

Holography and Light Scattering in Python

	Release

	3.5.0

HoloPy is a python based tool for working with digital
holograms and light scattering. HoloPy can be used to analyze holograms in two complementary ways:

	
	Backward propagation of light from a digital hologram to reconstruct 3D volumes.

	
	This approach requires no prior knowledge about the scatterer

	
	Forward propagation of light from a scattering calculation of a predetermined scatterer.

	
	Comparison to a measured hologram with Bayesian inference allows precise measurement of scatterer properties and position.

HoloPy provides a powerful and user-friendly python interface to fast scattering
and optical propagation theories implemented in Fortran and C code. It also provides a set of flexible
objects that make it easy to describe and analyze data from complex
experiments or simulations.

HoloPy started as a project in the Manoharan Lab at Harvard
University [http://manoharan.seas.harvard.edu/holopy]. If you use HoloPy,
you may wish to cite one or more of the sources listed in
References and credits. We also encourage you to sign up for our User Mailing
List [https://groups.google.com/d/forum/holopy-users] or join us on GitHub [https://github.com/manoharan-lab/holopy] to keep up to date on releases,
answer questions, and benefit from other users’ questions.

	HoloPy Release Notes
	Holopy 3.5

	Holopy 3.4

	Holopy 3.3

	Tutorials
	Getting Started

	Loading Data

	Reconstructing Data (Numerical Propagation)

	Reconstructing Point Source Holograms

	Scattering Calculations

	Scattering from Arbitrary Structures with DDA

	Fitting Models to Data

	Developer’s Guide

	User Guide
	The HoloPy Scatterer

	The HoloPy Scattering Theories

	HoloPy Tools

	HoloPy Concepts

	holopy package
	Subpackages

	References and credits

HoloPy is based upon work supported by the National Science Foundation
under grant numbers CBET-0747625, DMR-0820484, DMR-1306410, and
DMR-1420570.

HoloPy Release Notes

Holopy 3.5

Announcements

If you encounter errors loading prevoiusly saved HoloPy objects, try loading
them with HoloPy 3.4 and saving a new version. See deprecation notes below.

New Features

	New AberratedMieLens allows for calculating holograms of spheres
as imaged through a lens with spherical aberrations.

Improvements

	Calling a numpy ufunc on a Prior object with name kwarg gives the resulting
TransformedPrior object that name, e.g. clip_x = np.min(x, name=’clipped’).

	Cleaned up model parameter names created from TransformedPrior objects.

	CmaStrategy now scales first step size based on initial population, not
prior.

	Inference models work with scattering theories that require
parameters. See more in the user guide The HoloPy Scatterer.

	Interpolation in background images is now robust to adjacent dead pixels.

	Restored ability to call scattering functions on parameterized scatterers.

Documentation

	Updated inference tutorial

Bugfixes

	NmpfitStrategy now correctly accounts for non-uniform priors when optimizing.

	Functional fitting interface no longer lets alpha go to zero.

	Now able to save Model objects whose scatterer attribute contains xarrays.

Compatibility Notes

	HoloPy now assumes dictionaries are ordered, so it requires python>=3.7.

Developer Notes

	The ScatteringTheory now performs scattering calculations
only, as its single responsibility. This should make it easier to
implement new scattering theories. Code that was previously in
ScatteringTheory that calculated deterimed at which points
the scattering matrices or scattered fields needed to be calculated is
now in holopy.scattering.imageformation.

	The parameter parsing previously done by the Model class has now been
broken out to a new hp.core.mapping module so it can be
accessed by non-Model objects.

	prior.py has been moved from to hp.core module from hp.inference but is
still accessible in the hp.inference namespace.

Deprecations

	PerfectLensModel is now deprecated; lens models are now directly
fittable with either AlphaModel or ExactModel. To do so, pass in a
holopy.prior.Prior object as the lens_angle.

	Inference-related deprecations started in 3.4 are now complete. This means
that some old holopy inference objects are no longer loadable. If you still
need to access these objects, holopy version 3.4 will let you load old
inference objects and save them in the new format that is compatible with
this (and future) versions of holopy.

Holopy 3.4

New Features

	New Lens scattering theory to model the effect of an objective lens
can be applied to any other scattering theory.

	New TransformedPrior that applies a function to one or multiple
component Prior objects and maintains ties in a Model.

Improvements

	DDA scattering theories no longer default to printing intermediate C output.

	It is now possible to save all slices of a reconstruction stack as images.

	Rearrangement of some Scatterer properties and methods so they are now
accessible by a broader group of classes.

	PerfectLensModel now accepts hologram scaling factor alpha as a parameter
for inference.

	It is now possible to pass an inference strategy to the high-level fit() and
sample() functions, either by name or as a Strategy object.

	High level inference functions fit() and sample() are now accessible in the
root HoloPy namespace as hp.fit() and hp.sample().

	Scatterer.parameters() now matches the arguments to create the scatterer
instead of deconstructing composite objects.

	New prior.renamed() method to create an identical prior with a new name.

	New way to easily construct scatterers from model parameters with
model.scatterer_from_parameters().

	New model.initial_guess attribute which can be used to evaluate initial
guess by psasing into model.scatterer_from_parameters() or
model.forward() methods.

	Model parameters now use the names of their prior objects if present.

	Standardized parameter naming across composite objects (eg. list, dict).

	Any model parameters can now be tied, not just specific combinations within
Scatterers objects.

	Expanded math operations of Prior objects, including numpy ufuncs.

	Math operations on Prior objects now use TransformedPrior
to maintain ties when used in a Model.

Documentation

	New user guide on The HoloPy Scatterer.

	New user guide on The HoloPy Scattering Theories.

	More discussion of scattering theories in tutorial.

Deprecations

	The model.fit() and model.sample() methods have been deprecated in favour of
the high-level hp.fit() and hp.sample functions().

	Adjustments to saving of Model objects (and Results objects containing them).
Backwards compatibility is supported for now, but be sure to save new copies!

	Scatterer.guess no longer exists. Instead, you must define a model and use:
model.scatterer_from_parameters(model.initial_guess).

	Scatterer.from_parameters() is no longer guaranteed to return a
definite object.

	Composite scatterers no longer keep track of tied parameters.

	Scattering interface functions such as calc_holo() now require a definite
scatterer without priors.

Bugfixes

	Fortran output no longer occasionaly leaks through the output supression
context manager used by multiple scattering theories.

	Restored ability to visualize slices through a scatterer object

	Now possible to fit only some elements of a list, eg. Scatterer center

	Models can now include xarray parameters and still support saving/loading.

	The MieLens scattering theory now works for both large and
small spheres.

	The Lens theory works for arbitrary linear polarization of
the incoming light. This bug was not present on any releases, only on
the development branch.

Compatibility Notes

	Holopy’s hard dependencies are further streamlined, and there is improved
handling of missing optional dependencies.

Developer Notes

	Documentation now automatically runs sphinx apidoc when building docs.

	New Scatterer attribute _parameters provides a view into the scatterer
and supports editing.

	ComplexPrior now inherits from TransformedPrior, but
Model maps don’t keep track of this, e.g. in model.scatterer.

Holopy 3.3

New Features

	Inference in holopy has been overhauled; take a look at the updated
docs to check it out! Briefly, the inference and fitting modules have
been combined into a unified, object-oriented interface, with several
convenience functions available to the user both for the inference
strategies and the inference results. One noticeable change with this
is that the least-squares based fitting algorithms such as Nmpfit
now work correctly with priors, including with non-uniform priors.
There is also a new, user-friendly functionality for inference in
holopy. Moreover, the inference pipelines can work with arbitrary
user-defined functions instead of just holograms.

	There is a new scattering theory, holopy.scattering.theory.MieLens,
which describes the effect of the objective lens on recorded holograms
of spherical particles. This new theory is especially useful if you
want to analyze particles below the microscope focus.

	There are two new inference strategies: a global optimizer CMA-ES
strategy, under holopy.inference.cmaes.CmaStrategy, and a
least-squares strategy which uses scipy.optimize.leastsq instead of
the Nmpfit code.

Deprecations

	The keyword argument normals is deprecated in detector_points,
detector_grid, and related functions, as the old implementation was
incorrect. This deprecation is effective immediately; calling code
with the normals keyword will raise a ValueError.

	The old fitting interface, in holopy.fitting, is in the process of
being deprecated (see “New Features” above). Calling the old fitting
interface will raise a UserWarning but will otherwise work until the
next holopy release.

Bugfixes

In addition to many minor bugfixes, the following user-facing bugs have
been fixed:

	load_average now works with a cropped reference image and uses less
memory on large image stacks.

	Issues with loss of fidelity on saving and loading objects have been
fixed.

	A bug where hp.propagate failed when gradient_filter=True has been
fixed.

	Tied parameters in inference calculations works correctly on edge
cases.

	Inference should work with more generic scatterers.

	The Fortran code should be easier to build and install on Windows
machines. This is partially done via a post-install script that
checks that files are written to the correct location (which corrects
some compiler differences between Windows and Linux). We still
recommend installing Holopy with conda.

Improvements

	User-facing docstrings have been improved throughout holopy.

	schwimmbad now handles parallel computations with Python’s
multiprocessing or mpi.

	More types of objects can be visualized with hp.show.

	DDA default behaviour now has use_indicators=True since it is faster
and better tested

	The scaling of initial distributions both for Markov-Chain Monte Carlo
and for CMA inference strategies can now be specified.

Compatibility Notes

	We are curently phasing out support for pre-3.6 Python versions (due
to ordered vs unordered dicts).

Developer Notes

	Test coverage has dramatically increased in holopy.

	Tests no longer output extraneous information on running.

	The ScatteringTheory class has been refactored to allow for faster,
more flexible extension.

Miscellaneous Changes

	Some previously required dependencies are now optional.

Tutorials

Skip to the Loading Data tutorial if you already have HoloPy installed
and want to get started quickly.

	Getting Started

	Loading Data

	Reconstructing Data (Numerical Propagation)

	Reconstructing Point Source Holograms

	Scattering Calculations

	Scattering from Arbitrary Structures with DDA

	Fitting Models to Data

	Developer’s Guide

Getting Started

Installation

As of version 3.0, HoloPy supports only Python 3. We recommend using the
anaconda [https://www.continuum.io/anaconda-overview] distribution of Python,
which makes it easy to install the required dependencies. HoloPy is available on
conda-forge [https://conda-forge.github.io/], so you can install it with:

conda install -c conda-forge holopy

in a shell, terminal, or command prompt. Once you have HoloPy installed, open an
IPython console or Jupyter Notebook and run:

import holopy

If this line works, skip to Using HoloPy before diving into the tutorials.

You can also build HoloPy from source by following the instructions for Installing HoloPy for Developers.

Dependencies

HoloPy’s hard dependencies can be found in requirements.txt [https://github.com/manoharan-lab/holopy/blob/master/requirements.txt].
Optional dependencies for certain calculations include:

	a-dda [http://code.google.com/p/a-dda/] (Discrete Dipole calculations of arbitrary scatterers)

	mayavi2 [http://docs.enthought.com/mayavi/mayavi/] (if you want to do 3D plotting [experimental])

Using HoloPy

You will probably be most comfortable using HoloPy in Jupyter (resembles
Mathematica) or Spyder (resembles Matlab) interfaces. HoloPy is designed to be used with an
interactive backend. In the console, try running:

from holopy import check_display
check_display()

You should see an image, and you should be able to change
the square to a circle or diamond by using the left/right arrow keys. If you
can, then you’re all set! Check out our Loading Data tutorial to start
using HoloPy. If you don’t see an image, or if the arrow keys don’t do anything,
you can try setting your backend with one of the following:

%matplotlib tk
%matplotlib qt
%matplotlib gtk
%matplotlib gtk3

Note that these commands will only work in an IPython console or Jupyter
Notebook. If the one that you tried gave an ImportError, you should restart
your kernel and try another. Note that there can only be one matplotlib backend
per ipython kernel, so you have the best chance of success if you restart your
kernel and immediately enter the %matplotlib command before doing anything
else. Sometimes a backend will be chosen for you (that cannot be changed later)
as soon as you plot something, for example by running test_disp() or
show(). Trying to set to one of the above backends that is not installed
will result in an error, but will also prevent you from setting a different
backend until you restart your kernel.

An additional option in Spyder is to change the backend through the menu: Tools
> Preferences > IPython console > Graphics. It will not take effect until you
restart your kernel, but it will then remember your backend for future sessions,
which can be convenient.

Additional options for inline interactive polts in jupyter are:

%matplotlib nbagg
%matplotlib widget

Loading Data

HoloPy can work with any image data, but our tutorials will focus on holograms.

Loading and viewing a hologram

We include a couple of example holograms with HoloPy. Lets start by
loading and viewing one of them

import holopy as hp
from holopy.core.io import get_example_data_path
imagepath = get_example_data_path('image01.jpg')
raw_holo = hp.load_image(imagepath, spacing = 0.0851)
hp.show(raw_holo)

(Source code)

The first few lines just specify where to look for an image.
The most important line actually loads the image so that you can work with it:

raw_holo = hp.load_image(imagepath, spacing = 0.0851)

HoloPy can import any image format that can be handled by Pillow [http://pillow.readthedocs.io/en/3.3.x/handbook/image-file-formats.html].

The spacing argument tells holopy about the scale of your image. Here, we had
previously measured that each pixel is a square with side length 0.0851
micrometers. In general, you should specify spacing as the distance between
adjacent pixel centres. You can load an image without a spacing value if you
just want to look at it, but holopy calculations will give incorrect results.

The final line displays the loaded image on your screen with the built-in
HoloPy show() function. If you don’t see anything, you may need to set
your matplotlib backend. Refer to Using HoloPy for instructions.

Correcting Noisy Images

The raw hologram has some non-uniform illumination and an artifact in the
upper-right corner. These can be removed if you take a background image with
the same optical setup but without the object of interest. Dividing the raw
hologram by the background using bg_correct() improves the image a lot.

from holopy.core.process import bg_correct
bgpath = get_example_data_path('bg01.jpg')
bg = hp.load_image(bgpath, spacing = 0.0851)
holo = bg_correct(raw_holo, bg)
hp.show(holo)

(Source code)

Often, it is beneficial to record multiple background images. In this case,
we want an average image to pass into bg_correct() as our background.

bgpath = get_example_data_path(['bg01.jpg', 'bg02.jpg', 'bg03.jpg'])
bg = hp.core.io.load_average(bgpath, refimg = raw_holo)
holo = bg_correct(raw_holo, bg)
hp.show(holo)

Here, we have used load_average() to construct an average of the three background
images specified in bgpath. The refimg argument allows us to specify a reference
image that is used to provide spacing and other metadata to the new averaged image.

If you are worried about stray light in your optical train, you should
also capture a dark-field image of your sample, recorded with no laser illumination.
A dark-field image is specified as an optional third argument to bg_correct().

dfpath = get_example_data_path('df01.jpg')
df = hp.load_image(dfpath, spacing = 0.0851)
holo = bg_correct(raw_holo, bg, df)
hp.show(holo)

Holopy includes some other convenient tools for manipulating image data.
See the HoloPy Tools page for details.

Telling HoloPy about your Experimental Setup

Recorded holograms are a product of the specific experimental setup that
produced them. The image only makes sense when considered with the experimental
conditions in mind. When you load an image, you have the option to specify some
of this information in the form of metadata that is associated with the
image. In fact, we already saw an example of this when we specified image
spacing earlier. The sample in our image was immersed in water (refractive
index 1.33). Illumination was by a red laser with wavelength 660 nm and
polarization in the x-direction. We can tell HoloPy all of this information
when loading the image:

raw_holo = hp.load_image(imagepath, spacing=0.0851, medium_index=1.33, illum_wavelen=0.660, illum_polarization=(1,0))

You can then view these metadata values as attributes of raw_holo, as in raw_holo.medium_index.
However, you must use a special function update_metadata() to edit them. If we forgot to
specify metadata when loading the image, we can use update_metadata() to add it later:

holo = hp.core.update_metadata(holo, medium_index=1.33, illum_wavelen=0.660, illum_polarization=(1,0))

Note

Spacing and wavelength must be given in the same units - micrometers in the
example above. Holopy has no built-in length scale and requires only that
you be consistent. For example, we could have specified both parameters in
terms of nanometers or meters instead.

HoloPy images are stored as xarray DataArray [http://xarray.pydata.org/en/stable/data-structures.html] objects.
xarray is a powerful tool that makes it easy to keep track of metadata and extra image dimensions, distinguishing between
a time slice and a volume slice, for example. While you do not need any knowledge of xarray to use HoloPy, some
familiarity will make certain tasks easier. This is especially true if you want to directly manipulate data
before or after applying HoloPy’s built-in functions.

Saving and Reloading Holograms

Once you have background-divided a hologram and associated it with metadata, you might
want to save it so that you can skip those steps next time you are working with the
same image:

hp.save('outfilename', holo)

saves your processed image to a compact HDF5 file. In fact, you can use save()
on any holopy object. To reload your same hologram with metadata you would write:

holo = hp.load('outfilename')

If you would like to save your hologram to an image format for easy visualization, use:

hp.save_image('outfilename', holo)

Additional options of save_image() allow you to control how image intensity is scaled.
Although HoloPy stores metadata when writing to .tif image files, you should save
holograms in HDF5 format using save() to avoid rounding.

Reconstructing Data (Numerical Propagation)

A hologram contains information about the electric field amplitude and phase at the detector plane.
Shining light back through a hologram allows reconstruction of the electric field at points upstream of the detector plane.
HoloPy performs this function mathematically by numerically propagating a hologram (or electric field) to another position in space.

This allows you to reconstruct 3D sample volumes from 2D images. The light source is assumed to be collimated here, but HoloPy is also capable of Reconstructing Point Source Holograms.

Example Reconstruction

import numpy as np
import holopy as hp
from holopy.core.io import get_example_data_path, load_average
from holopy.core.process import bg_correct

imagepath = get_example_data_path('image01.jpg')
raw_holo = hp.load_image(imagepath, spacing = 0.0851, medium_index = 1.33, illum_wavelen = 0.66,)
bgpath = get_example_data_path(['bg01.jpg','bg02.jpg','bg03.jpg'])
bg = load_average(bgpath, refimg = raw_holo)
holo = bg_correct(raw_holo, bg)

zstack = np.linspace(0, 20, 11)
rec_vol = hp.propagate(holo, zstack)
hp.show(rec_vol)

(Source code)

We’ll examine each section of code in turn. The first block:

import numpy as np
import holopy as hp
from holopy.core.io import get_example_data_path, load_average
from holopy.core.process import bg_correct

loads the relevant modules from HoloPy and NumPy. The second block:

imagepath = get_example_data_path('image01.jpg')
raw_holo = hp.load_image(imagepath, spacing = 0.0851, medium_index = 1.33, illum_wavelen = 0.66)
bgpath = get_example_data_path(['bg01.jpg','bg02.jpg','bg03.jpg'])
bg = load_average(bgpath, refimg = raw_holo)
holo = bg_correct(raw_holo, bg)

reads in a hologram and divides it by a corresponding background image.
If this is unfamiliar to you, please review the Loading Data tutorial.

Next, we use numpy’s linspace to define a set of distances between the image plane and the reconstruction plane at 2-micron intervals to
propagate our image to. You can also propagate to a single distance
or to a set of distances obtained in some other fashion.
The actual propagation is accomplished with propagate():

zstack = np.linspace(0, 20, 11)
rec_vol = hp.propagate(holo, zstack)

Here, HoloPy has projected the hologram image through space to each of the distances contained in zstack by using the metadata that we
specified when loading the image. If we forgot to load optical metadata with the image,
we can explicitly indicate the parameters for propagation to obtain an identical object:

rec_vol = hp.propagate(holo, zstack, illum_wavelen = 0.660, medium_index = 1.33)

Visualizing Reconstructions

You can display the reconstruction with show():

hp.show(rec_vol)

Pressing the left and right arrow keys steps through volumes slices -
propagation to different z-planes. If the left and right arrow keys don’t
do anything, you might need to set your matplotlib backend. Refer to
Using HoloPy for instructions.

Reconstructions are actually comprised of complex numbers. show()
defaults to showing you the amplitude of the image. You can get different, and
sometimes better, contrast by viewing the phase angle or imaginary part of the
reconstruction:

hp.show(rec_vol.imag)
hp.show(np.angle(rec_vol))

These phase sensitive visualizations will change contrast as you step through
because you hit different places in the phase period. Such a reconstruction will
work better if you use steps that are an integer number of wavelengths in
medium:

med_wavelen = holo.illum_wavelen / holo.medium_index
rec_vol = hp.propagate(holo, zstack*med_wavelen)
hp.show(rec_vol.imag)

Cascaded Free Space Propagation

HoloPy calculates reconstructions by performing a convolution of the hologram with
the reference wave over the distance to be propagated.
By default, HoloPy calculates a single transfer function to perform the convolution
over the specified distance. However, a better reconstruction can sometimes be
obtained by iteratively propagating the hologram over short distances. This
cascaded free space propagation is particularly useful when the reconstructions have
fine features or when propagating over large distances. For further details, refer to
Kreis 2002 [http://dx.doi.org/10.1117/1.1489678].

To implement cascaded free space propagation in HoloPy, pass a cfsp argument
into propagate() indicating how many times the hologram should be iteratively
propagated. For example, to propagate in three steps over each distance, we write:

rec_vol = hp.propagate(holo, zstack, cfsp = 3)

Reconstructing Point Source Holograms

Holograms are typically reconstructed optically by shining light back through
them. This corresponds mathematically to propagating the field stored in the
hologram to some different plane. The propagation performed here assumes that
the hologram was recorded using a point source (diverging spherical wave) as the
light source. This is also known as lens-free holography. Note that this is
different than propagation calculations where a collimated light source (plane
wave) is used. For recontructions using a plane wave see Reconstructing Data (Numerical Propagation).

This point-source propagation calculation is an implementation of the algorithm
that appears in Jericho and Kreuzer 2010 [http://link.springer.com/chapter/10.1007%2F978-3-642-15813-1_1]. Curently,
only square input images and propagation through media with a refractive index
of 1 are supported.

Example Reconstruction

import holopy as hp
import numpy as np
from holopy.core.io import get_example_data_path
from holopy.propagation import ps_propagate
from scipy.ndimage.measurements import center_of_mass

imagepath = get_example_data_path('ps_image01.jpg')
bgpath = get_example_data_path('ps_bg01.jpg')
L = 0.0407 # distance from light source to screen/camera
cam_spacing = 12e-6 # linear size of camera pixels
mag = 9.0 # magnification
npix_out = 1020 # linear size of output image (pixels)
zstack = np.arange(1.08e-3, 1.18e-3, 0.01e-3) # distances from camera to reconstruct

holo = hp.load_image(imagepath, spacing=cam_spacing, illum_wavelen=406e-9, medium_index=1) # load hologram
bg = hp.load_image(bgpath, spacing=cam_spacing) # load background image
holo = hp.core.process.bg_correct(holo, bg+1, bg) # subtract background (not divide)
beam_c = center_of_mass(bg.values.squeeze()) # get beam center
out_schema = hp.core.detector_grid(shape=npix_out, spacing=cam_spacing/mag) # set output shape

recons = ps_propagate(holo, zstack, L, beam_c, out_schema) # do propagation
hp.show(abs(recons[:,350:550,450:650])) # display result

(Source code)

We’ll examine each section of code in turn. The first block:

import holopy as hp
import numpy as np
from holopy.core.io import get_example_data_path
from holopy.propagation import ps_propagate
from scipy.ndimage.measurements import center_of_mass

loads the relevant modules. The second block:

imagepath = get_example_data_path('ps_image01.jpg')
bgpath = get_example_data_path('ps_bg01.jpg')
L = 0.0407 # distance from light source to screen/camera
cam_spacing = 12e-6 # linear size of camera pixels
mag = 9.0 # magnification
npix_out = 1020 # linear size of output image (pixels)
zstack = np.arange(1.08e-3, 1.18e-3, 0.01e-3) # distances from camera to reconstruct

defines all parameters used for the reconstruction. Numpy’s linspace
was used to define a set of distances at 10-micron intervals to
propagate our image to. You can also propagate to a single distance
or to a set of distances obtained in some other fashion. The third
block:

holo = hp.load_image(imagepath, spacing=cam_spacing, illum_wavelen=406e-9, medium_index=1) # load hologram
bg = hp.load_image(bgpath, spacing=cam_spacing) # load background image
holo = hp.core.process.bg_correct(holo, bg+1, bg) # subtract background (not divide)
beam_c = center_of_mass(bg.values.squeeze()) # get beam center
out_schema = hp.core.detector_grid(shape=npix_out, spacing=cam_spacing/mag) # set output shape

reads in a hologram and subtracts the corresponding background
image. If this is unfamiliar to you, please review the
Loading Data tutorial. The third block also finds the center
of the reference beam and sets the size and pixel spacing of the
output images.

Finally, the actual propagation is accomplished with
ps_propagate() and a cropped region of the result is
displayed. See the Reconstructing Data (Numerical Propagation) page for details on
visualizing the reconstruction results.

recons = ps_propagate(holo, zstack, L, beam_c, out_schema) # do propagation
hp.show(abs(recons[:,350:550,450:650])) # display result

Magnification and Output Image Size

Unlike the case where a collimated beam is used as the illumination
and the pixel spacing in the reconstruction is the same as in the
original hologram, for lens-free reconstructions the pixel spacing
in the reconstruction can be chosen arbitrarily. In order to magnify
the reconstruction the spacing in the reconstruction plane should be
smaller than spacing in the original hologram. In the code above, the
magnification of the reconstruction can be set using the variable
mag, or when calling ps_propagate() directly the desired
pixel spacing in the reconstruction is specified through the
spacing of out_schema. Note that the output spacing will not be
the spacing of out_schema exactly, but should be within a few
percent of it. We recommend calling get_spacing() on recons
to get the actual spacing used.

Note that the total physical size of the plane that is reconstructed
remains the same when different output pixel spacings are used. This
means that reconstructions with large output spacings will only have
a small number of pixels, and reconstructions with small output
spacings will have a large number of pixels. If the linear size (in
pixels) of the total reconstruction plane is smaller than
npix_out, the entire reconstruction plane will be returned.
However, if the linear size of total reconstruction plane is
larger than npix_out, only the center region of the
reconstruction plane with linear size npix_out is returned.

In the current version of the code, the amount of memory needed to
perform a reconstruction scales with mag2. Presumably this
limitation can be overcome by implementing the steps described in the
Convolution section of the Appendix of
Jericho and Kreuzer 2010 [http://link.springer.com/chapter/10.1007%2F978-3-642-15813-1_1].

Scattering Calculations

Optical physicists and astronomers have worked out how to compute the
scattering of light from many kinds of objects. HoloPy provides an
easy interface for computing scattered fields, intensities, scattering
matrices, cross-sections, and holograms generated by microscopic
objects. (Computing scattering from macroscopic objects is
computationally difficult and is not well-supported in HoloPy.)

A Simple Example

Let’s start by calculating an in-line hologram generated by a
plane wave scattering from a microsphere.

import holopy as hp
from holopy.scattering import calc_holo, Sphere

sphere = Sphere(n=1.59, r=0.5, center=(4, 4, 5))

medium_index = 1.33
illum_wavelen = 0.660
illum_polarization = (1, 0)
detector = hp.detector_grid(shape=100, spacing=0.1)

holo = calc_holo(detector, sphere, medium_index, illum_wavelen,
 illum_polarization, theory='auto')
hp.show(holo)

(Source code)

[image: Calculated hologram of a single sphere.]
(You may need to call matplotlib.pyplot.show() if you can’t see the hologram after running this code.)

To calculate a hologram, HoloPy needs to know two things: the scatterer that is scattering the light and the experimental setup under which the hologram is recorded. With those two, HoloPy chooses an appropriate scattering theory that calculates the hologram from the scatterer and the experimental setup; advanced users may want to choose the theory themselves. We’ll examine each section of code in turn.

The first few lines :

import holopy as hp
from holopy.scattering import calc_holo, Sphere

load the relevant modules from HoloPy that we’ll need for doing our
calculation.

The next line describes the scatterer we would like to model:

sphere = Sphere(n=1.59, r=0.5, center=(4, 4, 5))

Scatterers are described in HoloPy by a Scatterer object. Here, we use a Sphere as the scatterer object. A Scatterer object
contains information about the geometry (position, size, shape) and optical
properties (refractive index) of the object that is scattering light. We’ve
defined a spherical scatterer with radius 0.5 microns and index of refraction
1.59. This refractive index is approximately that of polystyrene.

Next, we need to describe the experimental setup, including how we are
illuminating our sphere, and how that light will be detected:

medium_index = 1.33
illum_wavelen = 0.66
illum_polarization = (1, 0)
detector = hp.detector_grid(shape=100, spacing=0.1)

We are going to be using red light (wavelength = 660 nm in vacuum) polarized in
the x-direction to illuminate a sphere immersed in water (refractive index =
1.33). Refer to Units and Coordinate System if you’re confused
about how the wavelength and polarization are specified.

The scattered light will be collected at a detector, which is frequently a
digital camera mounted onto a microscope. We defined our detector as a 100 x
100 pixel array, with each square pixel of side length .1 microns. The
shape argument tells HoloPy how many pixels are in the detector and affects
computation time. The spacing argument tells HoloPy how far apart each
pixel is. Both parameters affect the absolute size of the detector.

Finally, we need to specify the scattering theory which knows how to calculate the hologram from the experimental setup and the scatterer. By setting theory='auto', we let HoloPy automatically select a theory. If no theory is specified, HoloPy will automatically select a theory as well.

After getting everything ready, the actual scattering calculation is straightforward:

holo = calc_holo(detector, sphere, medium_index, illum_wavelen,
 illum_polarization, theory='auto')
hp.show(holo)

Congratulations! You just calculated the in-line hologram generated at the
detector plane by interference between the scattered field and the reference
wave. For an in-line hologram, the reference wave is simply the part of the
field that is not scattered or absorbed by the particle.

You might have noticed that our scattering calculation requires much of the same
metadata we specified when loading an image. If we have an experimental image
from the system we would like to model, we can use that as an argument in
calc_holo() instead of our detector object created from
detector_grid(). HoloPy will calculate a hologram image with pixels at
the same positions as the experimental image, and so we don’t need to worry
about making a detector_grid() with the correct shape and spacing
arguments.

from holopy.core.io import get_example_data_path
imagepath = get_example_data_path('image0002.h5')
exp_img = hp.load(imagepath)
holo = calc_holo(exp_img, sphere)

Note that we didn’t need to explicitly specify illumination information when
calling calc_holo(), since our image contained saved metadata and HoloPy
used its values. Passing an image to a scattering function is particularly
useful when comparing simulated data to experimental results, since we can
easily recreate our experimental conditions exactly.

So far all of the images we have calculated are holograms, or the interference
pattern that results from the superposition of a scattered wave with a reference
wave. Holopy can also be used to examine scattered fields on their own. Simply
replace calc_holo() with calc_field() to look at scattered
electric fields (complex) or calc_intensity() to look at field
amplitudes, which is the typical measurement in a light scattering experiment.

More Complex Scatterers

Let’s proceed to a few examples with different Scatterer objects.
You can find a more thorough desccription of all their functionalities in the
user guide on The HoloPy Scatterer.

Coated Spheres

HoloPy can also calculate holograms from coated (or multilayered) spheres.
Constructing a coated sphere differs only in specifying a
list of refractive indices and outer radii corresponding to the layers
(starting from the core and working outwards).

coated_sphere = Sphere(center=(2.5, 5, 5), n=(1.59, 1.42), r=(0.3, 0.6))
holo = calc_holo(exp_img, coated_sphere)
hp.show(holo)

If you prefer thinking in terms of the thickness of subsequent layers, instead
of their distance from the center, you can use LayeredSphere to achieve the same result:

from holopy.scattering import LayeredSphere
coated_sphere = LayeredSphere(center=(2.5, 5, 5), n=(1.59, 1.42), t=(0.3, 0.3))

Collection of Spheres

If we want to calculate a hologram from a collection of spheres, we must
first define the spheres individually, and then combine them into a
Spheres object:

from holopy.scattering import Spheres
s1 = Sphere(center=(5, 5, 5), n = 1.59, r = .5)
s2 = Sphere(center=(4, 4, 5), n = 1.59, r = .5)
collection = Spheres([s1, s2])
holo = calc_holo(exp_img, collection)
hp.show(holo)

[image: Calculated hologram of two spheres.]
Adding more spheres to the cluster is as simple as defining more
sphere objects and passing a longer list of spheres to the
Spheres constructor.

Non-spherical Objects

To define a non-spherical scatterer, use Spheroid or Cylinder objects. These axisymmetric scatterers are defined by two dimensions, and can describe scatterers that are elongated or squashed along one direction.
By default, these objects are aligned with the z-axis, but they can be rotated into any orientation by passing a set of Euler angles to the rotation argument when defining the scatterer. See Rotations of Scatterers for information on how these angles are defined.
As an example, here is a hologram produced by a cylinder aligned with the vertical axis (x-axis according to the HoloPy Coordinate System).
Note that the hologram image is elongated in the horizontal direction since the sides of the cylinder scatter light more than the ends.

import numpy as np
from holopy.scattering import Cylinder
c = Cylinder(center=(5, 5, 7), n = 1.59, d=0.75, h=2, rotation=(0,np.pi/2, 0))
holo = calc_holo(exp_img, c)
hp.show(holo)

[image: Calculated hologram of a cylinder.]

More Complex Experimental Setups

While the examples above will be sufficient for most purposes, there are a few
additional options that are useful in certain scenarios.

Multi-channel Holograms

Sometimes a hologram may include data from multiple illumination sources,
such as two separate wavelengths of incident light. In this case, the extra
arguments can be passed in as a dictionary object, with keys corresponding to
dimension names in the image. You can also use a multi-channel experimental image
in place of calling detector_grid().

illum_dim = {'illumination':['red', 'green']}
n_dict = {'red':1.58,'green':1.60}
wl_dict = {'red':0.690,'green':0.520}
det_c = hp.detector_grid(shape=200, spacing=0.1, extra_dims = illum_dim)
s_c = Sphere(r=0.6, n=n_dict, center=[6,6,6])
holo = calc_holo(det_c, s_c, illum_wavelen=wl_dict, illum_polarization=(0,1), medium_index=1.33)

[image: Calculated hologram of a sphere at 2 wavelengths]

Scattering Theories in HoloPy

HoloPy contains a number of scattering theories to model the scattering from
different kinds of scatterers. You can specifiy a scattering theory by
setting the theory keyword to a ScatteringTheory object,
rather than setting the theory to 'auto'. For instance, to force
HoloPy to calculate the hologram of a sphere using Mie theory (the
theory which exactly describes scattering from a spherical particle), we
set the theory keyword to an instance of the Mie class:

from holopy.scattering.theory import Mie
theory = Mie()
holo = calc_holo(detector, sphere, medium_index, illum_wavelen,
 illum_polarization, theory=theory)

HoloPy has multiple scattering theories which work for different types
of scatterers and which describe particle scattering and interactions
with the optical train in varying degrees of complexity. HoloPy has
scattering theories that describe scattering from individual spheres,
layered spheres, clusters of spheres, spheroids, cylinders, and
arbitrary objects. Some of these scattering theories can take parameters
to modify how the theory performs the calculation (by, e.g., making
certain approximations or specifying properties of the optical train).
For a more thorough description of these scattering theories and how
HoloPy chooses default scattering theories, see the user guide,
The HoloPy Scattering Theories.

Detector Types in HoloPy

The detector_grid() function we saw earlier creates holograms that
display nicely and are easily compared to experimental images. However, they can
be computationally expensive, as they require calculations of the electric field
at many points. If you only need to calculate values at a few points, or if your
points of interest are not arranged in a 2D grid, you can use
detector_points(), which accepts either a dictionary of coordinates or
indvidual coordinate dimensions:

x = [0, 1, 0, 1, 2]
y = [0, 0, 1, 1, 1]
z = -1
coord_dict = {'x': x, 'y': y, 'z': z}
detector = hp.detector_points(x = x, y = y, z = z)
detector = hp.detector_points(coord_dict)

The coordinates for detector_points() can be specified in terms of either
Cartesian or spherical coordinates. If spherical coordinates are used, the
center value of your scatterer is ignored and the coordinates are
interpreted as being relative to the scatterer.

Static light scattering calculations

Scattering Matrices

In a static light scattering measurement you record the scattered intensity at a
number of locations. A common experimental setup contains multiple detectors at
a constant radial distance from a sample (or a single detector on a goniometer
arm that can swing to multiple angles.) In this kind of experiment you are
usually assuming that the detector is far enough away from the particles that
the far-field approximation is valid, and you are usually not interested in the
exact distance of the detector from the particles. So, it’s most convenient to
work with amplitude scattering matrices that are angle-dependent. (See
[Bohren1983] for further mathematical description.)

import numpy as np
from holopy.scattering import calc_scat_matrix

detector = hp.detector_points(theta = np.linspace(0, np.pi, 100), phi = 0)
distant_sphere = Sphere(r=0.5, n=1.59)
matr = calc_scat_matrix(detector, distant_sphere, medium_index, illum_wavelen)

Here we omit specifying the location (center) of the scatterer. This is
only valid when you’re calculating a far-field quantity. Similarly, note
that our detector, defined from a detector_points() function,
includes information about direction but not distance. It is typical
to look at scattering matrices on a semilog plot. You can make one as follows:

import matplotlib.pyplot as plt
plt.figure()
plt.semilogy(np.linspace(0, np.pi, 100), abs(matr[:,0,0])**2)
plt.semilogy(np.linspace(0, np.pi, 100), abs(matr[:,1,1])**2)
plt.show()

(Source code)

You are usually interested in the intensities of the scattered fields, which are
proportional to the modulus squared of the amplitude scattering matrix. The
diagonal elements give the intensities for the incident light and the scattered light
both polarized parallel and perpendicular to the scattering plane, respectively.

Scattering Cross-Sections

The scattering cross section provides a measure of how much light from an
incident beam is scattered by a particular scatterer. Similar to calculating
scattering matrices, we can omit the position of the scatterer for calculation
of cross sections. Since cross sections integrates over all angles, we can also
omit the detector argument entirely:

from holopy.scattering import calc_cross_sections
x_sec = calc_cross_sections(distant_sphere, medium_index, illum_wavelen, illum_polarization)

x_sec returns an array containing four elements. The first element is the
scattering cross section, specified in terms of the same units as wavelength and
particle size. The second and third elements are the absorption and extinction
cross sections, respectively. The final element is the average value of the
cosine of the scattering angle.

Scattering from Arbitrary Structures with DDA

The discrete dipole approximation (DDA) lets us calculate scattering
from any arbitrary object by representing it as a closely packed array
of point dipoles. In HoloPy you can make use of the DDA by specifying
a general Scatterer with an indicator function (or set of
functions for a composite scatterer containing multiple media).

HoloPy uses ADDA [http://code.google.com/p/a-dda/] to do the actual
DDA calculations, so you will need to install ADDA and be able to run:

adda

at a terminal for HoloPy DDA calculations to succeed. To install ADDA,
first download or clone the code [https://github.com/adda-team/adda]
from GitHub. In a terminal window, go to the directory ’adda/src’
and compile using one of three options:

make seq

or:

make

or:

make OpenCL

make seq will not take advantage of any parallel processing of the cores
on your computer. make uses mpi for parallel processing. make OpenCL uses
OpenCL for parallel processing. If the make does not work due to missing packages,
you will have to download the specified packages and install them.

Next, you must modify your path in your .bashrc or /bash_profile (for mac). Add the
line:

export PATH=$PATH:userpath/adda/src/seq

or:

export PATH=$PATH:userpath/adda/src/mpi

or:

export PATH=$PATH:userpath/adda/src/OpenCL

where you should use the path that matches the make you chose above.

A lot of the code associated with DDA is fairly new so be careful;
there are probably bugs. If you find any, please report [https://github.com/manoharan-lab/holopy/issues] them.

Defining the geometry of the scatterer

To calculate the scattering pattern for an arbitrary object, you first
need an indicator function which outputs ‘True’ if a test coordinate
lies within your scatterer, and ‘False’ if it doesn’t. The indicator function
is an argument of the constructor of your scatterer.

For example, if you wanted to define a dumbbell consisting of the union
of two overlapping spheres you could do so like this:

import holopy as hp
from holopy.scattering import Scatterer, Sphere, calc_holo
import numpy as np
s1 = Sphere(r = .5, center = (0, -.4, 0))
s2 = Sphere(r = .5, center = (0, .4, 0))
detector = hp.detector_grid(100, .1)
dumbbell = Scatterer(lambda point: np.logical_or(s1.contains(point), s2.contains(point)),
 1.59, (5, 5, 5))
holo = calc_holo(detector, dumbbell, medium_index=1.33, illum_wavelen=.66, illum_polarization=(1, 0))

Here we take advantage of the fact that Spheres can tell us if a point
lies inside them. We use s1 and s2 as purely geometrical
constructs, so we do not give them indices of refraction, instead
specifying n when defining dumbbell.

HoloPy contains convenient wrappers for many built-in ADDA constructions.
The dumbbell defined explicitly above could also have been defined with the HoloPy Bisphere class instead.
Similar classes exist to define an Ellipsoid, Cylinder, or Capsule.

Mutiple Materials: A Janus Sphere

You can also provide a set of indicators and indices to define a scatterer
containing multiple materials. As an example, lets look at a janus
sphere [http://en.wikipedia.org/wiki/Janus_particles] consisting of
a plastic sphere with a high index coating on the top half:

from holopy.scattering.scatterer import Indicators
import numpy as np
s1 = Sphere(r = .5, center = (0, 0, 0))
s2 = Sphere(r = .51, center = (0, 0, 0))
def cap(point):
 return(np.logical_and(np.logical_and(point[...,2] > 0, s2.contains(point)),
 np.logical_not(s1.contains(point))))
indicators = Indicators([s1.contains, cap],
 [[-.51, .51], [-.51, .51], [-.51, .51]])
janus = Scatterer(indicators, (1.34, 2.0), (5, 5, 5))
holo = calc_holo(detector, janus, medium_index=1.33, illum_wavelen=.66, illum_polarization=(1, 0))

We had to manually set up the bounds of the indicator functions here
because the automatic bounds determination routine gets confused by
the cap that does not contain the origin.

We also provide a JanusSphere scatterer which is very
similar to the scatterer defined above, but can also take a rotation
angle to specify other orientations:

from holopy.scattering import JanusSphere
janus = JanusSphere(n = [1.34, 2.0], r = [.5, .51], rotation = (-np.pi/2, 0),
 center = (5, 5, 5))

Fitting Models to Data

As we have seen, we can use HoloPy to perform Scattering Calculations from many
types of objects. Here, the goal is to compare these calculated holograms to a
recorded experimental hologram, and adjust the parameters of the simulated
scatterer to get a good fit for the real hologram.

A Simple Least Squares Fit

We start by loading and processing data using many of the functions outlined
in the tutorial on Loading Data.

import holopy as hp
import numpy as np
from holopy.core.io import get_example_data_path, load_average
from holopy.core.process import bg_correct, subimage, normalize
from holopy.scattering import Sphere, Spheres, calc_holo
from holopy.inference import prior, ExactModel, CmaStrategy, EmceeStrategy

load an image
imagepath = get_example_data_path('image01.jpg')
raw_holo = hp.load_image(imagepath, spacing = 0.0851, medium_index = 1.33,
 illum_wavelen = 0.66, illum_polarization = (1,0))
bgpath = get_example_data_path(['bg01.jpg','bg02.jpg','bg03.jpg'])
bg = load_average(bgpath, refimg = raw_holo)
data_holo = bg_correct(raw_holo, bg)

process the image
data_holo = subimage(data_holo, [250,250], 200)
data_holo = normalize(data_holo)

Next we define a scatterer that we wish to model as our initial guess. We can
calculate the hologram that it would produce if it were placed in our
experimental setup, as in the previous tutorial on Scattering Calculations.
Fitting works best if your initial guess is close to the correct result. You
can find guesses for x and y coordinates with center_find(), and a
guess for z with propagate().

guess_sphere = Sphere(n=1.58, r=0.5, center=[24,22,15])
initial_guess = calc_holo(data_holo, guess_sphere)
hp.show(data_holo)
hp.show(initial_guess)

Finally, we can adjust the parameters of the sphere in order to get a good fit
to the data. Here we adjust the center coordinates (x, y, z) of the sphere and
its radius, but hold its refractive index fixed. By default fit() will
adjust all parameters, so we can omit the argument if that is what we want.

parameters_to_fit = ['x', 'y', 'z', 'r']
fit_result = hp.fit(data_holo, guess_sphere, parameters=parameters_to_fit)

The fit() function automatically runs calc_holo() on many
different sets of parameter values to find the combination that gives the best
match to the experimental data_holo. We get back a FitResult
object that knows how to summarize the results of the fitting calculation in
various ways, and can be saved to a file with hp.save`() :

best_fit_values = fit_result.parameters
initial_guess_values = fit_result.guess_parameters
best_fit_sphere = fit_result.scatterer
best_fit_hologram = fit_result.hologram
best_fit_lnprob = fit_result.max_lnprob
hp.save('results_file.h5', fit_result)

If we look at best_fit_values or best_fit_sphere, we see that our
initial guess of the sphere’s position of (24, 22, 15) was corrected to
(24.16, 21.84, 16.35). Note that we have achieved sub-pixel position
resolution!

Customizing the model

Sometimes you might want a bit more control over how the parameters are varied.
You can customize the parameters with a Model object that describes
parameters as Prior objects instead of simply passing in your best
guess scatterer and the names of the parameters you wish to vary. For example,
we can set bounds on the coordinate parameters and use a Gaussian prior for the
radius - here, with a mean of 0.5 and standard deviation of 0.05 micrometers.

x = prior.Uniform(lower_bound=15, upper_bound=30, guess=24)
y = prior.Uniform(15, 30, 22)
z = prior.Uniform(10, 20)
par_sphere = Sphere(n=1.58, r=prior.Gaussian(0.5, 0.05), center=[x, y, z])
model = ExactModel(scatterer=par_sphere, calc_func=calc_holo)
fit_result = hp.fit(data_holo, model)

Here we have used an ExactModel which takes a function calc_func
to apply on the Scatterer (we have used calc_holo() here).
The ExactModel isn’t actually the default when we call fit()
directly. Instead, HoloPy uses an AlphaModel, which includes an
additional fitting parameter to control the hologram contrast intensity - the
same as calling calc_holo() with a scaling argument. You can
fit for the extra parameters in these models by defining them as
Prior objects. Likewise, if the scattering theory you are
using requires fittable parameters (such as the lens_angle for the
MieLens theory or the spherical_aberration for the
AberratedMieLens theory), you can fit for these by defining
them as Prior objects as well.

The model in our example has read in some metadata from data_holo
(illumination wavelength & polarization, medium refractive index, and image
noise level). If we want to override those values, or if we loaded an image
without specifying metadata, we can pass them directly into the
Model object by using keywords when defining it.

Advanced Parameter Specification

You can use the Model framework to more finely control parameters,
such as specifying a complex refractive index :

n = prior.ComplexPrior(real=prior.Gaussian(1.58, 0.02), imag=1e-4)

When this refractive index is used to define a Sphere, fit()
will fit to the real part of index of refraction while holding the imaginary
part fixed. You could fit it as well by specifying a Prior for
imag.

You may desire to fit holograms with tied parameters, in which
several physical quantities that could be varied independently are
constrained to have the same (but non-constant) value. A common
example involves fitting a model to a multi-particle hologram in which
all of the particles are constrained to have the same refractive
index, but the index is determined by the fitter. This may be done by
defining a parameter and using it in multiple places. Other tools for handling
tied parameters are described in the user guide on The HoloPy Scatterer.

n1 = prior.Gaussian(1.58, 0.02)
sphere_cluster = Spheres([
Sphere(n = n1, r = 0.5, center = [10., 10., 20.]),
Sphere(n = n1, r = 0.5, center = [9., 11., 21.])])

Transforming Priors

Sometimes you might want to apply mathematical operations to transform one
prior into another, for example in the following use cases:

	You want two parameters to vary together with values that are related but
unequal, such as the length and radius of a cylinder with known aspect ratio,
or the z-coordinates of two vertically stacked particles.

	You want a parameter that is distrbuted according to some other distribution,
such as a cylinder axis evenly distributed in spherical coordinates or a
sphere with uniformly distributed volume (not radius).

	You want to reparamaterize a problem to reduce covariances between fitting
parameters, such as finding the separation distance between two closely
interacting particles or to find the positions of particles confined to a
plane with a slight tilt as compared to the x-y plane.

If you have an explicit transformation function you can use it to define a
TransformedPrior object, for example to define a polar angle with
the appropriate distribution we might do:

def uniform2polar(u):
 # we want polar angle \theta distributed according to sin(\theta)
 # Use inverse transform sampling, correct for \theta in [0, pi]
 symmetric_polar = np.arcsin(u)
 return symmetric_polar + np.pi/2
director = prior.Uniform(-1, 1, name='director')
polar_angle = prior.TransformedPrior(uniform2polar, director, name='polar')

You can use TransformedPrior objects when defining a
Scatterer just like regular priors. They share some attributes with
basic priors as well, such as the TransformedPrior.sample() method, but
you cannot directly calculate probabilities or log-probabilities of a
TransformedPrior taking on a particular value.

Besides explicitly defining them, you can also create
TransformedPrior objects by using numpy ufuncs and built-in operators
on priors:

sphere_area = prior.Uniform(1, 2, name='base_area')
diameter = np.sqrt(sphere_area / np.pi)
radius = diameter / 2
shell = radius + 0.1

All of our derived objects are TransformedPrior objects, even though
we didn’t explicitly define them that way. If we use more than one of
sphere_area, diameter, radius, or shell in a fitting or
inference calculation, they will all be derived from a single parameter
(sphere_area in this case) even though they take on different values. Note
that we could have expressed shell in one line if we didn’t care about the
intermediate values:

shell = np.sqrt(prior.Uniform(1, 2, name='base_area')) / 2 + 0.1
shell.name = 'shell'

It’s always a good idea to assign your priors names when working with
TransformedPrior objects to keep track of their relationships.
Parameter names will be generated if none are provided but they might not be
very informative. To help with naming, you can even assign names to
TransformedPrior objects when using numpy ufuncs!

diameter = np.sqrt(sphere_area / np.pi, name='diameter')

Bayesian Parameter Estimation

Often, we aren’t just interested in the best-fit (MAP) parameter values, but
in the full range of parameter values that provide a reasonable fit to an
observed hologram. This is best expressed as a Bayesian posterior distribution,
which we can sample with a Markov Chain Monte Carlo (MCMC) algorithm. The
approach and formalism used by HoloPy are described in more detail in
[Dimiduk2016]. For more information on Bayesian inference in general,
see [Gregory2010].

A sampling calculation uses the same model and data as the fitting calculation
in the preceding section, but we replace the function fit() with
sample() instead. Note that this calculation without further
modifications might take an unreasonably long time! There are some tips on how
to speed up the calculation further down on this page.

The sample() calculation returns a SamplingResult
object, which is similar to the FitResult returned by
fit(), but with some additional features. We can access the
sampled parameter values and calculated log-probabilities with
SamplingResult.samples and SamplingResult.lnprobs,
respectively. Usually, the MCMC samples will take some steps to converge or
“burn-in” to a stationary distribution from your initial guess. This is most
easily seen in the values of SamplingResult.lnprobs, which will
rise at first and then fluctuate around a stationary value after having burned
in. You can remove the early samples with the built-in method
SamplingResult.burn_in(), which returns a new SamplingResult
with only the burned-in samples.

Customizing the algorithm

The fit() and sample() functions follow algorithms that determine
which sets of parameter values to simulate and compare to the experimental
data. You can specify a different algorithm by passing a strategy keyword
into either function. Options for fit() currently include the default
Levenberg-Marquardt (strategy="nmpfit"), as well as cma-es
(strategy="cma") and scipy least squares (strategy="scipy lsq").
Options for sample() include the default without tempering
(strategy="emcee"), tempering by changing the number of pixels evaluated
(strategy="subset tempering"), or parallel tempered MCMC
(strategy="parallel tempering") [not currently implemented]. You can see
the available strategies in your version of HoloPy by calling
hp.inference.available_fit_strategies or
hp.inference.available_sampling_strategies.

Each of these algorithms runs with a set of default values, but these may need
to be adjusted for your particular situation. For example, you may want to set
a random seed, control parallel computations, customize an initial guess, or
specify hyperparameters of the algorithm. To use non-default settings, you must
define a Strategy object for the algorithm you would like to use. You can
save the strategy to a file for use in future calculations or modify it during
an interactive session.

cma_fit_strategy = CmaStrategy(popsize=15, parallel=None)
cma_fit_strategy.seed = 1234
hp.save('cma_strategy_file.h5', cma_fit_strategy)
strategy_result = fit(data_holo, model, cma_fit_strategy)

In the example above, we have adjusted
the popsize hyperparameter of the cma-es algorithm, prevented the
calculation from running as a parallel computation, and set a random seed for
reproducibility. The calculation returns a FitResult object, just
like a direct call to fit().

Similarly, we can customize a MCMC computation to sample a posterior by calling
sample() with a EmceeStrategy object. Here we perform a
MCMC calculation that uses only 500 pixels from the image and runs 50 walkers
each for 2000 samples. We set the initial walker distribution to be one tenth
of the prior width. In general, the burn-in time for a MCMC calculation will
be reduced if you provide an initial guess position and width that is as close
as possible to the eventual posterior distribution. You can use
Model.generate_guess() to generate an initial sampling to pass in as an
initial guess to your EmceeStrategy object.

nwalkers = 50
initial_guess = model.generate_guess(nwalkers, scaling=0.1)
emcee_strategy = EmceeStrategy(npixels=500, nwalkers=nwalkers,
 nsamples=2000, walker_initial_pos=initial_guess)
hp.save('emcee_strategy_file.h5', emcee_strategy)
emcee_result = hp.sample(data_holo, model, emcee_strategy)

Random Subset Fitting

In the most recent example, we evaluated the holograms at the locations of only
500 pixels in the experimental image. This is because a hologram usually
contains far more information than is needed to estimate your parameters of
interest. You can often get a significantly faster fit with little or no loss
in accuracy by fitting to only a random fraction of the pixels in a hologram.

You will want to do some testing to make sure that you still get
acceptable answers with your data, but our investigations have shown
that you can frequently use random fractions of 0.1 or 0.01 with little
effect on your results and gain a speedup of 10x or greater.

Developer’s Guide

Installing HoloPy for Developers

If you are going to hack on holopy, you probably only want to compile the
scattering extensions.

For Mac and Linux:

Download or clone the latest version of HoloPy from Git Hub at https://github.com/manoharan-lab/holopy.

Let’s say you downloaded or cloned HoloPy to
/home/me/holopy. Then open a terminal, cd to /home/me/holopy and run:

python setup.py develop

This puts the extensions inside the source tree, so that you can work
directly from /home/me/holopy and have the changes reflected in the version
of HoloPy that you import into python.

Note for Mac users: gfortran may put its library in a place python can’t find it. If you get errors including something like can't find /usr/local/libgfortran.3.dynlib you can symlink them in from your install. You can do this by running:

sudo ln -s /usr/local/gfortran/lib/libgfortran.3.dynlib /usr/local/lib
sudo ln -s /usr/local/gfortran/lib/libquadmath.3.dynlib /usr/local/lib

For Windows:
Installation on Windows is still a work in progress, but we have been able to get HoloPy working on Windows 10 with an AMD64 architecture (64-bit) processor.

	Install Anaconda [https://www.continuum.io/downloads] with Python 3.6 and make sure it is working.

	Install the C compiler. It’s included in Visual Studio 2015 Community [https://www.visualstudio.com/downloads/]. Make sure it is working with a C helloworld.

	From now on, make sure any command prompt window invokes the right environment conditions for compiling with VC. To do this, make sure C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat is added to the system path variable. This batch detects your architecture, then runs another batch that sets the path include the directory with the correct version of the VC compiler.

	Install cython and made sure it works.

	Install Intel’s Fortran compiler [https://software.intel.com/en-us/fortran-compilers/try-buy]. A good place to start is the trial version of Parallel Studio XE. Make sure it is working with a Fortran helloworld.

	Install mingw32-make [https://sourceforge.net/projects/mingw/files/MinGW/Extension/make/], which does not come with Anaconda by default.

	Download or clone the master branch of HoloPy from https://github.com/manoharan-lab/holopy.

	Open the command prompt included in Intel’s Parallel Studio. Run holopy/setup.py. It is necessay to use Intel’s Parallel Studio command prompt to avoid compiling errors.

	Install the following dependencies that don’t come with Anaconda:

conda install xarray dask netCDF4 bottleneck
conda install -c astropy emcee=2.2.1

	Open an iPython console where holopy is installed and try import holopy.

If the above procedure doesn’t work, or you find something else that does, please let us know [https://github.com/manoharan-lab/holopy/issues] so that we can improve these instructions.

How HoloPy Stores Data

Images in HoloPy are stored in the format of xarray DataArrays [http://xarray.pydata.org/en/stable/data-structures.html#dataarray]. Spatial
information is tracked in the DataArray’s dims and coords fields
according to the HoloPy Coordinate System. Additional dimensions are
sometimes specified to account for different z-slices, times, or field
components, for example. Optical parameters like refractive index and
illumination wavelength are stored in the DataArray’s attrs field.

The detector_grid() function simply creates a 2D image composed entirely
of zeros. In contrast, the detector_points() function creates a DataArray
with a single dimension named ‘point’. Spatial coordinates (in either Cartesian
or spherical form) track this dimension, so that each data value in the array
has its own set of coordinates unrelated to its neighbours. This type of
one-dimensional organization is sometimes used for 2D images as well. Inference
and fitting methods typically use only a subset of points in an image (see
random_subset), and so it makes sense for them to keep track of lists of
location coordinates instead of a grid. Furthermore, HoloPy’s scattering
functions accept coordinates in the form of a 3xN array of coordinates. In both
of these cases, the 2D image is flattened into a 1D DataArray like that created
by detector_points(). In this case the single dimension is ‘flat’ instead
of ‘point’. HoloPy treats arrays with these two named dimensions identically,
except that the ‘flat’ dimension can be unstacked to restore a 2D image or 3D
volume.

HoloPy’s use of DataArrays sometimes assigns smaller DataArrays in attrs,
which can lead to problems when saving data to a file. When saving a DataArray
to file, HoloPy converts any DataArrays in attrs to numpy arrays, and keeps
track of their dimension names separately. HoloPy’s save_image() writes a
yaml dump of attrs (along with spacing information) to the
imagedescription field of .tif file metadata.

infer_tutorial returns a lot of information, which is stored in the form of a SamplingResult object.
This object stores the model and EmceeStrategy that were used in the inference calculation as attributes.
An additional attribute named dataset is an xarray Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset]
that contains both the data used in the inference calculation, as well as the raw output.
The parameter values at each step of the sampling chain and the calculated log-probabilities at each step are stored here under the samples and lnprobs namespaces.

Adding a new scattering theory

Adding a new scattering theory is relatively straightforward. You just need to
define a new scattering theory class and implement one or two methods to compute
the raw scattering values:

class YourTheory(ScatteringTheory):
 def can_handle(self, scatterer):
 # Your code here

 def raw_fields(self, positions, scatterer, medium_wavevec, medium_index, illum_polarization):
 # Your code here

 def raw_scat_matrs(self, scatterer, pos, medium_wavevec, medium_index):
 # Your code here

 def raw_cross_sections(self, scatterer, medium_wavevec, medium_index, illum_polarization):
 # Your code here

You can get away with just defining one of either raw_scat_matrs or
raw_fields if you just want holograms, fields, or intensities. If
you want scattering matrices you will need to implement
raw_scat_matrs, and if you want cross sections, you will need to
implement raw_cross_sections. We separate out raw_fields from
raw_scat_matrs to allow for faster fields calculation for specific
cases, such as the Mie, MieLens, and Multisphere theories (and you might
want to do so for your theory as well); the base
ScatteringTheory class calculates the fields from the
scattering matrices by default.

You can look at the Mie theory in HoloPy for an example of calling Fortran
functions to compute scattering (C functions will look similar from the python
side) or DDA for an an example of calling out to an external command line tool
by generating files and reading output files.

If you want to fit parameters in your scattering theory, you also need
to define a class attribute parameter_names that contains the fittable
attributes of the scattering theory. Once you do this, fitting should
work natively with your new scattering theory: you should be able to
specify the parameters as a prior.Prior object and holopy’s
inference Model will auto-detect them as fittable parameters.
For an example of this, see the Lens, MieLens, or
AberratedMieLens classes.

Adding a new inference model

To perform inference, you need a noise model. You can make a new noise model by inheriting from NoiseModel. This class has all the machinery to compute likelihoods of observing data given some set of parameters and assuming Gaussian noise.

To implement a new model, you just need to implement one function: forward.
This function receives a dictionary of parameter values and a data shape schema (defined by detector_grid(), for example) and needs to return simulated data of shape specified. See the _forward function in AlphaModel for an example of how to do this.

If you want to use some other noise model, you may need to override _lnlike and define the probablity given your uncertainty. You can reference _lnlike in NoiseModel.

Running Tests

HoloPy comes with a suite of tests that ensure everything has been
built correctly and that it’s able to perform all of the calculations
it is designed to do. To run these tests, navigate to the root of the
package (e.g. /home/me/holopy) and run:

python run_nose.py

User Guide

Skip to the Loading Data tutorial if you already have HoloPy installed
and want to get started quickly.

	The HoloPy Scatterer

	The HoloPy Scattering Theories

	HoloPy Tools

	HoloPy Concepts

The HoloPy Scatterer

The HoloPy Scatterer class defines objects that are described by
numerical quantities (e.g. dimension, location, refractive index) and have
known light-scattering behaviour described by a ScatteringTheory.

	Scatterers are generally used in two scenarios:

	
	All numerical properties (e.g. dimension, location, refractive index) are
fixed to simulate a specific light scattering experiment.

	Some numerical properties are defined as Prior objects,
representing unknown values to be determined in an inference calculation.

You can find examples of these use cases in the Scattering Calculations and
Fitting Models to Data tutorials.

Scatterer objects in HoloPy are inherited from two base classes:

	CenteredScatterer describes a single object,
with an optional location specified

	Scatterers describes a collection of
individual scatterers

Scatterer Attributes

All HoloPy Scatterer classes have the following properties/methods:

	General manipulation

	
	x, y, z
Components of scatterer center

	translated()
New scatterer with location coordinates shifted by a vector

	Inference calculations

	
	parameters
Dictionary of all values needed to describe the scatterer.
Values described as Prior objects will appear that way here as
well.

	from_parameters()
New scatterer built from a dictionary of parameters

	Discretization

	
	indicators
Function(s) to describe region(s) of space occupied by scatterer
domain(s)

	index_at()
Scatterer’s refractive index at given coordinates

	in_domain()
Which domain of the scatterer the given coordinates are in

	contains()
Check whether a particular point is in any domains of the scatterer

	num_domains
Number of domains of the scatterer

	bounds
Extents of the scatterer in each dimension

	voxelate()
3D voxel grid representation of the scatterer containing its refractive
index at each point

Individual Scatterers

CenteredScatterer objects are not instantiated directly,
but instead in one of the subclasses:

	Sphere
Can contain multiple concentric layers defined by their outer radius

	LayeredSphere
Defines multiple concentric layers by their layer thickness

	Cylinder

	Ellipsoid

	Spheroid

	Bisphere
Union of two spheres

	Capsule
Cylinder with semi-spherical caps on either end

	JanusSphere_Uniform
Sphere with a semi-spherical outer layer of constant thickness

	JanusSphere_Tapered
Sphere with a semi-spherical outer layer that has a crescent profile

	CsgScatterer
Allows for construction of an arbitrary scatterer by constructive solid
geometry

Composite Scatterers

Scatterers objects contain multiple individual scatterers,and
support the following features in addition to those shared with
CenteredScatterer:

	Component scatterer handling

	
	Support for selecting component scatterers with square brackets and
python slicing syntax

	add()
Adds a new scatterer to the composite in-place

	rotated()
New scatterer rotated about its center according to
HoloPy rotation conventions

There are two specific composite scatterer classes for working with collections of
spheres that have additional functionality:

	Spheres

	A collection of spherical scatterers, with the following properties:

	overlaps
List of pairs of component spheres that overlap

	largest_overlap
Maximum overlap distance between component spheres

	RigidCluster

	A collection of spherical scatterers in fixed relative positions.
The entire cluster can be translated and/or rotated.
RigidCluster.scatterers and RigidCluster.from_parameters()
both return Spheres type objects.

The HoloPy Scattering Theories

The HoloPy ScatteringTheory classes know how to calculate scattered fields from detector and scatterer information. Each scattering theory is only able to work with certain specific scatterers.

There are two broad classes of scattering theories in HoloPy:
lens-free theories which treat the recorded fields as
the magnified image of the fields at the focal plane, and
lens-based theories which use a more detailed
description of the effects of the objective lens. The lens-free theories
usually do not need any additional parameters specified, whereas the
lens theories need the lens’s acceptance angle, which can be specified
as either a fixed number or a Prior object, representing an
unknown value to be determined in an inference calculation.

All scattering theories in HoloPy inherit from the ScatteringTheory class.

Not sure how to choose a scattering theory? See the
Which Scattering Theory should I use? section.

ScatteringTheory Methods

HoloPy Scattering theories calculate the scattered fields through one of the following methods.

	_raw_fields()
Calculates the scattering fields.

	_raw_scat_matrs()
Calculates the scattering matrices.

	_raw_cross_sections()
Calculates the cross sections.

	_can_handle()
Checks if the theory is compatible with a given scatterer.

If a theory is asked for the raw fields, but does not have a _raw_fields method, the scattering theory attempts to calculate them via the scattering matrices, as called by _raw_scat_matrs. More than one of these methods may be implemented for performance reasons.

Be advised that the ScatteringTheory class is under active development, and these method names may change.

Lens-Free Scattering Theories

	
	DDA

	
	Can handle every Scatterer object in HoloPy

	Computes scattered fields using the discrete dipole approximation, as
implemented by ADDA.

	Requires the ADDA package to be installed separately, as detailed in
the DDA section

	Functions in two different ways, as controlled by the
use_indicators flag. If the use_indicators flag is
True, the scatterer is voxelated within HoloPy before passing
to ADDA. If the flag is False, ADDA’s built-in scatterer
geometries are used for things like spheres, cylinders,
ellipsoids, etc.

	
	Mie

	
	Can handle Sphere objects, LayeredSphere objects, or
Spheres through superposition.

	Computes scattered fields using Mie theory.

	
	Multisphere

	
	Can handle Spheres objects.

	Cannot handle Spheres objects composed of layered
spheres.

	Computes scattered fields through a T-matrix-based solution of
scattering, accounting for multiple scattering between spheres to
find a (numerically) exact solution.

	
	Tmatrix

	
	Can handle Sphere, Cylinder, or Spheroid
objects.

	Computes scattered fields by calculating the T-matrix for axisymmetric
scatterers, to find a (numerically) exact solution.

	Occasionally has problems due to Fortran compilations.

Lens-Based Scattering Theories

	
	Lens

	
	Create by including one of the Lens-Free theories.

	Can handle whatever the additional included theory can handle.

	Considerably slower than the normal scattering theory.

	Performance can be improved if the numexpr [https://pypi.org/project/numexpr/] package is installed.

	
	MieLens

	
	Can handle Sphere objects, or Spheres through
superposition.

	Computes scattered fields using Mie theory, but incorporates diffractive
effects of a perfect objective lens.

	Used for performance; MieLens(lens_angle) is much faster than calling
Lens(lens_angle, Mie()) and slightly faster than Mie().

	
	AberratedMieLens

	
	Can handle Sphere objects, or Spheres through
superposition.

	Computes scattered fields using Mie theory, but incorporates both
diffractive effects of an objective lens and arbitrary-order
spherical aberration.

	AberratedMieLens and MieLens have the same
computational cost, although AberratedMieLens requires
more parameters for fitting.

Which Scattering Theory should I use?

HoloPy chooses a default scattering theory based off the scatterer type,
currently determined by the function
determine_default_theory_for(). If you’re not satisfied with
HoloPy’s default scattering theory selection, you should choose the
scattering theory based off of (1) the scatterer that you are modeling,
and (2) whether you want to describe the effect of the lens on the
recorded hologram in detail.

An Individual Sphere

For single spheres, the default is to calculate scattering using Mie
theory, implemented in the class Mie. Mie theory is the exact
solution to Maxwell’s equations for the scattered field from a spherical
particle, originally derived by Gustav Mie and (independently) by Ludvig
Lorenz in the early 1900s.

Multiple Spheres

A scatterer composed of multiple spheres can exhibit multiple scattering and
coupling of the near-fields of neighbouring particles. Mie theory doesn’t
include these effects, so Spheres objects are by default calculated
using the Multisphere theory, which accounts for multiple
scattering by using the SCSMFO package from Daniel Mackowski [http://www.eng.auburn.edu/~dmckwski/]. This calculation uses
T-matrix methods to give the exact solution to Maxwell’s equation for
the scattering from an arbitrary arrangement of non-overlapping spheres.

Sometimes you might want to calculate scattering from multiple spheres
using Mie theory if you are worried about computation time or if your
spheres are widely separated (such that optical coupling between the
spheres is negligible) You can specify Mie theory manually when calling
the calc_holo() function, as the following code snippet shows:

import holopy as hp
from holopy.core.io import get_example_data_path
from holopy.scattering import (
 Sphere,
 Spheres,
 Mie,
 calc_holo)

s1 = Sphere(center=(5, 5, 5), n = 1.59, r = .5)
s2 = Sphere(center=(4, 4, 5), n = 1.59, r = .5)
collection = Spheres([s1, s2])

imagepath = get_example_data_path('image0002.h5')
exp_img = hp.load(imagepath)

holo = calc_holo(exp_img, collection, theory=Mie)

Note that the multisphere theory does not work with collections of
multi-layered spheres; in this case HoloPy defaults to using Mie theory
with superposition.

Non-spherical particles

HoloPy also includes scattering theories that can calculate scattering
from non-spherical particles. For cylindrical or spheroidal particles,
by default HoloPy calculates scattering from cylindrical or spheroidal
particles by using the Tmatrix theory, which uses the T-matrix
code from Michael Mishchenko [https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html].

from holopy.scattering.theory import Tmatrix
from holopy.scattering.scatterer import Spheroid

spheroid = Spheroid(n=1.59, r=(1., 2.), center=(4, 4, 5))
theory = Tmatrix()
holo = calc_holo(exp_img, spheroid, theory=theory)

Holopy can also access a discrete dipole approximation (DDA) theory to model
arbitrary non-spherical objects. See the Scattering from Arbitrary Structures with DDA tutorial for more
details.

Including the effect of the lens

Most of the scattering theories in HoloPy treat the fields on the detector as
a (magnified) image of the fields at the focal plane. While these theories
usually provide a good description of holograms of particles far above the
focus, when the particle is near near the focus subtle optical effects can
cause deviations between the recorded hologram and theories which do not
specifically describe the effects of the lens. To deal with this, HoloPy
currently offers two scattering theories which describe the effects of a
perfect lens on the recorded hologram. Both of these scattering theories
need information about the lens to make predictions, specifically the
acceptance angle of the lens. The acceptance angle \(\beta\) is
related to the numerical aperture or NA of the lens by \(\beta =
\arcsin(NA / n_f)\), where \(n_f\) is the refractive of the immersion
fluid. For more details on the effect of the lens on the recorded
hologram, see our papers
here [https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-2-1061]
and here.

The Lens theory allows HoloPy to include the effects of a perfect
objective lens with any scattering theory. The Lens theory works by wrapping a
normal scattering theory. For instance, to calculate the image of a sphere in
an objective lens with an acceptance angle of 1.0, do

from holopy.scattering.theory import Lens, Mie
lens_angle = 1.0
theory = Lens(lens_angle, Mie())

This theory can then be passed to calc_holo() just like any other
scattering theory. However, calculations with the Lens theory
are very slow, orders of magnitude slower than calculations without the
lens.

To get around the slow speed of the Lens theory, HoloPy offers
an additional theory, MieLens, specifically for spherical
particles imaged with a perfect lens. For spherical particles, some
analytical simplifications are possible which greatly speed up the
description of the objective lens – in fact, the MieLens
theory’s implementation is slightly faster than Mie theory’s.
The following code creates a MieLens theory, which can be
passed to calc_holo() just like any other scattering theory:

from holopy.scattering.theory import MieLens
lens_angle = 1.0
theory = MieLens(lens_angle)

In addition, holopy supports the calculation of holograms of spherical
particles when the imaging objective lens has spherical aberrations of
arbitrary order. Currently only spherical aberrations are supported, and
only for the image of spherical scatterers. The following code creates
a AberratedMieLens theory with aberrations up to 8th order in
the phase. This theory can be passed to calc_holo() just like any
other scattering theory:

from holopy.scattering.theory import AberratedMieLens
aberration_coefficients = [1.0, 2.0, 3.0]
lens_angle = 1.0
theory = AberratedMieLens(
 spherical_aberration=aberration_coefficients,
 lens_angle=lens_angle)

My Scattering theory isn’t here?!?!

Add your own scattering theory to HoloPy! See Adding a new scattering theory for
details. If you think your new scattering theory may be useful for other
users, please consider submitting a pull request [https://github.com/manoharan-lab/holopy/pulls].

HoloPy Tools

Holopy contains a number of tools to help you with common tasks when analyzing holograms.
This page provides a summary of the tools available, while full descriptions can be found
in the relevant code reference.

General Image Processing Tools

The tools described here are frequently used when analyzing holgrams. They are available from the holopy.core.process namespace.

The normalize() function divides an image by its average, returning an
image with a mean pixel value of 1. Note that this is the same normalization
convention used by HoloPy when calculating holograms with calc_holo().

Cropping an image introduces difficulties in keeping track of the relative
coordinates of features within an image and maintaining metadata. By using the
subimage() function, the image origin is maintained in the cropped image,
so coordinate locations of features (such as a scatterer) remain unchanged.

Since holograms of particles usually take the form of concentric rings, the
location of a scatterer can usually be found by locating the apparent center(s)
of the image. Use center_find() to locate one or more centers in an
image.

You can remove isolated dead pixels with zero intensity (e.g. for a background
division) by using zero_filter(). This function replaces the dead pixel
with the average of its neighbours, and fails if adjacent pixels have zero
intensity.

The add_noise() function allows you to add Gaussian-correlated random
noise to a calculated image so that it more closely resembles experimental data.

To find gradient values at all points in an image, use image_gradient().
To simply remove a planar intensity gradient from an image, use
detrend(). Note that this gives a mean pixel value of zero.

Frequency space analysis provides a powerful tool for working with images. Use
fft() and ifft() to perform fourier transforms and inverse fourier
transforms, respectively. These make use of numpy.fft functions, but are
wrapped to correctly interpret HoloPy objects. HoloPy also includes a Hough
transform (hough()) to help identify lines and other features in your
images.

Math Tools

HoloPy contains implementations of a few mathematical functions related to
scattering calculations. These functions are available from the
holopy.core.math namespace.

To find the distance between two points, use cartesian_distance().

To rotate a set of points by arbitrary angles about the three coordinate axes,
use rotate_points(). You can also calculate a rotation matrix with
rotation_matrix() to save and use later.

To convert spherical coordinates into Cartesian coordinates, use
to_cartesian(). To convert Cartesian coordinates into spherical
coordinates, use to_spherical().

When comparing data to a model, the chi-squared and r-squared values provide
measures of goodness-of-fit. You can access these through chisq() and
rsq().

HoloPy Concepts

Units

HoloPy does not enforce any particular set of units. As long as
you are consistent, you can use any set of units, for example pixels,
meters, or microns. So if you specify the wavelength of your red imaging
laser as 658 then all other units (x, y, z position coordinates,
particle radii, etc.) must also be specified in nanometers.

Coordinate System

For image data (data points arrayed in a
regular grid in a single plane), HoloPy defaults to placing the
origin, (0,0), at the top left corner as shown below. The x-axis runs
vertically down, the y-axis runs horizontally to the right, and the
z-axis points out of the screen, toward you. This corresponds to the
way that images are treated by most computer software.

[image: Coordinate system used in HoloPy.]
In sample space, we choose the z axis so that distances to objects
from the camera/focal plane are positive (have positive z
coordinates). The price we pay for this choice is that the
propagation direction of the illumination light is then negative.
In the image above, light travels from a source located in front of the screen, through a scatterer, and onto a detector behind the screen.

More complex detector geometries will define their own origin, or ask
you to define one.

Rotations of Scatterers

Certain scattering calculations in HoloPy require specifying the orientation
of a scatterer (such as a Janus sphere) relative to the HoloPy coordinate
system. We do this in the most general way possible by specifying three
Euler angles and a reference orientation. Rotating a scatterer initially
in the reference orientation through the three Euler angles \(\alpha\),
\(\beta\), and \(\gamma\) (in the active transformation picture)
yields the desired orientation. The reference orientation is specified by the
definition of the scatterer.

The Euler rotations are performed in the following way:

	Rotate the scatterer an angle \(\alpha\) about the HoloPy \(z\) axis.

	Rotate the scatterer an angle \(\beta\) about the HoloPy \(y\) axis.

	Rotate the scatterer an angle \(\gamma\) about the HoloPy \(z\) axis.

The sense of rotation is as follows: each angle is a rotation in the clockwise
direction about the specified axis, viewed along the positive direction of the axis from
the origin. This is the usual sense of how rotations are typically defined in math:

[image: Matrix equation for Euler rotations.]

holopy package

HoloPy is a set of tools for working with digital holograms and light
scattering. It contains tools for working loading data and associating
it with expermiental metadata, reconstructing holograms, calculating
light scattering, fitting scattering models to data, and visualizing
images and calculations.

Subpackages

	holopy.core package
	Subpackages
	holopy.core.io package
	Submodules

	holopy.core.process package
	Submodules

	Submodules

	holopy.inference package
	Submodules

	holopy.propagation package
	Submodules

	holopy.scattering package
	Subpackages
	holopy.scattering.scatterer package
	Submodules

	holopy.scattering.theory package
	Subpackages
	holopy.scattering.theory.mie_f package
	Submodules

	holopy.scattering.theory.tmatrix_f package
	Submodules

	Submodules

	Submodules

holopy.core package

Loading, saving, and basic processing of data.

Subpackages

	holopy.core.io package
	Submodules

	holopy.core.process package
	Submodules

Submodules

Error classes used in holopy

	
exception BadImage

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception CoordSysError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception DependencyMissing(dependency, message='')

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception DeprecationError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception LoadError(filename, message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception NoMetadata

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception PerformanceWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

	
raise_fitting_api_error(correct, obselete)

	

Root class for all of holopy. This class provides serialization to and from
yaml text file for all holopy objects.

yaml files are structured text files designed to be easy for humans to
read and write but also easy for computers to read. HoloPy uses them
to store information about experimental conditions and to describe
analysis procedures.

	
class HoloPyObject

	Bases: holopy.core.holopy_object.Serializable

Ancestor class for all HoloPy classes.

HoloPy object’s purpose is to provide the machinery for saving to
and loading from HoloPy yaml files

	
classmethod from_yaml(loader, node)

	Convert a representation node to a Python object.

	
classmethod to_yaml(dumper, data)

	Convert a Python object to a representation node.

	
class Serializable

	Bases: yaml.YAMLObject

Base class for any object that wants a nice clean yaml output

	
classmethod to_yaml(dumper, data)

	Convert a Python object to a representation node.

	
class SerializableMetaclass(name, bases, kwds)

	Bases: yaml.YAMLObjectMetaclass

	
class Mapper

	Bases: holopy.core.holopy_object.HoloPyObject

Creates “maps” from objects containing priors that retain their
hierarchical structure (including ties) but are easily serializable. The
main entry point is through convert_to_map, which returns a map of the
object and also updates the Mapper parameter and parameter_names
attributes so they can be extracted for later use.

	
add_parameter(parameter, name)

	

	
check_for_ties(parameter)

	

	
convert_to_map(parameter, name='')

	

	
get_parameter_index(parameter, name)

	

	
iterate_mapping(prefix, pairs)

	

	
map_dictionary(parameter, name)

	

	
map_transformed_prior(parameter, name)

	

	
map_xarray(parameter, name)

	

	
edit_map_indices(map_entry, indices)

	Adjusts a map to account for ties between parameters

	Parameters

	
	map_entry – map or subset of map created by model methods

	indices (listlike) – indices of parameters to be tied

	
make_xarray(dim_name, keys, values)

	Packs values into xarray with new dim and coords (keys)

	
read_map(map_entry, parameter_values)

	Reads a map to create an object

	Parameters

	
	map_entry – map or subset of map created by model methods

	parameter_values (listlike) – values to replace map placeholders in final object

	
transformed_prior(transformation, base_priors)

	

	
cartesian_distance(p1, p2=[0, 0, 0])

	Return the Cartesian distance between points p1 and p2.

	Parameters

	p2 (p1,) – Coordinates of point 1 and point 2 in N-dimensions

	Returns

	dist – Cartesian distance between points p1 and p2

	Return type

	float64

	
chisq(fit, data)

	Calculate per-point value of chi-squared comparing a best-fit model and
data.

	Parameters

	
	fit (array_like) – Values of best-fit model to be compared to data

	data (array_like) – Data values to be compared to model

	Returns

	chisq – Chi-squared per point

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

chi-squared is defined as

\[\chi^2 = \frac{1}{N}\sum_{\textrm{points}} (\textrm{fit} - \textrm{data})^2\]

where \(N\) is the number of data points.

	
find_transformation_function(initial_coordinates, desired_coordinates)

	

	
keep_in_same_coordinates(coords)

	

	
rotate_points(points, theta, phi, psi)

	Rotate an array of points about Euler angles in a z, y, z convention.

	Parameters

	
	points (array-like (n,3)) – Set of points to be rotated

	phi, psi (theta,) – Euler rotation angles in z, y, z convention. These are not the
same as angles in spherical coordinates.

	Returns

	rotated_points – Points rotated by Euler angles

	Return type

	array(n,3)

	
rotation_matrix(alpha, beta, gamma, radians=True)

	Return a 3D rotation matrix

	Parameters

	
	beta, gamma (alpha,) – Euler rotation angles in z, y, z convention

	radians (boolean) – Default True; treats input angles in radians

	Returns

	rot – Rotation matrix. To rotate a column vector x, use np.dot(rot, x.)

	Return type

	array(3,3)

Notes

The Euler angles rotate a vector (in the active picture) by alpha
clockwise about the fixed lab z axis, beta clockwise about
the lab y axis, and by gamma about the lab z axis. Clockwise is
defined as viewed from the origin, looking in the positive direction
along an axis.

This breaks compatability with previous conventions, which were adopted for
compatability with the passive picture used by SCSMFO.

	
rsq(fit, data)

	Calculate correlation coeffiction R-squared comparing a best-fit model
and data.

	Parameters

	
	fit (array_like) – Values of best-fit model to be compared to data

	data (array_like) – Data values to be compared to model

	Returns

	rsq – Correlation coefficient R-squared.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

R-squared is defined as

\[R^2 = 1 - \frac{\sum_{\textrm{points}} (\textrm{data} - \textrm{fit})^2}{\sum_{\textrm{points}} (\textrm{data} - \bar{\textrm{data}})^2}\]

where \(\bar{\textrm{data}}\) is the mean value of the data. If the
model perfectly describes the data, \(R^2 = 1\).

	
to_cartesian(r, theta, phi)

	

	
transform_cartesian_to_cylindrical(x_y_z)

	

	
transform_cartesian_to_spherical(x_y_z)

	

	
transform_cylindrical_to_cartesian(rho_phi_z)

	

	
transform_cylindrical_to_spherical(rho_phi_z)

	

	
transform_spherical_to_cartesian(r_theta_phi)

	

	
transform_spherical_to_cylindrical(r_theta_phi)

	

Classes for defining metadata about experimental or calculated results.

	
clean_concat(arrays, dim)

	Concatenate a list of xr.DataArray objects along a specified dimension,
keeping the metadata of the first array.

	Parameters

	
	arrays (list of xr.xarray) –

	dim (valid dimension (string)) –

	Returns

	

	Return type

	xarray

	
copy_metadata(old, data, do_coords=True)

	Create a new xarray with data from one input and metadata from another.

	Parameters

	
	old (xr.DataArray) – The xarray to copy the metadata from.

	data (xr.DataArray) – The xarray to copy the data from.

	do_coords (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to copy the coordinates. Default is True

	Returns –

	xr.DataArray –

	
data_grid(arr, spacing=None, medium_index=None, illum_wavelen=None, illum_polarization=None, noise_sd=None, name=None, extra_dims=None, z=0)

	Create a set of detector points along with other experimental metadata.

	Returns

	

	Return type

	DataArray object

Notes

Use the higher-level detector_grid() and detector_points() functions.
This should be viewed as a factory method.

	
detector_grid(shape, spacing, name=None, extra_dims=None)

	Create a rectangular grid of pixels to represent a detector on which
scattering calculations are to be performed.

	Parameters

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or list-like (2)) – If int, detector is a square grid of shape x shape points.
If array_like, detector has shape[0] rows and
shape[1] columns.

	spacing (int [https://docs.python.org/3/library/functions.html#int] or list-like (2)) – If int, distance between square detector pixels.
If array_like, spacing[0] between adjacent rows and
spacing[1] between adjacent columns.

	name (string, optional) –

	extra_dims (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – extra dimension(s) to add to the empty detector grid as
{dimname: [coords]}.

	Returns

	grid – DataArray of zeros with coordinates calculated according to shape and spacing

	Return type

	DataArray object

Notes

Typically used to define a set of points to represent the pixels of a
digital camera in scattering calculations.

	
detector_points(coords={}, x=None, y=None, z=None, r=None, theta=None, phi=None, name=None)

	Returns a one-dimensional set of detector coordinates at which scattering
calculations are to be done.

	Parameters

	
	coords (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictionary of detector coordinates. Default: empty dictionary.
Typical usage should not pass this argument, giving other parameters
(Cartesian x, y, and z or polar r, theta, and phi
coordinates) instead.

	y (x,) – Cartesian x and y coordinates of detectors.

	z (int [https://docs.python.org/3/library/functions.html#int] or array_like, optional) – Cartesian z coordinates of detectors. If not specified, assume z = 0.

	r (int [https://docs.python.org/3/library/functions.html#int] or array_like, optional) – Spherical polar radial coordinates of detectors. If not specified,
assume r = infinity (far-field).

	theta (int [https://docs.python.org/3/library/functions.html#int] or array_like, optional) – Spherical polar coordinates (polar angle from z axis) of detectors.

	phi (int [https://docs.python.org/3/library/functions.html#int] or array_like, optional) – Spherical polar azimuthal coodinates of detectors.

	name (string) –

	Returns

	grid – DataArray of zeros with calculated coordinates.

	Return type

	DataArray object

Notes

Specify either the Cartesian or the polar coordinates of your detector.
This may be helpful for modeling static light scattering calculations.
Use detector_grid() to specify coordinates of a grid of pixels (e.g.,
a digital camera.)

	
dict_to_array(schema, inval)

	

	
flat(a)

	

	
from_flat(a)

	

	
get_extents(detector_grid)

	Find the x, y, z extent of a `detector_grid`, as a dict.

	
get_spacing(detector_grid)

	Find the (x, y) spacing for a `detector_grid`.

	
get_values(a)

	

	
make_coords(shape, spacing, z=0)

	

	
make_subset_data(data, pixels=None, return_selection=False, seed=None)

	Sub-sample a data for faster inference.

	Parameters

	
	data (xr.DataArray) – The data to subsample

	pixels (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of pixels to subsample. Defaults to the entire image.

	return_selection (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return the pixel indices which were sampled.
Default is False

	seed (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – If not None, the seed to seed the random number generator with.

	Returns

	
	subset (xr.DataArray)

	[selection (np.ndarray, dtype int])

	
to_vector(c)

	

	
update_metadata(a, medium_index=None, illum_wavelen=None, illum_polarization=None, noise_sd=None)

	Returns a copy of an image with updated metadata in its ‘attrs’ field.

	Parameters

	
	a (xarray.DataArray) – image to update.

	medium_index (float [https://docs.python.org/3/library/functions.html#float]) – Updated refractive index of the medium in the image.

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float]) – Updated wavelength of illumination in the image.

	illum_polarization (list-like) – Updated polarization of illumination in the image.

	noise_sd (float [https://docs.python.org/3/library/functions.html#float]) – standard deviation of Gaussian noise in the image.

	Returns

	b – copy of input image with updated metadata.

	Return type

	xarray.DataArray

	
class BoundedGaussian(mu, sd, lower_bound=-inf, upper_bound=inf, name=None)

	Bases: holopy.core.prior.Gaussian

	
lnprob(p)

	Note that this does not return the actual log-probability, but
a value proportional to it.

	
prob(p)

	Note that this does not return the actual probability, but
a value proportional to it.

	
sample(size=None)

	

	
class ComplexPrior(real, imag, name=None)

	Bases: holopy.core.prior.TransformedPrior

A complex free parameter

ComplexPrior has a real and imaginary part which can (potentially)
vary separately.

	Parameters

	
	imag (real,) – The real and imaginary parts of this parameter. Assign floats to fix
that portion or parameters to allow it to vary. The parameters must be
purely real. You should omit names for the parameters;
ComplexPrior will name them

	name (string) – Short descriptive name of the ComplexPrior. Do not provide this if
using a ParameterizedScatterer, a name will be assigned based its
position within the scatterer.

	
imag

	

	
lnprob(p)

	

	
map_keys

	

	
prob(p)

	

	
real

	

	
class Gaussian(mu, sd, name=None)

	Bases: holopy.core.prior.Prior

	
guess

	

	
lnprob(p)

	

	
prob(p)

	

	
sample(size=None)

	

	
variance

	

	
class Prior

	Bases: holopy.core.holopy_object.HoloPyObject

Base class for Bayesian priors in holopy.

Prior subclasses should define at least the following methods:

	guess

	sample

	prob

	lnprob

	
renamed(name)

	

	
scale(physical)

	

	
unscale(scaled)

	

	
class TransformedPrior(transformation, base_prior, name=None)

	Bases: holopy.core.prior.Prior

	
guess

	

	
lnprob(p)

	

	
map_keys

	

	
prob(p)

	

	
sample(size=None)

	

	
class Uniform(lower_bound, upper_bound, guess=None, name=None)

	Bases: holopy.core.prior.Prior

	
interval

	

	
lnprob(p)

	

	
prob(p)

	

	
sample(size=None)

	

	
generate_guess(parameters, nguess=1, scaling=1, seed=None)

	

	
make_center_priors(im, z_range_extents=5, xy_uncertainty_pixels=1, z_range_units=None)

	Make sensible default priors for the center of a sphere in a hologram

	Parameters

	
	im (xarray) – The image you wish to make priors for

	z_range_extents (float [https://docs.python.org/3/library/functions.html#float] (optional)) – What range to extend a uniform prior for z over, measured in multiples
of the total extent of the image. The default is 5 times the extent of
the image, a large range, but since tempering is quite good at refining
this, it is safer to just choose a large range to be sure to include
the correct value.

	xy_uncertainty_pixels (float [https://docs.python.org/3/library/functions.html#float] (optional)) – The number of pixels of uncertainty to assume for the centerfinder.
The default is 1 pixel, and this is probably correct for most images.

	z_range_units (float [https://docs.python.org/3/library/functions.html#float]) – Specify the range of the z prior in your data units. If provided,
z_range_extents is ignored.

	
updated(prior, v, extra_uncertainty=0)

	Update a prior from a posterior

	Parameters

	
	v (UncertainValue) – The new value, usually from an mcmc result

	extra_uncertainty (float [https://docs.python.org/3/library/functions.html#float]) – provide a floor for uncertainty (sd) of the new parameter

Misc utility functions to make coding more convenient

	
class LnpostWrapper(model, data, new_pixels=None, minus=False)

	Bases: holopy.core.holopy_object.HoloPyObject

We want to be able to define a specific model.lnposterior calculation that
only takes parameter values as an argument for passing into optimizers.
However, individual functions can’t be pickled to distribute hologram
calculations with python multiprocessing. This class solves both issues.

	
evaluate(par_vals)

	

	
class NonePool

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
close()

	

	
map(function, arguments)

	

	
class SuppressOutput(suppress_output=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
choose_pool(parallel)

	This is a remake of schwimmbad.choose_pool with a single argument.

	
dict_without(d, keys)

	Exclude a list of keys from a dictionary.

Silently ignores any key in keys that is not in the dict (this is
intended to be used to make sure a dict does not contain specific
keys)
:param d: The dictionary to operate on
:type d: dict
:param keys: The keys to exclude
:type keys: list(string)
:param returns: A copy of dict without any of the specified keys
:type returns: d2

	
ensure_array(x)

	if x is None, returns None. Otherwise, gives x in a form so that each of:
len(x), x[0], x+2 will not fail.

	
ensure_listlike(x)

	

	
ensure_scalar(x)

	

	
mkdir_p(path)

	Equivalent to mkdir -p at the shell, this function makes a
directory and its parents as needed, silently doing nothing if it
exists.

	
repeat_sing_dims(indict, keys='all')

	

	
updated(d, update={}, filter_none=True, **kwargs)

	Return a dictionary updated with keys from update

Analgous to sorted, this is an equivalent of d.update as a
non-modifying free function

	Parameters

	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict to update

	update (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict to take updates from

holopy.core.io package

Submodules

Common entry point for holopy io. Dispatches to the correct load/save
functions.

	
class Accumulator

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Calculates average and coefficient of variance for numerical data in
one pass using Welford’s algorithim.

	
cv()

	The coefficient of variation

	
mean()

	

	
push(x)

	

	
default_extension(inf, defext='.h5')

	

	
get_example_data(name)

	

	
get_example_data_path(name)

	

	
load(inf, lazy=False)

	Load data or results

	Parameters

	inf (string) – String specifying an hdf5 file containing holopy data

	Returns

	obj – The array object contained in the file

	Return type

	xarray.DataArray

	
load_average(filepath, refimg=None, spacing=None, medium_index=None, illum_wavelen=None, illum_polarization=None, noise_sd=None, channel=None, image_glob='*.tif')

	Average a set of images (usually as a background)

	Parameters

	
	filepath (string or list [https://docs.python.org/3/library/stdtypes.html#list](string)) – Directory or list of filenames or filepaths. If filename is a
directory, it will average all images matching image_glob.

	refimg (xarray.DataArray) – reference image to provide spacing and metadata for the new image.

	spacing (float [https://docs.python.org/3/library/functions.html#float]) – Spacing between pixels in the images. Used preferentially over
refimg value if both are provided.

	medium_index (float [https://docs.python.org/3/library/functions.html#float]) – Refractive index of the medium in the images. Used
preferentially over refimg value if both are provided.

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float]) – Wavelength of illumination in the images. Used preferentially
over refimg value if both are provided.

	illum_polarization (list-like) – Polarization of illumination in the images. Used preferentially
over refimg value if both are provided.

	image_glob (string) – Glob used to select images (if images is a directory)

	Returns

	averaged_image – Image which is an average of images
noise_sd attribute contains average pixel stdev normalized by
total image intensity

	Return type

	xarray.DataArray

	
load_image(inf, spacing=None, medium_index=None, illum_wavelen=None, illum_polarization=None, noise_sd=None, channel=None, name=None)

	Load data or results

	Parameters

	
	inf (string) – File to load.

	spacing (float [https://docs.python.org/3/library/functions.html#float] or (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]) (optional)) – pixel size of images in each dimension - assumes square pixels if single value.
set equal to 1 if not passed in and issues warning.

	medium_index (float [https://docs.python.org/3/library/functions.html#float] (optional)) – refractive index of the medium

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] (optional)) – wavelength (in vacuum) of illuminating light

	illum_polarization ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]) (optional)) – (x, y) polarization vector of the illuminating light

	noise_sd (float [https://docs.python.org/3/library/functions.html#float] (optional)) – noise level in the image, normalized to image intensity

	channel (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints (optional)) – number(s) of channel to load for a color image (in general 0=red,
1=green, 2=blue)
name : str (optional)
name to assign the xr.DataArray object resulting from load_image

	Returns

	obj

	Return type

	xarray.DataArray representation of the image with associated metadata

	
pack_attrs(a, do_spacing=False)

	

	
save(outf, obj)

	Save a holopy object

Will save objects as yaml text containing all information about the object
unless outf is a filename with an image extension, in which case it will
save an image, truncating metadata.

	Parameters

	
	outf (basestring or file) – Location to save the object

	obj (holopy.core.holopy_object.HoloPyObject) – The object to save

	
save_image(filename, im, scaling='auto', depth=8)

	Save an ndarray or image as a tiff.

	Parameters

	
	filename (basestring) – filename in which to save image. If im is an image the
function should default to the image’s name field if no
filename is specified

	im (ndarray or holopy.image.Image) – image to save.

	scaling ('auto', None [https://docs.python.org/3/library/constants.html#None], or (Int, Int)) – How the image should be scaled for saving. Ignored for float
output. It defaults to auto, use the full range of the output
format. Other options are None, meaning no scaling, or a pair
of integers specifying the values which should be set to the
maximum and minimum values of the image format.

	depth (8, 16 or 'float') – What type of image to save. Options other than 8bit may not be supported
for many image types. You probably don’t want to save 8bit images without
some kind of scaling.

	
save_images(filenames, ims, scaling='auto', depth=8)

	Saves a volume as separate images (think of reconstruction volumes).

	Parameters

	
	filenames (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of filenames. There have to be the same number of filenames as of
images to save. Each image will be saved in the corresponding file with
the same index.

	ims (ndarray or holopy.image.Image) – Images to save, with separate z-coordinates from which they each will
be selected.

	scaling ('auto', None [https://docs.python.org/3/library/constants.html#None], or (Int, Int)) – How the images should be scaled for saving. Ignored for float output.
It defaults to auto, use the full range of the output format. Other
options are None, meaning no scaling, or a pair of integers specifying
the values which should be set to the maximum and minimum values of the
image format.

	depth (8, 16 or 'float') – What type of image to save. Options other than 8bit may not be
supported for many image types. You probably don’t want to save 8bit
images without some kind of scaling.

	
unpack_attrs(a)

	

Reading and writing of yaml files.

yaml files are structured text files designed to be easy for humans to
read and write but also easy for computers to read. HoloPy uses them
to store information about experimental conditions and to describe
analysis procedures.

	
class_loader(loader, node)

	

	
class_representer(dumper, data)

	

	
complex_constructor(loader, node)

	

	
complex_representer(dumper, data)

	

	
ignore_aliases(data)

	

	
instancemethod_constructor(loader, node)

	

	
instancemethod_representer(dumper, data)

	

	
load(inf)

	

	
ndarray_representer(dumper, data)

	

	
numpy_float_representer(dumper, data)

	

	
numpy_int_representer(dumper, data)

	

	
numpy_ufunc_constructor(loader, node)

	

	
numpy_ufunc_representer(dumper, data)

	

	
save(outf, obj)

	

	
tuple_representer(dumper, data)

	

Prepare HoloPy objects for display on screen or write to file.

	
class Show2D(im)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
click(event)

	

	
draw()

	

	
format_coord(x, y)

	

	
save(filename)

	Saves the currently displayed Plot into a file.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for the file to save to.

	
save_all(filenames)

	Saves the complete stack of images into separate files.

	Parameters

	filenames (list [https://docs.python.org/3/library/stdtypes.html#list]) – Names of the files to save as a list. Has to have the same length
as the number of images that are contained in this object.

	
exception VisualizationNotImplemented(o)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
check_display()

	Diagnostic test to check matplotlib backend.

You should see a white square inside a black square, with a colorbar.
Pressing the left or right arrow keys should cycle through z.
You should see:

Z = 0 : A white axes-aligned square
Z = 1 : A white circle
Z = 2 : A white diamond (square at 45 degrees)

	
display_image(im, scaling='auto', vert_axis='x', horiz_axis='y', depth_axis='z', colour_axis='illumination')

	

	
save_plot(filenames, data, scaling='auto', vert_axis='x', horiz_axis='y', depth_axis='z', colour_axis='illumination')

	Saves a hologram or reconstruction to (a) file(s).

	Parameters

	
	filenames (list / str) – Name(s) of the file(s). If there is only one image contained (e.g.
hologram), the name will be used as a file name. If o contains more
plottable images (e.g. reconstruction volume), it should be a list of
filenames with the same length as objects.

	data (xarray.DataArray or ndarray) – Object to save.

	scaling ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]), optional) – (min, max) value to display in image, default is full range of o.

	vert_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display vertically, default x.

	horiz_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display horizontally, default y.

	depth_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to scroll with arrow keys, default ‘z’.

	colour_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display as RGB channels in colour image, default illumination.

Notes

Loads plotting library the first time it is required (so that we don’t have
to import all of matplotlib or mayavi just to load holopy)

	
show(o, scaling='auto', vert_axis='x', horiz_axis='y', depth_axis='z', colour_axis='illumination')

	Visualize a hologram or reconstruction

	Parameters

	
	o (xarray.DataArray or ndarray) – Object to visualize

	scaling ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]), optional) – (min, max) value to display in image, default is full range of o.

	vert_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display vertically, default x.

	horiz_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display horizontally, default y.

	depth_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to scroll with arrow keys, default ‘z’.

	colour_axis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – axis to display as RGB channels in colour image, default illumination.

Notes

Loads plotting library the first time it is required (so that we don’t have
to import all of matplotlib or mayavi just to load holopy)

	
show_scatterer_slices(scatterer, spacing)

	Show slices of a scatterer voxelation

	scatterer.Scatterer

	scatterer to visualize

	spacingfloat or (float, float, float)

	voxel spacing for the visualization

	
show_sphere_cluster(s, color)

	This function to show a 3D rendering of a Spheres obj hasn’t worked since
HoloPy 3.0, due to Mayavi compatibility issues. We keep the code because
we hope to re-implement this functionality eventually.

holopy.core.process package

Routines for image processing. Useful for pre-processing raw
holograms prior to extracting final data or post-processing
reconstructions.

Submodules

The centerfinder module is a group of functions for locating the
centers of holographic ring patterns. The module can find the center
of a single-sphere holographic pattern, a dimer holographic pattern,
or the centers of multiple (well-separated: clearly separate ring
patterns with separate centers) single spheres or dimers. The intended
use is for determining an initial parameter guess for hologram fitting.

We thank the Grier Group at NYU for suggesting the use of the Hough
transform. For their independent implementation of a Hough-based
holographic feature detection algorithm, see:
http://physics.nyu.edu/grierlab/software/circletransform.pro
For a case study and further reading, see:
F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon
& D. G. Grier, Flow visualization and flow cytometry with holographic
video microscopy, Optics Express 17, 13071-13079 (2009).

	
center_find(image, centers=1, threshold=0.5, blursize=3.0)

	Finds the coordinates of the center of a holographic pattern.
The coordinates returned are in pixels (row number, column
number). Intended for finding the center of single particle or
dimer holograms which basically show concentric circles. The
optional threshold parameter (between 0 and 1) gives a bound on
what magnitude of gradients to include in the calculation. For
example, threshold=.75 means ignore any gradients that are less
than 75% of the maximum gradient in the image. The optional
blursize parameter sets the size of a Gaussian filter that is
applied to the image. This step improves accuracy when small
features in the image have large gradients (e.g. dust particles
on the camera). Without blurring, these features may be
incorrectly identified as the hologram center. For best results,
blursize should be set to the radius of features to be ignored,
but smaller than the distance between hologram fringes. To skip
blurring, set blursize to 0.

	Parameters

	
	image (ndarray) – image to find the center(s) in

	centers (int [https://docs.python.org/3/library/functions.html#int]) – number of centers to find

	threshold (float [https://docs.python.org/3/library/functions.html#float] (optional)) – fraction of the maximum gradient below which all
other gradients will be ignored (range 0-.99)

	blursize (float [https://docs.python.org/3/library/functions.html#float] (optional)) – radius (in pixels) of the Gaussian filter that
is applied prior to Hough transform

	Returns

	res – row(s) and column(s) of center(s)

	Return type

	ndarray

Notes

When threshold is close to 1, the code will run quickly but may lack
accuracy. When threshold is set to 0, the gradient at all pixels will
contribute to finding the centers and the code will take a little
bit longer.

	
hough(col_deriv, row_deriv, centers=1, threshold=0.25)

	Following the approach of a Hough transform, finds the pixel which
the most gradients point towards or away from. Uses only gradients
with magnitudes greater than threshold*maximum gradient. Once the
pixel is found, uses a brightness-weighted average around that
pixel to refine the center location to return. After the first
center is found, the sourrounding area is blocked out and another
brightest pixel is searched for if more centers are required.

	Parameters

	
	col_deriv (numpy.ndarray) – y-component of image intensity gradient

	row_deriv (numpy.ndarray) – x-component of image intensity gradient

	centers (int [https://docs.python.org/3/library/functions.html#int]) – number of centers to find

	threshold (float [https://docs.python.org/3/library/functions.html#float] (optional)) – fraction of the maximum gradient below which all
other gradients will be ignored (range 0-.99)

	Returns

	res – row and column of center or centers

	Return type

	ndarray

	
image_gradient(image)

	Uses the Sobel operator as a numerical approximation of a
derivative to find the x and y components of the image’s intensity
gradient at each pixel.

	Parameters

	image (ndarray) – image to find the gradient of

	Returns

	
	gradx (ndarray) – x-components of intensity gradient

	grady (ndarray) – y-components of intensity gradient

Handles Fourier transforms of HoloPy images by using numpy’s fft
package. Tries to correctly interpret dimensions from xarray.

	
fft(data, shift=True)

	More convenient Fast Fourier Transform

An easier to use fft function, it will pick the correct fft to do
based on the shape of the array, and do the fftshift for you. This
is intended for working with images, and thus for dimensions greater
than 2 does slicewise transforms of each “image” in a
multidimensional stack

	Parameters

	
	data (ndarray or xarray) – The array to transform

	shift (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to preform an fftshift on the array to give low
frequences near the center as you probably expect. Default is
to do the fftshift.

	Returns

	fta – The fourier transform of a

	Return type

	ndarray

	
ft_coord(c)

	

	
ft_coords(cs)

	

	
get_spacing(c)

	

	
ifft(data, shift=True)

	More convenient Inverse Fast Fourier Transform

An easier to use ifft function, it will pick the correct ifft to
do based on the shape of the array, and do the fftshift for you.
This is intended for working with images, and thus for dimensions
greater than 2 does slicewise transforms of each “image” in a
multidimensional stack

	Parameters

	
	data (ndarray or xarray) – The array to transform

	shift (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to preform an fftshift on the array to give low
frequences near the center as you probably expect. Default is to
do the fftshift.

	Returns

	The inverse fourier transform of data

	Return type

	ndarray

	
ift_coord(c)

	

	
ift_coords(cs)

	

	
transform_metadata(a, inverse)

	

Image enhancement through background subtraction, contrast adjustment,
or detrending

	
add_noise(image, noise_mean=0.1, smoothing=0.01, poisson_lambda=1000)

	Add simulated noise to images. Intended for use with exact
calculated images to make them look more like noisy ‘real’
measurements.

Real image noise usually has correlation, so we smooth the raw
random variable. The noise_mean can be controlled independently of
the poisson_lambda that controls the shape of the distribution. In
general, you can stick with our default of a large poisson_lambda
(ie for imaging conditions not near the shot noise limit).

Defaults are set to give noise vaguely similar to what we tend to
see in our holographic imaging.

	Parameters

	
	image (xarray.DataArray) – The image to add noise to.

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of the image size to smooth by. Should in general be << 1

	poisson_lambda (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute the shape of the noise distribution. You can generally
leave this at its default value unless you are simulating shot noise
limited imaging.

	Returns

	noisy_image – A copy of the input image with noise added.

	Return type

	xarray.DataArray

	
bg_correct(raw, bg, df=None)

	Correct for noisy images by dividing by a background. The calculation used is (raw-df)/(bg-df).

	Parameters

	
	raw (xarray.DataArray) – Image to be background divided.

	bg (xarray.DataArray) – background image recorded with the same optical setup.

	df (xarray.DataArray) – dark field image recorded without illumination.

	Returns

	corrected_image – A copy of the background divided input image with None values of noise_sd updated to match bg.

	Return type

	xarray.DataArray

	
detrend(image)

	Remove linear trends from an image.

Performs a 2 axis linear detrend using scipy.signal.detrend

	Parameters

	image (xarray.DataArray) – Image to process

	Returns

	image – Image with linear trends removed

	Return type

	xarray.DataArray

	
normalize(image)

	Normalize an image by dividing by the pixel average.
This gives the image a mean value of 1.

	Parameters

	image (xarray.DataArray) – The array to normalize

	Returns

	normalized_image – The normalized image

	Return type

	xarray.DataArray

	
simulate_noise(shape, mean=0.1, smoothing=0.01, poisson_lambda=1000)

	Create an array of correlated noise. The noise_mean can be controlled independently of
the poisson_lambda that controls the shape of the distribution. In
general, you can stick with our default of a large poisson_lambda
(ie for imaging conditions not near the shot noise limit).

Defaults are set to give noise vaguely similar to what we tend to
see in our holographic imaging.

	Parameters

	
	shape (int [https://docs.python.org/3/library/functions.html#int] or array_like of ints) – shape of noise array

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of the image size to smooth by. Should in general be << 1

	poisson_lambda (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute the shape of the noise distribution. You can generally
leave this at its default value unless you are simulating shot noise
limited imaging.

	Returns

	noisy_image – A copy of the input image with noise added.

	Return type

	ndarray

	
subimage(arr, center, shape)

	Pick out a region of an image or other array

	Parameters

	
	arr (xarray.DataArray) – The array to subimage

	center (tuple of ints or floats) – The desired center of the region, should have the same number of
elements as the arr has dimensions. Floats will be rounded

	shape (int [https://docs.python.org/3/library/functions.html#int] or (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Desired shape of the region in x & y dimensions. If a single int is
given it is applied along both axes. Shape values must be even.

	Returns

	sub – Subset of shape shape centered at center. DataArray coords
will be set such that the upper left corner of the output has
coordinates relative to the input.

	Return type

	xarray.DataArray

	
zero_filter(image)

	Search for and interpolate pixels equal to 0.
This is to avoid NaN’s when a hologram is divided by a BG with 0’s.
Interpolation fails if any of the four corner pixels are 0.

	Parameters

	image (xarray.DataArray) – Image to process

	Returns

	image – Image where pixels = 0 are instead given values equal to average of
neighbors. dtype is the same as the input image

	Return type

	xarray.DataArray

holopy.inference package

Submodules

Stochastic fitting of models to data

	
class CmaStrategy(npixels=None, popsize=None, resample_pixels=True, parent_fraction=0.25, weight_function=None, walker_initial_pos=None, tols={}, seed=None, parallel='auto')

	Bases: holopy.core.holopy_object.HoloPyObject

Inference strategy defining a Covariance Matrix Adaptation Evolutionary
Strategy using cma package

	Parameters

	
	npixels (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of pixels in the image to fit. default fits all.

	resample_pixels (Boolean, optional) – If true (default), new pixels are chosen for each call of posterior.
Otherwise, a single pixel subset is used throughout calculation.

	parent_fraction (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of each generation to use to construct the next generation.
Takes symbol mu in cma literature

	weight_function (function, optional) – takes arguments (i, popsize), i in range(popsize); returns weight of i

	tols (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – tolerance values to overwrite the cma defaults

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – random seed to use

	parallel (optional) – number of threads to use or pool object or one of {None, ‘all’, ‘mpi’}.
Default tries ‘mpi’ then ‘all’.

	
fit(model, data)

	

	
run_cma(obj_func, parameters, initial_population, weight_function, tols={}, seed=None, parallel='auto')

	instantiate and run a CMAEvolutionStrategy object

	Parameters

	
	obj_func (Function) – function to be minimized (not maximized like posterior)

	parameters (list of Prior objects) – parameters to fit

	initial_population (array) – starting population with shape = (popsize, len(parameters))

	weight_function (function) – takes arguments (i, popsize), i in range(popsize); returns weight of i

	tols (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – tolerance values to overwrite the cma defaults

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – random seed to use

	parallel (optional) – number of threads to use or pool object or one of {None, ‘all’, ‘mpi’}.
Default tries ‘mpi’ then ‘all’.

Sample posterior probabilities given model and data

	
class EmceeStrategy(nwalkers=100, nsamples=None, npixels=None, walker_initial_pos=None, parallel='auto', seed=None)

	Bases: holopy.core.holopy_object.HoloPyObject

	
sample(model, data)

	

	
class TemperedStrategy(next_initial_dist=<function sample_one_sigma_gaussian>, nwalkers=100, nsamples=1000, min_pixels=None, npixels=1000, walker_initial_pos=None, parallel='auto', stages=3, stage_len=30, seed=None)

	Bases: holopy.inference.emcee.EmceeStrategy

	
add_stage_strategy(nsamples, npixels)

	

	
sample(model, data)

	

	
emcee_lnprobs_DataArray(sampler)

	

	
emcee_samples_DataArray(sampler, parameter_names)

	

	
sample_emcee(model, data, nwalkers, nsamples, walker_initial_pos, parallel='auto', seed=None)

	

	
sample_one_sigma_gaussian(result)

	

	
fit(data, model, parameters=None, strategy=None)

	

	
make_default_model(base_scatterer, fitting_parameters=None)

	

	
make_uniform(guesses, key)

	

	
parameterize_scatterer(base_scatterer, fitting_parameters)

	

	
replace_center(parameters, key)

	

	
sample(data, model, strategy=None)

	

	
validate_strategy(strategy, operation)

	

	
class AlphaModel(scatterer, alpha=1, noise_sd=None, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto', constraints=[])

	Bases: holopy.inference.model.Model

Model of hologram image formation with scaling parameter alpha.

	
alpha

	

	
class ExactModel(scatterer, calc_func=<function calc_holo>, noise_sd=None, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto', constraints=[])

	Bases: holopy.inference.model.Model

Model of arbitrary scattering function given by calc_func.

	
class LimitOverlaps(fraction=0.1)

	Bases: holopy.core.holopy_object.HoloPyObject

Constraint prohibiting overlaps beyond a certain tolerance.
fraction is the largest overlap allowed, in terms of sphere diameter.

	
check(s)

	

	
class Model(scatterer, noise_sd=None, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto', constraints=[])

	Bases: holopy.core.holopy_object.HoloPyObject

Model probabilites of observing data

Compute probabilities that observed data could be explained by a set of
scatterer and observation parameters.

	
add_tie(parameters_to_tie, new_name=None)

	Defines new ties between model parameters

	Parameters

	
	parameters_to_tie (listlike) – names of parameters to tie, as given by keys in model.parameters

	new_name (string, optional) – the name for the new tied parameter

	
ensure_parameters_are_listlike(pars)

	

	
fit(data, strategy=None)

	

	
forward(pars, detector)

	

	
classmethod from_yaml(loader, node)

	Convert a representation node to a Python object.

	
generate_guess(n=1, scaling=1, seed=None)

	

	
illum_polarization

	

	
illum_wavelen

	

	
initial_guess

	dictionary of initial guess values for each parameter

	
initial_guess_scatterer

	

	
lnlike(pars, data)

	Compute the log-likelihood for pars given data

	Parameters

	
	pars (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list - values for each parameter in the order of self._parameters
dict - keys should match self.parameters

	data (xarray) – The data to compute likelihood against

	Returns

	lnlike

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
lnposterior(pars, data, pixels=None)

	Compute the log-posterior probability of pars given data

	Parameters

	
	pars (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list - values for each parameter in the order of self._parameters
dict - keys should match self.parameters

	data (xarray) – The data to compute posterior against

	pixels (int [https://docs.python.org/3/library/functions.html#int](optional)) – Specify to use a random subset of all pixels in data

	Returns

	lnposterior

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
lnprior(pars)

	Compute the log-prior probability of pars

	Parameters

	pars (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list - values for each parameter in the order of self._parameters
dict - keys should match self.parameters

	Returns

	lnprior

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
medium_index

	

	
noise_sd

	

	
parameters

	dictionary of the model’s parameters

	
sample(data, strategy=None)

	

	
scatterer

	

	
scatterer_from_parameters(pars)

	Creates a scatterer by setting values for model parameters

	Parameters

	pars (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list - values for each parameter in the order of self._parameters
dict - keys should match self.parameters

	Returns

	

	Return type

	scatterer

	
theory_from_parameters(pars)

	

Interfaces to minimizers. Classes here provide a common interface to a variety
of third party minimizers.

	
class NmpfitStrategy(npixels=None, quiet=True, ftol=1e-10, xtol=1e-10, gtol=1e-10, damp=0, maxiter=100, seed=None)

	Bases: holopy.core.holopy_object.HoloPyObject

Levenberg-Marquardt minimizer, from Numpy/Python translation of Craig
Markwardt’s mpfit.pro.

	Parameters

	
	npixels (None [https://docs.python.org/3/library/constants.html#None]) – Fit only a randomly selected fraction of the data points in data

	quiet (Boolean) – If False, print output on minimizer convergence. Default is True

	ftol (float [https://docs.python.org/3/library/functions.html#float]) – Convergence criterion for minimizer: converges if actual and predicted
relative reductions in chi squared <= ftol

	xtol (float [https://docs.python.org/3/library/functions.html#float]) – Convergence criterion for minimizer: converges if relative error between
two Levenberg-Marquardt iterations is <= xtol

	gtol (float [https://docs.python.org/3/library/functions.html#float]) – Convergence criterion for minimizer: converges if absolute value of
cosine of angle between vector of cost function evaluated at current
solution for minimized parameters and any column of the Jacobian is
<= gtol

	damp (float [https://docs.python.org/3/library/functions.html#float]) – If nonzero, residuals larger than damp will be replaced by tanh. See
nmpfit documentation.

	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of Levenberg-Marquardt iterations to be performed.

Notes

See nmpfit documentation for further details. Not all functionalities of
nmpfit are implemented here: in particular, we do not allow analytical
derivatives of the residual function, which is impractical and/or
impossible to calculate for holograms. If you want to weight the residuals,
you need to supply a custom residual function.

	
calc_residuals(par_vals)

	

	
cleanup_from_fit()

	

	
fit(model, data)

	fit a model to some data

	Parameters

	
	model (Model object) – A model describing the scattering system which leads to your
data and the parameters to vary to fit it to the data

	data (xarray.DataArray) – The data to fit

	Returns

	result – an object containing the best fit parameters and information
about the fit

	Return type

	FitResult

	
get_errors_from_minimizer(fitted_pars)

	

	
initialize_fit(model, data)

	

	
minimize(parameters, obj_func)

	

	
unscale_pars_from_minimizer(values)

	

Results of sampling

	
class FitResult(data, model, strategy, time, kwargs={})

	Bases: holopy.core.holopy_object.HoloPyObject

	
add_attr(kwargs)

	

	
best_fit()

	

	
forward(pars)

	

	
guess_hologram

	

	
guess_parameters

	

	
guess_scatterer

	

	
hologram

	

	
max_lnprob

	

	
parameters

	

	
scatterer

	

	
class SamplingResult(data, model, strategy, time, kwargs={})

	Bases: holopy.inference.result.FitResult

	
burn_in(sample_number)

	

	
class TemperedSamplingResult(end_result, stage_results, strategy, time)

	Bases: holopy.inference.result.SamplingResult

	
class UncertainValue(guess, plus, minus=None, name=None)

	Bases: holopy.core.holopy_object.HoloPyObject

Represent an uncertain value

	Parameters

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – The value

	plus (float [https://docs.python.org/3/library/functions.html#float]) – The plus n_sigma uncertainty (or the uncertainty if it is symmetric)

	minus (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – The minus n_sigma uncertainty, or None if the uncertainty is symmetric

	n_sigma (int [https://docs.python.org/3/library/functions.html#int] (or float [https://docs.python.org/3/library/functions.html#float])) – The number of sigma the uncertainties represent

	
class LeastSquaresScipyStrategy(ftol=1e-10, xtol=1e-10, gtol=1e-10, max_nfev=None, npixels=None)

	Bases: holopy.core.holopy_object.HoloPyObject

	
fit(model, data)

	fit a model to some data

	Parameters

	
	model (Model object) – A model describing the scattering system which leads to your
data and the parameters to vary to fit it to the data

	data (xarray.DataArray) – The data to fit

	Returns

	result – Contains the best fit parameters and information about the fit

	Return type

	FitResult

	
minimize(parameters, residuals_function)

	

	
unscale_pars_from_minimizer(parameters, values)

	

holopy.propagation package

Submodules

Code to propagate objects/waves using scattering models.

	
propagate(data, d, medium_index=None, illum_wavelen=None, cfsp=0, gradient_filter=False)

	Propagates a hologram along the optical axis

	Parameters

	
	data (xarray.DataArray) – Hologram to propagate

	d (float [https://docs.python.org/3/library/functions.html#float] or list of floats) – Distance to propagate or desired schema. A list tells to
propagate to several distances and return the volume

	cfsp (integer (optional)) – Cascaded free-space propagation factor. If this is an integer
> 0, the transfer function G will be calculated at d/csf and
the value returned will be G**csf. This helps avoid artifacts
related to the limited window of the transfer function

	gradient_filter (float [https://docs.python.org/3/library/functions.html#float]) – For each distance, compute a second propagation a distance
gradient_filter away and subtract. This enhances contrast of
rapidly varying features. You may wish to use the number that is
a multiple of the medium wavelength (illum_wavelen / medium_index)

	Returns

	data – The hologram progagated to a distance d from its current location.

	Return type

	xarray.DataArray

Notes

holopy is agnostic to units, and the propagation result will be
correct as long as the distance and wavelength are in the same units.

	
trans_func(schema, d, med_wavelen, cfsp=0, gradient_filter=0)

	Calculates the optical transfer function to use in reconstruction

This routine uses the analytical form of the transfer function
found in in Kreis 1. It can optionally do cascaded free-space
propagation for greater accuracy 2, although the code will run
slightly more slowly.

	Parameters

	
	schema (xarray.DataArray) – Hologram to obtain the maximum dimensions of the transfer function

	d (float [https://docs.python.org/3/library/functions.html#float] or list of floats) – Reconstruction distance. If list or array, this function will
return an array of transfer functions, one for each distance

	med_wavelen (float [https://docs.python.org/3/library/functions.html#float]) – The wavelength in the medium you are propagating through

	cfsp (integer (optional)) – Cascaded free-space propagation factor. If this is an integer
> 0, the transfer function G will be calculated at d/csf and
the value returned will be G**csf

	gradient_filter (float [https://docs.python.org/3/library/functions.html#float] (optional)) – Subtract a second transfer function a distance gradient_filter
from each z

	Returns

	trans_func – The calculated transfer function. This will be at most as large as
shape, but may be smaller if the frequencies outside that are zero

	Return type

	xarray.DataArray

References

	1

	Kreis, Handbook of Holographic Interferometry (Wiley,
2005), equation 3.79 (page 116)

	2

	Kreis, Optical Engineering 41(8):1829, section 5

	
interpolate2D(data, i, j, fill=None)

	Interpolates values from a 2D array (data) given non-integer indecies i and j.
If [i,j] is outside of the shape of data, fill is returned.
If fill=None, the value of the closest edge pixel to (i,j) is used.

	
ps_propagate(data, d, L, beam_c, out_schema=None)

	Propagates light back through a hologram that was taken using a
diverging reference beam.

	Parameters

	
	is a holopy Xarray. It is the hologram to reconstruct. Must be (data) –

	The pixel spacing must also be square. (square.) –

	= distance from pinhole to reconstructed image, in meters (this is (d) –

	in Jericho and Kreuzer) Can be a scalar or a 1D list or array. (z) –

	= distance from screen to pinhole, in meters (L) –

	= [x,y] coodinates of beam center, in pixels (beam_c) –

	= size of output image and pixel spacing, default is the schema (out_schema) –

	data. (of) –

	Returns

	

	Return type

	an image(volume) corresponding to the reconstruction at plane(s) d.

Notes

Only propagation through media with refractive index 1 is supported.
This is a wrapper function for ps_propagate_plane()
This function can handle a single reconstruction plane or a volume.

Based on the algorithm described in Manfred H. Jericho and H. Jurgen
Kreuzer, “Point Source Digital In-Line Holographic Microscopy,”
Chapter 1 of Coherent Light Microscopy, Springer, 2010.
http://link.springer.com/chapter/10.1007%2F978-3-642-15813-1_1

	
ps_propagate_plane(data, d, L, beam_c, out_schema=None, old_Ip=False)

	Propagates light back through a hologram that was taken using a diverging
reference beam.

	Parameters

	
	is a holopy Xarray. It is the hologram to reconstruct. Must be square. (data) –

	pixel spacing must also be square. (The) –

	= distance from pinhole to reconstructed image, in meters (this is z in (d) –

	and Kreuzer) Must be a scalar. (Jericho) –

	= distance from screen to pinhole, in meters (L) –

	= [x,y] coodinates of beam center, in pixels (beam_c) –

	= size of output image and pixel spacing, default is the schema (out_schema) –

	data. (of) –

	Ip == True, returns Ip to be used on calculations in the stack (if) –

	Ip == False compute reconstructed image as normal (if) –

	Ip is an image, use this to speed up calculations (if) –

	Returns

	

	Return type

	returns an image(volume) corresponding to the reconstruction at plane(s) d.

Notes

Propataion can be to one plane only.
Only propagation through media with refractive index 1 is supported.

Based on the algorithm described in Manfred H. Jericho and H. Jurgen
Kreuzer, “Point Source Digital In-Line Holographic Microscopy,” Chapter 1
of Coherent Light Microscopy, Springer, 2010.
http://link.springer.com/chapter/10.1007%2F978-3-642-15813-1_1

holopy.scattering package

Scattering calculations

The scattering package provides objects and methods to define
scatterer geometries, and theories to compute scattering from
specified geometries. Scattering depends on holopy.core, and certain
scattering theories may require external scattering codes.

The HoloPy scattering module is used to:

	Describe geometry as a scatterer object

	Define the result you want as a xarray.DataArray xarray.DataArray

	Calculate scattering quantities with an
theory appropriate for your
scatterer

Subpackages

	holopy.scattering.scatterer package
	Submodules

	holopy.scattering.theory package
	Subpackages
	holopy.scattering.theory.mie_f package
	Submodules

	holopy.scattering.theory.tmatrix_f package
	Submodules

	Submodules

Submodules

Exceptions used in scatterpy module. These are separated out from the
other exceptions in other parts of HoloPy to keep things modular.

	
exception AutoTheoryFailed(scatterer)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception InvalidScatterer(scatterer, message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception MissingParameter(parameter_name)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception MultisphereFailure

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception OverlapWarning(scatterer, overlaps)

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

	
exception ParameterSpecificationError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception TheoryNotCompatibleError(theory, scatterer, reason=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception TmatrixFailure(logfilestr)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class ImageFormation(scattering_theory)

	Bases: holopy.core.holopy_object.HoloPyObject

Calculates fields, holograms, intensities, etc.

	
calculate_cross_sections(scatterer, medium_wavevec, medium_index, illum_polarization)

	

	
calculate_scattered_field(scatterer, schema)

	
	Parameters

	scatterer (scatterer object) – (possibly composite) scatterer for which to compute scattering

	Returns

	e_field – scattered electric field

	Return type

	VectorGrid

	
calculate_scattering_matrix(scatterer, schema)

	Compute scattering matrices for scatterer

	Parameters

	scatterer (holopy.scattering.scatterer object) – (possibly composite) scatterer for which to compute scattering

	Returns

	scat_matr – Scattering matrices at specified positions

	Return type

	Marray

	
get_wavevec_from(schema)

	

	
select_scatterer_by_illumination(scatterer, illum)

	

Base class for scattering theories. Implements python-based
calc_intensity and calc_holo, based on subclass’s calc_field

	
calc_cross_sections(scatterer, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto')

	Calculate scattering, absorption, and extinction
cross sections, and asymmetry parameter <cos heta>.

	Parameters

	
	scatterer (scatterer object) – (possibly composite) scatterer for which to compute scattering

	medium_index (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – Refractive index of the medium in which the scatter is imbedded

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] or ndarray(float [https://docs.python.org/3/library/functions.html#float])) – Wavelength of illumination light. If illum_wavelen is an array result
will add a dimension and have all wavelengths

	theory (theory object (optional)) – Scattering theory object to use for the calculation. This is
optional if there is a clear choice of theory for your scatterer.
If there is not a clear choice, calc_cross_sections will error
out and ask you to specify a theory

	Returns

	cross_sections – Dimensional scattering, absorption, and extinction
cross sections, and <cos theta>

	Return type

	array (4)

	
calc_field(detector, scatterer, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto')

	Calculate the scattered fields from a scatterer illuminated by
a reference wave.

	Parameters

	
	detector (xarray object) – The detector points and calculation metadata used to calculate
the scattered fields.

	scatterer (scatterer object) – (possibly composite) scatterer for which to compute scattering

	medium_index (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – Refractive index of the medium in which the scatter is imbedded

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] or ndarray(float [https://docs.python.org/3/library/functions.html#float])) – Wavelength of illumination light. If illum_wavelen is an array result
will add a dimension and have all wavelengths

	theory (theory object (optional)) – Scattering theory object to use for the calculation. This is
optional if there is a clear choice of theory for your scatterer.
If there is not a clear choice, calc_field will error out and
ask you to specify a theory

	Returns

	e_field – Calculated hologram from the given distribution of spheres

	Return type

	Vector object

	
calc_holo(detector, scatterer, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto', scaling=1.0)

	Calculate hologram formed by interference between scattered
fields and a reference wave

	Parameters

	
	detector (xarray object) – The detector points and calculation metadata used to calculate
the hologram.

	scatterer (scatterer object) – (possibly composite) scatterer for which to compute scattering

	medium_index (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – Refractive index of the medium in which the scatter is imbedded

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] or ndarray(float [https://docs.python.org/3/library/functions.html#float])) – Wavelength of illumination light. If illum_wavelen is an array result
will add a dimension and have all wavelengths

	theory (theory object (optional)) – Scattering theory object to use for the calculation. This is
optional if there is a clear choice of theory for your scatterer.
If there is not a clear choice, calc_holo will error out and
ask you to specify a theory

	scaling (scaling value (alpha) for amplitude of reference wave) –

	Returns

	holo – Calculated hologram from the given distribution of spheres

	Return type

	xarray.DataArray

	
calc_intensity(detector, scatterer, medium_index=None, illum_wavelen=None, illum_polarization=None, theory='auto')

	Calculate intensity from the scattered field at a set of locations

	Parameters

	
	detector (xarray object) – The detector points and calculation metadata used to calculate
the intensity.

	scatterer (scatterer object) – (possibly composite) scatterer for which to compute scattering

	medium_index (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – Refractive index of the medium in which the scatter is imbedded

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] or ndarray(float [https://docs.python.org/3/library/functions.html#float])) – Wavelength of illumination light. If illum_wavelen is an array result
will add a dimension and have all wavelengths

	theory (theory object (optional)) – Scattering theory object to use for the calculation. This is
optional if there is a clear choice of theory for your scatterer.
If there is not a clear choice, calc_intensity will error out and
ask you to specify a theory

	Returns

	inten – scattered intensity

	Return type

	xarray.DataArray

	
calc_scat_matrix(detector, scatterer, medium_index=None, illum_wavelen=None, theory='auto')

	Compute farfield scattering matrices for scatterer

	Parameters

	
	detector (xarray object) – The detector points and calculation metadata used to calculate
the scattering matrices.

	scatterer (holopy.scattering.scatterer object) – (possibly composite) scatterer for which to compute scattering

	medium_index (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – Refractive index of the medium in which the scatter is imbedded

	illum_wavelen (float [https://docs.python.org/3/library/functions.html#float] or ndarray(float [https://docs.python.org/3/library/functions.html#float])) – Wavelength of illumination light. If illum_wavelen is an array result
will add a dimension and have all wavelengths

	theory (theory object (optional)) – Scattering theory object to use for the calculation. This is
optional if there is a clear choice of theory for your scatterer.
If there is not a clear choice, calc_scat_matrix will error out
and ask you to specify a theory

	Returns

	scat_matr – Scattering matrices at specified positions

	Return type

	Marray

	
determine_default_theory_for(scatterer)

	

	
finalize(detector, result)

	

	
interpret_theory(scatterer, theory='auto')

	

	
prep_schema(detector, medium_index, illum_wavelen, illum_polarization)

	

	
scattered_field_to_hologram(scat, ref)

	Calculate a hologram from an E-field

	Parameters

	
	scat (VectorGrid) – The scattered (object) field

	ref (xarray[vector]]) – The reference field

	
validate_scatterer(scatterer)

	

holopy.scattering.scatterer package

Modules for defining different types of scatterers, including
scattering primitives such as Spheres, and more complex objects such
as Clusters.

Submodules

Defines cylinder scatterers.

	
class Bisphere(n=None, h=None, d=None, center=None, rotation=(0, 0, 0))

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

Scattering object representing bisphere scatterers

	Parameters

	
	n (complex [https://docs.python.org/3/library/functions.html#complex]) – Index of refraction

	h (distance between centers) –

	d (diameter) –

	center (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array) – specifies coordinates of center of the scatterer

	rotation (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.array) – specifies the Euler angles (alpha, beta, gamma) in radians
defined in a-dda manual section 8.1

Defines capsule scatterers.

	
class Capsule(n=None, h=None, d=None, center=None, rotation=(0, 0, 0))

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

A cylinder with semi-spherical caps.

A particle with no rotation has its long axis pointing along +z,
specify other orientations by euler angle rotations from that reference.

	Parameters

	
	n (complex [https://docs.python.org/3/library/functions.html#complex]) – Index of refraction

	h (height of cylinder) –

	d (diameter) –

	center (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array) – specifies coordinates of center of the scatterer

	rotation (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.array) – specifies the Euler angles (alpha, beta, gamma) in radians

	
indicators

	

Defines Scatterers, a scatterer that consists of other scatterers,
including scattering primitives (e.g. Sphere) or other Scatterers
scatterers (e.g. two trimers).

	
class Scatterers(scatterers=None)

	Bases: holopy.scattering.scatterer.scatterer.Scatterer

Contains optical and geometrical properties of a a composite
scatterer. A Scatterers can consist of multiple scattering
primitives (e.g. Sphere) or other Scatterers scatterers.

	
scatterers

	List of scatterers that make up this object

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
parameters [property]

	Dictionary of composite’s parameters

	
add(scatterer)

	Adds a new scatterer to the composite.

	
from_parameters()

	

	
translated()

	

	
rotated()

	

Notes

Stores information about components in a tree. This is the most
generic container for a collection of scatterers.

	
add(scatterer)

	

	
from_parameters(new_parameters)

	Makes a new object similar to self with values as given in parameters.
This returns a physical object, so any priors are replaced with their
guesses if not included in passed-in parameters.

	Parameters

	
	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of parameters to use in the new object.
Keys should match those of self.parameters.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool] (optional)) – if True, constant values are replaced by those in parameters

	
get_component_list()

	

	
in_domain(points)

	Tell which domain of a scatterer points are in

	Parameters

	points (np.ndarray (Nx3)) – Point or list of points to evaluate

	Returns

	domain – The domain of each point. Domain 0 means not in the particle

	Return type

	np.ndarray (N)

	
index_at(point)

	

	
rotated(ang1, ang2=None, ang3=None)

	

	
translated(coord1, coord2=None, coord3=None)

	Make a copy of this scatterer translated to a new location

	Parameters

	y, z (x,) – Value of the translation along each axis

	Returns

	translated – A copy of this scatterer translated to a new location

	Return type

	Scatterer

Do Constructive Solid Geometry (CSG) with scatterers. Currently only useful with
the DDA th

	
class CsgScatterer(s1, s2)

	Bases: holopy.scattering.scatterer.scatterer.Scatterer

	
bounds

	

	
rotated(alpha, beta, gamma)

	

	
class Difference(s1, s2)

	Bases: holopy.scattering.scatterer.csg.CsgScatterer

	
bounds

	

	
in_domain(points)

	Tell which domain of a scatterer points are in

	Parameters

	points (np.ndarray (Nx3)) – Point or list of points to evaluate

	Returns

	domain – The domain of each point. Domain 0 means not in the particle

	Return type

	np.ndarray (N)

	
class Intersection(s1, s2)

	Bases: holopy.scattering.scatterer.csg.CsgScatterer

	
in_domain(points)

	Tell which domain of a scatterer points are in

	Parameters

	points (np.ndarray (Nx3)) – Point or list of points to evaluate

	Returns

	domain – The domain of each point. Domain 0 means not in the particle

	Return type

	np.ndarray (N)

	
class Union(s1, s2)

	Bases: holopy.scattering.scatterer.csg.CsgScatterer

	
in_domain(points)

	Tell which domain of a scatterer points are in

	Parameters

	points (np.ndarray (Nx3)) – Point or list of points to evaluate

	Returns

	domain – The domain of each point. Domain 0 means not in the particle

	Return type

	np.ndarray (N)

Defines cylinder scatterers.

	
class Cylinder(n=None, h=None, d=None, center=None, rotation=(0, 0, 0))

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

Scattering object representing cylinder scatterers

	Parameters

	
	n (complex [https://docs.python.org/3/library/functions.html#complex]) – Index of refraction

	h (height of cylinder) –

	d (diameter) –

	center (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array) – specifies coordinates of center of the scatterer

	rotation (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.array) – specifies the Euler angles (alpha, beta, gamma) in radians
defined in a-dda manual section 8.1

Defines ellipsoidal scatterers.

	
class Ellipsoid(n=None, r=None, center=None, rotation=(0, 0, 0))

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

Scattering object representing ellipsoidal scatterers

	Parameters

	
	n (complex [https://docs.python.org/3/library/functions.html#complex]) – Index of refraction

	r (float [https://docs.python.org/3/library/functions.html#float] or (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – x, y, z semi-axes of the ellipsoid

	center (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array) – specifies coordinates of center of the scatterer

	rotation (3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.array) – specifies the Euler angles (alpha, beta, gamma) in radians
defined in a-dda manual section 8.1

	
indicators

	Ellipsoid indicators does not currently apply rotations

	Type

	NOTE

Defines two types of Janus (two faced) Spheres as scattering primitives.

	
class JanusSphere_Tapered(n=None, r=None, rotation=(0, 0), center=None)

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

	
indicators

	

	
class JanusSphere_Uniform(n=None, r=None, rotation=(0, 0, 0), center=None)

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

	
indicators

	

The abstract base class for all scattering objects

	
class CenteredScatterer(center=None)

	Bases: holopy.scattering.scatterer.scatterer.Scatterer

	
class Indicators(functions, bound=None)

	Bases: holopy.core.holopy_object.HoloPyObject

Class holding functions describing a scatterer

One or more functions (one per domain) that take Nx3 arrays of points and
return a boolean array of membership in each domain. More than one
indicator is allowed to return true for a given point, in that case the
point is considered a member of the first domain with a true value.

	
class Scatterer(indicators, n, center)

	Bases: holopy.core.holopy_object.HoloPyObject

Base class for scatterers

	
bounds

	

	
contains(points)

	

	
from_parameters(parameters)

	Create a Scatterer from a dictionary of parameters

	Parameters

	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Parameters for a scatterer. This should be of the form returned by
Scatterer.parameters.

	Returns

	scatterer – A scatterer with the given parameter values

	Return type

	Scatterer class

	
in_domain(points)

	Tell which domain of a scatterer points are in

	Parameters

	points (np.ndarray (Nx3)) – Point or list of points to evaluate

	Returns

	domain – The domain of each point. Domain 0 means not in the particle

	Return type

	np.ndarray (N)

	
index_at(points, background=0)

	

	
num_domains

	

	
parameters

	Get a dictionary of this scatterer’s parameters

	Parameters

	None –

	Returns

	parameters – A dictionary of this scatterer’s parameters. This dict can be
passed to Scatterer.from_parameters to make a copy of this
scatterer

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
translated(coord1, coord2=None, coord3=None)

	Make a copy of this scatterer translated to a new location

	Parameters

	y, z (x,) – Value of the translation along each axis

	Returns

	translated – A copy of this scatterer translated to a new location

	Return type

	Scatterer

	
voxelate(spacing, medium_index=0)

	Represent a scatterer by discretizing into voxels

	Parameters

	
	spacing (float [https://docs.python.org/3/library/functions.html#float]) – The spacing between voxels in the returned voxelation

	medium_index (float [https://docs.python.org/3/library/functions.html#float]) – The background index of refraction to fill in at regions where the
scatterer is not present

	Returns

	voxelation – An array with refractive index at every pixel

	Return type

	np.ndarray

	
voxelate_domains(spacing)

	

	
x

	

	
y

	

	
z

	

	
bound_union(d1, d2)

	

	
find_bounds(indicator)

	Finds the bounds needed to contain an indicator function

Notes

Will probably determine incorrect bounds for functions which are not convex

Defines Sphere, a scattering primitive

	
class LayeredSphere(n=None, t=None, center=None)

	Bases: holopy.scattering.scatterer.sphere.Sphere

Alternative description of a sphere where you specify layer
thicknesses instead of radii

	
n

	Index of each each layer

	Type

	list of complex

	
t

	Thickness of each layer

	Type

	list of float

	
center

	specifies coordinates of center of sphere

	Type

	length 3 listlike

	
r

	

	
class Sphere(n=None, r=0.5, center=None)

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

Contains optical and geometrical properties of a sphere, a
scattering primitive.

This can be a multiple layered sphere by making r and n lists.

	
n

	index of refraction of each layer of the sphere

	Type

	complex [https://docs.python.org/3/library/functions.html#complex] or list of complex

	
r

	radius of the sphere or outer radius of each sphere.

	Type

	float [https://docs.python.org/3/library/functions.html#float] or list of float

	
center

	specifies coordinates of center of sphere

	Type

	length 3 listlike

	
indicators

	

	
num_domains

	

	
rotated(alpha, beta, gamma)

	

Defines Spheres, a Scatterers scatterer consisting of Spheres

	
class RigidCluster(spheres, translation=(0, 0, 0), rotation=(0, 0, 0))

	Bases: holopy.scattering.scatterer.spherecluster.Spheres

	
from_parameters(parameters)

	Makes a new object similar to self with values as given in parameters.
This returns a physical object, so any priors are replaced with their
guesses if not included in passed-in parameters.

	Parameters

	
	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of parameters to use in the new object.
Keys should match those of self.parameters.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool] (optional)) – if True, constant values are replaced by those in parameters

	
scatterers

	

	
class Spheres(scatterers, warn=True)

	Bases: holopy.scattering.scatterer.composite.Scatterers

Contains optical and geometrical properties of a cluster of spheres.

	
spheres

	Spheres which will make up the cluster

	Type

	list of Spheres

	
warn

	if True, overlapping spheres raise warnings.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

Notes

	
add(scatterer)

	

	
center

	

	
centers

	

	
largest_overlap()

	

	
n

	

	
n_imag

	

	
n_real

	

	
overlaps

	

	
r

	

	
x

	

	
y

	

	
z

	

Defines spheroidal scatterers.

	
class Spheroid(n=None, r=None, rotation=(0, 0, 0), center=None)

	Bases: holopy.scattering.scatterer.scatterer.CenteredScatterer

Scattering object representing spheroidal scatterers

	
n

	Index of refraction

	Type

	complex [https://docs.python.org/3/library/functions.html#complex]

	
r

	length of xy and z semi-axes of the spheroid

	Type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
rotation

	specifies the Euler angles (alpha, beta, gamma) in radians

	Type

	3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array

	
center

	specifies coordinates of center of the scatterer

	Type

	3-tuple, list [https://docs.python.org/3/library/stdtypes.html#list] or numpy array

	
indicators

	

holopy.scattering.theory package

Theories to compute scattering from objects.

All theories have a common interface defined by
holopy.scattering.theory.scatteringtheory.ScatteringTheory.

Subpackages

	holopy.scattering.theory.mie_f package
	Submodules

	holopy.scattering.theory.tmatrix_f package
	Submodules

Submodules

Compute holograms using the discrete dipole approximation (DDA). Currently uses
ADDA (https://github.com/adda-team/adda) to do DDA calculations.
.. moduleauthor:: Thomas G. Dimiduk <tdimiduk@physics.harvard.edu>

	
class DDA(n_cpu=1, use_gpu=False, gpu_id=None, max_dpl_size=None, use_indicators=True, keep_raw_calculations=False, addacmd=[], suppress_C_output=True)

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Computes scattering using the the Discrete Dipole Approximation (DDA).
It can (in principle) calculate scattering from any arbitrary scatterer.
The DDA uses a numerical method that represents arbitrary scatterers as
an array
of point dipoles and then self-consistently solves Maxwell’s equations
to determine the scattered field. In practice, this model can be
extremely computationally intensive, particularly if the size of the
scatterer is larger than the wavelength of light. This model requires an
external scattering code: a-dda [http://code.google.com/p/a-dda/]

	
n_cpu

	Number of threads to use for the DDA calculation

	Type

	int [https://docs.python.org/3/library/functions.html#int] (optional)

	
max_dpl_size

	Force a maximum dipole size. This is useful for forcing extra
dipoles if necessary to resolve features in an object. This may
make dda calculations take much longer.

	Type

	float [https://docs.python.org/3/library/functions.html#float] (optional)

	
use_indicators

	If true, a scatterer’s indicators method will be used instead of
its built-in adda definition

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
keep_raw_calculations

	If true, do not delete the temporary file we run ADDA in,
instead print its path so you can inspect its raw results

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

Notes

Does not handle near fields. This introduces ~5% error at 10
microns. This can in principle handle any scatterer, but in practice
it will need excessive memory or computation time for particularly
large scatterers.

	
classmethod can_handle(scatterer)

	Given a scatterer, returns a bool

	
raw_scat_matrs(scatterer, pos, medium_wavevec, medium_index)

	Given a (3, N) array pos etc, returns an (N, 2, 2) array

	
required_spacing(bounds, medium_wavelen, medium_index, n)

	

	
class Lens(lens_angle, theory, quad_npts_theta=100, quad_npts_phi=100, use_numexpr=True)

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Wraps a ScatteringTheory and overrides the raw_fields to include the
effect of an objective lens.

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
desired_coordinate_system = 'cylindrical'

	

	
numexpr_integrand_prefactor1 = 'exp(1j * krho_p * sintheta * cos(phi_relative))'

	

	
numexpr_integrand_prefactor2 = 'exp(1j * kz_p * (1 - costheta))'

	

	
numexpr_integrand_prefactor3 = 'sqrt(costheta) * sintheta * phi_wts * theta_wts'

	

	
numexpr_integrandl = 'prefactor * (cosphi * (cosphi * S2 + sinphi * S3) + sinphi * (cosphi * S4 + sinphi * S1))'

	

	
numexpr_integrandr = 'prefactor * (sinphi * (cosphi * S2 + sinphi * S3) - cosphi * (cosphi * S4 + sinphi * S1))'

	

	
parameter_names = ('lens_angle',)

	

	
raw_fields(positions, scatterer, medium_wavevec, medium_index, illum_polarization)

	Given a (3, N) array pos, etc, returns a (3, N) array

	
gauss_legendre_pts_wts(a, b, npts=100)

	Quadrature points for integration on interval [a, b]

	
pts_wts_for_phi_integrals(npts)

	Quadrature points for integration on the periodic interval [0, pi]

Since this interval is periodic, we use equally-spaced points with
equal weights.

Calculates holograms of spheres using Fortran implementation of Mie
theory. Uses superposition to calculate scattering from multiple
spheres. Uses full radial dependence of spherical Hankel functions for
scattered field.

	
class Mie(compute_escat_radial=True, full_radial_dependence=True, eps1=0.01, eps2=1e-16)

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Compute scattering using the Lorenz-Mie solution.

This theory calculates exact scattering for single spheres and approximate
results for groups of spheres. It does not account for multiple scattering,
hence the approximation in the case of multiple spheres. Neglecting
multiple scattering is a good approximation if the particles are
sufficiently separated.

This model can also calculate the exact scattered field from a
spherically symmetric particle with an arbitrary number of layers
with differing refractive indices, using Yang’s recursive
algorithm ([Yang2003]).

By default, calculates radial component of scattered electric fields,
which is nonradiative.

Currently, in calculating the Lorenz-Mie scattering coefficients,
the maximum size parameter x = ka is limited to 1000.

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
raw_cross_sections(scatterer, medium_wavevec, medium_index, illum_polarization)

	Calculate scattering, absorption, and extinction cross
sections, and asymmetry parameter for spherically
symmetric scatterers.

	Parameters

	scatterer (scatterpy.scatterer object) – spherically symmetric scatterer to compute for
(Calculation would need to be implemented in a radically
different way, via numerical quadrature, for sphere clusters)

	Returns

	cross_sections – Dimensional scattering, absorption, and extinction
cross sections, and <cos heta>

	Return type

	array (4)

Notes

The radiation pressure cross section C_pr is given by
C_pr = C_ext - <cos heta> C_sca.

The radiation pressure force on a sphere is

F = (n_med I_0 C_pr) / c

where I_0 is the incident intensity. See van de Hulst, p. 14.

	
raw_fields(positions, scatterer, medium_wavevec, medium_index, illum_polarization)

	Given a (3, N) array pos, etc, returns a (3, N) array

	
raw_scat_matrs(scatterer, pos, medium_wavevec, medium_index)

	Returns far-field amplitude scattering matrices (with theta and phi
dependence only) – assume spherical wave asymptotic r dependence

	
class AberratedMieLens(spherical_aberration=0.0, lens_angle=1.0, calculator_accuracy_kwargs={})

	Bases: holopy.scattering.theory.mielens.MieLens

	
parameter_names = ('lens_angle', 'spherical_aberration')

	

	
class MieLens(lens_angle=1.0, calculator_accuracy_kwargs={})

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Exact scattering from a sphere imaged through a perfect lens.

Calculates holograms of spheres using an analytical solution of the
Mie scattered field imaged by a perfect lens (see [Leahy2020]). Can
use superposition to calculate scattering from multiple spheres.

See also

mielensfunctions.MieLensCalculator

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
desired_coordinate_system = 'cylindrical'

	

	
parameter_names = ('lens_angle',)

	

	
raw_fields(positions, scatterer, medium_wavevec, medium_index, illum_polarization)

	
	Parameters

	
	positions ((3, N) numpy.ndarray) – The (k * rho, phi, z) coordinates, relative to the sphere,
of the points to calculate the fields. Note that the radial
coordinate is rescaled by the wavevector.

	scatterer (scatterer.Sphere object) –

	medium_wavevec (float [https://docs.python.org/3/library/functions.html#float]) –

	medium_index (float [https://docs.python.org/3/library/functions.html#float]) –

	illum_polarization (2-element tuple) – The (x, y) field polarizations.

	
class AberratedMieLensCalculator(spherical_aberration=None, **kwargs)

	Bases: holopy.scattering.theory.mielensfunctions.MieLensCalculator

	
must_be_specified = ['particle_kz', 'index_ratio', 'size_parameter', 'lens_angle', 'spherical_aberration']

	

	
class AlBlFunctions

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Group of functions for calculating the Mie scattering coefficients,
used for expressing the scattered field in terms of vector spherical
harmonics.

The coefficients a_l, b_l are defined as

..math:

a_l =

	rac{psi_l(x) psi_l’(nx) - n psi_l(nx) psi_l’(x)}

	
{xi_l(x) psi_l’(nx) - n psi_l(nx) xi_l’(x)},

b_l =

	rac{psi_l(nx) psi_l’(x) - n psi_l(x) psi_l’(nx)}

	
{psi_l(nx) xi_l’(x) - n xi_l(x) psi_l’(nx)},

where \(\psi_l\) and \(\xi_l\) are the Riccati-Bessel
functions of the first and third kinds, respectively. The
definitions used here follow those of van de Hulst [1]_, which
differ from those used in Bohren and Huffman [2]_.

	1

	H. C. van de Hulst, “Light Scattering by Small Particles”,
Dover (1981), pg 123.

	2

	C. F. Bohren and Donald R. Huffman, “Absorption and
Scattering of Light by Small Particles”, Wiley (2004),
pg 101.

	
static calculate_al_bl(index_ratio, size_parameter, l)

	Returns a_l and b_l; see class docstring.

	Parameters

	
	index_ratio (float [https://docs.python.org/3/library/functions.html#float]) – relative index of refraction

	size_paramter (float [https://docs.python.org/3/library/functions.html#float]) – Size parameter

	l (int [https://docs.python.org/3/library/functions.html#int], array-like) – Order of scattering coefficient

	Returns

	a_l, b_l

	Return type

	numpy.ndarray

	
static riccati_psin(n, z, derivative=False)

	Riccati-Bessel function of the first kind or its derivative.

\[\psi_n(z) = z\,j_n(z),\]

where \(j_n(z)\) is the spherical Bessel function of the
first kind.

	Parameters

	

	nint, array_like

	Order of the Bessel function (n >= 0).

	zcomplex or float, array_like

	Argument of the Bessel function.

	derivativebool, optional

	If True, the value of the derivative (rather than the function
itself) is returned.

	Returns

	psin

	Return type

	ndarray

	
static riccati_xin(order, z, derivative=False)

	Riccati-Bessel function of the third kind or its derivative.

\[\xi_n(z) = z\,h^{(1)}_n(z),\]

where \(h^{(1)}_n(z)\) is the first spherical Hankel function.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int], array_like) – Order of the Bessel function (n >= 0).

	z (complex [https://docs.python.org/3/library/functions.html#complex] or float [https://docs.python.org/3/library/functions.html#float], array_like) – Argument of the Bessel function.

	derivative (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the value of the derivative (rather than the function
itself) is returned.

	Returns

	xin

	Return type

	ndarray

	
class MieLensCalculator(particle_kz=None, index_ratio=None, size_parameter=None, lens_angle=None, quad_npts=100, interpolate_integrals='check', interpolator_window_size=30.0, interpolator_degree=32)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
calculate_incident_field()

	This is here so
(i) Any corrections in the theory to the scattered field

have an easy place to enter, and

	Other modules can consistently use the same scattered
field as this module.

	
calculate_scattered_field(krho, phi)

	
	Calculates the field from a Mie scatterer imaged through a

	high-NA lens and excited with an electric field of unit strength
directed along the optical axis.

\[\]

	ec{E}_{sc} = A left[I_{12} sin(2phi) hat{y} +

	
	-I_{10} hat{x} +

	I_{12} cos(2phi) hat{x} +

-I_{20} hat{x} +
-I_{22} cos(2phi) hat{x} +
-I_{22} sin(2phi) hat{y}

ight]

	krho, phinumpy.ndarray

	The position of the particle relative to the focal point of the
lens, in (i) cylindrical coordinates and (ii) dimensionless
wavevectur units. Must all be the same shape.

	field_xcomp, field_ycompnumpy.ndarray

	The (x, y) components of the electric field at the detector, where
the initial field is polarized in the x-direction. Same shape as
krho, phi

This will have problems for large rho, z, because of the quadrature
points. Empirically this problem happens for rho >~ 4 * quad_npts.
Could be adaptive if needed….

	
calculate_total_field(krho, phi)

	The total (incident + scattered) field at the detector

	
calculate_total_intensity(krho, phi)

	

	
must_be_specified = ['particle_kz', 'index_ratio', 'size_parameter', 'lens_angle']

	

	
class MieScatteringMatrix(parallel_or_perpendicular='perpendicular', index_ratio=None, size_parameter=None, max_l=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class PiecewiseChebyshevApproximant(function, degree, window_breakpoints, *args)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
calculate_al_bl(index_ratio, size_parameter, l)

	

	
calculate_pil_taul(theta, max_order)

	
The 1st through Nth order angle dependent functions for Mie scattering,
evaluated at theta. The functions :math`pi(heta)` and :math` au(heta)
are defined as:

..math:

\pi_n(heta) =

rac{1}{sin heta} P_n^1(cos heta)

au_n(heta) =

rac{mathrm{d}}{mathrm{d} heta} P_n^1(cos heta)

where \(P_n^m\) is the associated Legendre function. The functions are
computed by upward recurrence using the relations

..math:

\pi_n =

rac{2n-1}{n-1}cos heta , pi_{n-1} -
rac{n}{n-1}pi_{n-2}

au_n = n , cos heta , pi_n - (n+1)pi_{n-1}

beginning with \(pi_0 = 0\) and \(pi_1 = 1\)

	thetaarray_like

	angles (in radians) at which to evaluate the angular functions

	max_orderint > 0

	Order at which to halt iteration. Must be > 0

	pi, taundarray

	2D arrays with shape (len(theta), max_order) containing the
values of the angular functions evaluated at theta up to order
max_order

	
gauss_legendre_pts_wts(a, b, npts=100)

	Quadrature points for integration on interval [a, b]

	
j2(x)

	A fast J_2(x) defined in terms of other special functions

	
spherical_h1n(n, z, derivative=False)

	Spherical Hankel function H_n(z) or its derivative

	
spherical_h2n(n, z, derivative=False)

	Spherical Hankel function H_n(z) or its derivative

Defines Multisphere theory class, which calculates scattering for multiple
spheres using the (exact) superposition method implemented in
modified version of Daniel Mackowski’s SCSMFO1B.FOR. Uses full radial
dependence of spherical Hankel functions for the scattered field.

	
class Multisphere(niter=200, eps=1e-06, meth=1, qeps1=1e-05, qeps2=1e-08, compute_escat_radial=False, suppress_fortran_output=True)

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Exact scattering from a cluster of spheres.

Calculate the scattered field of a collection of spheres through a
numerical method that accounts for multiple scattering and near-field
effects (see [Fung2011], [Mackowski1996]). This approach is much more
accurate than Mie superposition, but it is also more computationally
intensive. The Multisphere code can handle any number of spheres;
see notes below for details.

	
niter

	maximum number of iterations to use in solving the interaction
equations

	Type

	integer (optional)

	
meth

	method to use to solve interaction equations. Set to 0 for
biconjugate gradient; 1 for order-of-scattering

	Type

	integer (optional)

	
eps

	relative error tolerance in solution for interaction equations

	Type

	float [https://docs.python.org/3/library/functions.html#float] (optional)

	
qeps1

	error tolerance used to determine at what order the
single-sphere spherical harmonic expansion should be truncated

	Type

	float [https://docs.python.org/3/library/functions.html#float] (optional)

	
qeps2

	error tolerance used to determine at what order the cluster
spherical harmonic expansion should be truncated

	Type

	float [https://docs.python.org/3/library/functions.html#float] (optional)

Notes

According to Mackowski’s manual for SCSMFO1B.FOR [1]_ and later
papers [2]_, the biconjugate gradient is generally the most
efficient method for solving the interaction equations, especially
for dense arrays of identical spheres. Order-of-scattering may
converge better for non-identical spheres.

Multisphere does not check for overlaps becaue overlapping spheres can be
useful for getting fits to converge. The results to be sensible for small
overlaps even though mathemtically speaking they are not xstrictly valid.

Currently, Multisphere does not calculate the radial component of
scattered electric fields. This is a good approximation for large kr,
since the radial component falls off as 1/kr^2.

	scfodim.for contains three parameters, all integers:

	
	nod: Maximum number of spheres

	
	nod: Maximum order of individual sphere expansions. Will depend on

	size of largest sphere in cluster.

	
	notd: Maximum order of cluster-centered expansion. Will depend on

	overall size of cluster.

Changing these values will require recompiling Fortran extensions.

The maximum size parameter of each individual sphere in a cluster is
currently limited to 1000, indepdently of the above scfodim.for
parameters.

References

	1

	Daniel W. Mackowski, SCSMFO.FOR: Calculation of the Scattering
Properties for a Cluster of Spheres,
ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/scsmfo.ps

	2

	D.W. Mackowski, M.I. Mishchenko, A multiple sphere T-matrix
Fortran code for use on parallel computer clusters, Journal of
Quantitative Spectroscopy and Radiative Transfer, In Press,
Corrected Proof, Available online 11 March 2011, ISSN 0022-4073,
DOI: 10.1016/j.jqsrt.2011.02.019.

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
raw_cross_sections(scatterer, medium_wavevec, medium_index, illum_polarization)

	Calculate scattering, absorption, and extinction cross
sections, and asymmetry parameter for sphere clusters
with polarized incident light.

The extinction cross section is calculated from the optical
theorem. The scattering cross section is calculated by
numerical quadrature of the scattered field, and the absorption
cross section is calculated from the difference of the extinction
cross section and the scattering cross section.

	Parameters

	scatterer (scatterpy.scatterer object) – sphere cluster to compute for

	Returns

	cross_sections – Dimensional scattering, absorption, and extinction
cross sections, and <cos heta>

	Return type

	array (4)

	
raw_fields(positions, scatterer, medium_wavevec, medium_index, illum_polarization)

	Given a (3, N) array pos, etc, returns a (3, N) array

	
raw_scat_matrs(scatterer, pos, medium_wavevec, medium_index)

	Calculate far-field amplitude scattering matrices at multiple
positions

	
normalize_polarization(illum_polarization)

	

	
class ScatteringTheory

	Bases: holopy.core.holopy_object.HoloPyObject

Defines common interface for all scattering theories.

Subclasses must implement:
* can_handle
* raw_fields or raw_scat_matrs or both.
* (optionally) raw_cross_sections,

Notes

Subclasses should implement the following methods to create a
scatteringtheory that works for the following user-facing methods:
* calc_holo: raw_fields or raw_scat_matrs
* calc_intensity: raw_fields or raw_scat_matrs
* calc_field: raw_fields or raw_scat_matrs
* calc_scat_matrix: raw_scat_matrs
* calc_cross_sections: raw_cross_sections

By default, ScatteringTheories computer raw_fields from the
raw_scat_matrs; over-ride the raw_fields method to compute the
fields in a different way.

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
desired_coordinate_system = 'spherical'

	

	
from_parameters(parameters)

	Creates a ScatteringTheory like the current one, but with different
parameters. Used for fitting

	Parameters

	dict – keys should be valid self.parameter_names fields, values
should be the corresponding kwargs

	Returns

	

	Return type

	ScatteringTheory instance, of the same class as self

	
parameter_names = ()

	

	
parameters

	

	
raw_cross_sections(scatterer, medium_wavevec, medium_index, illum_polarization)

	Returns cross-sections, as an array [cscat, cabs, cext, asym]

	
raw_fields(pos, scatterer, medium_wavevec, medium_index, illum_polarization)

	Given a (3, N) array pos, etc, returns a (3, N) array

	
raw_scat_matrs(scatterer, pos, medium_wavevec, medium_index)

	Given a (3, N) array pos etc, returns an (N, 2, 2) array

Compute holograms using Mishchenko’s T-matrix method for axisymmetric scatterers. Currently uses

	
class Tmatrix

	Bases: holopy.scattering.theory.scatteringtheory.ScatteringTheory

Computes scattering using the axisymmetric T-matrix solution
by Mishchenko with extended precision.

It can calculate scattering from axisymmetric scatterers such as
cylinders and spheroids. Calculations for particles that are very
large or have high aspect ratios may not converge.

Notes

Does not handle near fields. This introduces ~5% error at 10 microns.

	
can_handle(scatterer)

	Given a scatterer, returns a bool

	
raw_fields(pos, scatterer, medium_wavevec, medium_index, illum_polarization)

	Given a (3, N) array pos, etc, returns a (3, N) array

	
raw_scat_matrs(scatterer, pos, medium_wavevec, medium_index)

	Given a (3, N) array pos etc, returns an (N, 2, 2) array

holopy.scattering.theory.mie_f package

Fortran extension module for calculating cluster holograms using tmatrix
scattering theory.

Submodules

Compute special functions needed for the computation of scattering coefficients
in the Lorenz-Mie scattering solution and related problems such as layered
spheres.

These functions are not to be used for calculations at each field point.
Rather, they should be used once for the calculation of scattering
coefficients, which then get passed to faster Fortran code for field
calculations.

Papers referenced herein:

D. W. Mackowski, R. A. Altenkirch, and M. P. Menguc, “Internal absorption
cross sections in a stratified sphere,” Applied Optics 29, 1551-1559, (1990).

Yang, “Improved recursive algorithm for light scattering by a multilayered
sphere,” Applied Optics 42, 1710-1720, (1993).

	
Qratio(z1, z2, nstop, dns1=None, dns2=None, eps1=0.001, eps2=1e-16)

	Calculate ratio of Riccati-Bessel functions defined in [Yang2003]
eq. 23 by up recursion.

Notes

Logarithmic derivatives calculated automatically if not specified.
Lentz continued fraction algorithm used to start downward recursion
for logarithmic derivatives.

	
R_psi(z1, z2, nmax, eps1=0.001, eps2=1e-16)

	Calculate ratio of Riccati-Bessel function psi: psi(z1)/psi(z2).

Notes

See [Mackowski1990] eqns. 65-66. Uses Lentz continued fraction algorithm
for logarithmic derivatives.

	
log_der_1(z, nmx, nstop)

	Computes logarithmic derivative of Riccati-Bessel function psi_n(z)
by downward recursion as in BHMIE.

	Parameters

	
	z (complex argument) –

	nmx (order from which downward recursion begins.) –

	nstop (integer, maximum order) –

Notes

psi_n(z) is related to the spherical Bessel function j_n(z).
Consider implementing Lentz’s continued fraction method.

	
log_der_13(z, nstop, eps1=0.001, eps2=1e-16)

	Calculate logarithmic derivatives of Riccati-Bessel functions psi
and xi for complex arguments. Riccati-Bessel conventions follow
Bohren & Huffman.

See Mackowski et al., Applied Optics 29, 1555 (1990).

	Parameters

	
	z (complex number) –

	nstop (maximum order of computation) –

	eps1 (underflow criterion for Lentz continued fraction for Dn1) –

	eps2 (convergence criterion for Lentz continued fraction for Dn1) –

	
riccati_psi_xi(x, nstop)

	Calculate Riccati-Bessel functions psi and xi for real argument.

	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – Argument

	nstop (int [https://docs.python.org/3/library/functions.html#int]) – Maximum order to calculate to

	Returns

	psi and xi

	Return type

	ndarray(2, nstop)

Notes

Uses upwards recursion.

MieScatLib.py

Library of code to do Mie scattering calculations.

	
asymmetry_parameter(al, bl)

	Calculate asymmetry parameter of scattered field.

	Parameters

	bn (an,) – coefficient arrays from Mie solution

	Returns

	

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

See discussion on Bohren & Huffman p. 120.
The output of this function omits the prefactor of 4/(x^2 Q_sca).

	
cross_sections(al, bl)

	Calculates scattering and extinction cross sections
given arrays of Mie scattering coefficients an and bn.

	Parameters

	bn (an,) – coefficient arrays from Mie solution

	Returns

	Scattering, extinction, and radar backscattering cross sections

	Return type

	ndarray(3)

Notes

See Bohren & Huffman eqns. 4.61 and 4.62.
The output omits a scaling prefactor of 2 * pi / k^2.

	
internal_coeffs(m, x, n_max, eps1=0.001, eps2=1e-16)

	Calculate internal Mie coefficients c_n and d_n given
relative index, size parameter, and maximum order of expansion.

	Parameters

	docstring for scatcoeffs (See) –

	Returns

	Internal coefficients c_n and d_n

	Return type

	ndarray(2,n) complex [https://docs.python.org/3/library/functions.html#complex]

Notes

Follow Bohren & Huffman’s convention. Note that van de Hulst and Kerker
have different conventions (labeling of c_n and d_n and factors of m)
for their internal coefficients.

	
nstop(x)

	Calculate maximum expansion order of Lorenz-Mie solution.

	Parameters

	x (float [https://docs.python.org/3/library/functions.html#float]) – Particle size parameter

	Returns

	nstop

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Notes

Criterion taken from [Wiscombe1980].

	
scatcoeffs(m, x, nstop, eps1=0.001, eps2=1e-16)

	Calculate expansion coefficients for scattered field in Lorenz-Mie
solution.

	Parameters

	
	m (complex [https://docs.python.org/3/library/functions.html#complex]) – Sphere relative refractive index (n_sphere / n_medium)

	x (float [https://docs.python.org/3/library/functions.html#float]) – Sphere size parameter (k_med * a)

	nstop (int [https://docs.python.org/3/library/functions.html#int]) – Maximum order of scattered field expansion

	eps1 (float [https://docs.python.org/3/library/functions.html#float], optional) – In Lentz continued fraction algorithm for logarithmic derivative
D_n(z), value of continued fraction numerator or denominator
triggering ill-conditioning workaround.

	eps2 (float [https://docs.python.org/3/library/functions.html#float], optional) – Convergence criterion for Lentz continued fraction algorithm

	Returns

	Scattering coefficients a_n and b_n

	Return type

	array(2, nstop), complex [https://docs.python.org/3/library/functions.html#complex]

Notes

Uses formula for scattering coefficients based on logarithmic derivative
D_n(z) of spherical Bessel function psi_n(z). See [Bohren1983] eq.
4.88.

Following BHMIE, calculates D_n for complex argument using downward
recursion, and Riccati-Bessel functions psi and xi for real argument
using upward recursion.

Initializes downward recursion for D_n using Lentz continued fraction
algorithm [Lentz1976].

multilayer_sphere_lib.py

Author:
Jerome Fung (fung@physics.harvard.edu)

Functions to calculate the scattering from a spherically symmetric particle
with an arbitrary number of layers with different refractive indices.

Key reference for multilayer algorithm:
Yang, “Improved recursive algorithm for light scattering by a multilayered
sphere,” Applied Optics 42, 1710-1720, (1993).

	
scatcoeffs_multi(marray, xarray, eps1=0.001, eps2=1e-16)

	Calculate scattered field expansion coefficients (in the Mie formalism)
for a particle with an arbitrary number of spherically symmetric layers.

	Parameters

	
	marray (array_like, complex128) – array of layer indices, innermost first

	xarray (array_like, real) – array of layer size parameters (k * outer radius), innermost first

	eps1 (float [https://docs.python.org/3/library/functions.html#float], optional) – underflow criterion for Lentz continued fraction for Dn1

	eps2 (float [https://docs.python.org/3/library/functions.html#float], optional) – convergence criterion for Lentz continued fraction for Dn1

	Returns

	scat_coeffs – Scattering coefficients

	Return type

	ndarray (complex [https://docs.python.org/3/library/functions.html#complex])

Extensions for T-Matrix scattering calculations (in fortran77 and
fortran90); numpy.distutils should automatically use f2py to compile
these, and f2py should detect your fortran compiler.

The code works with gcc, but has not been tested with other
compilers. Note that f2py by default compiles with optimization
flags.

Ignore compiler warnings of unused variables, unused dummy
arguments, and variables being used uninitialized from compiling
scsmfo_min. The former is relics of how scsmfo was written which I
am not touching. The latter is likely due to some GOTO statements that
could cause a variable to be referenced before it’s initialized. Under
normal usage I wouldn’t worry about it.

	
configuration(parent_package='', top_path=None)

	

holopy.scattering.theory.tmatrix_f package

Submodules

	
configuration(parent_package='', top_path=None)

	

References and credits

The following references describe applications of HoloPy and technical advances.
If you use HoloPy, we ask that you cite the articles that are relevant to your
application.

	Dimiduk2016

	Dimiduk, Thomas G., and Vinothan N. Manoharan. “Bayesian Approach to Analyzing Holograms of Colloidal Particles.” Optics Express 24, no. 21 (October 17, 2016): 24045–60. doi:10.1364/OE.24.024045.

	Wang2016

	Wang, Anna, Rees F. Garmann, and Vinothan N. Manoharan. “Tracking E. Coli Runs and Tumbles with Scattering Solutions and Digital Holographic Microscopy.” Optics Express 24, no. 21 (October 17, 2016): 23719–25. doi:10.1364/OE.24.023719.

	Dimiduk2014

	Dimiduk, Thomas G., Rebecca W. Perry, Jerome Fung, and Vinothan N. Manoharan. “Random-Subset Fitting of Digital Holograms for Fast Three-Dimensional Particle Tracking.” Applied Optics 53, no. 27 (September 20, 2014): G177–83. doi:10.1364/AO.53.00G177.

	Wang2014

	Wang, Anna, Thomas G. Dimiduk, Jerome Fung, Sepideh Razavi, Ilona Kretzschmar, Kundan Chaudhary, and Vinothan N. Manoharan. “Using the Discrete Dipole Approximation and Holographic Microscopy to Measure Rotational Dynamics of Non-Spherical Colloidal Particles.” Journal of Quantitative Spectroscopy and Radiative Transfer 146 (October 2014): 499–509. doi:10.1016/j.jqsrt.2013.12.019.

	Fung2013

	Fung, Jerome, and Vinothan N. Manoharan. “Holographic Measurements of Anisotropic Three-Dimensional Diffusion of Colloidal Clusters.” Physical Review E 88, no. 2 (August 30, 2013): 020302. doi:10.1103/PhysRevE.88.020302.

	Fung2012

	Fung, Jerome, Rebecca W. Perry, Thomas G. Dimiduk, and Vinothan N. Manoharan. “Imaging Multiple Colloidal Particles by Fitting Electromagnetic Scattering Solutions to Digital Holograms.” Journal of Quantitative Spectroscopy and Radiative Transfer 113, no. 18 (December 2012): 2482–89. doi:10.1016/j.jqsrt.2012.06.007.

	Kaz2012

	Kaz, David M., Ryan McGorty, Madhav Mani, Michael P. Brenner, and Vinothan N. Manoharan. “Physical Ageing of the Contact Line on Colloidal Particles at Liquid Interfaces.” Nature Materials 11, no. 2 (February 2012): 138–42. doi:10.1038/nmat3190.

	Perry2012

	Perry, Rebecca W., Guangnan Meng, Thomas G. Dimiduk, Jerome Fung, and Vinothan N. Manoharan. “Real-Space Studies of the Structure and Dynamics of Self-Assembled Colloidal Clusters.” Faraday Discussions 159, no. 1 (June 7, 2012): 211–34. doi:10.1039/C2FD20061A.

	Fung2011

	Fung, Jerome, K. Eric Martin, Rebecca W. Perry, David M. Kaz, Ryan McGorty, and Vinothan N. Manoharan. “Measuring Translational, Rotational, and Vibrational Dynamics in Colloids with Digital Holographic Microscopy.” Optics Express 19, no. 9 (April 25, 2011): 8051–65. doi:10.1364/OE.19.008051.

	Leahy2020

	Leahy, Brian, Ronald Alexander, Caroline Martin, Solomon Barkley, and Vinothan N. Manoharan. “Large depth-of-field tracking of colloidal spheres in holographic microscopy by modeling the objective lens.” Optics Express 28, no. 2 (2020): 1061-1075. doi:10.1364/OE.382159

Ovryn and Izen and Lee and coworkers were the first to develop methods to fit scattering models to digital holograms:

	Ovryn2000

	Ovryn, Ben, and Steven H. Izen. “Imaging of Transparent Spheres through a Planar Interface Using a High-Numerical-Aperture Optical Microscope.” Journal of the Optical Society of America A 17, no. 7 (July 1, 2000): 1202–13. doi:10.1364/JOSAA.17.001202.

	Lee2007

	Lee, Sang-Hyuk, Yohai Roichman, Gi-Ra Yi, Shin-Hyun Kim, Seung-Man Yang, Alfons van Blaaderen, Peter van Oostrum, and David G. Grier. “Characterizing and Tracking Single Colloidal Particles with Video Holographic Microscopy.” Optics Express 15, no. 26 (December 24, 2007): 18275–82. doi:10.1364/OE.15.018275.

The following papers describe different methods for calculating scattering and various
algorithms that HoloPy uses in its calculations:

	Yurkin2011

	Yurkin, Maxim A., and Alfons G. Hoekstra. “The Discrete-Dipole-Approximation Code ADDA: Capabilities and Known Limitations.” Journal of Quantitative Spectroscopy and Radiative Transfer 112, no. 13 (September 2011): 2234–47. doi:10.1016/j.jqsrt.2011.01.031.

	Mackowski1990

	Mackowski, D. W., Altenkirch, R. A., and Menguc, M. P. “Internal absorption cross sections in a stratified sphere.” Applied Optics 29, no. 10 (1990). do:10.1364/AO.29.001551.

	Mackowski1996

	Mackowski, Daniel W., and Michael I. Mishchenko. “Calculation of the T Matrix and the Scattering Matrix for Ensembles of Spheres.” Journal of the Optical Society of America A 13, no. 11 (November 1, 1996): 2266. doi:10.1364/JOSAA.13.002266.

	Wiscombe1996

	Wiscombe, J. “Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes,” 1979. doi:10.5065/D6ZP4414.

	Wiscombe1980

	Wiscombe, W. J. “Improved Mie scattering algorithms.” Applied Optics 19, no. 9 (May 1, 1980): 1505. doi:10.1364/AO.19.001505.

	Yang2003

	Yang, Wen. “Improved Recursive Algorithm for Light Scattering by a Multilayered Sphere.” Applied Optics 42, no. 9 (March 20, 2003): 1710–20. doi:10.1364/AO.42.001710.

	Lentz1976

	Lentz, William J. “Generating Bessel Functions in Mie Scattering Calculations Using Continued Fractions.” Applied Optics 15, no. 3 (March 1, 1976): 668–71. doi:10.1364/AO.15.000668.

For scattering calculations and formalism, we draw heavily on the treatise of
Bohren & Huffman. We generally follow their conventions except where noted.

	Bohren1983

	C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley (1983).

For an introduction to Bayesian analysis of experimental data, we recommend

	Gregory2010

	P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences, Cambridge University Press (2010)

The package includes code from several sources. We thank Daniel Mackowski for
allowing us to include his T-Matrix code, which computes scattering from
clusters of spheres: SCSMFO1B [ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html].

We also make use of a modified version of the Python version of mpfit [http://www.physics.wisc.edu/~craigm/idl/fitting.html],
originally developed by Craig Markwardt. The modified version we use is drawn
from the stsci_python [http://www.stsci.edu/resources/software_hardware/pyraf/stsci_python] package.

We thank A. Ross Barnett for permitting us to use his routine SBESJY.FOR [http://www.fresco.org.uk/programs/barnett/index.htm], which
computes spherical Bessel functions.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	AberratedMieLens (class in holopy.scattering.theory.mielens)

 	AberratedMieLensCalculator (class in holopy.scattering.theory.mielensfunctions)

 	Accumulator (class in holopy.core.io.io)

 	add() (Scatterers method), [1]

 	(Spheres method)

 	add_attr() (FitResult method)

 	add_noise() (in module holopy.core.process.img_proc)

 	
 	add_parameter() (Mapper method)

 	add_stage_strategy() (TemperedStrategy method)

 	add_tie() (Model method)

 	AlBlFunctions (class in holopy.scattering.theory.mielensfunctions)

 	alpha (AlphaModel attribute)

 	AlphaModel (class in holopy.inference.model)

 	asymmetry_parameter() (in module holopy.scattering.theory.mie_f.miescatlib)

 	AutoTheoryFailed

B

 	
 	BadImage

 	best_fit() (FitResult method)

 	bg_correct() (in module holopy.core.process.img_proc)

 	Bisphere (class in holopy.scattering.scatterer.bisphere)

 	bound_union() (in module holopy.scattering.scatterer.scatterer)

 	
 	BoundedGaussian (class in holopy.core.prior)

 	bounds (CsgScatterer attribute)

 	(Difference attribute)

 	(Scatterer attribute)

 	burn_in() (SamplingResult method)

C

 	
 	calc_cross_sections() (in module holopy.scattering.interface)

 	calc_field() (in module holopy.scattering.interface)

 	calc_holo() (in module holopy.scattering.interface)

 	calc_intensity() (in module holopy.scattering.interface)

 	calc_residuals() (NmpfitStrategy method)

 	calc_scat_matrix() (in module holopy.scattering.interface)

 	calculate_al_bl() (AlBlFunctions static method)

 	(in module holopy.scattering.theory.mielensfunctions)

 	calculate_cross_sections() (ImageFormation method)

 	calculate_incident_field() (MieLensCalculator method)

 	calculate_pil_taul() (in module holopy.scattering.theory.mielensfunctions)

 	calculate_scattered_field() (ImageFormation method)

 	(MieLensCalculator method)

 	calculate_scattering_matrix() (ImageFormation method)

 	calculate_total_field() (MieLensCalculator method)

 	calculate_total_intensity() (MieLensCalculator method)

 	can_handle() (holopy.scattering.theory.dda.DDA class method)

 	(Lens method)

 	(Mie method)

 	(MieLens method)

 	(Multisphere method)

 	(ScatteringTheory method)

 	(Tmatrix method)

 	Capsule (class in holopy.scattering.scatterer.capsule)

 	cartesian_distance() (in module holopy.core.math)

 	center (LayeredSphere attribute)

 	(Sphere attribute)

 	(Spheres attribute)

 	(Spheroid attribute)

 	
 	center_find() (in module holopy.core.process.centerfinder)

 	CenteredScatterer (class in holopy.scattering.scatterer.scatterer)

 	centers (Spheres attribute)

 	check() (LimitOverlaps method)

 	check_display() (in module holopy.core.io.vis)

 	check_for_ties() (Mapper method)

 	chisq() (in module holopy.core.math)

 	choose_pool() (in module holopy.core.utils)

 	class_loader() (in module holopy.core.io.serialize)

 	class_representer() (in module holopy.core.io.serialize)

 	clean_concat() (in module holopy.core.metadata)

 	cleanup_from_fit() (NmpfitStrategy method)

 	click() (Show2D method)

 	close() (NonePool method)

 	CmaStrategy (class in holopy.inference.cmaes)

 	complex_constructor() (in module holopy.core.io.serialize)

 	complex_representer() (in module holopy.core.io.serialize)

 	ComplexPrior (class in holopy.core.prior)

 	configuration() (in module holopy.scattering.theory.mie_f.setup)

 	(in module holopy.scattering.theory.tmatrix_f.setup)

 	contains() (Scatterer method)

 	convert_to_map() (Mapper method)

 	CoordSysError

 	copy_metadata() (in module holopy.core.metadata)

 	cross_sections() (in module holopy.scattering.theory.mie_f.miescatlib)

 	CsgScatterer (class in holopy.scattering.scatterer.csg)

 	cv() (Accumulator method)

 	Cylinder (class in holopy.scattering.scatterer.cylinder)

D

 	
 	data_grid() (in module holopy.core.metadata)

 	DDA (class in holopy.scattering.theory.dda)

 	default_extension() (in module holopy.core.io.io)

 	DependencyMissing

 	DeprecationError

 	desired_coordinate_system (Lens attribute)

 	(MieLens attribute)

 	(ScatteringTheory attribute)

 	
 	detector_grid() (in module holopy.core.metadata)

 	detector_points() (in module holopy.core.metadata)

 	determine_default_theory_for() (in module holopy.scattering.interface)

 	detrend() (in module holopy.core.process.img_proc)

 	dict_to_array() (in module holopy.core.metadata)

 	dict_without() (in module holopy.core.utils)

 	Difference (class in holopy.scattering.scatterer.csg)

 	display_image() (in module holopy.core.io.vis)

 	draw() (Show2D method)

E

 	
 	edit_map_indices() (in module holopy.core.mapping)

 	Ellipsoid (class in holopy.scattering.scatterer.ellipsoid)

 	emcee_lnprobs_DataArray() (in module holopy.inference.emcee)

 	emcee_samples_DataArray() (in module holopy.inference.emcee)

 	EmceeStrategy (class in holopy.inference.emcee)

 	ensure_array() (in module holopy.core.utils)

 	
 	ensure_listlike() (in module holopy.core.utils)

 	ensure_parameters_are_listlike() (Model method)

 	ensure_scalar() (in module holopy.core.utils)

 	eps (Multisphere attribute)

 	evaluate() (LnpostWrapper method)

 	ExactModel (class in holopy.inference.model)

F

 	
 	fft() (in module holopy.core.process.fourier)

 	finalize() (in module holopy.scattering.interface)

 	find_bounds() (in module holopy.scattering.scatterer.scatterer)

 	find_transformation_function() (in module holopy.core.math)

 	fit() (CmaStrategy method)

 	(LeastSquaresScipyStrategy method)

 	(Model method)

 	(NmpfitStrategy method)

 	(in module holopy.inference.interface)

 	FitResult (class in holopy.inference.result)

 	flat() (in module holopy.core.metadata)

 	
 	format_coord() (Show2D method)

 	forward() (FitResult method)

 	(Model method)

 	from_flat() (in module holopy.core.metadata)

 	from_parameters() (RigidCluster method)

 	(Scatterer method)

 	(Scatterers method), [1]

 	(ScatteringTheory method)

 	from_yaml() (holopy.core.holopy_object.HoloPyObject class method)

 	(holopy.inference.model.Model class method)

 	ft_coord() (in module holopy.core.process.fourier)

 	ft_coords() (in module holopy.core.process.fourier)

G

 	
 	gauss_legendre_pts_wts() (in module holopy.scattering.theory.lens)

 	(in module holopy.scattering.theory.mielensfunctions)

 	Gaussian (class in holopy.core.prior)

 	generate_guess() (in module holopy.core.prior)

 	(Model method)

 	get_component_list() (Scatterers method)

 	get_errors_from_minimizer() (NmpfitStrategy method)

 	get_example_data() (in module holopy.core.io.io)

 	get_example_data_path() (in module holopy.core.io.io)

 	get_extents() (in module holopy.core.metadata)

 	
 	get_parameter_index() (Mapper method)

 	get_spacing() (in module holopy.core.metadata)

 	(in module holopy.core.process.fourier)

 	get_values() (in module holopy.core.metadata)

 	get_wavevec_from() (in module holopy.scattering.imageformation)

 	guess (Gaussian attribute)

 	(TransformedPrior attribute)

 	guess_hologram (FitResult attribute)

 	guess_parameters (FitResult attribute)

 	guess_scatterer (FitResult attribute)

H

 	
 	hologram (FitResult attribute)

 	holopy (module)

 	holopy.core (module)

 	holopy.core.errors (module)

 	holopy.core.holopy_object (module)

 	holopy.core.io (module)

 	holopy.core.io.io (module)

 	holopy.core.io.serialize (module)

 	holopy.core.io.vis (module)

 	holopy.core.mapping (module)

 	holopy.core.math (module)

 	holopy.core.metadata (module)

 	holopy.core.prior (module)

 	holopy.core.process (module)

 	holopy.core.process.centerfinder (module)

 	holopy.core.process.fourier (module)

 	holopy.core.process.img_proc (module)

 	holopy.core.utils (module)

 	holopy.inference (module)

 	holopy.inference.cmaes (module)

 	holopy.inference.emcee (module)

 	holopy.inference.interface (module)

 	holopy.inference.model (module)

 	holopy.inference.nmpfit (module)

 	holopy.inference.result (module)

 	holopy.inference.scipyfit (module)

 	holopy.propagation (module)

 	holopy.propagation.convolution_propagation (module)

 	holopy.propagation.point_source_propagate (module)

 	holopy.scattering (module)

 	holopy.scattering.errors (module)

 	
 	holopy.scattering.imageformation (module)

 	holopy.scattering.interface (module)

 	holopy.scattering.scatterer (module)

 	holopy.scattering.scatterer.bisphere (module)

 	holopy.scattering.scatterer.capsule (module)

 	holopy.scattering.scatterer.composite (module)

 	holopy.scattering.scatterer.csg (module)

 	holopy.scattering.scatterer.cylinder (module)

 	holopy.scattering.scatterer.ellipsoid (module)

 	holopy.scattering.scatterer.janus (module)

 	holopy.scattering.scatterer.scatterer (module)

 	holopy.scattering.scatterer.sphere (module)

 	holopy.scattering.scatterer.spherecluster (module)

 	holopy.scattering.scatterer.spheroid (module)

 	holopy.scattering.theory (module)

 	holopy.scattering.theory.dda (module)

 	holopy.scattering.theory.lens (module)

 	holopy.scattering.theory.mie (module)

 	holopy.scattering.theory.mie_f (module)

 	holopy.scattering.theory.mie_f.mie_specfuncs (module)

 	holopy.scattering.theory.mie_f.miescatlib (module)

 	holopy.scattering.theory.mie_f.multilayer_sphere_lib (module)

 	holopy.scattering.theory.mie_f.setup (module)

 	holopy.scattering.theory.mielens (module)

 	holopy.scattering.theory.mielensfunctions (module)

 	holopy.scattering.theory.multisphere (module)

 	holopy.scattering.theory.scatteringtheory (module)

 	holopy.scattering.theory.tmatrix (module)

 	holopy.scattering.theory.tmatrix_f (module)

 	holopy.scattering.theory.tmatrix_f.setup (module)

 	HoloPyObject (class in holopy.core.holopy_object)

 	hough() (in module holopy.core.process.centerfinder)

I

 	
 	ifft() (in module holopy.core.process.fourier)

 	ift_coord() (in module holopy.core.process.fourier)

 	ift_coords() (in module holopy.core.process.fourier)

 	ignore_aliases() (in module holopy.core.io.serialize)

 	illum_polarization (Model attribute)

 	illum_wavelen (Model attribute)

 	imag (ComplexPrior attribute)

 	image_gradient() (in module holopy.core.process.centerfinder)

 	ImageFormation (class in holopy.scattering.imageformation)

 	in_domain() (Difference method)

 	(Intersection method)

 	(Scatterer method)

 	(Scatterers method)

 	(Union method)

 	index_at() (Scatterer method)

 	(Scatterers method)

 	indicators (Capsule attribute)

 	
 	Indicators (class in holopy.scattering.scatterer.scatterer)

 	indicators (Ellipsoid attribute)

 	(JanusSphere_Tapered attribute)

 	(JanusSphere_Uniform attribute)

 	(Sphere attribute)

 	(Spheroid attribute)

 	initial_guess (Model attribute)

 	initial_guess_scatterer (Model attribute)

 	initialize_fit() (NmpfitStrategy method)

 	instancemethod_constructor() (in module holopy.core.io.serialize)

 	instancemethod_representer() (in module holopy.core.io.serialize)

 	internal_coeffs() (in module holopy.scattering.theory.mie_f.miescatlib)

 	interpolate2D() (in module holopy.propagation.point_source_propagate)

 	interpret_theory() (in module holopy.scattering.interface)

 	Intersection (class in holopy.scattering.scatterer.csg)

 	interval (Uniform attribute)

 	InvalidScatterer

 	iterate_mapping() (Mapper method)

J

 	
 	j2() (in module holopy.scattering.theory.mielensfunctions)

 	
 	JanusSphere_Tapered (class in holopy.scattering.scatterer.janus)

 	JanusSphere_Uniform (class in holopy.scattering.scatterer.janus)

K

 	
 	keep_in_same_coordinates() (in module holopy.core.math)

 	
 	keep_raw_calculations (DDA attribute)

L

 	
 	largest_overlap() (Spheres method)

 	LayeredSphere (class in holopy.scattering.scatterer.sphere)

 	LeastSquaresScipyStrategy (class in holopy.inference.scipyfit)

 	Lens (class in holopy.scattering.theory.lens)

 	LimitOverlaps (class in holopy.inference.model)

 	lnlike() (Model method)

 	lnposterior() (Model method)

 	LnpostWrapper (class in holopy.core.utils)

 	lnprior() (Model method)

 	lnprob() (BoundedGaussian method)

 	(ComplexPrior method)

 	(Gaussian method)

 	(TransformedPrior method)

 	(Uniform method)

 	
 	load() (in module holopy.core.io.io)

 	(in module holopy.core.io.serialize)

 	load_average() (in module holopy.core.io.io)

 	load_image() (in module holopy.core.io.io)

 	LoadError

 	log_der_1() (in module holopy.scattering.theory.mie_f.mie_specfuncs)

 	log_der_13() (in module holopy.scattering.theory.mie_f.mie_specfuncs)

M

 	
 	make_center_priors() (in module holopy.core.prior)

 	make_coords() (in module holopy.core.metadata)

 	make_default_model() (in module holopy.inference.interface)

 	make_subset_data() (in module holopy.core.metadata)

 	make_uniform() (in module holopy.inference.interface)

 	make_xarray() (in module holopy.core.mapping)

 	map() (NonePool method)

 	map_dictionary() (Mapper method)

 	map_keys (ComplexPrior attribute)

 	(TransformedPrior attribute)

 	map_transformed_prior() (Mapper method)

 	map_xarray() (Mapper method)

 	Mapper (class in holopy.core.mapping)

 	max_dpl_size (DDA attribute)

 	max_lnprob (FitResult attribute)

 	
 	mean() (Accumulator method)

 	medium_index (Model attribute)

 	meth (Multisphere attribute)

 	Mie (class in holopy.scattering.theory.mie)

 	MieLens (class in holopy.scattering.theory.mielens)

 	MieLensCalculator (class in holopy.scattering.theory.mielensfunctions)

 	MieScatteringMatrix (class in holopy.scattering.theory.mielensfunctions)

 	minimize() (LeastSquaresScipyStrategy method)

 	(NmpfitStrategy method)

 	MissingParameter

 	mkdir_p() (in module holopy.core.utils)

 	Model (class in holopy.inference.model)

 	Multisphere (class in holopy.scattering.theory.multisphere)

 	MultisphereFailure

 	must_be_specified (AberratedMieLensCalculator attribute)

 	(MieLensCalculator attribute)

N

 	
 	n (LayeredSphere attribute)

 	(Sphere attribute)

 	(Spheres attribute)

 	(Spheroid attribute)

 	n_cpu (DDA attribute)

 	n_imag (Spheres attribute)

 	n_real (Spheres attribute)

 	ndarray_representer() (in module holopy.core.io.serialize)

 	niter (Multisphere attribute)

 	NmpfitStrategy (class in holopy.inference.nmpfit)

 	noise_sd (Model attribute)

 	NoMetadata

 	NonePool (class in holopy.core.utils)

 	
 	normalize() (in module holopy.core.process.img_proc)

 	normalize_polarization() (in module holopy.scattering.theory.multisphere)

 	nstop() (in module holopy.scattering.theory.mie_f.miescatlib)

 	num_domains (Scatterer attribute)

 	(Sphere attribute)

 	numexpr_integrand_prefactor1 (Lens attribute)

 	numexpr_integrand_prefactor2 (Lens attribute)

 	numexpr_integrand_prefactor3 (Lens attribute)

 	numexpr_integrandl (Lens attribute)

 	numexpr_integrandr (Lens attribute)

 	numpy_float_representer() (in module holopy.core.io.serialize)

 	numpy_int_representer() (in module holopy.core.io.serialize)

 	numpy_ufunc_constructor() (in module holopy.core.io.serialize)

 	numpy_ufunc_representer() (in module holopy.core.io.serialize)

O

 	
 	overlaps (Spheres attribute)

 	
 	OverlapWarning

P

 	
 	pack_attrs() (in module holopy.core.io.io)

 	parameter_names (AberratedMieLens attribute)

 	(Lens attribute)

 	(MieLens attribute)

 	(ScatteringTheory attribute)

 	parameterize_scatterer() (in module holopy.inference.interface)

 	parameters (FitResult attribute)

 	(Model attribute)

 	(Scatterer attribute)

 	(ScatteringTheory attribute)

 	ParameterSpecificationError

 	PerformanceWarning

 	
 	PiecewiseChebyshevApproximant (class in holopy.scattering.theory.mielensfunctions)

 	prep_schema() (in module holopy.scattering.interface)

 	Prior (class in holopy.core.prior)

 	prob() (BoundedGaussian method)

 	(ComplexPrior method)

 	(Gaussian method)

 	(TransformedPrior method)

 	(Uniform method)

 	propagate() (in module holopy.propagation.convolution_propagation)

 	ps_propagate() (in module holopy.propagation.point_source_propagate)

 	ps_propagate_plane() (in module holopy.propagation.point_source_propagate)

 	pts_wts_for_phi_integrals() (in module holopy.scattering.theory.lens)

 	push() (Accumulator method)

Q

 	
 	qeps1 (Multisphere attribute)

 	
 	qeps2 (Multisphere attribute)

 	Qratio() (in module holopy.scattering.theory.mie_f.mie_specfuncs)

R

 	
 	r (LayeredSphere attribute)

 	(Sphere attribute)

 	(Spheres attribute)

 	(Spheroid attribute)

 	R_psi() (in module holopy.scattering.theory.mie_f.mie_specfuncs)

 	raise_fitting_api_error() (in module holopy.core.errors)

 	raw_cross_sections() (Mie method)

 	(Multisphere method)

 	(ScatteringTheory method)

 	raw_fields() (Lens method)

 	(Mie method)

 	(MieLens method)

 	(Multisphere method)

 	(ScatteringTheory method)

 	(Tmatrix method)

 	raw_scat_matrs() (DDA method)

 	(Mie method)

 	(Multisphere method)

 	(ScatteringTheory method)

 	(Tmatrix method)

 	
 	read_map() (in module holopy.core.mapping)

 	real (ComplexPrior attribute)

 	renamed() (Prior method)

 	repeat_sing_dims() (in module holopy.core.utils)

 	replace_center() (in module holopy.inference.interface)

 	required_spacing() (DDA method)

 	riccati_psi_xi() (in module holopy.scattering.theory.mie_f.mie_specfuncs)

 	riccati_psin() (AlBlFunctions static method)

 	riccati_xin() (AlBlFunctions static method)

 	RigidCluster (class in holopy.scattering.scatterer.spherecluster)

 	rotate_points() (in module holopy.core.math)

 	rotated() (CsgScatterer method)

 	(Scatterers method), [1]

 	(Sphere method)

 	rotation (Spheroid attribute)

 	rotation_matrix() (in module holopy.core.math)

 	rsq() (in module holopy.core.math)

 	run_cma() (in module holopy.inference.cmaes)

S

 	
 	sample() (BoundedGaussian method)

 	(EmceeStrategy method)

 	(Gaussian method)

 	(Model method)

 	(TemperedStrategy method)

 	(TransformedPrior method)

 	(Uniform method)

 	(in module holopy.inference.interface)

 	sample_emcee() (in module holopy.inference.emcee)

 	sample_one_sigma_gaussian() (in module holopy.inference.emcee)

 	SamplingResult (class in holopy.inference.result)

 	save() (in module holopy.core.io.io)

 	(Show2D method)

 	(in module holopy.core.io.serialize)

 	save_all() (Show2D method)

 	save_image() (in module holopy.core.io.io)

 	save_images() (in module holopy.core.io.io)

 	save_plot() (in module holopy.core.io.vis)

 	scale() (Prior method)

 	scatcoeffs() (in module holopy.scattering.theory.mie_f.miescatlib)

 	scatcoeffs_multi() (in module holopy.scattering.theory.mie_f.multilayer_sphere_lib)

 	scattered_field_to_hologram() (in module holopy.scattering.interface)

 	Scatterer (class in holopy.scattering.scatterer.scatterer)

 	
 	scatterer (FitResult attribute)

 	(Model attribute)

 	scatterer_from_parameters() (Model method)

 	Scatterers (class in holopy.scattering.scatterer.composite)

 	scatterers (RigidCluster attribute)

 	(Scatterers attribute)

 	ScatteringTheory (class in holopy.scattering.theory.scatteringtheory)

 	select_scatterer_by_illumination() (in module holopy.scattering.imageformation)

 	Serializable (class in holopy.core.holopy_object)

 	SerializableMetaclass (class in holopy.core.holopy_object)

 	show() (in module holopy.core.io.vis)

 	Show2D (class in holopy.core.io.vis)

 	show_scatterer_slices() (in module holopy.core.io.vis)

 	show_sphere_cluster() (in module holopy.core.io.vis)

 	simulate_noise() (in module holopy.core.process.img_proc)

 	Sphere (class in holopy.scattering.scatterer.sphere)

 	Spheres (class in holopy.scattering.scatterer.spherecluster)

 	spheres (Spheres attribute)

 	spherical_h1n() (in module holopy.scattering.theory.mielensfunctions)

 	spherical_h2n() (in module holopy.scattering.theory.mielensfunctions)

 	Spheroid (class in holopy.scattering.scatterer.spheroid)

 	subimage() (in module holopy.core.process.img_proc)

 	SuppressOutput (class in holopy.core.utils)

T

 	
 	t (LayeredSphere attribute)

 	TemperedSamplingResult (class in holopy.inference.result)

 	TemperedStrategy (class in holopy.inference.emcee)

 	theory_from_parameters() (Model method)

 	TheoryNotCompatibleError

 	Tmatrix (class in holopy.scattering.theory.tmatrix)

 	TmatrixFailure

 	to_cartesian() (in module holopy.core.math)

 	to_vector() (in module holopy.core.metadata)

 	to_yaml() (holopy.core.holopy_object.HoloPyObject class method)

 	(holopy.core.holopy_object.Serializable class method)

 	trans_func() (in module holopy.propagation.convolution_propagation)

 	
 	transform_cartesian_to_cylindrical() (in module holopy.core.math)

 	transform_cartesian_to_spherical() (in module holopy.core.math)

 	transform_cylindrical_to_cartesian() (in module holopy.core.math)

 	transform_cylindrical_to_spherical() (in module holopy.core.math)

 	transform_metadata() (in module holopy.core.process.fourier)

 	transform_spherical_to_cartesian() (in module holopy.core.math)

 	transform_spherical_to_cylindrical() (in module holopy.core.math)

 	transformed_prior() (in module holopy.core.mapping)

 	TransformedPrior (class in holopy.core.prior)

 	translated() (Scatterer method)

 	(Scatterers method), [1]

 	tuple_representer() (in module holopy.core.io.serialize)

U

 	
 	UncertainValue (class in holopy.inference.result)

 	Uniform (class in holopy.core.prior)

 	Union (class in holopy.scattering.scatterer.csg)

 	unpack_attrs() (in module holopy.core.io.io)

 	unscale() (Prior method)

 	
 	unscale_pars_from_minimizer() (LeastSquaresScipyStrategy method)

 	(NmpfitStrategy method)

 	update_metadata() (in module holopy.core.metadata)

 	updated() (in module holopy.core.prior)

 	(in module holopy.core.utils)

 	use_indicators (DDA attribute)

V

 	
 	validate_scatterer() (in module holopy.scattering.interface)

 	validate_strategy() (in module holopy.inference.interface)

 	variance (Gaussian attribute)

 	
 	VisualizationNotImplemented

 	voxelate() (Scatterer method)

 	voxelate_domains() (Scatterer method)

W

 	
 	warn (Spheres attribute)

X

 	
 	x (Scatterer attribute)

 	(Spheres attribute)

Y

 	
 	y (Scatterer attribute)

 	(Spheres attribute)

Z

 	
 	z (Scatterer attribute)

 	(Spheres attribute)

 	
 	zero_filter() (in module holopy.core.process.img_proc)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/calc_sphere.png

_images/calc_twosphere.png

_images/calc_cylinder.png
((C2))

_images/calc_multi.png

_images/euler_matrix_eqn.png
cosy siny 0
iny cosy 0
0 01

)

cosf 0
0 1
simd 0

—sinf
0

cos 3

It

cosa sina 0
—sina cosa 0
0 0 1

)v

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Holography and Light Scattering in Python

 		
 HoloPy Release Notes

 		
 Holopy 3.5

 		
 Announcements

 		
 New Features

 		
 Improvements

 		
 Documentation

 		
 Bugfixes

 		
 Compatibility Notes

 		
 Developer Notes

 		
 Deprecations

 		
 Holopy 3.4

 		
 New Features

 		
 Improvements

 		
 Documentation

 		
 Deprecations

 		
 Bugfixes

 		
 Compatibility Notes

 		
 Developer Notes

 		
 Holopy 3.3

 		
 New Features

 		
 Deprecations

 		
 Bugfixes

 		
 Improvements

 		
 Compatibility Notes

 		
 Developer Notes

 		
 Miscellaneous Changes

 		
 Tutorials

 		
 Getting Started

 		
 Installation

 		
 Using HoloPy

 		
 Loading Data

 		
 Loading and viewing a hologram

 		
 Correcting Noisy Images

 		
 Telling HoloPy about your Experimental Setup

 		
 Saving and Reloading Holograms

 		
 Reconstructing Data (Numerical Propagation)

 		
 Example Reconstruction

 		
 Visualizing Reconstructions

 		
 Cascaded Free Space Propagation

 		
 Reconstructing Point Source Holograms

 		
 Example Reconstruction

 		
 Magnification and Output Image Size

 		
 Scattering Calculations

 		
 A Simple Example

 		
 More Complex Scatterers

 		
 More Complex Experimental Setups

 		
 Static light scattering calculations

 		
 Scattering from Arbitrary Structures with DDA

 		
 Defining the geometry of the scatterer

 		
 Mutiple Materials: A Janus Sphere

 		
 Fitting Models to Data

 		
 A Simple Least Squares Fit

 		
 Customizing the model

 		
 Transforming Priors

 		
 Bayesian Parameter Estimation

 		
 Customizing the algorithm

 		
 Developer’s Guide

 		
 Installing HoloPy for Developers

 		
 How HoloPy Stores Data

 		
 Adding a new scattering theory

 		
 Adding a new inference model

 		
 Running Tests

 		
 User Guide

 		
 The HoloPy Scatterer

 		
 Scatterer Attributes

 		
 Individual Scatterers

 		
 Composite Scatterers

 		
 The HoloPy Scattering Theories

 		
 ScatteringTheory Methods

 		
 Lens-Free Scattering Theories

 		
 Lens-Based Scattering Theories

 		
 Which Scattering Theory should I use?

 		
 HoloPy Tools

 		
 General Image Processing Tools

 		
 Math Tools

 		
 HoloPy Concepts

 		
 Units

 		
 Coordinate System

 		
 Rotations of Scatterers

 		
 holopy package

 		
 Subpackages

 		
 holopy.core package

 		
 holopy.inference package

 		
 holopy.propagation package

 		
 holopy.scattering package

 		
 References and credits

_static/up.png

_images/HolopyCoordinateSystem.png
(0,0)

\
J

D) |

20

[

\

_static/up-pressed.png

