:
 raise LookupError("State is inconsistent. Hash(sha224) of called function '%s' has changed"%name)
 elif "filename" in state:
 raise LookupError("State is inconsistent.")

 © Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/hope/serialization.html

 Navigation

 		
 index

 		
 modules |

 		HOPE 0.6.1 documentation »

 		Module code »

 Source code for hope.serialization

Copyright (c) 2014 ETH Zurich, Institute of Astronomy, Lukas Gamper <lukas.gamper@usystems.ch>

from __future__ import print_function, division, absolute_import, unicode_literals

import os
import pickle

from hope import config

[docs]def serialize(obj, name):
 """
 Write a pickled representation of obj to a file named ``name`` inside ``hope.config.prefix``

 :param obj: arbitrary object to serialize
 :type obj: mixed
 :param name: name of the object
 :type name: str
 """

 if not os.path.exists(config.prefix):
 os.makedirs(config.prefix)

 with open(os.path.join(config.prefix, "{0}.pck".format(name)), "wb") as fp:
 pickle.dump(obj, fp)

[docs]def unserialize(name):
 """
 Read an object named ``name`` form ``hope.config.prefix``. If the file does not exits ``unserialize`` returns ``None``

 :param name: name of the object
 :type name: str
 :returns: mixed -- unserialized object
 """

 if not os.path.exists(os.path.join(config.prefix, "{0}.pck".format(name))):
 return None

 with open(os.path.join(config.prefix, "{0}.pck".format(name)), "rb") as fp:
 return pickle.load(fp)

 © Copyright 2014, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

