
Hoodospel Documentation
Release alpha

Nikolay Pavlov

June 20, 2015

Contents

1 Language syntax 3
1.1 Top-level syntax . 3
1.2 Command arguments . 4
1.3 Expression evaluation . 5
1.4 Pattern syntax . 5
1.5 Messages . 6

2 Hoodospel commands 9
2.1 Block commands . 9
2.2 Non-block commands . 10

3 Hoodospel functions 13

4 Indices and tables 15

i

ii

Hoodospel Documentation, Release alpha

Contents:

Contents 1

Hoodospel Documentation, Release alpha

2 Contents

CHAPTER 1

Language syntax

1.1 Top-level syntax

Hoodospel source code is a sequence of commands separated by newlines. Each command consists of a command
name followed by a sequence of argument tokens followed by a command prefix with argument tokens which are used
to specify more then one command argument. Both first and prefixed arguments are generally optional.

Between command name, first arguments, prefixes and prefix arguments there may be whitespaces (tabs and spaces).
They may also precede command.

command ::= command-name (argument+)? (prefix argument*)*

Both command prefixes and command name are non-empty sequences of latin capital letters and underscores starting
with a capital letter.

prefix ::= [A-Z] [A-Z_]*
command-name ::= prefix

Hoodospel also supports comments. Comment may be started at any place where some token is expected. Comments
are identified by preceding hash character.

comment ::= "#" .*

There are eight kind of tokens which may form an argument: variables, numbers, single-quoted, double-quoted, plain
and figure braces strings, functions and parenthesis expression.

argument ::= variable | number | string | function | parenthesis_expr
string ::= single-quoted-string

| double-quoted-string
| plain-string
| figure-braces-string

• Variable is a sigil followed by a non-empty sequence of latin letters, digits and underscores. Two sigils are
supported: $ indicates environment variable, & indicates hoodospel variable.

variable ::= hoodospel-variable | env-variable
hoodospel-variable ::= "&" varname
environment-variable ::= "$" varname
varname ::= [a-zA-Z0-9_]+

• Numbers start with either a digit or a sign: _ for negative numbers and + for positive numbers. There must be
at least one digit in number.

3

Hoodospel Documentation, Release alpha

number ::= ("_" | "+")? [0-9]+

• Single-quoted strings are sequences of characters starting and ending with a single quote. To escape a single
quote you should double it. No other escapes are possible.

single-quoted-string ::= "'" ([^'] | "''")* "'"

• Double-quoted strings are sequences of characters starting and ending with a double quote. The following
escape sequences are accepted: \xXX (but not \x00), \uXXXX (but not \u0000), \UXXXXXXXX (but not
\U00000000), \\, \", \r, \n, \t.

Meaning of the escape sequences:

Sequence Meaning
\xXX Byte 0xXX.
\uXXXX Unicode character U+XXXX
\UXXXXXXXX Unicode character U+XXXXXXXX
\\ Backslash
\" Double quote
\r Carriage return (0x0D)
\n Newline (0x0A)
\t Tab (0x09)

double-quoted-string ::= "\"" ([^"\\] | escape-sequence)* "\""
escape-sequence ::= "\\x" (hex-digit x 2)

| "\\u" (hex-digit x 4)
| "\\U" (hex-digit x 8)
| "\\" [\\"rnt]

• Plain strings start with either a unicode character, a lowercase latin letter, a back or forward slash, a dot or a
dash. Following characters are considered a part of plain string as long as they are not whitespace characters,
parenthesis, brackets or figure braces.

plain-string ::= [a-z/\\.\-] [^\[\]{}() \t]*

• There is a special kind of plain strings: figure braces strings that contain only figure braces.

figure-braces-string ::= "{"+ | "}"+

• Functions are just like prefixes, but unlike them functions start with a colon:

function ::= ":" [A-Z] [A-Z_]*

• There are also parenthesis expressions:

parenthesis_expr ::= "(" argument* ")"

1.2 Command arguments

Different commands accept different arguments. There are kinds of arguments:

• Lval arguments designate arguments which may be assigned to. Rlval arguments designate existing variables
which may be assigned to. Both always contain a single variable token.

• Empty arguments are for command prefixes. They designate that prefix does not accept any arguments: only the
presence of the prefix matters.

4 Chapter 1. Language syntax

Hoodospel Documentation, Release alpha

• Expression arguments are the only ones that may contain more then one token. In fact they may contain any
number of argument tokens. Note that parenthesis in parenthesis expressions must be balanced.

• Pattern is an expression which must result in a string value treated like described in pattern syntax section.

There is no difference between expressions and patterns from the parser point of view.

• Message is an expression which must result in a string value followed by other values treated like described in
messages section.

There is no difference between expressions and messages from the parser point of view.

• Version argument is a single token: a single-quoted string looking like ’M’, ’M.m’ or ’M.m.p’ (where M
stands for major version number, m stands for minor version number and p stands for patch level).

1.3 Expression evaluation

Expressions are written in a reverse polish notation. They are processed as following: evaluator processes tokens one
by one.

• Parenthesis tokens are mostly ignored (but checked for being balanced).

• Various string tokens push single string value to the stack.

• Number tokens push integer value to the stack.

• Variable tokens put variable value onto the stack.

• Function tokens pop some values from the stack, process them using given function and push the result onto the
stack.

Some functions referenced by function tokens take fixed number of arguments, in this case this predefined number of
arguments is popped from the stack. But there are also functions with variable number of arguments (only up to ten
arguments are supported). In this case top value in the stack defines number of arguments that will be popped from
the stack. Supported numbers: any non-negative integer, any string that will take all values on the stack be function
arguments and }, }}, }}} and so on string which will make evaluator process the stack until corresponding {, {{,
{{{ and so on respectively is found. E.g. the following constructs are the same:

PRINT MESSAGE (abc def ghi / 4 JOIN)
PRINT MESSAGE (abc def ghi / all JOIN)
PRINT MESSAGE ({ abc def ghi / } JOIN)
PRINT MESSAGE ({{ abc def ghi / }} JOIN)

All will print abc/def/ghi.

1.4 Pattern syntax

Hoodospel uses ERE-like patterns. The following metacharacters are supported:

Single atoms:

. Matches any character except for newline.

[...], [^...] Collections: matches any ([...] form) or none ([^...] form) of the characters
from the collection.

(. . .) Capturing groups. You may specify up to ten of them.

^ Start of the line. Zero-width.

1.3. Expression evaluation 5

Hoodospel Documentation, Release alpha

$ End of the line. Zero-width.

\... Escape sequence. Escape followed by any of the metacharacters matches this metacharacter liter-
ally. Other supported escapes:

Escape Meaning
\xXX Byte 0xXX, except for x00: it is not supported.
\e Escape.
\n Newline character.
\r Carriage return character.
\t Tab character.
\b Backslash character.

Note: anything else is undefined

Quantifiers:

{N}, {N,}, {N,M} Matches from N to M occurences of preceding atom. First form matches exactly N
(M=N), second form matches N or more (M=∞).

* Matches zero or more occurences of preceding atom.

+ Matches one or more occurence of preceding atom.

? Matches zero or one occurences of preceding atom.

Other:

re1|re2 Branch: matches either re1 or re2.

1.5 Messages

Messages are strings in a printf-like format. That is regular text interleaved with %{flags}{conversion} atoms.

Supported flags (they must be given in order below):

+ For numbers: prepend + sign to positive numbers.

For strings: ignored.

- Left-align the converted value. Default is right alignment. Only useful if field width was specified.

Convert the value to alternate form. Only meaningful for x or X (makes it prepend 0x to the result), o
(makes it prepend additional zero unless first resulting character was already zero), e or E, f , g or G
(makes it print decimal point even if no digits follow it).

0 Pad value with zeroes instead of spaces.

N or * Specifies field width. N is a sequence of decimal digits not starting with 0. If * is specified then
width is taken from the next argument.

.N or .* Specifies precision. For d, i or u, x or X and o this specifies minimal number of digits printed,
for e or E and f this specifies the number of digits to appear after the radix character, for g or G this
specifies the maximum number of significant digits and for s this specifies the maximum number of
characters.

Supported conversions:

u, i, d Integer argument is converted to decimal notation (signed in case of %i and %d). Behavior is
undefined when trying to use %u for negative integers.

o Integer is converted to octal notation. Behavior is undefined when trying to convert negative integers.

6 Chapter 1. Language syntax

Hoodospel Documentation, Release alpha

x or X Integer is converted to hexadecimal notation. If X is used then hexadecimal digits A till F are
capitalized otherwise they are printed in lower case. Behavior is undefined when trying to convert
negative integers.

e or E Number is converted to [-]A.Be±C scientific notation. If E is used then capital letter E is used
for the exponent, otherwise e is used.

f Number is converted to [-]A.B decimal notation.

g or G Number is converted to either scientific notation or decimal notation depending on its value. G
uses E for scientific notation.

s String conversion: embeds given string.

1.5. Messages 7

Hoodospel Documentation, Release alpha

8 Chapter 1. Language syntax

CHAPTER 2

Hoodospel commands

2.1 Block commands

IF expr [OPERATOR expr]
commands

ELSE_IF expr [OPERATOR expr]
commands

ELSE
commands

END_IF

Conditional execution block. If IF is used without any suffixes (without OPERATOR part) then its argu-
ment is considered true as long as it is not empty (for strings) and not zero (for numbers). In any case all
of the expressions must leave only one value in the stack.

Supported operators:

Operator Arguments Is true if first . . . the second
IS string, string is identical to
IS_NOT string, string is different from
MATCHES string, pattern matches
NOT_MATCHES string, pattern does not match
EQ number, number is equal to
NE number, number is not equal to
LE number, number is lesser then or equal to
GE number, number is greater then or equal to
LT number, number is lesser then
GT number, number is greater then

ELSE_IF and ELSE sections are optional, there also may be no commands after each of the block
headers (IF, ELSE_IF, ELSE). Commands after block header are executed if it is the first block header
in a sequence whose condition is true. Commands after ELSE will be executed if there are no block
headers with condition that is true.

Commands after each block header may also start their own subblocks.

9

Hoodospel Documentation, Release alpha

2.2 Non-block commands

PRINT LEVEL message

Print message with the given level. Given expression may leave more then one value in the stack, in
this case the whole stack will be passed to printf meaning that first value will be a format string and the
following values are being inserted in this string according to it.

cmd:PRINT:message_level option controls which messages are output and which are not.

Supported levels (in order of significance): DEBUG_INFO, MESSAGE, WARNING, ERROR.

ABORT message

Abort execution. This will abort with a error ID aborted and message constructed from expr like in
PRINT command.

VERSION version

Check whether current hoodospel version matches given one. It is considered matching if current major
version number is identical to requested one and the following numbers are less then or equal to current.
If some number is missing it is considered to be zero. E.g.

Current Requested Resolution
1.0.0 ’0.0.0’ Fail (major version numbers differ)
1.0 ’1.2’ Fail (zero is lesser then two)
1.0.2 ’1.0.3’ Fail (two is lesser then three)
1.0 ’1.0’ Success
1.1 ’1.0’ Success (one is greater then zero)
1.0.0 ’1.0’ Success (missing number is zero)
1.0 ’1.0.0’ Success (missing number is zero)

RUN_SHELL expr [OUTPUT_TO var] [INPUT_STRING expr] [EXPECTING_EXIT_CODE expr]
[IGNORE_EXIT_CODE]

Run shell command. Expression given as a first argument is expected to leave more then one string in
stack: RUN_SHELL (echo abc) will run command echo with argument abc, but RUN_SHELL
"echo abc" will run command echo abc with no arguments (and most likely fail).

This command will fail if launched command exits with code different from zero.
EXPECTING_EXIT_CODE and IGNORE_EXIT_CODE prefixes override this behavior: first will
make hoodospel expect fail if exit code is different from the one from the prefix argument, first will make
hoodospel not fail regardless of exit code.

If OUTPUT_TO string was specified then launched command output will be assigned to given variable.

If INPUT_STRING string was specified then launched command will receive given string in the stdin.

CHANGE_DIRECTORY_TO expr

10 Chapter 2. Hoodospel commands

Hoodospel Documentation, Release alpha

Change current directory to the given one.

SET var TO expr

Set given variable value to given value. Expression must leave only one value in the stack. Can also be
used to set environment variables, but in this case expression must leave only one string value.

DELETE TYPE expr

Delete given filesystem object. TYPE may be FILE, DIRECTORY and EMPTY_DIRECTORY. Expression
must leave exactly one string value in the stack.

COPY TYPE expr (TO expr | TO_DIRECTORY expr | HERE)
MOVE TYPE expr (TO expr | TO_DIRECTORY expr | HERE)

Copy or move given filesystem object to given location. TYPE may be either FILE or DIRECTORY,
other prefixes specify target location:

Prefix Description
TO COPY FILE a TO b copies file contents to file b
TO_DIRECTORY COPY FILE a TO_DIRECTORY d copies file contents to d/a
HERE COPY FILE d/a HERE copies file contents to file a

In all cases expressions must leave exactly one string value in the stack.

CREATE_DIRECTORY expr [RECURSIVE]

Create directory with given name. If RECURSIVE prefix is given then parent directories are also created
if necessary.

SUBSTITUTE pattern WITH expr IN var [IGNORE_CASE] [REPLACE_ALL]

Substitute given pattern with given replacement string. Operates on a given variable, result is recorded
back into it. IGNORE_CASE flag makes regex engine ignore case, REPLACE_ALL makes hoodospel
replace all occurences of a pattern (it replaces only the first by default).

WRITE expr TO expr [TEMP_SUFFIX expr]

Write given string to given file. When TEMP_SUFFIX expression is given then in place of writing directly
to a given file it will write to TO.TEMP_SUFFIX file and then rename file that was written to to TO.

READ expr TO var

Write given file contents to given variable.

2.2. Non-block commands 11

Hoodospel Documentation, Release alpha

QUESTION message RESULT_TO var TYPE [RESULT_FROM expr] [DEFAULT expr]

Ask user a question. The result is recorded to the given variable. Question is processed in the following
order (assuming key is the first value in message stack):

1. Check out whether there is answer file in the current directory: .hoodospel.ans. If there is one
then it should have format “key \t string”. If there is one and it contains key then RESULT_TO
variable is populated with the given answer. This answer is processed according to TYPE.

2. Check out whether RESULT_FROM expression is not empty. If it is not it is proccessed according
to given TYPE and used to populate RESULT_TO variable.

3. Check out whether cmd:QUESTION:use_default option is true. If it is then DEFAULT is used to
populate the variable. DEFAULT is processed according to TYPE as well.

4. Last, if DEFAULT was not specified and other variants failed user is asked to answer the question.
User answer is processed according to TYPE.

Possible types:

Type Description
BOOLEAN Transforms “yes”, “y”, “true” and “1” strings to 1 and “no”, “n”, “false” and “0”

strings to 0.
STRING Takes string unmodified.

If cmd:QUESTION:write_answers option is true then this command also writes answer to
.hoodospel.ans file.

12 Chapter 2. Hoodospel commands

CHAPTER 3

Hoodospel functions

type arg :EXISTS If entity of the given type exists pushes one to the stack. Otherwise pushes zero. Possible types:

Type Description
file File. VimL implementation checks file for being readable.
direc-
tory

Directory.

com-
mand

Executable. I.e. command false :EXISTS checks whether there is false command
somewhere in $PATH.

:CURRENT_DIRECTORY Pushes full path to the current directory to the stack.

:SEPARATOR Pushes directory separator to the stack (i.e. / on *nix systems and \ on windows).

str... separator numargs :JOIN Joins given strings using given separator and pushes result to the stack. Function
with variable number of arguments: abc def / 3 :JOIN will push abc/def to the stack, just like {
abc def / } :JOIN will.

:PLATFORM Pushes name of the platform hoodospel is running on. Possible outputs: qnx, vms, os2, amiga,
beos, mac, windows, unix, other.

:OS_NAME Pushes less specific name of the platform hoodospel is running on. Possible outputs: posix, nt, os2,
other.

str :SHELL_SPLIT Pops one value from the stack, splits it on unescaped spaces, unescapes (replaces all \. with .)
and pops resulting values back onto the stack.

13

Hoodospel Documentation, Release alpha

14 Chapter 3. Hoodospel functions

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

	Language syntax
	Top-level syntax
	Command arguments
	Expression evaluation
	Pattern syntax
	Messages

	Hoodospel commands
	Block commands
	Non-block commands

	Hoodospel functions
	Indices and tables

