

Welcome to the hoggorm documentation

[image: _images/serpiente-00-300px.png]

Content

	Quickstart
	Requirements

	Installation and upgrades

	Documentation

	Example

	hoggorm repository on GitHub

	Testing

	Principal Component Analysis (PCA)

	Principal Component Regression (PCR)

	Partial Least Squares Regression (PLSR)
	PLSR1

	PLSR2

	Matrix correlation coefficient methods

	Utililty classes and functions
	Functions in hoggorm.statTools module

	Cross validation classes in hoggorm.cross_val module

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

hoggorm is a Python package for explorative multivariate statistics in Python. It contains

	PCA (principal component analysis)

	PCR (principal component regression)

	PLSR (partial least squares regression)

	PLSR1 for univariate responses

	PLSR2 for multivariate responses

	matrix correlation coefficients RV and RV2.

Unlike scikit-learn [http://scikit-learn.org/stable/], whis is an excellent Python machine learning package focusing on classification and predicition, hoggorm rather aims at understanding and interpretation of the variance in the data. hoggorm also contains tools for prediction.

Note

Results computed with the hoggorm package can be visualised using plotting functions implemented in the complementary hoggormplot [http://hoggormplot.readthedocs.io/en/latest/index.html] package.

Requirements

Make sure that Python 3.5 or higher is installed. A convenient way to install Python and many useful packages for scientific computing is to use the Anaconda distribution [https://www.anaconda.com/download/].

	numpy >= 1.11.3

Installation and upgrades

Installation

Install hoggorm easily from the command line from the PyPI - the Python Packaging Index [https://pypi.python.org/pypi].

pip install hoggorm

Upgrading

To upgrade hoggorm from a previously installed older version execute the following from the command line:

pip install --upgrade hoggorm

If you need more information on how to install Python packages using pip, please see the pip documentation [https://pip.pypa.io/en/stable/#].

Documentation

	Documentation at Read the Docs [http://hoggorm.readthedocs.io/en/latest]

	Jupyter notebooks with examples of how to use hoggorm

	
	for PCA [https://github.com/olivertomic/hoggorm/tree/master/examples/PCA]

	
	PCA on cancer data [https://github.com/olivertomic/hoggorm/blob/master/examples/PCA/PCA_on_cancer_data.ipynb] on men in OECD countries

	PCA on NIR spectroscopy data [https://github.com/olivertomic/hoggorm/blob/master/examples/PCA/PCA_on_spectroscopy_data.ipynb] measured on gasoline

	PCA on sensory data [https://github.com/olivertomic/hoggorm/blob/master/examples/PCA/PCA_on_descriptive_sensory_analysis_data.ipynb] measured on cheese

	
	for PCR [https://github.com/olivertomic/hoggorm/tree/master/examples/PCR]

	
	PCR on NIR spectroscopy and octane data measured on gasoline (coming soon)

	PCR on sensory and fluorescence spectroscopy data [https://github.com/olivertomic/hoggorm/blob/master/examples/PCR/PCR_on_sensory_and_fluorescence_data.ipynb] measured on cheese

	
	for PLSR1 [https://github.com/olivertomic/hoggorm/tree/master/examples/PLSR] for univariate response (one response variable)

	
	PLSR1 on NIR spectroscopy and octane data [https://github.com/olivertomic/hoggorm/blob/master/examples/PLSR/PLSR_on_NIR_and_octane_data.ipynb] measured on gasoline

	
	for PLSR2 [https://github.com/olivertomic/hoggorm/tree/master/examples/PLSR] for multivariate response (multiple response variables)

	
	PLSR2 on sensory and fluorescence spectroscopy data [https://github.com/olivertomic/hoggorm/blob/master/examples/PLSR/PLSR_on_sensory_and_fluorescence_data.ipynb] measured on cheese

	
	for matrix correlation ceoefficitents RV and RV2 [https://github.com/olivertomic/hoggorm/tree/master/examples/RV_%26_RV2]

	
	RV and RV2 coefficient on sensory and fluorescence spectroscopy data [https://github.com/olivertomic/hoggorm/blob/master/examples/RV_%26_RV2/RV_and_RV2_on_sensory_and_fluorescence_data.ipynb] measured on cheese

More examples in Jupyter notebooks are provided at hoggormExamples GitHub repository [https://github.com/khliland/hoggormExamples].

Example

Import hoggorm
>>> import hoggorm as ho

Consumer liking data of 5 consumers stored in a numpy array
>>> print(my_data)
[[2 4 2 7 6]
 [4 7 4 3 6]
 [3 3 2 5 2]
 [5 9 6 4 4]
 [1 2 1 3 4]]

Compute PCA model with
- 3 components
- standardised/scaled variables (features or columns)
- Leave-one-out (LOO) cross validation
>>> model = ho.nipalsPCA(arrX=my_data, numComp=3, Xstand=True, cvType=["loo"])

Extract results from PCA model
Get PCA scores
>>> scores = model.X_scores()
>>> print(scores)
[[-0.97535198 -1.71827581 0.43672952]
 [1.28340424 -0.24453505 -0.98250731]
 [-0.9127492 0.97132275 1.04708189]
 [2.34954599 0.30633998 0.43178679]
 [-1.74484905 0.68514813 -0.93309089]]

Get PCA loadings
>>> loadings = model.X_loadings()
>>> print(loadings)
[[0.55080115 0.10025801 0.25045298]
 [0.57184198 -0.11712858 0.00316316]
 [0.57141459 0.00568809 0.10503941]
 [-0.1682551 -0.61149788 0.77153937]
 [0.12161589 -0.77605877 -0.57528864]]

Get cumulative explained variance for each variable
>>> cumCalExplVar_allVariables = model.X_cumCalExplVar_indVar()
>>> print(cumCalExplVar_allVariables)
[[0. 0. 0. 0. 0.]
 [90.98654597 98.07234952 97.92497156 8.48956314 4.43690992]
 [92.12195756 99.62227118 97.92862256 50.73769558 72.47502242]
 [97.31181824 99.62309922 98.84150821 99.98958248 99.85786661]]

Get cumulative explained variance for all variables
>>> cumCalExplVar_total = model.X_cumValExplVar()
>>> print(cumCalExplVar_total)
[0.0, 35.43333631454735, 32.12929746015379, 71.32495809880507]

hoggorm repository on GitHub

The source code is available at the hoggorm GitHub repository [https://github.com/olivertomic/hoggorm].

Testing

The correctness of the results provided PCA, PCR and PLSR may be checked using the tests provided in the tests [https://github.com/olivertomic/hoggorm/tree/master/tests] folder.

After cloning the repository to your disk, at the command line navigate to the test folder. The code below shows an example of how to run the test for PCA.

python test_pca.py

After testing is finished, pytest should report that none of tests failed.

Principal Component Analysis (PCA)

The nipalsPCA class carries out principal component analysis. It analyses one data array and looks for systematic variance in
the data using principal components (PC’s). See below for a description of the methods in nipalsPCA as well as some examples
of how to use it.

	
class hoggorm.pca.nipalsPCA(arrX, numComp=None, Xstand=False, cvType=None)

	This class carries out Principal Component Analysis using the
NIPALS algorithm.

	Parameters

	
	arrX (numpy array) – A numpy array containing the data

	numComp (int, optional) – An integer that defines how many components are to be computed

	Xstand (boolean, optional) – Defines whether variables in arrX are to be standardised/scaled or centered

	Falsecolumns of arrX are mean centred (default)

	Xstand = False

	Truecolumns of arrX are mean centred and devided by their own standard deviation

	Xstand = True

	cvType (list, optional) – The list defines cross validation settings when computing the PCA model. Note if cvType is not provided, cross validation will not be performed and as such cross validation results will not be available. Choose cross validation type from the following:

	looleave one out / a.k.a. full cross validation (default)

	cvType = ["loo"]

	KFoldleave out one fold or segment

	cvType = ["KFold", numFolds]

numFolds: int

Number of folds or segments

	lololeave one label out

	cvType = ["lolo", lablesList]

lablesList: list

Sequence of lables. Must be same lenght as number of rows in arrX. Leaves out objects with same lable.

	Returns

	A class that contains the PCA model and computational results

	Return type

	class

Examples

First import the hoggorm package.

>>> import hoggorm as ho

Import your data into a numpy array.

>>> myData
array([[5.7291665, 3.416667 , 3.175 , 2.6166668, 6.2208333],
 [6.0749993, 2.7416666, 3.6333339, 3.3833334, 6.1708336],
 [6.1166663, 3.4916666, 3.5208333, 2.7125003, 6.1625004],
 ...,
 [6.3333335, 2.3166668, 4.1249995, 4.3541665, 6.7500005],
 [5.8250003, 4.8291669, 1.4958333, 1.0958334, 6.0999999],
 [5.6499996, 4.6624999, 1.9291668, 1.0749999, 6.0249996]])
>>> np.shape(myData)
(14, 5)

Examples of how to compute a PCA model using different settings for the input parameters.

>>> model = ho.nipalsPCA(arrX=myData, numComp=5, Xstand=False)
>>> model = ho.nipalsPCA(arrX=myData)
>>> model = ho.nipalsPCA(arrX=myData, numComp=3)
>>> model = ho.nipalsPCA(arrX=myData, Xstand=True)
>>> model = ho.nipalsPCA(arrX=myData, cvType=["loo"])
>>> model = ho.nipalsPCA(arrX=myData, cvType=["KFold", 4])
>>> model = ho.nipalsPCA(arrX=myData, cvType=["lolo", [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]])

Examples of how to extract results from the PCA model.

>>> scores = model.X_scores()
>>> loadings = model.X_loadings()
>>> cumulativeCalibratedExplainedVariance_allVariables = model.X_cumCalExplVar_indVar()

	
X_MSECV()

	Returns an array holding MSECV across all variables in X acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSECV_indVar()

	Returns an arrary holding MSECV for each variable in X acquired through
cross validation. First row is MSECV for zero components, second row
for component 1, etc.

	
X_MSEE()

	Returns an array holding MSEE across all variables in X acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSEE_indVar()

	Returns an array holding MSEE for each variable in array X acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV()

	Returns an array holding PRESSCV across all variables in X acquired
through cross validation after each computed component. First row is
PRESSEV for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV_indVar()

	Returns array holding PRESSEV for each individual variable in X
acquired through cross validation after each computed component. First
row is PRESSCV for zero components, second row for component 1, third
row for component 2, etc.

	
X_PRESSE()

	Returns array holding PRESSE across all variables in X acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in X
acquired through calibration after each computed component. First row
is PRESSE for zero components, second row for component 1, third row
for component 2, etc.

	
X_RMSECV()

	Returns an array holding RMSECV across all variables in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSECV_indVar()

	Returns an arrary holding RMSECV for each variable in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE()

	Returns an array holding RMSEE across all variables in X acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array X acquired
through calibration after each components. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_calExplVar()

	Returns a list holding the calibrated explained variance for
each component. First number in list is for component 1, second number
for component 2, etc.

	
X_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
X_cumCalExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
X_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in X after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
X_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component.

	
X_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in X after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
X_loadings()

	Returns array holding loadings P of array X. Rows represent variables
and columns represent components. First column holds loadings for
component 1, second column holds scores for component 2, etc.

	
X_means()

	Returns array holding the column means of input array X.

	
X_predCal()

	Returns a dictionary holding the predicted arrays Xhat from
calibration after each computed component. Dictionary key represents
order of component.

	
X_predVal()

	Returns a dictionary holding the predicted arrays Xhat from
validation after each computed component. Dictionary key represents
order of component.

	
X_residuals()

	Returns a dictionary holding arrays of residuals for array X after
each computed component. Dictionary key represents order of component.

	
X_scores()

	Returns array holding scores T. First column holds scores for
component 1, second column holds scores for component 2, etc.

	
X_scores_predict(Xnew, numComp=None)

	Returns array of X scores from new X data using the exsisting model.
Rows represent objects and columns represent components.

	
X_valExplVar()

	Returns a list holding the validated explained variance for X after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
__init__(arrX, numComp=None, Xstand=False, cvType=None)

	On initialisation check how arrX and arrY are to be pre-processed
(Xstand and Ystand are either True or False). Then check whether
number of components chosen by user is OK.

	
corrLoadingsEllipses()

	Returns a dictionary hodling coordinates of ellipses that represent
50% and 100% expl. variance in correlation loadings plot. The
coordinates are stored in arrays.

	
cvTrainAndTestData()

	Returns a list consisting of dictionaries holding training and test
sets.

	
modelSettings()

	Returns a dictionary holding the settings under which NIPALS PCA was
run.

Principal Component Regression (PCR)

The nipalsPCR class carries out principal component regression. It analyses two data arrays and finds common systematic variance between the two arrays. See below for a description of the methods in nipalsPCR as well as some examples of how to use it.

	
class hoggorm.pcr.nipalsPCR(arrX, arrY, numComp=None, Xstand=False, Ystand=False, cvType=None)

	This class carries out Principal Component Regression for two arrays using NIPALS algorithm.

	Parameters

	
	arrX (numpy array) – This is X in the PCR model. Number and order of objects (rows) must match those of arrY.

	arrY (numpy array) – This is Y in the PCR model. Number and order of objects (rows) must match those of arrX.

	numComp (int, optional) – An integer that defines how many components are to be computed. If not provided, the maximum possible number of components is used.

	Xstand (boolean, optional) – Defines whether variables in arrX are to be standardised/scaled or centered.

	Falsecolumns of arrX are mean centred (default)

	Xstand = False

	Truecolumns of arrX are mean centred and devided by their own standard deviation

	Xstand = True

	Ystand (boolean, optional) – Defines whether variables in arrY are to be standardised/scaled or centered.

	Falsecolumns of arrY are mean centred (default)

	Ystand = False

	Truecolumns of arrY are mean centred and devided by their own standard deviation

	Ystand = True

	cvType (list, optional) – The list defines cross validation settings when computing the PCA model. Note if cvType is not provided, cross validation will not be performed and as such cross validation results will not be available. Choose cross validation type from the following:

	looleave one out / a.k.a. full cross validation (default)

	cvType = ["loo"]

	KFoldleave out one fold or segment

	cvType = ["KFold", numFolds]

numFolds: int

Number of folds or segments

	lolo (leave one label out) – cvType = ["lolo", labelsList]

labelsList: list

Sequence of lables. Must be same lenght as number of rows in arrX and arrY. Leaves out objects with same lable.

	Returns

	A class that contains the PCR model and computational results

	Return type

	class

Examples

First import the hoggormpackage

>>> import hoggorm as ho

Import your data into a numpy array.

>>> np.shape(my_X_data)
(14, 292)
>>> np.shape(my_Y_data)
(14, 5)

Examples of how to compute a PCR model using different settings for the input parameters.

>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, numComp=5)
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data)
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, numComp=3, Ystand=True)
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, Xstand=False, Ystand=True)
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, cvType=["loo"])
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, cvType=["KFold", 7])
>>> model = ho.nipalsPCR(arrX=my_X_data, arrY=my_Y_data, cvType=["lolo", [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]])

Examples of how to extract results from the PCR model.

>>> X_scores = model.X_scores()
>>> X_loadings = model.X_loadings()
>>> Y_loadings = model.Y_loadings()
>>> X_cumulativeCalibratedExplainedVariance_allVariables = model.X_cumCalExplVar_indVar()
>>> Y_cumulativeValidatedExplainedVariance_total = model.Y_cumCalExplVar()

	
X_MSECV()

	Returns an array holding MSECV across all variables in X acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSECV_indVar()

	Returns an arrary holding MSECV for each variable in X acquired through
cross validation. First row is MSECV for zero components, second row
for component 1, etc.

	
X_MSEE()

	Returns an array holding MSEE across all variables in X acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSEE_indVar()

	Returns an array holding MSEE for each variable in array X acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV()

	Returns an array holding PRESSCV across all variables in X acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV_indVar()

	Returns array holding PRESSCV for each individual variable in X
acquired through cross validation after each computed component. First
row is PRESSCV for zero components, second row for component 1, third
row for component 2, etc.

	
X_PRESSE()

	Returns array holding PRESSE across all variables in X acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in X
acquired through calibration after each computed component. First row
is PRESSE for zero components, second row for component 1, third row
for component 2, etc.

	
X_RMSECV()

	Returns an array holding RMSECV across all variables in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSECV_indVar()

	Returns an arrary holding RMSECV for each variable in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE()

	Returns an array holding RMSEE across all variables in X acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array X acquired
through calibration after each component. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_calExplVar()

	Returns a list holding the calibrated explained variance for
each component. First number in list is for component 1, second number
for component 2, etc.

	
X_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
X_cumCalExplVar()

	Returns a list holding the cumulative calibrated explained variance
for array X after each component.

	
X_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in X after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
X_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
X_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in X after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
X_loadings()

	Returns array holding loadings of array X. Rows represent variables
and columns represent components. First column holds loadings for
component 1, second column holds scores for component 2, etc.

	
X_means()

	Returns array holding column means of array X.

	
X_predCal()

	Returns a dictionary holding the predicted arrays Xhat from
calibration after each computed component. Dictionary key represents
order of component.

	
X_predVal()

	Returns dictionary holding arrays of predicted Xhat after each
component from validation. Dictionary key represents order of
component.

	
X_residuals()

	Returns a dictionary holding the residual arrays for array X after
each computed component. Dictionary key represents order of component.

	
X_scores()

	Returns array holding scores of array X. First column holds scores
for component 1, second column holds scores for component 2, etc.

	
X_scores_predict(Xnew, numComp=None)

	Returns array of X scores from new X data using the exsisting model.
Rows represent objects and columns represent components.

	
X_valExplVar()

	Returns a list holding the validated explained variance for X after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
Y_MSECV()

	Returns an array holding MSECV across all variables in Y acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_MSECV_indVar()

	Returns an array holding MSECV of each variable in array Y acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_MSEE()

	Returns an array holding MSEE across all variables in Y acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_MSEE_indVar()

	Returns an array holding MSEE for each variable in array Y acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_PRESSCV()

	Returns an array holding PRESSCV across all variables in Y acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row component 1, third row for
component 2, etc.

	
Y_PRESSCV_indVar()

	Returns an array holding PRESSCV of each variable in array Y acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row component 1, third row for
component 2, etc.

	
Y_PRESSE()

	Returns array holding PRESSE across all variables in Y acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in Y
acquired through calibration after each component. First row is
PRESSE for zero components, second row for component 1, third row for
component 2, etc.

	
Y_RMSECV()

	Returns an array holding RMSECV across all variables in Y acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_RMSECV_indVar()

	Returns an array holding RMSECV for each variable in array Y acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_RMSEE()

	Returns an array holding RMSEE across all variables in Y acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array Y acquired
through calibration after each component. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_calExplVar()

	Returns a list holding the calibrated explained variance for each
component. First number in list is for component 1, second number for
component 2, etc.

	
Y_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
Y_cumCalExplVar()

	Returns a list holding the cumulative calibrated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
Y_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in Y after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
Y_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
Y_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in Y after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
Y_loadings()

	Returns an array holding loadings C of array Y. Rows represent
variables and columns represent components. First column for
component 1, second columns for component 2, etc.

	
Y_means()

	Returns array holding means of columns in array Y.

	
Y_predCal()

	Returns dictionary holding arrays of predicted Yhat after each
component from calibration. Dictionary key represents order of
components.

	
Y_predVal()

	Returns dictionary holding arrays of predicted Yhat after each
component from validation. Dictionary key represents order of
component.

	
Y_predict(Xnew, numComp=1)

	Return predicted Yhat from new measurements X.

	
Y_residuals()

	Returns a dictionary holding residuals F of array Y after each
component. Dictionary key represents order of component.

	
Y_valExplVar()

	Returns a list holding the validated explained variance for Y after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
__init__(arrX, arrY, numComp=None, Xstand=False, Ystand=False, cvType=None)

	On initialisation check how arrX and arrY are to be pre-processed
(parameters Xstand and Ystand are either True or False). Then check
whether number of components chosen by user is OK.

	
corrLoadingsEllipses()

	Returns coordinates for the ellipses that represent 50% and 100% expl.
variance in correlation loadings plot.

	
cvTrainAndTestData()

	Returns a list consisting of dictionaries holding training and test
sets.

	
modelSettings()

	Returns a dictionary holding the settings under which NIPALS PCR was
run.

	
regressionCoefficients(numComp=1)

	Returns regression coefficients from the fitted model using all
available samples and a chosen number of components.

Partial Least Squares Regression (PLSR)

PLSR1

	
class hoggorm.plsr1.nipalsPLS1(arrX, vecy, numComp=3, Xstand=False, Ystand=False, cvType=['loo'])

	This class carries out partial least squares regression (PLSR) for two
arrays using NIPALS algorithm. The y array is univariate, which is why
PLS1 is applied.

	Parameters

	
	arrX (numpy array) – This is X in the PLS1 model. Number and order of objects (rows) must match those of arrY.

	vecy (numpy array) – This is y in the PLS1 model. Number and order of objects (rows) must match those of arrX.

	numComp (int, optional) – An integer that defines how many components are to be computed. If not provided, the maximum possible number of components is used.

	Xstand (boolean, optional) – Defines whether variables in arrX are to be standardised/scaled or centered.

	Falsecolumns of arrX are mean centred (default)

	Xstand = False

	Truecolumns of arrX are mean centred and devided by their own standard deviation

	Xstand = True

	Ystand (boolean, optional) – Defines whether vecy is to be standardised/scaled or centered.

	Falsevecy is to be mean centred (default)

	Ystand = False

	Truevecy is to be mean centred and devided by its own standard deviation

	Ystand = True

	cvType (list, optional) – The list defines cross validation settings when computing the PCA model. Note if cvType is not provided, cross validation will not be performed and as such cross validation results will not be available. Choose cross validation type from the following:

	looleave one out / a.k.a. full cross validation (default)

	cvType = ["loo"]

	KFoldleave out one fold or segment

	cvType = ["KFold", numFolds]

numFolds: int

Number of folds or segments

	lolo (leave one label out) – cvType = ["lolo", labelsList]

labelsList: list

Sequence of lables. Must be same lenght as number of rows in arrX and arrY. Leaves out objects with same lable.

	Returns

	A class that contains the PLS1 model and computational results

	Return type

	class

Examples

First import the hoggormpackage

>>> import hoggorm as ho

Import your data into a numpy array.

>>> np.shape(my_X_data)
(14, 292)
>>> np.shape(my_y_data)
(14, 1)

Examples of how to compute a PLS1 model using different settings for the input parameters.

>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, numComp=5)
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data)
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, numComp=3, Ystand=True)
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, Xstand=False, Ystand=True)
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, cvType=["loo"])
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, cvType=["KFold", 7])
>>> model = ho.nipalsPLS1(arrX=my_X_data, vecy=my_y_data, cvType=["lolo", [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]]])

Examples of how to extract results from the PCR model.

>>> X_scores = model.X_scores()
>>> X_loadings = model.X_loadings()
>>> y_loadings = model.Y_loadings()
>>> X_cumulativeCalibratedExplainedVariance_allVariables = model.X_cumCalExplVar_indVar()
>>> Y_cumulativeValidatedExplainedVariance_total = model.Y_cumCalExplVar()

	
X_MSECV()

	Returns an array holding MSECV across all variables in X acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSECV_indVar()

	Returns an arrary holding MSECV for each variable in X acquired through
cross validation. First row is MSECV for zero components, second row
for component 1, etc.

	
X_MSEE()

	Returns an array holding MSEE across all variables in X acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSEE_indVar()

	Returns an array holding MSEE for each variable in array X acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV()

	Returns an array holding PRESSCV across all variables in X acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV_indVar()

	Returns array holding PRESSCV for each individual variable in X
acquired through cross validation after each computed component. First
row is PRESSCV for zero components, second row for component 1, third
row for component 2, etc.

	
X_PRESSE()

	Returns array holding PRESSE across all variables in X acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in X
acquired through calibration after each computed component. First row
is PRESSE for zero components, second row for component 1, third row
for component 2, etc.

	
X_RMSECV()

	Returns an array holding RMSECV across all variables in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSECV_indVar()

	Returns an arrary holding RMSECV for each variable in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE()

	Returns an array holding RMSEE across all variables in X acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array X acquired
through calibration after each component. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_calExplVar()

	Returns a list holding the calibrated explained variance for
each component. First number in list is for component 1, second number
for component 2, etc.

	
X_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
X_cumCalExplVar()

	Returns a list holding the cumulative calibrated explained variance
for array X after each component.

	
X_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in X after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
X_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
X_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in X after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
X_loadingWeights()

	Returns an array holding X loadings weights.

	
X_loadings()

	Returns array holding loadings of array X. Rows represent variables
and columns represent components. First column holds loadings for
component 1, second column holds scores for component 2, etc.

	
X_means()

	Returns array holding the column means of X.

	
X_predCal()

	Returns a dictionary holding the predicted arrays Xhat from
calibration after each computed component. Dictionary key represents
order of component.

	
X_predVal()

	Returns dictionary holding arrays of predicted Xhat after each
component from validation. Dictionary key represents order of
component.

	
X_residuals()

	Returns a dictionary holding the residual arrays for array X after
each computed component. Dictionary key represents order of component.

	
X_scores()

	Returns array holding scores of array X. First column holds scores
for component 1, second column holds scores for component 2, etc.

	
X_scores_predict(Xnew, numComp=None)

	Returns array of X scores from new X data using the exsisting model.
Rows represent objects and columns represent components.

	
X_valExplVar()

	Returns a list holding the validated explained variance for X after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
Y_MSECV()

	Returns an array holding MSECV of vector y acquired through cross
validation after each computed component. First row is MSECV for
zero components, second row component 1, third row for component 2, etc.

	
Y_MSEE()

	Returns an array holding MSEE of vector y acquired through
calibration after each component. First row holds MSEE for zero
components, second row component 1, third row for component 2, etc.

	
Y_PRESSCV()

	Returns an array holding PRESSECV for Y acquired through cross
validation after each computed component. First row is PRESSECV for
zero components, second row component 1, third row for component 2,
etc.

	
Y_PRESSE()

	Returns an array holding PRESSE for y acquired through calibration
after each computed component. First row is PRESSE for zero components,
second row component 1, third row for component 2, etc.

	
Y_RMSECV()

	Returns an array holding RMSECV for vector y acquired through cross
validation after each computed component. First row is RMSECV for zero
components, second row component 1, third row for component 2, etc.

	
Y_RMSEE()

	Returns an array holding RMSEE of vector y acquired through calibration
after each computed component. First row is RMSEE for zero
components, second row component 1, third row for component 2, etc.

	
Y_calExplVar()

	Returns list holding calibrated explained variance for each component
in vector y.

	
Y_corrLoadings()

	Returns an array holding correlation loadings of vector y. Columns
represent components. First column for component 1, second columns for
component 2, etc.

	
Y_cumCalExplVar()

	Returns a list holding the calibrated explained variance for
each component. First number represent zero components, second number
one component, etc.

	
Y_cumValExplVar()

	Returns list holding cumulative validated explained variance in
vector y.

	
Y_loadings()

	Returns an array holding loadings of vector y. Columns represent
components. First column for component 1, second columns for
component 2, etc.

	
Y_means()

	Returns an array holding the mean of vector y.

	
Y_predCal()

	Returns dictionary holding arrays of predicted yhat after each component
from calibration. Dictionary key represents order of components.

	
Y_predVal()

	Returns dictionary holding arrays of predicted yhat after each
component from validation. Dictionary key represents order of component.

	
Y_predict(Xnew, numComp=1)

	Return predicted yhat from new measurements X.

	
Y_residuals()

	Returns list of arrays holding residuals of vector y after each
component.

	
Y_scores()

	Returns scores of array Y (NOT IMPLEMENTED)

	
Y_valExplVar()

	Returns list holding validated explained variance for each component in
vector y.

	
__init__(arrX, vecy, numComp=3, Xstand=False, Ystand=False, cvType=['loo'])

	On initialisation check how X and y are to be pre-processed (which
mode is used). Then check whether number of PC’s chosen by user is OK.
Then run NIPALS PLS1 algorithm.

	
corrLoadingsEllipses()

	Returns coordinates of ellipses that represent 50% and 100% expl.
variance in correlation loadings plot.

	
cvTrainAndTestData()

	Returns a list consisting of dictionaries holding training and test
sets.

	
modelSettings()

	Returns a dictionary holding settings under which PLS1 was run.

	
regressionCoefficients(numComp=1)

	Returns regression coefficients from the fitted model using all
available samples and a chosen number of components.

PLSR2

	
class hoggorm.plsr2.nipalsPLS2(arrX, arrY, numComp=None, Xstand=False, Ystand=False, cvType=None)

	This class carries out partial least squares regression (PLSR) for two arrays using NIPALS algorithm. The Y array is multivariate, which is why PLS2 is applied.

	Parameters

	
	arrX (numpy array) – This is X in the PCR model. Number and order of objects (rows) must match those of arrY.

	arrY (numpy array) – This is Y in the PCR model. Number and order of objects (rows) must match those of arrX.

	numComp (int, optional) – An integer that defines how many components are to be computed. If not provided, the maximum possible number of components is used.

	Xstand (boolean, optional) – Defines whether variables in arrX are to be standardised/scaled or centered.

	Falsecolumns of arrX are mean centred (default)

	Xstand = False

	Truecolumns of arrX are mean centred and devided by their own standard deviation

	Xstand = True

	Ystand (boolean, optional) – Defines whether variables in arrY are to be standardised/scaled or centered.

	Falsecolumns of arrY are mean centred (default)

	Ystand = False

	Truecolumns of arrY are mean centred and devided by their own standard deviation

	Ystand = True

	cvType (list, optional) – The list defines cross validation settings when computing the PCA model. Note if cvType is not provided, cross validation will not be performed and as such cross validation results will not be available. Choose cross validation type from the following:

	looleave one out / a.k.a. full cross validation (default)

	cvType = ["loo"]

	KFoldleave out one fold or segment

	cvType = ["KFold", numFolds]

numFolds: int

Number of folds or segments

	lolo (leave one label out) – cvType = ["lolo", labelsList]

labelsList: list

Sequence of lables. Must be same lenght as number of rows in arrX and arrY. Leaves out objects with same lable.

	Returns

	A class that contains the PLS2 model and computational results

	Return type

	class

Examples

First import the hoggormpackage

>>> import hoggorm as ho

Import your data into a numpy array.

>>> np.shape(my_X_data)
(14, 292)
>>> np.shape(my_Y_data)
(14, 5)

Examples of how to compute a PLS2 model using different settings for the input parameters.

>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, numComp=5)
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data)
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, numComp=3, Ystand=True)
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, Xstand=False, Ystand=True)
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, cvType=["loo"])
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, cvType=["KFold", 7])
>>> model = ho.nipalsPLS2(arrX=my_X_data, arrY=my_Y_data, cvType=["lolo", [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]])

Examples of how to extract results from the PLS2 model.

>>> X_scores = model.X_scores()
>>> X_loadings = model.X_loadings()
>>> Y_loadings = model.Y_loadings()
>>> X_cumulativeCalibratedExplainedVariance_allVariables = model.X_cumCalExplVar_indVar()
>>> Y_cumulativeValidatedExplainedVariance_total = model.Y_cumCalExplVar()

	
X_MSECV()

	Returns an array holding MSECV across all variables in X acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSECV_indVar()

	Returns an arrary holding MSECV for each variable in X acquired through
cross validation. First row is MSECV for zero components, second row
for component 1, etc.

	
X_MSEE()

	Returns an array holding MSEE across all variables in X acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_MSEE_indVar()

	Returns an array holding MSEE for each variable in array X acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV()

	Returns an array holding PRESSCV across all variables in X acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSCV_indVar()

	Returns array holding PRESSCV for each individual variable in X
acquired through cross validation after each computed component. First
row is PRESSCV for zero components, second row for component 1, third
row for component 2, etc.

	
X_PRESSE()

	Returns array holding PRESSE across all variables in X acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in X
acquired through calibration after each computed component. First row
is PRESSE for zero components, second row for component 1, third row
for component 2, etc.

	
X_RMSECV()

	Returns an array holding RMSECV across all variables in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSECV_indVar()

	Returns an arrary holding RMSECV for each variable in X acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE()

	Returns an array holding RMSEE across all variables in X acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array X acquired
through calibration after each component. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
X_calExplVar()

	Returns a list holding the calibrated explained variance for
each component. First number in list is for component 1, second number
for component 2, etc.

	
X_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
X_cumCalExplVar()

	Returns a list holding the cumulative calibrated explained variance
for array X after each component.

	
X_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in X after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
X_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
X_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in X after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
X_loadingWeights()

	Returns an array holding loadings weights of array X.

	
X_loadings()

	Returns array holding loadings of array X. Rows represent variables
and columns represent components. First column holds loadings for
component 1, second column holds scores for component 2, etc.

	
X_means()

	Returns a vector holding the column means of X.

	
X_predCal()

	Returns a dictionary holding the predicted arrays Xhat from
calibration after each computed component. Dictionary key represents
order of component.

	
X_predVal()

	Returns dictionary holding arrays of predicted Xhat after each
component from validation. Dictionary key represents order of
component.

	
X_residuals()

	Returns a dictionary holding the residual arrays for array X after
each computed component. Dictionary key represents order of component.

	
X_scores()

	Returns array holding scores of array X. First column holds scores
for component 1, second column holds scores for component 2, etc.

	
X_scores_predict(Xnew, numComp=None)

	Returns array of X scores from new X data using the exsisting model.
Rows represent objects and columns represent components.

	
X_valExplVar()

	Returns a list holding the validated explained variance for X after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
Y_MSECV()

	Returns an array holding MSECV across all variables in Y acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_MSECV_indVar()

	Returns an array holding MSECV of each variable in array Y acquired
through cross validation after each computed component. First row is
MSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_MSEE()

	Returns an array holding MSEE across all variables in Y acquired
through calibration after each computed component. First row is MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_MSEE_indVar()

	Returns an array holding MSEE for each variable in array Y acquired
through calibration after each computed component. First row holds MSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_PRESSCV()

	Returns an array holding PRESSCV across all variables in Y acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row component 1, third row for
component 2, etc.

	
Y_PRESSCV_indVar()

	Returns an array holding PRESSCV of each variable in array Y acquired
through cross validation after each computed component. First row is
PRESSCV for zero components, second row component 1, third row for
component 2, etc.

	
Y_PRESSE()

	Returns array holding PRESSE across all variables in Y acquired
through calibration after each computed component. First row is PRESSE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_PRESSE_indVar()

	Returns array holding PRESSE for each individual variable in Y
acquired through calibration after each component. First row is
PRESSE for zero components, second row for component 1, third row for
component 2, etc.

	
Y_RMSECV()

	Returns an array holding RMSECV across all variables in Y acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_RMSECV_indVar()

	Returns an array holding RMSECV for each variable in array Y acquired
through cross validation after each computed component. First row is
RMSECV for zero components, second row component 1, third row for
component 2, etc.

	
Y_RMSEE()

	Returns an array holding RMSEE across all variables in Y acquired
through calibration after each computed component. First row is RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_RMSEE_indVar()

	Returns an array holding RMSEE for each variable in array Y acquired
through calibration after each component. First row holds RMSEE
for zero components, second row for component 1, third row for
component 2, etc.

	
Y_calExplVar()

	Returns a list holding the calibrated explained variance for each
component. First number in list is for component 1, second number for
component 2, etc.

	
Y_corrLoadings()

	Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.

	
Y_cumCalExplVar()

	Returns a list holding the cumulative calibrated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
Y_cumCalExplVar_indVar()

	Returns an array holding the cumulative calibrated explained variance
for each variable in Y after each component. First row represents zero
components, second row represents one component, third row represents
two components, etc. Columns represent variables.

	
Y_cumValExplVar()

	Returns a list holding the cumulative validated explained variance
for array X after each component. First number represents zero
components, second number represents component 1, etc.

	
Y_cumValExplVar_indVar()

	Returns an array holding the cumulative validated explained variance
for each variable in Y after each component. First row represents
zero components, second row represents component 1, third row for
compnent 2, etc. Columns represent variables.

	
Y_loadings()

	Returns an array holding loadings C of array Y. Rows represent
variables and columns represent components. First column for
component 1, second columns for component 2, etc.

	
Y_means()

	Returns a vector holding the column means of array Y.

	
Y_predCal()

	Returns dictionary holding arrays of predicted Yhat after each
component from calibration. Dictionary key represents order of
components.

	
Y_predVal()

	Returns dictionary holding arrays of predicted Yhat after each
component from validation. Dictionary key represents order of
component.

	
Y_predict(Xnew, numComp=1)

	Return predicted Yhat from new measurements X.

	
Y_residuals()

	Returns a dictionary holding residuals F of array Y after each
component. Dictionary key represents order of component.

	
Y_scores()

	Returns an array holding loadings C of array Y. Rows represent
variables and columns represent components. First column for
component 1, second columns for component 2, etc.

	
Y_valExplVar()

	Returns a list holding the validated explained variance for Y after
each component. First number in list is for component 1, second number
for component 2, third number for component 3, etc.

	
__init__(arrX, arrY, numComp=None, Xstand=False, Ystand=False, cvType=None)

	On initialisation check whether number of PC’s chosen by user is given
and smaller than maximum number of PC’s possible.Then check how X and Y
are to be pre-processed (whether ‘Xstand’ and ‘Ystand’ are used). Then
run NIPALS PLS2 algorithm.

	
corrLoadingsEllipses()

	Returns the coordinates of ellipses that represent 50% and 100% expl.
variance in correlation loadings plot.

	
cvTrainAndTestData()

	Returns a list consisting of dictionaries holding training and test
sets.

	
modelSettings()

	Returns a dictionary holding settings under which PLS2 was run.

	
regressionCoefficients(numComp=1)

	Returns regression coefficients from the fitted model using all
available samples and a chosen number of components.

	
scoresRegressionCoeffs()

	Returns a one dimensional array holding regression coefficients between
scores of array X and Y.

Matrix correlation coefficient methods

This module provides statistical tools for computation of matrix correlation coefficients (MCC). The MCCs provide information on to what degree
multivariate data contained in two data arrays are correlated.

	
hoggorm.mat_corr_coeff.RV2coeff(dataList)

	This function computes the RV matrix correlation coefficients between pairs
of arrays. The number and order of objects (rows) for the two arrays must
match. The number of variables in each array may vary. The RV2 coefficient
is a modified version of the RV coefficient with values -1 <= RV2 <= 1.
RV2 is independent of object and variable size.

Reference: Matrix correlations for high-dimensional data - the modified RV-coefficient [https://academic.oup.com/bioinformatics/article/25/3/401/244239]

	Parameters

	dataList (list) – A list holding an arbitrary number of numpy arrays for which the RV
coefficient will be computed.

	Returns

	A list holding an arbitrary number of numpy arrays for which the RV
coefficient will be computed.

	Return type

	numpy array

Examples

>>> import hoggorm as ho
>>> import numpy as np
>>>
>>> # Generate some random data. Note that number of rows must match across arrays
>>> arr1 = np.random.rand(50, 100)
>>> arr2 = np.random.rand(50, 20)
>>> arr3 = np.random.rand(50, 500)
>>>
>>> # Center the data before computation of RV coefficients
>>> arr1_cent = arr1 - np.mean(arr1, axis=0)
>>> arr2_cent = arr2 - np.mean(arr2, axis=0)
>>> arr3_cent = arr3 - np.mean(arr3, axis=0)
>>>
>>> # Compute RV matrix correlation coefficients on mean centered data
>>> rv_results = ho.RVcoeff([arr1_cent, arr2_cent, arr3_cent])
>>> array([[1. , -0.00563174, 0.04028299],
 [-0.00563174, 1. , 0.08733739],
 [0.04028299, 0.08733739, 1.]])
>>>
>>> # Get RV for arr1_cent and arr2_cent
>>> rv_results[0, 1]
 -0.00563174
>>>
>>> # or
>>> rv_results[1, 0]
 -0.00563174
>>>
>>> # Get RV for arr2_cent and arr3_cent
>>> rv_results[1, 2]
 0.08733739
>>>
>>> # or
>>> rv_results[2, 1]
 0.08733739

	
hoggorm.mat_corr_coeff.RVcoeff(dataList)

	This function computes the RV matrix correlation coefficients between pairs
of arrays. The number and order of objects (rows) for the two arrays must
match. The number of variables in each array may vary.

Reference: The STATIS method [https://www.utdallas.edu/~herve/Abdi-Statis2007-pretty.pdf]

	Parameters

	dataList (list) – A list holding numpy arrays for which the RV coefficient will be computed.

	Returns

	A numpy array holding RV coefficients for pairs of numpy arrays. The
diagonal in the result array holds ones, since RV is computed on
identical arrays, i.e. first array in dataList against frist array
in

	Return type

	numpy array

Examples

>>> import hoggorm as ho
>>> import numpy as np
>>>
>>> # Generate some random data. Note that number of rows must match across arrays
>>> arr1 = np.random.rand(50, 100)
>>> arr2 = np.random.rand(50, 20)
>>> arr3 = np.random.rand(50, 500)
>>>
>>> # Center the data before computation of RV coefficients
>>> arr1_cent = arr1 - np.mean(arr1, axis=0)
>>> arr2_cent = arr2 - np.mean(arr2, axis=0)
>>> arr3_cent = arr3 - np.mean(arr3, axis=0)
>>>
>>> # Compute RV matrix correlation coefficients on mean centered data
>>> rv_results = ho.RVcoeff([arr1_cent, arr2_cent, arr3_cent])
>>> array([[1. , 0.41751839, 0.77769025],
 [0.41751839, 1. , 0.51194496],
 [0.77769025, 0.51194496, 1.]])
>>>
>>> # Get RV for arr1_cent and arr2_cent
>>> rv_results[0, 1]
 0.41751838661314689
>>>
>>> # or
>>> rv_results[1, 0]
 0.41751838661314689
>>>
>>> # Get RV for arr2_cent and arr3_cent
>>> rv_results[1, 2]
 0.51194496245209853
>>>
>>> # or
>>> rv_results[2, 1]
 0.51194496245209853

	
class hoggorm.mat_corr_coeff.SMI(X1, X2, **kargs)

	Similarity of Matrices Index (SMI)

A similarity index for comparing coupled data matrices.
A two-step process starts with extraction of stable subspaces using
Principal Component Analysis or some other method yielding two orthonormal bases. These bases
are compared using Orthogonal Projection (OP / ordinary least squares) or Procrustes
Rotation (PR). The result is a similarity measure that can be adjusted to various
data sets and contexts and which includes explorative plotting and permutation based testing
of matrix subspace equality.

Reference: A similarity index for comparing coupled matrices [https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.3049]

	Parameters

	
	X1 (numpy array) – first matrix to be compared.

	X2 (numpy array) – second matrix to be compared.

	ncomp1 (int, optional) – maximum number of subspace components from the first matrix.

	ncomp2 (int, optional) – maximum number of subspace components from the second matrix.

	projection (list, optional) – type of projection to apply, defaults to “Orthogonal”, alternatively “Procrustes”.

	Scores1 (numpy array, optional) – user supplied score-matrix to replace singular value decomposition of first matrix.

	Scores2 (numpy array, optional) – user supplied score-matrix to replace singular value decomposition of second matrix.

	Returns

	

	Return type

	An SMI object containing all combinations of components.

Examples

>>> import numpy as np
>>> import hoggorm as ho

>>> X1 = ho.center(np.random.rand(100, 300))
>>> U, s, V = np.linalg.svd(X1, 0)
>>> X2 = np.dot(np.dot(np.delete(U, 2, 1), np.diag(np.delete(s, 2))), np.delete(V, 2, 0))

>>> smiOP = ho.SMI(X1, X2, ncomp1=10, ncomp2=10)
>>> smiPR = ho.SMI(X1, X2, ncomp1=10, ncomp2=10, projection="Procrustes")
>>> smiCustom = ho.SMI(X1, X2, ncomp1=10, ncomp2=10, Scores1=U)

>>> print(smiOP.smi)
>>> print(smiOP.significance())
>>> print(smiPR.significance(B=100))

	
significance(**kargs)

	Significance estimation for Similarity of Matrices Index (SMI)

For each combination of components significance is estimated by sampling from a null distribution
of no similarity, i.e. when the rows of one matrix is permuted B times and corresponding SMI values are
computed. If the vector replicates is included, replicates will be kept together through
permutations.

	Parameters

	
	integer (B) – number of permutations, default = 10000.

	replicates (numpy array) – integer vector of replicates (must be balanced).

	Returns

	

	Return type

	An array containing P-values for all combinations of components.

Utililty classes and functions

There are number of functions and classes that might be useful for working with data outside the hoggorm package. They are provided here
for convenience.

Functions in hoggorm.statTools module

The hoggorm.statTools module provides some functions that can be useful when working with multivariate data sets.

	
hoggorm.statTools.center(arr, axis=0)

	This function centers an array column-wise or row-wise.

	Parameters

	arrX (numpy array) – A numpy array containing the data

	Returns

	Mean centered data.

	Return type

	numpy array

Examples

>>> import hoggorm as ho
>>> # Column centering of array
>>> centData = ho.center(data, axis=0)

>>> # Row centering of array
>>> centData = ho.center(data, axis=1)

	
hoggorm.statTools.matrixRank(arr, tol=1e-08)

	Computes the rank of an array/matrix, i.e. number of linearly independent
variables. This is not the same as numpy.rank() which only returns the
number of ways (2-way, 3-way, etc) an array/matrix has.

	Parameters

	arrX (numpy array) – A numpy array containing the data

	Returns

	Rank of matrix.

	Return type

	scalar

Examples

>>> import hoggorm as ho
>>>
>>> # Get the rank of the data
>>> ho.matrixRank(myData)
>>> 8

	
hoggorm.statTools.ortho(arr1, arr2)

	This function orthogonalises arr1 with respect to arr2. The function then
returns orthogonalised array arr1_orth.

	Parameters

	
	arr1 (numpy array) – A numpy array containing some data

	arr2 (numpy array) – A numpy array containing some data

	Returns

	A numpy array holding orthogonalised numpy array arr1.

	Return type

	numpy array

Examples

some examples

	
hoggorm.statTools.standardise(arr, mode=0)

	This function standardises the input array either
column-wise (mode = 0) or row-wise (mode = 1).

	Parameters

	
	arrX (numpy array) – A numpy array containing the data

	selection (int) – An integer indicating whether standardisation should happen column
wise or row wise.

	Returns

	Standardised data.

	Return type

	numpy array

Examples

>>> import hoggorm as ho
>>> # Standardise array column-wise
>>> standData = ho.standardise(data, mode=0)

>>> # Standardise array row-wise
>>> standData = ho.standarise(data, mode=1)

Cross validation classes in hoggorm.cross_val module

hoggorm classes PCA, PLSR and PCR use a number classes for computation of the models which are found in the hoggorm.cross_val module.

The cross validation classes in this module are used inside the multivariate statistical methods and may be called upon using the cvType
input parameter for these methods. They are not intended to be used outside the multivariate statistical methods, even though it is possible.
They are shown here to illustrate how the different cross validation options work.

The code in this module is based on the cross_val.py module from scikt-learn 0.4. It is adapted to work with hoggorm.

Authors:

Alexandre Gramfort <alexandre.gramfort@inria.fr>

Gael Varoquaux <gael.varoquaux@normalesup.org>

License: BSD Style.

	
class hoggorm.cross_val.KFold(n, k)

	K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets

	
__init__(n, k)

	K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets

	Parameters

	
	n (int) – Total number of elements

	k (int) – number of folds

Examples

>>> import hoggorm as ho
>>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
>>> y = [1, 2, 3, 4]
>>> kf = ho.KFold(4, k=2)
>>> for train_index, test_index in kf:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [True True False False]
TRAIN: [True True False False] TEST: [False False True True]

Notes

All the folds have size trunc(n/k), the last one has the complementary

	
class hoggorm.cross_val.LeaveOneLabelOut(labels)

	Leave-One-Label_Out cross-validation iterator:
Provides train/test indexes to split data in train test sets

	
__init__(labels)

	Leave-One-Label_Out cross validation:
Provides train/test indexes to split data in train test sets

	Parameters

	labels (list) – List of labels

Examples

>>> import hoggorm as ho
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 1, 2]
>>> labels = [1, 1, 2, 2]
>>> lolo = ho.LeaveOneLabelOut(labels)
>>> for train_index, test_index in lol:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False False True True] TEST: [True True False False]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]
TRAIN: [True True False False] TEST: [False False True True]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]

	
class hoggorm.cross_val.LeaveOneOut(n)

	Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets

	
__init__(n)

	Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets

	Parameters

	n (int) – Total number of elements

Examples

>>> import hoggorm as ho
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = ho.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2]

	
class hoggorm.cross_val.LeavePOut(n, p)

	Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets

	
__init__(n, p)

	Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets

	Parameters

	
	n (int) – Total number of elements

	p (int) – Size test sets

Examples

>>> import hoggorm as ho
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 3, 4]
>>> lpo = ho.LeavePOut(4, 2)
>>> for train_index, test_index in lpo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [True True False False]
TRAIN: [False True False True] TEST: [True False True False]
TRAIN: [False True True False] TEST: [True False False True]
TRAIN: [True False False True] TEST: [False True True False]
TRAIN: [True False True False] TEST: [False True False True]
TRAIN: [True True False False] TEST: [False False True True]

	
hoggorm.cross_val.split(train_indexes, test_indexes, *args)

	For each arg return a train and test subsets defined by indexes provided
in train_indexes and test_indexes

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hoggorm	

 	
 	
 hoggorm.cross_val	

 	
 	
 hoggorm.mat_corr_coeff	

 	
 	
 hoggorm.pca	

 	
 	
 hoggorm.pcr	

 	
 	
 hoggorm.plsr1	

 	
 	
 hoggorm.plsr2	

 	
 	
 hoggorm.statTools	

Index

 _
 | C
 | H
 | K
 | L
 | M
 | N
 | O
 | R
 | S
 | X
 | Y

_

 	
 	__init__() (hoggorm.cross_val.KFold method)

 	(hoggorm.cross_val.LeaveOneLabelOut method)

 	(hoggorm.cross_val.LeaveOneOut method)

 	(hoggorm.cross_val.LeavePOut method)

 	(hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

C

 	
 	center() (in module hoggorm.statTools)

 	corrLoadingsEllipses() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	
 	cvTrainAndTestData() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

H

 	
 	hoggorm.cross_val (module)

 	hoggorm.mat_corr_coeff (module)

 	hoggorm.pca (module)

 	
 	hoggorm.pcr (module)

 	hoggorm.plsr1 (module)

 	hoggorm.plsr2 (module)

 	hoggorm.statTools (module)

K

 	
 	KFold (class in hoggorm.cross_val)

L

 	
 	LeaveOneLabelOut (class in hoggorm.cross_val)

 	
 	LeaveOneOut (class in hoggorm.cross_val)

 	LeavePOut (class in hoggorm.cross_val)

M

 	
 	matrixRank() (in module hoggorm.statTools)

 	modelSettings() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

N

 	
 	nipalsPCA (class in hoggorm.pca)

 	nipalsPCR (class in hoggorm.pcr)

 	
 	nipalsPLS1 (class in hoggorm.plsr1)

 	nipalsPLS2 (class in hoggorm.plsr2)

O

 	
 	ortho() (in module hoggorm.statTools)

R

 	
 	regressionCoefficients() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	
 	RV2coeff() (in module hoggorm.mat_corr_coeff)

 	RVcoeff() (in module hoggorm.mat_corr_coeff)

S

 	
 	scoresRegressionCoeffs() (hoggorm.plsr2.nipalsPLS2 method)

 	significance() (hoggorm.mat_corr_coeff.SMI method)

 	
 	SMI (class in hoggorm.mat_corr_coeff)

 	split() (in module hoggorm.cross_val)

 	standardise() (in module hoggorm.statTools)

X

 	
 	X_calExplVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_corrLoadings() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_cumCalExplVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_cumCalExplVar_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_cumValExplVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_cumValExplVar_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_loadings() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_loadingWeights() (hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_means() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_MSECV() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_MSECV_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_MSEE() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_MSEE_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_predCal() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	
 	X_predVal() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_PRESSCV() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_PRESSCV_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_PRESSE() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_PRESSE_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_residuals() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_RMSECV() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_RMSECV_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_RMSEE() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_RMSEE_indVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_scores() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_scores_predict() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	X_valExplVar() (hoggorm.pca.nipalsPCA method)

 	(hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

Y

 	
 	Y_calExplVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_corrLoadings() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_cumCalExplVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_cumCalExplVar_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_cumValExplVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_cumValExplVar_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_loadings() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_means() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_MSECV() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_MSECV_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_MSEE() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_MSEE_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_predCal() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	
 	Y_predict() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_predVal() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_PRESSCV() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_PRESSCV_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_PRESSE() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_PRESSE_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_residuals() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_RMSECV() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_RMSECV_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_RMSEE() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_RMSEE_indVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_scores() (hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 	Y_valExplVar() (hoggorm.pcr.nipalsPCR method)

 	(hoggorm.plsr1.nipalsPLS1 method)

 	(hoggorm.plsr2.nipalsPLS2 method)

 [image: _images/b44144ae88d9561a07e67a4df7daa607f1295706.svg]
hoggorm

hoggorm is a Python package for explorative multivariate statistics in Python. It contains

	PCA (principal component analysis)

	PCR (principal component regression)

	PLSR (partial least squares regression)

	PLSR1 for single variable responses

	PLSR2 for multivariate responses

	matrix correlation coefficients RV, RV2 and SMI.

Unlike scikit-learn [http://scikit-learn.org/stable/], which is an excellent python machine learning package focusing on classification and predicition, hoggorm rather aims at understanding and interpretation of the variance in the data. hoggorm also also contains tools for prediction.

Requirements

Make sure that Python 3.5 or higher is installed. A convenient way to install Python and many useful packages for scientific computing is to use the Anaconda distribution [https://www.anaconda.com/download/].

	numpy >= 1.11.3

Installation

Install hoggorm easily from the command line from the PyPI - the Python Packaging Index [https://pypi.python.org/pypi].

pip install hoggorm

Documentation

	Documentation at Read the Docs [http://hoggorm.readthedocs.io/en/latest]

	Jupyter notebooks with examples [https://github.com/olivertomic/hoggorm/tree/master/examples] of how to use Hoggorm together with the complementary plotting package hoggormplot [https://github.com/olivertomic/hoggormPlot].

 _static/ajax-loader.gif

_images/serpiente-00-300px.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to the hoggorm documentation

 		
 Quickstart

 		
 Requirements

 		
 Installation and upgrades

 		
 Installation

 		
 Upgrading

 		
 Documentation

 		
 Example

 		
 hoggorm repository on GitHub

 		
 Testing

 		
 Principal Component Analysis (PCA)

 		
 Principal Component Regression (PCR)

 		
 Partial Least Squares Regression (PLSR)

 		
 PLSR1

 		
 PLSR2

 		
 Matrix correlation coefficient methods

 		
 Utililty classes and functions

 		
 Functions in hoggorm.statTools module

 		
 Cross validation classes in hoggorm.cross_val module

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

