

Hoodie Documentation

	Welcome to Hoodie

Guides

	Quickstart

	Configuration

	Plugins

	Deployment

	Using Hoodie as hapi plugin

API

	Hoodie API

Developers

	Contributing to Hoodie

	Coding Style Guide

	Triage new issues/PRs on GitHub

	Contributing to Documentation

	Documentation Style Guide

About

	Hoodie’s Concepts

	How Hoodie Works

	Architecture

	Files & Folders

	Requirements

	Glossary

Welcome to Hoodie

Hoodie is a backend for web applications with a JavaScript API for your frontend.
If you love building apps with HTML, CSS and JavaScript or a frontend framework,
but dread backend work, Hoodie is for you.

Hoodie’s frontend API gives your code superpowers by allowing you to do things
that usually only a backend can do (user accounts, emails, payments,
etc.).

All of Hoodie is accessible through a simple script include, just like
jQuery or lodash:

<script src="/hoodie/client.js"></script>

From that point on, things get really powerful really quickly:

// In your front-end code:
hoodie.ready.then(function () {
 hoodie.account.signUp({
 username: username,
 password: password
 })
})

That’s how simple signing up a new user is, for example. But anyway:

Hoodie is a frontend abstraction of a generic backend web service.
As such, it is agnostic to your choice of frontend application
framework. For example, you can use jQuery for your web app and Hoodie
for your connection to the backend, instead of raw jQuery.ajax. You
could also use React with Hoodie as a data store, or any other
frontend framework or library, really.

Open Source

Hoodie is an Open Source project, so we don’t own it, can’t sell it, and
it won’t suddenly vanish because we got aquired. The source code for
Hoodie is available on GitHub under the Apache License 2.0.

How to proceed

You could read up on some of the ideological concepts behind Hoodie,
such as noBackend and Offline First. These explain why Hoodie exists and
why it looks and works the way it does.

If you’re more interested in the technical details of Hoodie, check out
How Hoodie Works. Learn how Hoodie handles data storage, does
syncing, and where the offline support comes from.

Eager to build stuff? Skip ahead to the quickstart guide!

Quickstart

In this guide you’ll learn how to create a demo Hoodie app, learn about the
basic structure of a Hoodie project and its folders, the endpoints and app URLs
and how to include and use the Hoodie library in your project.

[image: Remix on Glitch] [https://glitch.com/edit/#!/remix/hoodie]

Prerequisites

For all operating systems, you’ll need Node.js installed. You can download Node from
nodejs.org [https://nodejs.org/]. We recommend the LTS (Long Term Support) version.

Make sure you have version 4 or higher. You can find out with

$ node -v

Create a new Hoodie Backend

First you need to create a new folder, let’s call it testapp

$ mkdir testapp

Change into the testapp directory.

$ cd testapp

Now we need to create a package.json file. For that we can use
npm [https://www.npmjs.com/] which comes with Node by default. It will ask you a few
questions, you can simply press enter to leave the default values.

$ npm init -y

Now we can install hoodie using npm

$ npm install hoodie --save

The resulting package.json file in the current folder, should look something
like this

{
 "name": "testapp",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "hoodie",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

Now you can start Hoodie with

$ npm start

Great, your Hoodie backend started up and is now telling you at which URL you
can access it. By default that is http://127.0.0.1:8080

Congratulations, you just created your first Hoodie Backend :) You can now
load the Hoodie client on any website with

<script src="http://127.0.0.1:8080/hoodie/client.js"></script>

You can also create a public/index.html file, which will be served
at http://127.0.0.1:8080 after you restart the server. All assets in the public
folder, like images, CSS files or JavaScript files, will be served by your
Hoodie Backend at http://127.0.0.1:8080/<path/to/your/file.ext>.

If you just want to try, you can copy https://raw.githubusercontent.com/gr2m/sweet.la/master/public/index.html to your index.html. (This code was created to present Hoodie in an event, you can watch it at https://www.youtube.com/watch?v=TSDyxtVbbME&t=1272s)
Open the Console and try:

hoodie

Also try:

hoodie.account.signUp({username: 'foo', password: 'secret'})

Now, test using it offline and back online. You can also open a second browser (incognito) and see the changes being replicated.

Note for npm v2

Because of how npm v2 installs sub dependencies, the hoodie client cannot be
bundled. As a workaround, just install pouchdb-browser and @hoodie/client
as a dependency of your hoodie app

$ npm install --save pouchdb-browser @hoodie/client

What’s next?

Our Hoodie Tracker App [https://github.com/hoodiehq/hoodie-app-tracker] is a great place to see how to use a Hoodie backend.
It’s an intentionally simple and well commented application built with only
HTML, JavaScript and CSS, without using any library or framework. You can see it
running at https://hoodie-app-tracker.now.sh/

Having Trouble?

Sorry it didn’t go smoothly for you. Come chat with us [http://hood.ie/chat/]
or ask a question on StackOverflow [https://stackoverflow.com/questions/ask?tags=hoodie]

Configuration

Your Hoodie back-end can be configured using default options that are part of
your repository as well as using hidden files, CLI arguments and environment variables.

Options

Here is a list of all available options

	Option

	Default value

	CLI argument

	ENV variable

	description

	address

	'127.0.0.1'

	--address

	hoodie_address

	Address to which Hoodie binds

	data

	'.hoodie'

	--data

	hoodie_data

	Data path

	dbUrl

	–

	--dbUrl

	hoodie_dbUrl

	If provided, uses external CouchDB. Include credentials in dbUrl, or use dbUrlUsername and dbUrlPassword. Sets dbAdapter to pouchdb-adapter-http

	dbUrlUsername

	–

	dbUrlUsername

	hoodie_dbUrlUsername

	If dbUrl is set, you can use dbUrlUsername to set the username to use when making requests to CouchDB

	dbUrlPassword

	–

	dbUrlPassword

	hoodie_dbUrlPassword

	If dbUrl is set, you can use dbUrlPassword to set the password to use when making requests to CouchDB

	dbAdapter

	'pouchdb-adapter-fs'

	--dbAdapter

	hoodie_dbAdapter

	Sets default PouchDB adapter <https://pouchdb.com/adapters.html> unless inMemory or dbUrl set

	loglevel

	'warn'

	--loglevel

	hoodie_loglevel

	One of: silent, error, warn, http, info, verbose, silly

	inMemory

	false

	-m, --inMemory

	hoodie_inMemory

	Whether to start the PouchDB Server in memory. Sets dbAdapter to pouchdb-adapter-memory

	port

	8080

	--port

	hoodie_port

	Port-number to run the Hoodie App on

	public

	'public'

	--public

	hoodie_public

	path to static assets

	url

	
	

	--url

	hoodie_url

	Optional: external URL at which Hoodie Server is accessible (e.g. http://myhoodieapp.com)

	adminPassword

	
	

	--adminPassword

	hoodie_adminPassword

	Password to login to Admin Dashboard. Login is not possible unless set

	name

	package.json’s name property

	--name

	hoodie_name

	Name your application.

Defaults

Default options are set in your app’s package.json file, using the
"hoodie" key. Here is an example with all available options and their
default values

{
 "hoodie": {
 "address": "127.0.0.1",
 "port": 8080,
 "data": ".hoodie",
 "public": "public",
 "dbUrl": "",
 "dbAdapter": "pouchdb-adapter-fs",
 "inMemory": false,
 "loglevel": "warn",
 "url": "",
 "adminPassword": "",
 "name": "my-hoodie-app"
 }
}

.hoodierc

The .hoodierc can be used to set configuration when running your Hoodie
backend in that folder. It should not be committed to your repository.

The content can be in JSON or INI format. See the rc package on npm [https://www.npmjs.com/package/rc]
for more information

CLI arguments and environment variables

To pass CLI options when starting Hoodie, you have to separate them with --, for example:

$ npm start -- --port=8090 --inMemory

All environment variables are prefixed with hoodie_. So to set the port to
8090 and to start Hoodie in memory mode, you have to

	set the hoodie_port environment variable to 8090

	set the hoodie_inMemory environment variable to true

Hoodie CLI is using rc [https://www.npmjs.com/package/rc] for configuration,
so the same options can be set with environment variables and config files.
Environment variables are prefixed with hoodie_.

The priority of configuration

	Command line arguments

	Environment variables

	.hoodierc files

	Your app’s defaults form the "hoodie" key in "package.json"

	Hoodie’s default values as shown in table above

Plugins

You can extend your Hoodie app in two ways

	App-specific plugins

	3rd party plugins

App-specific plugins

You can extend your Hoodie’s client by creating the file hoodie/client/index.js
in your app’s repository, which should export a Hoodie Client plugin <http://docs.hood.ie/en/latest/api/client/hoodie.html#hoodie-plugin>.
It will dynamically be bundled into your client /hoodie/client.js.

Example

// /hoodie/client/index.js
module.exports = function (hoodie) {
 hoodie.hello = function (what) {
 return Promise.resolve('Hello, ' + (what || 'world') + '!')
 }
}

You can extend your Hoodie’s server routes and API by creating hoodie/server/index.js
in your app’s, which should export a hapi plugin [https://hapijs.com/tutorials/plugins].
All server routes defined in the plugin will be prefixed with /hoodie/<app name> where <app name> is your package.json “name” key.

Example

module.exports.register = register
module.exports.register.attributes = {
 name: 'hoodie-app-plugin'
}

function register (server, options, next) {
 server.route({
 method: 'GET',
 path: '/api',
 handler: function (request, reply) {
 reply('Hello, world!')
 }
 })

 next()
}

Try it it at http://localhost:8080/hoodie/<app name>/api

3rd party plugins

Hoodie plugins are npm modules <https://www.npmjs.com/search?q=hoodie-plugin->. We recommend to prefix your plugin names with
hoodie-plugin-, but it’s not required. The folder structure is the same as
for app-specific plugins:

The server plugin must be loadable via require('hoodie-plugin-foo/hoodie/server').
A Hoodie server plugin is a hapi plugin [http://hapijs.com/tutorials/plugins].
The client plugin must be loadable via require('hoodie-plugin-foo/hoodie/client')
A Hoodie client plugin can be a function or an object,
it will be passed into hoodie.plugin() <http://docs.hood.ie/en/latest/api/client/hoodie.html#hoodie-plugin>

Hoodie plugins can extend the Hoodie client, the Hoodie server and provide a
web UI for /hoodie/<plugin name>. All extension points are optional.
The hoodie/public folder will be exposed at /hoodie/<plugin name> by the
server if it exists. All server routes will be prefixed with /hoodie/<plugin name>.

<plugin name> is the name property in your package.json file, but can be
overridden with the hoodie.name property.

After installing and adding a Hoodie plugin to your app’s dependencies, you also
have to enable it by adding it to the hoodie.plugins array in your app’s
package.json file. The names are the npm package names.

The order in which server/client plugins are loaded is

	core modules (account, store, task)

	3rd party plugins (npm dependencies)

	app plugins

For an example plugin, have a look at Hoodie’s “Hello, world!” [https://github.com/hoodiehq/hoodie-plugin-hello-world] plugin .

Deployment

One line deploy

After you’ve built your Hoodie app you probably want to put it online. You can choose to deploy your app as read-only or deploy the backend couchdb database as well. This video [https://youtu.be/29Uclxq_1Vw] and the text below describes how to deploy your app using one line of code. Alternatively, you can deploy your app using Docker, please refer to the Docker section.

Deploying to Now

Now [https://zeit.co/now] allows you to deploy a Node application with its command line tool [https://github.com/zeit/now-cli]. It’s 100% free for Open Source projects. You can deploy an app from your computer or right from a GitHub repository. For example, to deploy our Hoodie Tracker demo [https://github.com/hoodiehq/hoodie-app-tracker] app all you have to do is to run this command:

$ now hoodiehq/hoodie-app-tracker --npm -e NODE_ENV=production -e hoodie_inMemory=true

To describe this further:

	hoodiehq/hoodie-app-tracker is the GitHub repository slug.

	--npm tells now to deploy using npm as there is also Dockerfile in the repository.

	-e NODE_ENV=production sets the NODE_ENV environment variable to production, which makes the deployment faster as no devDependencies will be installed.

	-e hoodie_inMemory=true makes the Hoodie app run in-memory mode, meaning that no data is persisted and no files are written. This is important because now is a read-only file system. That means that all user accounts and data will be lost on the next deployment, but it is great for for a quick test or demo of your application.

Alternatively, add this script to your package.json and you are good to go:

"now-start": "hoodie --inMemory",

Store Data With Cloudant

Cloudant [https://cloudant.com/] is a DBaaS (database-as-a-service). It provides most of CouchDB’s APIs and can be used as Hoodie’s database backend. Signing up for a free account only takes a moment. After sign up, you need to slightly adjust the now deployment command above.

$ now hoodiehq/hoodie-app-tracker -e NODE_ENV=production -e hoodie_inMemory=true -e hoodie_dbUrl=https://username:password@username.cloudant.com/

The hoodie_inMemory environment variable makes sure that Hoodie does not try to write any files like the bundled /hoodie/client.js library. The hoodie_dbUrl environment variable sets the address and credentials to your CouchDB. Replace username and password to whatever you signed up with.

Test and set an alias

When you deploy with now you will receive a random subdomain where you can access your application. It looks something like https://hoodie-app-tracker-randomxyz.now.sh/ and was already copied to your clipboard during the deployment. Open the URL in your browser to give it a try. Once everything is good, you can change the subdomain to your preference by running:

$ now alias set hoodie-app-tracker-randomxyz my-tracker-app

That will make your deployed Hoodie Tracker app accessible at https://my-tracker-app.now.sh. For example, here is the app that I deployed myself: https://hoodie-app-tracker.now.sh/

Docker

We continuously deploy our Hoodie Tracker App [https://github.com/hoodiehq/hoodie-app-tracker] using Docker. You can read
about our continuous
deployment set at hoodie-app-tracker/deployment.md [https://github.com/hoodiehq/hoodie-app-tracker/blob/master/deployment.md].

Deployment in linux

This guide is for Linux only at this point.
I have tried to deploy Hoodie-App-Tracker [https://github.com/hoodiehq/hoodie-app-tracker] as an example:

install dependencies

	Install CouchDB [http://linoxide.com/linux-how-to/install-couchdb-futon-ubuntu-1604/] 1.2.0 or later, 1.4.0 or later recommended for performance.

	Install NodeJS [https://nodejs.org/en/] LTS version or later. This includes npm.

	Install git [https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-16-04].

CouchDB

We assume you set up CouchDB with your package manager or manually following the
installation procedure [http://linoxide.com/linux-how-to/install-couchdb-futon-ubuntu-1604/].

In order to test if CouchDB is running fine or not, we can simply run the following
command which will retrieve the information through curl.

$ curl localhost:5984

If you are already using CouchDB for other things, we recommend starting a second
instance of CouchDB that is completely separate from your original one. See below
for instructions.

In this guide, we assume that your CouchDB is available at port 5984 [http://127.0.0.1:5984/].

Create a CouchDB admin user called admin with a strong password of your choice
by clicking on the Fix this at Apache CouchDB-Futon:Overview [http://127.0.0.1:5984/_utils/] link in the
lower right corner. Use admin as username and keep your password in mind.

Next we have to change CouchDB’s default configuration on a few points. The easiest thing is to go to and change the following fields (double click a value to enter the editing mode):

couchdb -> delayed_commits: false
couchdb -> max_dbs_open: 1024

System

Add this to /etc/security/limits.conf:

hoodie soft nofile 768
hoodie hard nofile 1024

Hoodie

Create a new system user:

$ sudo useradd --system \
 -m \
 --home /home/hoodie \
 --shell /bin/bash \
 --no-user-group \
 -c "Hoodie Administrator" hoodie

This will create a new user and its home directory /home/hoodie.
But unless you have a password, you can not be a user. To set a password run:

$ sudo passwd hoodie

Give a password of your choice.

cd in to that directory.

To switch to hoodie user, run:

$ sudo su hoodie

As user Hoodie, install your application:

$ git clone <repo url>

make sure package.json has a valid name property.

cd into the directory.Run :

$ cd <repo name>

Now run:

$ npm install

To run Hoodie as the root:

$ sudo su hoodie

To launch Hoodie now, as root :

$ npm start -- --dbUrl=http://admin:yourpassword@localhost:5984/

Replace yourpassword with the password you choose when you created the
admin user above.

That’s it. The app should be running by now.

Using Hoodie as hapi plugin

Here is an example usage of Hoodie as a hapi plugin:

var Hapi = require('hapi')
var hoodie = require('hoodie').register
var PouchDB = require('pouchdb-core')
 .plugin(require('pouchdb-mapreduce'))
 .plugin(require('pouchdb-adapter-memory'))

var server = new Hapi.Server()
server.connection({
 host: 'localhost',
 port: 8000
})

server.register({
 register: hoodie,
 options: { // pass options here
 inMemory: true,
 public: 'dist',
 PouchDB: PouchDB
 }
}, function (error) {
 if (error) {
 throw error
 }

 server.start(function (error) {
 if (error) {
 throw error
 }

 console.log(('Server running at:', server.info.uri))
 })
})

The available options are

	option

	default

	description

	PouchDB

	–

	PouchDB constructor [https://pouchdb.com/api.html#defaults]. See also custom PouchDB builds [https://pouchdb.com/2016/06/06/introducing-pouchdb-custom-builds.html]

	paths.data

	'.hoodie'

	Data path

	paths.public

	'public'

	Public path

	adminPassword

	–

	Password to login to Admin Dashboard. Login is not possible if adminPassword option is not set

	inMemory

	false

	If set to true, configuration and other files will not be read from / written to the file system

	client

	{}

	Hoodie Client [https://github.com/hoodiehq/hoodie-client#constructor] options. client.url `` is set based on hapi’s ``server.info.host

	account

	{}

	Hoodie Account Server [https://github.com/hoodiehq/hoodie-account-server/tree/master/plugin#options] options. account.admins, account.secret and account.usersDb are set based on db option above

	store

	{}

	Hoodie Store Server [https://github.com/hoodiehq/hoodie-store-server#options] options. store.couchdb, store.PouchDB are set based on db option above. ``store.hooks.onPreAuth` ` is set to bind user authentication for Hoodie Account to Hoodie Store

	plugins

	[]

	Array of npm names or paths of locations containing plugins. See also Hoodie plugins docs [http://docs.hood.ie/en/latest/guides/plugins.html]

	app

	{}

	App specific options for plugins

Hoodie API

Hoodie provides two APIs

	The Hoodie Client API

The Hoodie Client API is what you load into your web application using a
script tag. It connects to your Hoodie Backend’s routes

	The Hoodie Server API

The Hoodie Server API is used within Hoodie’s route handlers and by plugins
to manage accounts, data and to securely integrate with 3rd party services.

The Hoodie Client API

This library, commonly called Hoodie Client, is what you’ll be
working with on the client side. It consists of:

	The Hoodie Client API, which has
a couple of useful helpers

	The account API,
which lets you do user authentication, such as signing users up, in
and out

	The store API,
which provides means to store and retrieve data for each individial
user

	The connectionStatus API,
which provides helpers for connectivity.

	The log API, which
provides a nice API for logging all the things

The Hoodie Server API

The Hoodie Server API is currently work-in-progress. But you can have a look
at the Account Server API [https://github.com/hoodiehq/hoodie-account-server-api]
and the Store Server API [https://github.com/hoodiehq/hoodie-store-server-api]
for a sneak peak.

hoodie

Introduction

This document describes the functionality of the hoodie base object. It
provides a number of helper methods dealing with event handling and
connectivity, as well as a unique id generator and a means to set the
endpoint which Hoodie communicates with.

Initialisation

The Hoodie Client persists state in the browser, like the current user’s
id, session or the connection status to the backend.

hoodie.account.get('session').then(function (session) {
 if (session) {
 // user is signed in
 } else {
 // user is signed out
 }
})

Hoodie integrates Hoodie’s client core modules:

	The account API

	The store API

	The connectionStatus API

	The log API

Example

var Hoodie = require('@hoodie/client')
var hoodie = new Hoodie({
 url: 'https://myhoodieapp.com',
 PouchDB: require('pouchdb')
})

hoodie.account.signUp({
 username: 'pat@Example.com',
 password: 'secret'
}).then(function (accountAttributes) {
 hoodie.log.info('Signed up as %s', accountAttributes.username)
}).catch(function (error) {
 hoodie.log.error(error)
})

Constructor

new Hoodie(options)

	Argument

	Type

	Description

	Required

	options.PouchDB

	Constructor

	PouchDB constructor, see also PouchDB custom builds [https://pouchdb.com/custom.html]

	Yes

	options.url

	String

	Set to hostname where Hoodie server runs, if your app runs on a different host

	Yes

	options.account

	String

	account options [https://github.com/hoodiehq/hoodie-account-client#constructor]. options.url is always set to hoodie.url + ‘/account/api’

	No

	options.store

	String

	store options [https://github.com/hoodiehq/hoodie-account-client#constructor]. options.PouchDB is always set to Hoodie Client’s constructor [https://github.com/hoodiehq/hoodie-client#constructor]’s options.PouchDB. options.dbName is always set to hoodie.account.id. options.remote is always set to hoodie.url + ‘/store/api’.

	No

	options.task

	String

	task options [https://github.com/hoodiehq/hoodie-client-task#constructor]. options.userId is always set to hoodie.account.id. options.remote is always set to hoodie.url + ‘/task/api’

	No

	options.connectionStatus

	String

	connectionStatus options [https://github.com/hoodiehq/hoodie-connection-status#constructor]. options.url is always set to hoodie.url + ‘/connection-status/api’. options.method is always set
to HEAD

	No

hoodie.url

Read-only

hoodie.url

full url to the hoodie server, e.g. http://example.com/hoodie

hoodie.account

hoodie.account is an instance of hoodie-account-client [https://github.com/hoodiehq/hoodie-account-client].
See account API [https://github.com/hoodiehq/hoodie-account-client#api]

hoodie.store

hoodie.store is an instance of hoodie-store [https://github.com/hoodiehq/hoodie-store]. See store API [https://github.com/hoodiehq/hoodie-store#api]

hoodie.connectionStatus

hoodie.connectionStatus is an instance of hoodie-connection-status [https://github.com/hoodiehq/hoodie-connection-status]. See connectionStatus API [https://github.com/hoodiehq/hoodie-connection-status#api]

hoodie.log

hoodie.log is an instance of hoodie-log [https://github.com/hoodiehq/hoodie-log]. See log API [https://github.com/hoodiehq/hoodie-log#api]

hoodie.request

Sends an http request

hoodie.request(url)
// or
hoodie.request(options)

	Argument

	Type

	Description

	Required

	url

	String

	Relative path or full URL. A path must start with / and sends a GET request to the path, prefixed by hoodie.url. In case a full URL is passed, a GET request to the url is sent.

	Yes

	options.url

	String

	Relative path or full URL. A path must start with / and sends a GET request to the path, prefixed by hoodie.url. In case a full URL is passed, a GET request to the url is sent.

	Yes

	options.method

	String

	Defaults to GET. One of GET, HEAD, POST, PUT, DELETE.

	No

	options.data

	Object, Array,
String or Number

	For PUT and POST requests, an optional payload can be sent. It will be stringified before sending the request.

	No

	options.headers

	Object

	Map of Headers to be sent with the request.

	No

Examples

// sends a GET request to hoodie.url + '/foo/api/bar'
hoodie.request('/foo/api/bar')
// sends a GET request to another host
hoodie.request('https://example.com/foo/bar')
// sends a PATCH request to /foo/api/bar
hoodie.request({
 method: 'PATCH',
 url: '/foo/api/bar',
 headers: {
 'x-my-header': 'my value'
 },
 data: {
 foo: 'bar'
 }
})

hoodie.plugin

Initialise hoodie plugin

hoodie.plugin(methods)
hoodie.plugin(plugin)

	Argument

	Type

	Description

	Required

	methods

	Object

	Method names as keys, functions as values. Methods get directly set on hoodie, e.g. hoodie.plugin({foo: function () {}}) sets hoodie.foo to function () {}

	Yes

	plugins

	Function

	The passed function gets called with hoodie as first argument, and can directly set new methods / properties on it.

	Yes

Examples

hoodie.plugin({
 sayHi: function () { alert('hi') }
})
hoodie.plugin(function (hoodie) {
 hoodie.sayHi = function () { alert('hi') }
})

hoodie.on

Subscribe to event.

hoodie.on(eventName, handler)

Example

hoodie.on('account:signin', function (accountProperties) {
 alert('Hello there, ' + accountProperties.username)
})

hoodie.one

Call function once at given event.

hoodie.one(eventName, handler)

Example

hoodie.one('mycustomevent', function (options) {
 console.log('foo is %s', options.bar)
})
hoodie.trigger('mycustomevent', { foo: 'bar' })
hoodie.trigger('mycustomevent', { foo: 'baz' })
// logs "foo is bar"
// DOES NOT log "foo is baz"

hoodie.off

Removes event handler that has been added before

hoodie.off(eventName, handler)

Example

hoodie.off('connectionstatus:disconnect', showNotification)

hoodie.trigger

Trigger custom events

hoodie.trigger(eventName[, option1, option2, ...])

Example

hoodie.trigger('mycustomevent', { foo: 'bar' })

Events

	Event

	Decription

	account:*

	events, see account events

	store:*

	events, see store events

	connectionStatus:*

	events, see connectionStatus events

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-client.git
cd hoodie-client
npm install

Run all tests

npm test

Run test from one file only

node tests/specs/id

hoodie.account

The account object in the client-side Hoodie API covers all user and
authentication-related operations, and enables you to do previously
complex operations, such as signing up a new user, with only a few lines
of frontend code. Since data in Hoodie is generally bound to a
user, it makes
sense to familiarise yourself with account before you move on to
store.

hoodie-account-client is a JavaScript client for the
Account JSON API [http://docs.accountjsonapi.apiary.io/].
It persists session information in localStorage (or your own store API) and
provides front-end friendly APIs for the authentication-related operations as
mentioned above.

Example

hoodie.account.get('session').then(function (sessionProperties) {
 if (!sessionProperties) {
 return redirectToHome()
 }

 renderWelcome(sessionProperties)
}).catch(redirectToHome)

hoodie.account.on('signout', redirectToHome)

hoodie.account.validate

Calls the function passed into the Constructor. Returns a Promise that resolves to true by default

hoodie.account.validate(options)

	Argument

	Type

	Required

	options.username

	String

	No

	options.password

	String

	No

	options.profile

	Object

	No

Resolves with an argument.

Rejects with any errors thrown by the function originally passed into the Constructor.

Example

hoodie.account.validate({
 username: 'DocsChicken',
 password: 'secret'
})

.then(function () {
 console.log('Successfully validated!')
})

.catch(function (error) {
 console.log(error) // should be an error about the password being too short
})

hoodie.account.signUp

Creates a new user account on the Hoodie server.
Does not sign in the user automatically, hoodie.account.signIn must be called separately.

hoodie.account.signUp(accountProperties)

	Argument

	Type

	Required

	accountProperties.username

	String

	Yes

	accountProperties.password

	String

	Yes

Resolves with accountProperties:

{
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-01T00:00.000Z"
}

Rejects with:

	InvalidError

	Username must be set

	SessionError

	Must sign out first

	ConflictError

	Username <username> already exists

	ConnectionError

	Could not connect to server

Example

hoodie.account.signUp({
 username: 'pat',
 password: 'secret'
}).then(function (accountProperties) {
 alert('Account created for ' + accountProperties.username)
}).catch(function (error) {
 alert(error)
})

hoodie.account.signIn

Creates a user session

hoodie.account.signIn(options)

	Argument

	Type

	Description

	Required

	options.username

	String

	
	

	Yes

	options.password

	String

	
	

	Yes

Resolves with accountProperties:

{
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-02T00:00.000Z",
 "profile": {
 "fullname": "Dr. Pat Hook"
 }
}

Rejects with:

	UnconfirmedError

	Account has not been confirmed yet

	UnauthorizedError

	Invalid Credentials

	Error

	A custom error set on the account object, e.g. the account could be blocked due to missing payments

	ConnectionError

	Could not connect to server

Example

hoodie.account.signIn({
 username: 'pat',
 password: 'secret'
}).then(function (sessionProperties) {
 alert('Ohaj, ' + sessionProperties.username)
}).catch(function (error) {
 alert(error)
})

hoodie.account.signOut

Deletes the user’s session

hoodie.account.signOut()

Resolves with sessionProperties like hoodie.account.signIn, but without the session id:

{
 "account": {
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-02T00:00.000Z",
 "profile": {
 "fullname": "Dr. Pat Hook"
 }
 }
}

Rejects with:

	Error

	A custom error thrown in a before:signout hook

Example

hoodie.account.signOut().then(function (sessionProperties) {
 alert('Bye, ' + sessionProperties.username)
}).catch(function (error) {
 alert(error)
})

hoodie.account.destroy

Destroys the account of the currently signed in user.

hoodie.account.destroy()

Resolves with sessionProperties like hoodie.account.signIn, but without the session id:

{
 "account": {
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-02T00:00.000Z",
 "profile": {
 "fullname": "Dr. Pat Hook"
 }
 }
}

Rejects with:

	Error

	A custom error thrown in a before:destroy hook

	ConnectionError

	Could not connect to server

Example

hoodie.account.destroy().then(function (sessionProperties) {
 alert('Bye, ' + sessionProperties.username)
}).catch(function (error) {
 alert(error)
})

hoodie.account.get

Returns account properties from local cache.

hoodie.account.get(properties)

	Argument

	Type

	Description

	Required

	properties

	String or Array of strings

	When String, only this property gets returned. If array of strings, only passed properties get returned

	No

Returns object with account properties, or undefined if not signed in.

Examples

var properties = hoodie.account.get()
alert('You signed up at ' + properties.createdAt)
var createdAt = hoodie.account.get('createdAt')
alert('You signed up at ' + createdAt)
var properties = hoodie.account.get(['createdAt', 'updatedAt'])
alert('You signed up at ' + properties.createdAt)

hoodie.account.fetch

Fetches account properties from server.

hoodie.account.fetch(properties)

	Argument

	Type

	Description

	Required

	properties

	String or Array of strings

	When String, only this property gets returned. If array of strings, only passed properties get returned. Property names can have ‘.’ separators to return nested properties.

	No

Resolves with accountProperties:

{
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-02T00:00.000Z"
}

Rejects with:

	UnauthenticatedError

	Session is invalid

	ConnectionError

	Could not connect to server

Examples

hoodie.account.fetch().then(function (properties) {
 alert('You signed up at ' + properties.createdAt)
})
hoodie.account.fetch('createdAt').then(function (createdAt) {
 alert('You signed up at ' + createdAt)
})
hoodie.account.fetch(['createdAt', 'updatedAt']).then(function (properties) {
 alert('You signed up at ' + properties.createdAt)
})

hoodie.account.update

Update account properties on server and local cache

hoodie.account.update(changedProperties)

	Argument

	Type

	Description

	Required

	changedProperties

	Object

	Object of properties & values that changed. Other properties remain unchanged.

	No

Resolves with accountProperties:

{
 "id": "account123",
 "username": "pat",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-01T00:00.000Z"
}

Rejects with:

	UnauthenticatedError

	Session is invalid

	InvalidError

	Custom validation error

	ConflictError

	Username <username> already exists

	ConnectionError

	Could not connect to server

Example

hoodie.account.update({username: 'treetrunks'}).then(function (properties) {
 alert('You are now known as ' + properties.username)
})

hoodie.account.profile.get

Returns profile properties from local cache.

hoodie.account.profile.get(properties)

	Argument

	Type

	Description

	Required

	properties

	String or Array of strings

	When String, only this property gets returned. If array of strings, only passed properties get returned. Property names can have . separators to return nested properties.

	No

Returns object with profile properties, falls back to empty object {}. Returns undefined if not signed in.

Examples

var properties = hoodie.account.profile.get()
alert('Hey there ' + properties.fullname)
var fullname = hoodie.account.profile.get('fullname')
alert('Hey there ' + fullname)
var properties = hoodie.account.profile.get(['fullname', 'address.city'])
alert('Hey there ' + properties.fullname + '. How is ' + properties.address.city + '?')

hoodie.account.profile.fetch

Fetches profile properties from server.

hoodie.account.profile.fetch(options)

	Argument

	Type

	Description

	Required

	properties

	String or Array of strings

	When String, only this property gets returned. If array of strings, only passed properties get returned. Property names can have ‘.’ separators to return nested properties.

	No

Resolves with profileProperties:

{
 "id": "account123-profile",
 "fullname": "Dr Pat Hook",
 "address": {
 "city": "Berlin",
 "street": "Adalberststraße 4a"
 }
}

Rejects with:

	UnauthenticatedError

	Session is invalid

	ConnectionError

	Could not connect to server

Examples

hoodie.account.fetch().then(function (properties) {
 alert('Hey there ' + properties.fullname)
})
hoodie.account.fetch('fullname').then(function (fullname) {
 alert('Hey there ' + fullname)
})
hoodie.account.fetch(['fullname', 'address.city']).then(function (properties) {
 alert('Hey there ' + properties.fullname + '. How is ' + properties.address.city + '?')
})

hoodie.account.profile.update

Update profile properties on server and local cache

hoodie.account.profile.update(changedProperties)

	Argument

	Type

	Description

	Required

	changedProperties

	Object

	Object of properties & values that changed. Other properties remain unchanged.

	No

Resolves with profileProperties:

{
 "id": "account123-profile",
 "fullname": "Dr Pat Hook",
 "address": {
 "city": "Berlin",
 "street": "Adalberststraße 4a"
 }
}

Rejects with:

	UnauthenticatedError

	Session is invalid

	InvalidError

	Custom validation error

	ConnectionError

	Could not connect to server

Example

hoodie.account.profile.update({fullname: 'Prof Pat Hook'}).then(function (properties) {
 alert('Congratulations, ' + properties.fullname)
})

hoodie.account.request

Sends a custom request to the server, for things like password resets, account upgrades, etc.

hoodie.account.request(properties)

	Argument

	Type

	Description

	Required

	properties.type

	String

	Name of the request type, e.g. “passwordreset”

	Yes

	properties

	Object

	Additional properties for the request

	No

Resolves with requestProperties:

{
 "id": "request123",
 "type": "passwordreset",
 "contact": "pat@example.com",
 "createdAt": "2016-01-01T00:00.000Z",
 "updatedAt": "2016-01-01T00:00.000Z"
}

Rejects with:

	ConnectionError

	Could not connect to server

	NotFoundError

	Handler missing for “passwordreset”

	InvalidError

	Custom validation error

Example

hoodie.account.request({type: 'passwordreset', contact: 'pat@example.com'}).then(function (properties) {
 alert('A password reset link was sent to ' + properties.contact)
})

hoodie.account.on

hoodie.account.on(event, handler)

Example

hoodie.account.on('signin', function (accountProperties) {
 alert('Hello there, ' + accountProperties.username)
})

hoodie.account.one

Call function once at given account event.

hoodie.account.one(event, handler)

Example

hoodie.account.one('signin', function (accountProperties) {
 alert('Hello there, ' + accountProperties.username)
})

hoodie.account.off

Removes event handler that has been added before

hoodie.account.off(event, handler)

Example

hoodie.account.off('singin', showNotification)

Events

	Event

	Description

	Arguments

	signup

	New user account created successfully

	accountProperties with .session property

	signin

	Successfully signed in to an account

	accountProperties with .session property

	signout

	Successfully signed out

	accountProperties with .session property

	passwordreset

	Email with password reset token sent

	

	unauthenticate

	Server responded with “unauthenticated” when checking session

	

	reauthenticate

	Successfully signed in with the same username (useful when session has expired)

	accountProperties with .session property

	update

	Successfully updated an account’s properties

	accountProperties with .session property

Hooks

// clear user’s local store signin and after signout
hoodie.account.hook.before('signin', function (options) {
 return localUserStore.clear()
})
hoodie.account.hook.after('signout', function (options) {
 return localUserStore.clear()
})

	Hook

	Arguments

	signin

	options as they were passed into hoodie.account.signIn(options)

	signout

	{}

See before-after-hook [https://www.npmjs.com/package/before-after-hook] for more information.

Requests

Hoodie comes with a list of built-in account requests, which can be disabled, overwritten or extended in hoodie-account-server [https://github.com/hoodiehq/hoodie-account-server/tree/master/plugin#optionsrequests].

When a request succeeds, an event with the same name as the request type gets emitted. For example, hoodie.account.request({type: 'passwordreset', contact: 'pat@example.com') triggers a passwordreset event, with the requestProperties passed as argument.

	passwordreset

	Request a password reset token

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-account-client.git
cd hoodie-account-client

In Node.js

Run all tests and validate JavaScript Code Style using standard [https://www.npmjs.com/package/standard]

npm test

To run only the tests

npm run test:node

To test hoodie-account-client in a browser you can link it into hoodie-account [https://github.com/hoodiehq/hoodie-account], which provides a dev-server:

git clone https://github.com/hoodiehq/hoodie-account.git
cd hoodie-account
npm install
npm link /path/to/hoodie-account-client
npm start

hoodie-account bundles hoodie-account-client on npm start, so you need to restart hoodie-account to see your changes.

hoodie.store

If you want to do anything with data in Hoodie, this is where it
happens and this is the Hoodie Client for data persistence & offline sync.

Example

var Store = require('@hoodie/store-client')
 var store = new Store('mydbname', {
 PouchDB: require('pouchdb'),
 remote: 'http://localhost:5984/mydbname'
})

Or

var PresetStore = Store.defaults({
 PouchDB: require('pouchdb'),
 remoteBaseUrl: 'http://localhost:5984'
})
var store = new PresetStore('mydb')

Store.defaults

Store.defaults(options)

	Argument

	Type

	Description

	Required

	options.remoteBaseUrl

	String

	Base url to CouchDB. Will be used as remote prefix for store instances

	No

	options.PouchDB

	Constructor

	PouchDB custom builds [https://pouchdb.com/custom.html]

	Yes

Returns a custom Store Constructor with passed default options.

Example

var PresetStore = Store.defaults({
 remoteBaseUrl: 'http://localhost:5984'
})
var store = new PresetStore('mydb')
store.sync() // will sync with http://localhost:5984/mydb

Constructor

new Store(dbName, options)

	Argument

	Type

	Description

	Required

	dbName

	String

	name of the database

	Yes

	options.remote

	String

	name or URL of remote database

	Yes (unless remoteBaseUrl is preset, see Store.defaults)

	options.PouchDB

	Constructor

	PouchDB custom builds

	Yes (unless preset using Store.defaults))

Returns store API.

Example

var Store = require('@hoodie/store-client')
var store = new Store('mydb', { remote: 'http://localhost:5984/mydb' })
store.sync() // will sync with http://localhost:5984/mydb

store.add(properties)

store.add(properties)

	Argument

	Type

	Description

	Required

	properties

	Object

	properties of document

	Yes

	properties._id

	String

	If set, the document will be stored at given id

	No

Resolves with properties and adds _id (unless provided), createdAt and updatedAt properties.

{
 "foo": "bar",
 "hoodie": {
 "createdAt": "2016-05-09T12:00:00.000Z",
 "updatedAt": "2016-05-09T12:00:00.000Z"
 },
 "_id": "12345678-1234-1234-1234-123456789ABC",
 "_rev": "1-b1191b8cfee045f495594b1cf2823683"
}

Rejects with:

🐕 Add expected Errors: #102 [https://github.com/hoodiehq/hoodie-store-client/issues/102]

table

Example

store.add({foo: 'bar'}).then(function (doc) {
 alert(doc.foo) // bar
}).catch(function (error) {
 alert(error)
})

store.add(arrayOfProperties)

store.add(arrayOfProperties)

	Argument

	Type

	Description

	Required

	‘’arrayOfProperties’‘

	Array

	Array of properties, see store.add(properties)

	Yes

Resolves with properties and adds _id (unless provided), createdAt and updatedAt properties. Resolves with array of properties items if called with propertiesArray.

{
 "foo": "bar",
 "hoodie": {
 "createdAt": "2016-05-09T12:00:00.000Z",
 "updatedAt": "2016-05-09T12:00:00.000Z"
 },
 "_id": "12345678-1234-1234-1234-123456789ABC",
 "_rev": "1-b1191b8cfee045f495594b1cf2823683"
}

Rejects with:

🐕 Add expected Errors: #102

Example: add single document

store.add({foo: 'bar'}).then(function (doc) {
 alert(doc.foo) // bar
}).catch(function (error) {
 alert(error)
})

Example: add multiple documents

store.add([{foo: 'bar'}, {bar: 'baz'}]).then(function (docs) {
 alert(docs.length) // 2
}).catch(function (error) {
 alert(error)
})

store.find(id)

store.find(id)

	Argument

	Type

	Description

	Required

	id

	String

	Unique id of document

	Yes

Resolves with properties

{
 "id": "12345678-1234-1234-1234-123456789ABC",
 "foo": "bar",
 "createdAt": "2016-05-09T12:00:00.000Z",
 "updatedAt": "2016-05-09T12:00:00.000Z"
}

Rejects with:

🐕 Add expected Errors: #102

Example

store.find('12345678-1234-1234-1234-123456789ABC').then(function (doc) {
 alert(doc.id)
}).catch(function (error) {
 alert(error)
})

store.find(doc)

store.find(doc)

	Argument

	Type

	Description

	Required

	doc

	Object

	document with id property

	Yes

Resolves with properties

{
 "id": "12345678-1234-1234-1234-123456789ABC",
 "foo": "bar",
 "createdAt": "2016-05-09T12:00:00.000Z",
 "updatedAt": "2016-05-09T12:00:00.000Z"
}

Rejects with:

🐕 Add expected Errors: #102

store.find(doc).then(function (doc) {
 alert(doc.id)
}).catch(function (error) {
 alert(error)
})

store.find(idsOrDocs)

store.find(idsOrDocs)

	Argument

	Type

	Description

	Required

	idsOrDocs

	Array

	Array of id (String) or doc (Object) items

	Yes

Resolves with array of properties

[{
 "id": "12345678-1234-1234-1234-123456789ABC",
 "foo": "bar",
 "createdAt": "2016-05-09T12:00:00.000Z",
 "updatedAt": "2016-05-09T12:00:00.000Z"
}]

Rejects with:

🐕 Add expected Errors: #102

Example

store.find(doc).then(function (doc) {
 alert(doc.id)
}).catch(function (error) {
 alert(error)
})

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-store-client.git
cd hoodie-store-client
npm install

In Node.js

Run all tests and validate JavaScript Code Style using standard

npm test

To run only the tests

npm run test:node

Run tests in browser

npm run test:browser:local

This will start a local server. All tests and coverage will be run at http://localhost:8080/__zuul

hoodie.connectionStatus

hoodie-connection-status is a browser library to monitor a connection status.
It emits disconnect & reconnect events if the request status changes and persists its status.

Example

var connectionStatus = new ConnectionStatus('https://example.com/ping')

connectionStatus.on('disconnect', showOfflineNotification)
connectionStatus.on('reconnect reset', hideOfflineNotification)
myOtherRemoteApiThing.on('error', connectionStatus.check)

Constructor

new ConnectionStatus(options)

	Argument

	Type

	Description

	Required

	options.url

	String

	Full url to send pings to

	Yes

	options.method

	String

	Defaults to HEAD. Must be valid http verb like 'GET' or 'POST' (case insensitive)

	No

	options.interval

	Number

	Interval in ms. If set a request is send immediately. The interval starts after each request response. Can also be set to an object to differentiate intervals
by connection status, see below

	No

	options.interval.connected

	Number

	Interval in ms while connectionStatus.ok is not false. If set, a request is send immediately. The interval starts after each request response.

	No

	options.interval.disconnected

	Number

	Interval in ms while connectionStatus.ok is false. If set, a request is send immediately. The interval starts after each request response.

	No

	options.cache

	Object or
false

	Object with .get(), .set(properties) and .unset() methods to persist the connection status. Each method must return a promise,
.get() must resolve with the current state or an empty object.
If set to false the connection status will not be persisted.

	Defaults
to a localStorage-based API [https://github.com/gr2m/async-get-set-store]

	options.cacheTimeout

	Number

	time in ms after which a cache shall be invalidated. When invalidated on initialisation, a reset event gets triggered on next tick.

	No

Example

var connectionStatus = new ConnectionStatus('https://example.com/ping')

connectionStatus.on('disconnect', showOfflineNotification)
connectionStatus.check()

connectionStatus.ready

Read-only

Promise that resolves once the ConnectionStatus instance loaded its current state from the cache.

connectionStatus.ok

Read-only

connectionStatus.ok

	Returns undefined if no status yet

	Returns true last check responded ok

	Returns false if last check failed

The state is persisted in cache.

connectionStatus.isChecking

Read-only

connectionStatus.isChecking

	Returns undefined if status not loaded yet, see connectionStatus.ready

	Returns true if connection is checked continuously

	Returns false if connection is not checked continuously

connectionStatus.check(options)

connectionStatus.check(options)

	Argument

	Type

	Description

	Required

	options.timeout

	Number

	Time in ms after which a ping shall be aborted with a timeout error

	No

Resolves without value.

Rejects with:

	name

	status

	message

	TimeoutError

	0

	Connection timeout

	ServerError

	as returned by server

	as returned by server

	ConnectionError

	undefined

	Server could not be reached

Example

connectionStatus.check()

.then(function () {
// Connection is good, connectionStatus.ok is true
})

.catch(function () {
// Cannot connect to server, connectionStatus.ok is false
})

connectionStatus.startChecking(options)

Starts checking connection continuously

connectionStatus.startChecking(options)

	Argument

	Type

	Description

	Required

	options.interval

	Number

	Interval in ms. The interval starts after each request response. Can also be set to an object to differentiate interval by connection state, see below

	Yes

	options.interval.connected

	Number

	Interval in ms while connectionStatus.ok is not false. The interval starts after each request response.

	No

	options.interval.disconnected

	Number

	Interval in ms while connectionStatus.ok is false. The interval starts after each request response.

	No

	options.timeout

	Number

	Time in ms after which a ping shall be aborted with a timeout error.

	No

Resolves without values.

Example

connectionStatus.startChecking({interval: 30000})
 .on('disconnect', showOfflineNotification)

connectionStatus.stopChecking()

Stops checking connection continuously.

connectionStatus.stopChecking()

Resolves without values. Does not reject.

connectionStatus.reset(options)

Clears status & cache, aborts all pending requests.

connectionStatus.reset(options)

options is the same as in Constructor

Resolves without values. Does not reject.

Example

connectionStatus.reset(options).then(function () {
 connectionStatus.ok === undefined // true
})

Events

	disconnect

	Ping fails and connectionStatus.ok isn’t false

	reconnect

	Ping succeeds and connectionStatus.ok is false

	reset

	Cache invalidated on initialisation or connectionStatus.reset() called

Example

connectionStatus.on('disconnect', function () {})
connectionStatus.on('reconnect', function () {})
connectionStatus.on('reset', function () {})

Testing

Local setup

git clone git@github.com:hoodiehq/hoodie-connection-status.git
cd hoodie-connection-status
npm install

Run all tests and code style checks

npm test

Run all tests on file change

npm run test:watch

Run specific tests only

run unit tests
node tests/specs

run .check() unit tests
node tests/specs/check

run walkthrough integration test
node tests/integration/walkthrough

hoodie.log

hoodie-log is a standalone JavaScript library for logging to the browser console.
If available, it takes advantage of CSS-based styling of console log outputs [https://developer.mozilla.org/en-US/docs/Web/API/Console#Styling_console_output].

Example

var log = new Log('hoodie')

log('ohaj!')
// (hoodie) ohaj!
log.debug('This will help with debugging.')
// (hoodie:debug) This will help with debugging.
log.info('This might be of interest. Or not.')
// (hoodie:info) This might be of interest. Or not.
log.warn('Something is fishy here!')
// (hoodie:warn) Something is fishy here!
log.error('oooops')
// (hoodie:error) oooops

var fooLog = log.scoped('foo')
fooLog('baz!')
// (hoodie:foo) baz!

Constructor

new Log(prefix)
// or
new Log(options)

	Argument

	Type

	Description

	Required

	prefix

	String

	Prefix for log messages

	Yes

	options.prefix

	String

	Prefix for log messages

	Yes

	options.level

	String

	Defaults to warn. One of debug, info, warn or error. debug is the lowest level, and everything will be logged to the console. error is the highest level and nothing but errors will be logged.

	No

	styles

	Boolean or Object

	Defaults to true. If set to false, all log messages are prefixed by (<prefix>:<log type>), e.g. (fooprefix:warn) bar is not available.. If set to true, styles are applied to the prefix. The styles can be customised, see below

	No

	styles.default

	String

	Defaults to color: white; padding: .2em .4em; border-radius: 1em. Base CSS styles for all log types

	No

	styles.reset

	String

	Defaults to background: inherit; color: inherit. Reset CSS styles, applied for message after prefix

	No

	styles.log

	String

	Defaults to background: gray. CSS Styles for default log calls without log level

	No

	styles.debug

	String

	Defaults to background: green. CSS Styles for debug logs

	No

	styles.info

	String

	Defaults to background: blue. CSS Styles for info logs

	No

	styles.warn

	String

	Defaults to background: orange. CSS Styles for warn logs

	No

	styles.error

	String

	Defaults to background: red. CSS Styles for error logs

	No

Example

var log = new Log({
 prefix: 'hoodie',
 level: 'warn',
 styles: {
 default: 'color: white; padding: .2em .4em; border-radius: 1em',
 debug: 'background: green',
 log: 'background: gray',
 info: 'background: blue',
 warn: 'background: orange',
 error: 'background: red',
 reset: 'background: inherit; color: inherit'
 }
}

log.prefix

Read-only

log.prefix

Prefix used in log messages

Example

log = new Log('hoodie')
log.prefix // hoodie
log.warn("Something is fishy here!")
// (hoodie:warn) Something is fishy here!

log.level

One of debug, info, warn or error. debug is the lowest level, and everything will be logged to the console.
error is the highest level and nothing but errors will be logged.

log.level

Example

log.level = 'debug'
log.debug('This will help with debugging.')
// (hoodie:debug) This will help with debugging.
log.level = 'info'
log.debug('This will help with debugging.')
// <no log>
log.level = 'foo'
// throws InvalidValue error

log()

Logs message to browser console. Accepts same arguments as console.log [https://developer.mozilla.org/en-US/docs/Web/API/Console/log].

log("ohaj!")

log.debug()

Logs debug message to browser console if level is set to debug. Accepts same arguments as console.log [https://developer.mozilla.org/en-US/docs/Web/API/Console/log].

log.debug('This will help with debugging.')

log.info()

Logs info message to browser console if level is set to debug or info. Accepts same arguments as console.log [https://developer.mozilla.org/en-US/docs/Web/API/Console/log].

log.info('This might be of interest. Or not.')

log.warn()

Logs warning to browser console unless level is set to error. Accepts same arguments as console.log [https://developer.mozilla.org/en-US/docs/Web/API/Console/log].

log.warn('Something is fishy here!')

log.error()

Logs error message to browser console. Accepts same arguments as console.log [https://developer.mozilla.org/en-US/docs/Web/API/Console/log].

log.error('oooops')

log.scoped()

log.scoped(prefix)

	Argument

	Type

	Description

	Required

	prefix

	String

	Prefix for log messages

	Yes

Returns log API with extended prefix

Example

var log = new Log('hoodie')
log('ohaj!')
// (hoodie) ohaj!
var fooLog = log.scoped('foo')
fooLog('baz!')
// (hoodie:foo) baz!

Testing

Local setup

git clone git@github.com:hoodiehq/hoodie-log.git
cd hoodie-log
npm install

Run all tests and code style checks

npm test

Run all tests on file change

npm run test:watch

Run specific tests only

run .debug() unit tests
node tests/specs/debug.js

Contributing to Hoodie

Please take a moment to review this document in order to make the
contribution process easy and effective for everyone involved.

Following these guidelines helps to communicate that you respect the
time of the developers managing and developing this open source project.
In return, they should reciprocate that respect in addressing your
issue, assessing changes, and helping you finalize your pull requests.

As for everything else in the project, the contributions to Hoodie are
governed by our Code of Conduct [http://hood.ie/code-of-conduct/].

Using the issue tracker

First things first: Do NOT report security vulnerabilities in public
issues! Please disclose responsibly by letting the Hoodie
team know upfront.
We will assess the issue as soon as possible on a best-effort basis and
will give you an estimate for when we have a fix and release available
for an eventual public disclosure.

The issue tracker is the preferred channel for bug reports,
features requests and submitting pull
requests, but please respect the following
restrictions:

	Please do not use the issue tracker for personal support
requests. Use the Hoodie Chat [http://hood.ie/chat/].

	Please do not derail or troll issues. Keep the discussion on
topic and respect the opinions of others.

Bug reports

A bug is a demonstrable problem that is caused by the code in the
repository. Good bug reports are extremely helpful - thank you!

Guidelines for bug reports:

	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
latest master or next branch in the repository.

	Isolate the problem — ideally create a reduced test case.

A good bug report shouldn’t leave others needing to chase you up for
more information. Please try to be as detailed as possible in your
report. What is your environment? What steps will reproduce the issue?
What OS experiences the problem? What would you expect to be the
outcome? All these details will help people to fix any potential bugs.

Example:

Short and descriptive example bug report title

A summary of the issue and the browser/OS environment in which it
occurs. If suitable, include the steps required to reproduce the
bug.

	This is the first step

	This is the second step

	Further steps, etc.

<url> - a link to the reduced test case

Any other information you want to share that is relevant to the
issue being reported. This might include the lines of code that you
have identified as causing the bug, and potential solutions (and
your opinions on their merits).

Feature requests

Feature requests are welcome. But take a moment to find out whether your
idea fits with the scope and aims of the project. It’s up to you to
make a strong case to convince the project’s developers of the merits of
this feature. Please provide as much detail and context as possible.

Pull requests

Good pull requests - patches, improvements, new features - are a
fantastic help. They should remain focused in scope and avoid containing
unrelated commits.

Please ask first before embarking on any significant pull request
(e.g. implementing features, refactoring code), otherwise you risk
spending a lot of time working on something that the project’s
developers might not want to merge into the project.

For new Contributors

If you never created a pull request before, welcome :tada: :smile: Here
is a great
tutorial [https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github]
on how to send one :)

	Fork [http://help.github.com/fork-a-repo/] the project, clone
your fork, and configure the remotes using command line:

Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/<repo-name>

Navigate to the newly cloned directory
cd <repo-name>

Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/hoodiehq/<repo-name>

	If you cloned a while ago, get the latest changes from upstream:

git checkout master git pull upstream master

	Create a new topic branch (off the main project development branch)
to contain your feature, change, or fix:

git checkout -b <topic-branch-name>

	Make sure to update, or add to the tests when appropriate. Patches
and features will not be accepted without tests. Run npm test to
check that all tests pass after you’ve made changes. Look for a
Testing section in the project’s README for more information.

	If you added or changed a feature, make sure to document it
accordingly in the README.md file.

	Push your topic branch up to your fork:

git push origin <topic-branch-name>

	Open a Pull
Request [https://help.github.com/articles/using-pull-requests/]
with a clear title and description.

For Members of the Hoodie Contributors Team

	Clone the repo and create a branch

git clone https://github.com/hoodiehq/<repo-name>
cd <repo-name>
git checkout -b <topic-branch-name>

	Make sure to update, or add to the tests when appropriate. Patches
and features will not be accepted without tests. Run npm test to
check that all tests pass after you’ve made changes. Look for a
Testing section in the project’s README for more information.

	If you added or changed a feature, make sure to document it
accordingly in the README.md file.

	Push your topic branch up to our repo

git push origin <topic-branch-name>

	Open a Pull Request using your branch with a clear title and
description.

Optionally, you can help us with these things. But don’t worry if they
are too complicated, we can help you out and teach you as we go :)

	Update your branch to the latest changes in the upstream master
branch. You can do that locally with

git pull --rebase upstream master

Afterwards force push your changes to your remote feature branch.

	Once a pull request is good to go, you can tidy up your commit
messages using Git’s interactive
rebase [https://help.github.com/articles/interactive-rebase].
Please follow our commit message conventions shown below, as they are
used by
semantic-release [https://github.com/semantic-release/semantic-release]
to automatically determine the new version and release to npm. In a
nutshell:

Commit Message Conventions

	Commit test files with test: ... or test(scope): ... prefix

	Commit bug fixes with fix: ... or fix(scope): ... prefix

	Commit breaking changes by adding BREAKING CHANGE: in the commit
body (not the subject line)

	Commit changes to package.json, .gitignore and other meta
files with chore(filenamewithoutext): ...

	Commit changes to README files or comments with docs: ...

	Cody style changes with style: standard

IMPORTANT: By submitting a patch, you agree to license your work
under the same license as that used by the project.

Triagers

There is a defined process to manage issues, because
this helps to speed up releases and minimizes user pain. Triaging is a
great way to contribute to Hoodie without having to write code. If you
are interested, please leave a comment
here [https://github.com/hoodiehq/discussion/issues/50] asking to
join the triaging team.

Maintainers

If you have commit access, please follow this process for merging
patches and cutting new releases.

Reviewing changes

	Check that a change is within the scope and philosophy of the
component.

	Check that a change has any necessary tests.

	Check that a change has any necessary documentation.

	If there is anything you don’t like, leave a comment below the
respective lines and submit a “Request changes” review. Repeat until
everything has been addressed.

	If you are not sure about something, mention @hoodie/maintainers
or specific people for help in a comment.

	If there is only a tiny change left before you can merge it and you
think it’s best to fix it yourself, you can directly commit to the
author’s fork. Leave a comment about it so the author and others
will know.

	Once everything looks good, add an “Approve” review. Don’t forget to
say something nice 👏🐶💖✨

	If the commit messages follow our
conventions

	If there is a breaking change, make sure that BREAKING CHANGE:
with exactly that spelling (incl. the “:”) is in body of the
according commit message. This is very important, better look
twice :)

	Make sure there are fix: ... or feat: ... commits depending
on whether a bug was fixed or a feature was added. Gotcha: look
for spaces before the prefixes of fix: and feat:, these get
ignored by semantic-release.

	Use the “Rebase and merge” button to merge the pull request.

	Done! You are awesome! Thanks so much for your help 🤗

	If the commit messages do not follow our conventions

	Use the “squash and merge” button to clean up the commits and merge
at the same time: ✨🎩

	Is there a breaking change? Describe it in the commit body. Start
with exactly BREAKING CHANGE: followed by an empty line. For
the commit subject:

	Was a new feature added? Use feat: ... prefix in the commit
subject

	Was a bug fixed? Use fix: ... in the commit subject

Sometimes there might be a good reason to merge changes locally. The
process looks like this:

Reviewing and merging changes locally

git checkout master # or the main branch configured on github
git pull # get latest changes
git checkout feature-branch # replace name with your branch
git rebase master
git checkout master
git merge feature-branch # replace name with your branch
git push

When merging PRs from forked repositories, we recommend you install the
hub [https://github.com/github/hub] command line tools.

This allows you to do:

hub checkout link-to-pull-request

meaning that you will automatically check out the branch for the pull
request, without needing any other steps like setting git upstreams!
:sparkles:

Coding Style Guide

Please see Contributing to Hoodie for more guidelines on
contributing to Hoodie.

Hoodie uses the Standard [https://github.com/feross/standard]
JavaScript coding style.

This file explains coding-style considerations that are beyond the
syntax check of Standard.

There are three sections:

	General: coding styles that are applicable to all JavaScript code.

	Client: coding styles that are only applicable to in-browser code.

	Server: coding styles that are only applicable in server code.

Note: Client and Server coding styles can be contradicting, make sure
to read these carefully.

General

File Structure

A typical JavaScript file looks like this (without the comments). Sort
all modules that you require alphabetically within their blocks.

// If your module exports something, put it on top
module.exports = myMethod

// require Node.js core modules in the 1st block (separaeted by empty line).
// These are modules that come with Node.js and are not listed in package.json.
// See https://nodejs.org/api/ for a list of Node.js core modules
var EventEmitter = require('events').EventEmitter
var util = require('util')

// In the 2nd block, require all modules listed in package.json
var async = require('async')
var lodash = require('lodash')

// in the 3rd block, require all modules using relative paths
var helpers = require('./utils/helpers')
var otherMethod = require('./other-method')

function myMethod () {
 // code here
}

Avoid “this” and object-oriented coding styles.

Do this

function MyApi (options) {
 var state = {
 foo: options.foo
 }
 return {
 doSomething: doSomething.bind(null, state)
 }
}

function doSomething (state) {
 return state.foo ? 'foo!' : 'bar'
}

Instead of

function MyApi (options) {
 this.foo = options.foo
}

MyApi.prototype.doSomething = function () {
 return this.foo ? 'foo!' : 'bar'
}

The bind
method [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind]
allows for partially applied
functions [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind#Partially_applied_functions_%28currying%29],
that way we can pass internal state between different methods without
exposing in the public API. At the same time we can easily test the
different methods in isolation by setting the internal state to what
ever context we want to test with.

Folder Structure

In the root, have

	package.json

	.gitignore (should at least list node_modules)

	README.md

	LICENSE (Apache License Version 2.0)

In most cases you will have index.js file which is listed in
package.json as the "main" property.

If you want to split up logic into separate files, move them into a
server/ folder. Put reusable, state-less helper methods into
server/utils/

For tests, create a test/ folder. If your module becomes a bit more
complex, split up the tests in test/unit and test/integration/.
All files that contain tests should end with -test.js.

Misc

	Prefer lodash [https://lodash.com] over
underscore [http://underscorejs.org].

Client

Testing

Client code should be tested using
tape [https://www.npmjs.com/package/tape]. The reason we use tape is
its support for
browserify [https://www.npmjs.com/package/browserify].

Libraries with sub-modules that can be required individually, like lodash

For client-side JavaScript code, it is important to limit the amount of
code that is downloaded to the client to the code that is actually
needed. The loadash [https://lodash.com] library is a collection of
utilities that are useful individually and in combination.

For example, if you want to use the merge function of lodash,
require it like this:

var merge = require('lodash/merge')

If you want to use more than one function within one module, or if you
want to combine multiple functions for a single operation, require the
full lodash module:

var _ = require('lodash')

If multiple modules use the same lodash function, our frontend bundling
tool [http://browserify.org] will do the right thing and only include
that code once.

Server

Testing

Server code should be tested using
tap [https://www.npmjs.com/package/tap].

Libraries with sub-modules that can be required individually, like lodash

For server-side code, it is important to load the minimal amount of code
into memory.

On the server require the full library, e.g.

var _ = require('lodash')

var c = _.merge(a, b)

That way, all of our server code will only ever load a single instance
of lodash into memory.

Triage new issues/PRs on GitHub

This document illustrates the steps the Hoodie community is taking to
triage issues. The labels are used later on for assigning
work. If you want to help by sorting issues please
leave a comment
here [https://github.com/hoodiehq/discussion/issues/50] asking to
join the triaging team.

Triaging Process

This process based on the idea of minimizing user pain from this blog
post [http://www.lostgarden.com/2008/05/improving-bug-triage-with-user-pain.html].

	Open the list of non triaged
issues [https://github.com/hoodiehq/hoodie/issues]

	Sort by submit date, with the newest issues first

	You don’t have to do issues in order; feel free to pick and
choose issues as you please.

	You can triage older issues as well

	Triage to your heart’s content

	Assign yourself: Pick an issue that is not assigned to anyone and
assign it to you

	Understandable? - verify if the description of the request is clear.

	If not, close it according to the
instructions below and go to the last step.

	Duplicate?

	If you’ve seen this issue before close
it, and go to the last step.

	Check if there are comments that link to a dupe. If so verify
that this is indeed a dupe, close
it, and go to the last step.

	Bugs:

	Label Type: Bug

	Reproducible? - Steps to reproduce the bug are clear. If they are
not, ask for a clarification. If there’s no reply after a week,
close it.

	Reproducible on master?

	Non bugs:

	Label Type: Feature, Type: Chore, or Type: Perf

	Belongs in core? – Often new features should be implemented as a
plugin rather than an addition to the core. If this doesn’t
belong, close it, and go to the
last step.

	Label needs: breaking change - if needed

	Label needs: public api - if the issue requires introduction
of a new public API

	Label frequency: * – How often does this issue come up? How many
developers does this affect?

	low - obscure issue affecting a handful of developers

	moderate - impacts a common usage pattern

	high - impacts most or all Hoodie apps

	Label severity: * - How bad is the issue?

	regression

	memory leak

	broken expected use - it’s hard or impossible for a developer
using Hoodie to accomplish something that Hoodie should be able
to do

	confusing - unexpected or inconsistent behavior; hard-to-debug

	inconvenience - causes ugly/boilerplate code in apps

	Label starter - These issues are good targets for PRs from the
open source community. Apply to issues where the problem and
solution are well defined in the comments, and it’s not too complex.

	Label milestone: * – Assign a milestone:

	Backlog - triaged fixes and features, should be the default choice

	x.y.z - e.g. 0.3.0

	Unassign yourself from the issue

Closing an Issue or PR

We’re grateful to anyone who takes the time to submit an issue, even if
we ultimately decide not to act on it. Be kind and respectful as you
close issues. Be sure to follow the code of
conduct [http://hood.ie/code-of-conduct.html].

	Always thank the person who submitted it.

	If it’s a duplicate, link to the older or more descriptive issue that
supersedes the one you are closing.

	Let them know if there’s some way for them to follow-up.

	When the issue is unclear or reproducible, note that you’ll reopen
it if they can clarify or provide a better example. Mention
jsbin [https://jsbin.com] for examples. Watch your
notifications and follow-up if they do provide clarification. :)

	If appropriate, suggest implementing a feature as a third-party
module.

If in doubt, ask a core team member what to do.

Example:

Thanks for submitting this issue! Unfortunately, we don’t think this
functionality belongs in core. The good news is that you could
implement this as a plugin and publish it to npm with the
hoodie-plugin keyword.

Assigning Work

These criteria are then used to calculate a “user pain” score. Work is
assigned weekly to core team members starting with the highest pain,
descending down to the lowest.

pain = severity × frequency

severity:

	regression (5)

	memory leak (4)

	broken expected use (3)

	confusing (2)

	inconvenience (1)

frequency:

	low (1)

	moderate (2)

	high (3)

Note: Regressions and memory leaks should almost always be set to
frequency: high.

Contributing to Documentation

This guide describes how to make changes to Hoodie documentation.

Make small changes

We love small contributions, if you spot small errors or additions please feel free to request a change. Every page on Hoodie documentation [http://hoodie.readthedocs.io/] has an “Edit on GitHub” button on the top right corner, please use this to make changes.

Hoodie documentation uses the reStructuredText [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] format. This may be unfamiliar but provides advanced features which are useful for complex documentation.

The Github editor is very basic, if you need more editing tools try copying and pasting into this online editor [http://rst.ninjs.org/]. You can then click ‘commit’ and create a ‘pull request’ on Github. The pull request will be automatically tested for grammar, style and common misspellings. Your changes will then be reviewed by a Hoodie Admin, who may suggest changes. Please read the Documentation Style Guide for advice on writing and more info on testing.

Make big changes

For big changes, follow the Contributing to Hoodie guidelines for new contributors. This allows you to build and test the documentation locally. For example, adding, moving or updating several documents. The index.rst file in the docs/ folder controls the order in which the documents are displayed on the docs webpages. Remember to update the index file if you have removed, added or want to reorder the documents.

To build the docs locally, you will need to install python 2.7+ [https://www.python.org/downloads/]

Then install two pip packages: Sphinx [http://www.sphinx-doc.org/en/stable/] and sphinx_rtd_theme [https://pypi.python.org/pypi/sphinx_rtd_theme].

sudo pip install sphinx

sudo pip install sphinx_rtd_theme

Change directory to ..hoodie/docs/

make html

If you are using windows powershell, note there is a little deviation.

pip install sphinx

pip install sphinx_rtd_theme

Before execute the make html command you have to install make [http://gnuwin32.sourceforge.net/packages/make.htm] in windows if you are not already done.
You can also see this Stackoverflow link [http://stackoverflow.com/questions/12881854/how-to-use-gnu-make-on-windows] for a clear understanding.

Now change directory to ..hoodie/docs/

make html

After building, your updated documents are in the docs/_build/html subdirectory. Click on any .html document, this will open your web browser and the documents will be viewable.

Get in touch [http://hood.ie/contact/] if you have any questions or want to contribute to Hoodie documentation.

Documentation Style Guide

This guide provides style advice for how to write documentation. Please take the time to read this before contributing a large change or update to documentation.

Style helps you and your reader

Word choice and writing style are a personal choice and we understand documentation can be difficult to write. These recommendations have been designed to help you write clear and beautiful documents.

Testing

The contributing to docs guide describes the process to follow when updating documentation. This process includes automatic testing. Testing provides you peace of mind that your contribution won’t contain typos, broken links or other style whoopsies. Testing is not used to criticise your writing, we really love and appreciate any contributions. Please be patience through the testing and review process. Together we can keep Hoodie documentation awesome!

Style guidance

Please see the helpful guide [https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html] provided by OpenStack documentation. This guide will further explain these key style tips:

	Use standard English

	Write in active voice

	Use the present simple tense

	Write in second person

	Use appropriate mood

	Keep sentences short

	Avoid ambiguous titles

	Be clear and concise

	Write objectively

	Describe the most common use case first

	Do not humanize inanimate objects

	Write positively

	Avoid prepositions at the end of sentences

	Do no overuse this, that, these, and it

	Do not split infinitives

	Avoid personification

	Eliminate needless politeness

	Use consistent terminology

	Use spelling and grammar checking tools

Automatic testing

The current tests we run on pull requests using Travis Continuous Integration (CI) service:

	Style guide

	Tested

	Test type

	Package

	Keep sentences short, concise and readable

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Write in the active [https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html#write-in-active-voice] voice

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Avoid “Lexical illusion’s” – cases where a word is repeated

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Check for ‘So’ at the beginning of sentences

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Avoid adverbs that can weaken meaning: really, very,
extremely, etc

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Use the most simple expressions

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Avoid using “weasel words”: quite, several, mostly etc

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Leave no space between a sentence and its
ending punctuation

	✔

	Warning

	rousseau [https://github.com/GitbookIO/rousseau]

	Spell checker - we test for common misspelling but please
check technical words

	✔

	Error

	common [https://github.com/io-monad/textlint-rule-common-misspellings]

	Broken or dead links (excluding redirects)

	✔

	Error

	awesome [https://github.com/dkhamsing/awesome_bot]

	Remember, follow the Code of Conduct [http://hood.ie/code-of-conduct/]

Bonus style points

	Be fun and friendly as long as it does not distract or confuse the reader

	Include videos or gifs to demostrated a feature

	You can use Humour but remember the reader is looking for an answer not a comedy sketch

	Cultural references and puns don’t always translate - keep jokes light

	Remember English is not the first language for many readers - keep language simple where possible

Further reading

This guide is influenced by the Open Stack [https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html#use-standard-english] style guide.

Hoodie’s Concepts

Hoodie was designed around a few core beliefs and concepts, and they
explain a lot of the choices made in the code and the functionality.
They are:

	Dreamcode

	noBackend

	Offline First

Dreamcode

While designing Hoodie’s API, we realised that we wanted to do more than
simply expose some server code to the frontend. We wanted to reduce
complexity, not move it around. And to make something simple and
intuitive, you can’t start with the tech stack, you have to start with
the humans that are going to use it. What would their dream API look
like? Dreamcode is essentially user-centered design for APIs.

To put it bluntly: Hoodie’s API is optimized for being awesome. For
being intuitive and accessible. And it’s optimized for making the lives
of frontend developers as good as possible. It’s also an API first: it’s
a promise - everything else can change or is replaceable. The API is all
that matters.

Forget all the constraints of today’s browsers. Then write down the code
of your dreams for all the tasks you need to build your app. The
implementation behind the API doesn’t matter, it can be simple or tough
as nails, but crucially: the users shouldn’t have to care. This is
dreamcode.

Everything is hard until someone makes it easy. We’re making web app
development easy.

Here’s some further information and links to Dreamcode examples.

noBackend

Servers are difficult. Databases are difficult. The interplay between
client and server is difficult, there are many moving parts, there are
many entertaining mistakes to make, and the barrier to entry for web
app development is, in our mind, needlessly high. You shouldn’t have
to be a full stack developer to build a functioning app prototype, or
code a small tool for yourself or your team, or launch a simple MVP.

People have been building web apps for quite a while now, and their
basic operations (sign up, sign in, sign out, store and retrieve data,
etc.) must have been written a million separate times by now. These
things really shouldn’t be difficult anymore. So we’re proposing Hoodie
as a noBackend solution. Yes, a backend does exist, but it doesn’t have
to exist in your head. You don’t have to plan it or set it up. You
simply don’t have to worry about it for those basic operations, you can
do all of them with Hoodie’s frontend API. Of course, we let you dig as
deep as you want, but for the start, you don’t have to.

noBackend gives you time to work on the hard problems, the parts of the
app that are justifiably difficult and non-abstractable, like the
interface, the user experience, the things that make your product what
it is.

With Hoodie, you scaffold out your app with

$ hoodie new best-app-ever
and you’re good to go. Sign up users, store data… it’s all right there,
immediately. It’s a backend in a box, empowering frontend developers to
build entire apps without thinking about the backend at all. Check out
some example Hoodie apps if you’d like to see some code.

More information about noBackend

See nobackend.org, Examples for noBackend solutions and @nobackend on
Twitter.

Offline First

We make websites and apps for the web. The whole point is to be online,
right? We’re online when we build these things, and we generally assume
our users to be in a state of permanent connectivity. That state,
however, is a myth, and that assumption causes all sorts of problems.

With the stellar rise of mobile computing, we can no longer assume
anything about our users’ connections. Just as we all had to learn to
accept that screens now come in all shapes and sizes, we’ll have to
learn that connections can be present or absent, fast or slow, steady or
intermittent, free or expensive… We reacted to the challenge of
unknowable screen sizes with Responsive Webdesign and Mobile First, and
we will react to the challenge of unknowable connections with Offline
First.

Offline First means: build your apps without the assumption of
permanent connectivity. Cache data and apps locally. Build interfaces
that accommodate the offline state elegantly. Design user interactions
that will not break if their train goes into a tunnel. Don’t freak out
your users with network error messages or frustrate them with
inaccessible data. Offline First apps are faster, more robust, more
pleasant to use, and ultimately: more useful.

More information about Offline First

See offlinefirst.org, on GitHub and discussions and research

So now you know what motivates us

We hope this motivated you too! So let’s continue to the system
requirements for Hoodie.

How Hoodie Works

Hoodie has several components that work together in a somewhat atypical
way to deliver our promise of simplicity, out-of-the-box syncing, and
offline capability.

Everything starts in the frontend, with your app. This is your user
interface, your client side business logic, etc.

[image: ../_images/1.jpg]

The app code only talks to the Hoodie frontend API, never directly to
the server-side code, the database, or even the in-browser storage.

[image: ../_images/2.jpg]

Hoodie uses PouchDB for storing data locally, which uses IndexedDb or WebSQL,
whatever is available. Hoodie saves all data here first, before doing
anything else. So if you’re offline, your data is safely stored locally.

[image: ../_images/3.jpg]

This, by itself, is already enough for an app. But if you want to save
your data remotely or send an email, for example, you’ll need a bit
more.

Hoodie relies on CouchDB, the database that replicates. We use it to
sync data back and forth between the server and the clients, which is
something that CouchDB happens to be really good at.

[image: ../_images/4.jpg]

A small aside: In CouchDB, each user has their own private database
which only they can access, so all user data is private by default. It
can be shared to the public if the user decides to do so, but it can’t
happen by accident. This is why we’ll often mention sharing and global
data as a separate feature.

Behind the database, we have the actual server code in the form of a
small node.js core with various plugins running alongside it. These then
act upon the data in the CouchDB, which then replicates the changes back
to the clients.

[image: ../_images/5.jpg]

So Hoodie does client ↔ database ↔ server instead of the traditional
client ↔ server ↔ database, and this is where many of its
superpowers come from.

The clever bit is indicated by the dotted line in the middle; the
connection between clients and server can be severed at any time without
breaking the system. Frontend and backend never talk directly to each
other. They only leave each other messages and tasks. It’s all very
loosely-coupled and event-based, and designed for eventual consistency.

Architecture

After installing hoodie, npm start will run
cli/index.js [https://github.com/hoodiehq/hoodie/blob/master/cli/index.js]
which reads out the configuration
from all the different places using the rc [https://www.npmjs.com/package/rc]
package, then passes it as options to server/index.js, the Hoodie core
hapi plugin [http://hapijs.com].

In server/index.js [https://github.com/hoodiehq/hoodie/blob/master/server/index.js],
the passed options are merged with defaults and parsed into configuration for
the Hapi server. It passes the configuration on to hoodie-server [https://github.com/hoodiehq/hoodie-server#readme],
which combines the core server modules. It also bundles the Hoodie
client on first request to /hoodie/client.js and passes in the
configuration for the client. It also makes the app’s public folder
accessible at the / root path, and Hoodie’s Core UIs at
/hoodie/admin, /hoodie/account and /hoodie/store.

Hoodie uses CouchDB [https://couchdb.apache.org/] for data
persistence. If options.dbUrl is not set, it falls back to PouchDB [https://pouchdb.com/].

Once all configuration is taken care of, the internal plugins are
initialised (see server/plugins/index.js [https://github.com/hoodiehq/hoodie/blob/master/server/plugins/index.js]).
We define simple Hapi plugins for logging [https://github.com/hoodiehq/hoodie/blob/master/server/plugins/logger.js]
and for serving the app’s public assets and the Hoodie client [https://github.com/hoodiehq/hoodie/blob/master/server/plugins/public.js].

Once everything is setup, the server is then started at the end of
cli/start.js [https://github.com/hoodiehq/hoodie/blob/master/cli/index.js]
and the URL where hoodie is running is logged to the terminal.

Modules

Hoodie is a server built on top of hapi [http://hapijs.com] with
frontend APIs for account and store related tasks. It is split up in many small
modules with the goal to lower the barrier to new code contributors and to
share maintenance responsibilities.

	server [image: server repository] [https://github.com/hoodiehq/hoodie-server#readme] [image: server build status] [https://travis-ci.org/hoodiehq/hoodie-server] [image: server coverage status] [https://coveralls.io/r/hoodiehq/hoodie-server?branch=master] [image: server dependency status] [https://david-dm.org/hoodiehq/hoodie-server]

Hoodie’s core server logic as hapi plugin. It integrates Hoodie’s
server core modules:
account-server [https://github.com/hoodiehq/hoodie-account-server],
store-server [https://github.com/hoodiehq/hoodie-store-server]

	account-server [image: account-server repository] [https://github.com/hoodiehq/hoodie-account-server#readme] [image: account-server build status] [https://travis-ci.org/hoodiehq/hoodie-account-server] [image: account-server coverage status] [https://coveralls.io/r/hoodiehq/hoodie-account-server?branch=master] [image: account-server dependency status] [https://david-dm.org/hoodiehq/hoodie-account-server]

Hapi [http://hapijs.com/] plugin that implements the Account
JSON API [http://docs.accountjsonapi.apiary.io] routes and
exposes a corresponding API at server.plugins.account.api.*.

	store-server [image: store-server repository] [https://github.com/hoodiehq/hoodie-store-server#readme] [image: store-server build status] [https://travis-ci.org/hoodiehq/hoodie-store-server]
[image: store-server coverage status] [https://coveralls.io/r/hoodiehq/hoodie-store-server?branch=master] [image: store-server dependency status] [https://david-dm.org/hoodiehq/hoodie-store-server]

Hapi [http://hapijs.com/] plugin that implements CouchDB’s
Document
API [https://wiki.apache.org/couchdb/HTTP_Document_API].
Compatible with CouchDB [https://couchdb.apache.org/] and
PouchDB [https://pouchdb.com/] for persistence.

	client [image: client repository] [https://github.com/hoodiehq/hoodie-client#readme] [image: client build status] [https://travis-ci.org/hoodiehq/hoodie-client] [image: client coverage status] [https://coveralls.io/r/hoodiehq/hoodie-client?branch=master] [image: client dependency status] [https://david-dm.org/hoodiehq/hoodie-client]

Hoodie’s front-end client for the browser. It integrates Hoodie’s
client core modules:
account-client [https://github.com/hoodiehq/hoodie-account-client],
store-client [https://github.com/hoodiehq/hoodie-store-client],
connection-status [https://github.com/hoodiehq/hoodie-connection-status]
and log [https://github.com/hoodiehq/hoodie-log]

	account-client [image: account-client repository] [https://github.com/hoodiehq/hoodie-account-client#readme] [image: account-client build status] [https://travis-ci.org/hoodiehq/hoodie-account-client] [image: account-client coverage status] [https://coveralls.io/r/hoodiehq/hoodie-account-client?branch=master] [image: account-client dependency status] [https://david-dm.org/hoodiehq/hoodie-account-client]

Client for the Account JSON
API [http://docs.accountjsonapi.apiary.io]. It persists
session information on the client and provides front-end
friendly APIs for things like creating a user account,
confirming, resetting a password, changing profile information,
or closing the account.

	store-client [image: store-client repository] [https://github.com/hoodiehq/hoodie-store-client#readme] [image: store-client build status] [https://travis-ci.org/hoodiehq/hoodie-store-client]
[image: store-client coverage status] [https://coveralls.io/r/hoodiehq/hoodie-store-client?branch=master] [image: store-client dependency status] [https://david-dm.org/hoodiehq/hoodie-store-client]

Store client for data persistence and offline sync.

	connection-status [image: connection-status repository] [https://github.com/hoodiehq/hoodie-connection-status#readme] [image: connection-status build status] [https://travis-ci.org/hoodiehq/hoodie-connection-status] [image: connection-status coverage status] [https://coveralls.io/r/hoodiehq/hoodie-connection-status?branch=master] [image: connection-status dependency status] [https://david-dm.org/hoodiehq/hoodie-connection-status]

Browser library to monitor a connection status. It emits
disconnect & reconnect events if the request status
changes and persists its status on the client.

	log [image: log repository] [https://github.com/hoodiehq/hoodie-log#readme] [image: log build status] [https://travis-ci.org/hoodiehq/hoodie-log] [image: log coverage status] [https://coveralls.io/r/hoodiehq/hoodie-log?branch=master] [image: log dependency status] [https://david-dm.org/hoodiehq/hoodie-log]

JavaScript library for logging to the browser console. If
available, it takes advantage of CSS-based styling of console
log
outputs [https://developer.mozilla.org/en-US/docs/Web/API/Console#Styling_console_output].

	admin [image: admin repository] [https://github.com/hoodiehq/hoodie-admin#readme] [image: admin build status] [https://travis-ci.org/hoodiehq/hoodie-admin] [image: admin dependency status] [https://david-dm.org/hoodiehq/hoodie-admin]

Hoodie’s built-in Admin Dashboard, built with
Ember.js [http://emberjs.com]

	admin-client [image: admin-client repository] [https://github.com/hoodiehq/hoodie-admin-client#readme] [image: admin-client build status] [https://travis-ci.org/hoodiehq/hoodie-admin-client]
[image: admin-client coverage status] [https://coveralls.io/r/hoodiehq/hoodie-admin-client?branch=master] [image: admin-client dependency status] [https://david-dm.org/hoodiehq/hoodie-account-client]

Hoodie’s front-end admin client for the browser. Used in the
Admin Dashboard, but can also be used standalone for custom admin
dashboard.

Files & Folders

package.json

The package.json file describes your project in JSON [http://www.json.org/].
It its dependencies, scripts needed to run or use or develop on your project, and
other information described in the NPM documentation for package.json [https://docs.npmjs.com/files/package.json].

The file is created when you run this:

npm init

It will prompt you for details about your projects, such as its name,
version, description, test suite, author, and software license. Fill it
out or leave it for later. You can always edit the file directly.

Hoodie modifies your package.json when it is installed to add a “start”
script that starts your server by running hoodie without options.

When adding new dependencies, you can save their name and version information
to package.json by using the --save flag, like this:

npm install --save <package name>

With your dependencies documented in package.json, you can install all
your dependencies at once by running this:

npm install

This makes it very easy for others to get your project up and running quickly.

README.md

The README.md file describes your project in Markdown [https://daringfireball.net/projects/markdown/syntax]. It is intended for
humans to read, and should include information about what your project is or
does, how to install it, use it, test it, and contribute to it if appropriate.

For an example readme, try the one used by Hoodie [https://github.com/hoodiehq/hoodie/#hoodie] :)

.hoodie/

The .hoodie/ folder contains compiled client assets and database records,
including query indexes. You should never need to modify these files directly.

hoodie/

The hoodie/ folder contains the JavaScript code that runs in your server
and the user’s browser, and the code that they share. Hoodie uses two files
as hooks to package code for the client and server:

	hoodie/client/index.js is included as a Hoodie plugin [http://docs.hood.ie/en/latest/guides/plugins.html]
using Browserify [http://browserify.org/], so it can use require()
to include code from dependencies or other folders.

	hoodie/server/index.js is included in the server as a Hapi plugin [https://hapijs.com/tutorials/plugins]. It can define new routes and other
server-side logic.

Hoodie does not create a hoodie/ folder, so you will need to create it:

mkdir hoodie
mkdir hoodie/{client,server}
touch hoodie/{client,server}/index.js

Although Hoodie doesn’t treat it in any special way, you can use a folder like
hoodie/lib/ to store code shared between the client and the server. Client
and server scripts can require() code from other folders like
hoodie/lib/.

The hoodie/client/index.js file exports a Hoodie plugin. A Hoodie plugin
exports a function that accepts a ‘hoodie’ object as its sole parameter. This
object contains the interfaces to Hoodie’s client APIs [http://docs.hood.ie/en/latest/api/client/hoodie.html]: ‘account’, ‘store’,
‘connectionStatus’, and ‘log’.

You can also attach new methods to the ‘hoodie’ object, like the ‘hello’ method in this example hoodie/client/index.js file:

module.exports = function (hoodie) {
 hoodie.hello = function (what) {
 return Promise.resolve('Hello, ' + (what || 'world') + '!')
 }
}

The hoodie/server/index.js exports a Hapi plugin, like this:

module.exports.register = function (server, options, next) {
 server.route({
 method: 'GET',
 path: '/hello',
 handler: function (request, reply) {
 reply({ hello: 'world' })
 }
 })
 next()
}

module.exports.register.attributes = {
 name: '<app name>',
 version: '<app version>'
}

In this example, the register function is used to add a route to the server at
/hoodie/<app name>/hello that responds with a JSON object like this:
{ "hello": "world" }. All of your app’s server routes are prefixed with
/hoodie/<app name>/.

The ‘register’ method allows you to modify the server by adding routes and
other server logic. You can read more about how to do that on Hapi’s website [https://hapijs.com/tutorials/plugins]. You can access Hoodie’s server-side
libraries [http://docs.hood.ie/en/latest/api/index.html#the-hoodie-server-api] via
server.plugins.

public/

When you open your app in the browser you will see Hoodie’s default page
telling you that your app has no public/ folder. So let’s create it

mkdir public
touch public/index.html

Now edit the public/index.html file and pass in the following
content.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My Hoodie App</title>
 </head>
 <body>
 <h1>My Hoodie App</h1>

 <script src="/hoodie/client.js"></script>
 </body>
</html>

You need to stop the server now (ctrl + c) and start it again.
If you reload your app in your browser, you will now see your HTML file.

Requirements

Before you start working with Hoodie, here’s what you need to know
regarding your development/server environment and the browsers Hoodie
will run in.

System Requirements for Hoodie Server

	Mac OSX

	Windows 7 and up

	Linux (Ubuntu, Fedora 19+)

Browser Compatibilities (all latest stable)

	Firefox (29+)

	Chrome (34+)

	Desktop Safari (7+)

	Internet Explorer 10+

	Opera (21+)

	Android 4.3+

	iOS Safari (7.1+)

Important: This list is currently based on PouchDB’s
requirements [https://pouchdb.com/learn.html#browser_support], since Hoodie is using PouchDB for its in-browser
storage.

Glossary

CouchDB

CouchDB [http://couchdb.apache.org/] is a non-relational, document-based database that replicates,
which means it’s really good at syncing data between multiple instances
of itself. All data is stored as JSON, all indices (queries) are written
in JavaScript, and it uses regular HTTP as its API.

PouchDB

PouchDB [https://pouchdb.com/] is an in-browser datastore inspired by CouchDB. It enables
applications to store data locally while offline, then synchronize it
with CouchDB.

hapi

hapi [https://hapijs.com/] is a rich framework for building applications and services,
enabling developers to focus on writing reusable application logic and
not waste time with infrastructure logic. You can load hoodie as a hapi
plugin [https://github.com/hoodiehq/hoodie#hapi-plugin] to use it in your existing hapi application.

Users

Hoodie isn’t a CMS, but a backend for web apps, and as such, it is very
much centered around users. All of the offline and sync features are
specific to each individual user’s data, and each user’s data is
encapsulated from that of all others by default. This allows Hoodie to
easily know what to sync between a user’s clients and the server: simply
all of the user’s private data.

Private User Store

Every user signed up with your Hoodie app has their private little database.
Anything you do in the hoodie.store methods stores data in here.

Index

 _static/up.png

_static/up-pressed.png

_images/5.jpg
FRONTEND Hoodie Sync BACKEND

App Plugins
: (node.js)

4—>
localstorage

_images/3.jpg
FRONTEND Hoodie Sync BACKEND

hoodie.store

localstorage

_images/4.jpg
FRONTEND Hoodie Sync BACKEND

App

4—>
localstorage

nav.xhtml

 Table of Contents

 		
 Hoodie Documentation

 		
 Welcome to Hoodie

 		
 Open Source

 		
 How to proceed

 		
 Quickstart

 		
 Prerequisites

 		
 Create a new Hoodie Backend

 		
 Note for npm v2

 		
 What’s next?

 		
 Having Trouble?

 		
 Configuration

 		
 Options

 		
 Defaults

 		
 .hoodierc

 		
 CLI arguments and environment variables

 		
 The priority of configuration

 		
 Plugins

 		
 App-specific plugins

 		
 3rd party plugins

 		
 Deployment

 		
 One line deploy

 		
 Deploying to Now

 		
 Store Data With Cloudant

 		
 Test and set an alias

 		
 Docker

 		
 Deployment in linux

 		
 install dependencies

 		
 CouchDB

 		
 System

 		
 Hoodie

 		
 Using Hoodie as hapi plugin

 		
 Hoodie API

 		
 The Hoodie Client API

 		
 The Hoodie Server API

 		
 Contributing to Hoodie

 		
 Using the issue tracker

 		
 Bug reports

 		
 Feature requests

 		
 Pull requests

 		
 For new Contributors

 		
 For Members of the Hoodie Contributors Team

 		
 Commit Message Conventions

 		
 Triagers

 		
 Maintainers

 		
 Reviewing changes

 		
 Reviewing and merging changes locally

 		
 Coding Style Guide

 		
 General

 		
 File Structure

 		
 Avoid “this” and object-oriented coding styles.

 		
 Folder Structure

 		
 Misc

 		
 Client

 		
 Testing

 		
 Libraries with sub-modules that can be required individually, like lodash

 		
 Server

 		
 Testing

 		
 Libraries with sub-modules that can be required individually, like lodash

 		
 Triage new issues/PRs on GitHub

 		
 Triaging Process

 		
 Closing an Issue or PR

 		
 Assigning Work

 		
 Contributing to Documentation

 		
 Make small changes

 		
 Make big changes

 		
 Documentation Style Guide

 		
 Style helps you and your reader

 		
 Testing

 		
 Style guidance

 		
 Automatic testing

 		
 Bonus style points

 		
 Further reading

 		
 Hoodie’s Concepts

 		
 Dreamcode

 		
 noBackend

 		
 More information about noBackend

 		
 Offline First

 		
 More information about Offline First

 		
 So now you know what motivates us

 		
 How Hoodie Works

 		
 Architecture

 		
 Modules

 		
 Files & Folders

 		
 package.json

 		
 README.md

 		
 .hoodie/

 		
 hoodie/

 		
 public/

 		
 Requirements

 		
 System Requirements for Hoodie Server

 		
 Browser Compatibilities (all latest stable)

 		
 Glossary

 		
 CouchDB

 		
 PouchDB

 		
 hapi

 		
 Users

 		
 Private User Store

_images/1.jpg
FRONTEND Hoodie Sync BACKEND

App

_images/2.jpg
FRONTEND Hoodie Sync BACKEND

App

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/docs-chicken.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

