
HODLRlib Documentation
Release 3.1415

Sivaram Ambikasaran, Shyam Sundar Sankaran

Feb 11, 2019

Contents:

1 About HODLRlib: 1

2 Doc Contents 3
2.1 Installation and Building . 3
2.2 Tutorial . 5
2.3 Benchmarks . 14

3 Other Links 29

i

ii

CHAPTER 1

About HODLRlib:

HODLRlib is a library consisting of fast matrix operations for matrices based on the Hierarchical Off-Diagonal
Low-Rank (HODLR) structure. In the current version, the operations available are the matrix multiplication, solve,
determinant computation and symmetric factorization.

This software is an optimized implementation and the extension of these articles [1] [2], with the current version
showing a substantial increase in speed (a few orders of magnitude) over the timings reported in these articles. The
solver has also been extended to matrices not necessarily arising out of kernels and higher dimensions. Low-rank
approximation of the appropriate blocks is obtained using rook pivoting. The domain is subdivided based on a KDTree.
The solver is fairly general, works with minimal restrictions and has been parallelized using OpenMP

The code is written in C++ and features an easy-to-use interface, where the user provides input through a kernel
object which abstracts data of the matrix through a member function getMatrixEntry(int i, int j) which
returns the entry at the 𝑖th row and 𝑗th column of the matrix.

The current release has the following capabilities:

• MatVecs: Obtains 𝐴𝑥 at a cost of 𝒪 (𝑁 log𝑁)

• Factorization: Factors the matrix 𝐴 into the desired form at a cost of 𝒪
(︀
𝑁 log2 (𝑁)

)︀
• Cholesky-like Symmetric Factorization: Obtains 𝐴 = 𝑊𝑊𝑇 at a cost of 𝒪

(︀
𝑁 log2 (𝑁)

)︀
• Solve: Solves linear systems 𝐴𝑥 = 𝑏 at an additional cost of 𝒪 (𝑁 log (𝑁))

• Determinant Computation: Additional Cost of 𝒪 (𝑁 log𝑁)

1

https://link.springer.com/article/10.1007/s10915-013-9714-z
https://arxiv.org/abs/1405.0223

HODLRlib Documentation, Release 3.1415

2 Chapter 1. About HODLRlib:

CHAPTER 2

Doc Contents

2.1 Installation and Building

2.1.1 Downloading the Source

HODLRlib is distributed using the git version control system, and is hosted on Github. The repository can be cloned
using:

git clone https://github.com/sivaramambikasaran/HODLR.git

2.1.2 Dependencies

• Eigen Linear Algebra Library (get it here)

• (optional) An OpenMP enabled compiler (e.g. gcc4.2 or above) is required to use shared-memory parallelism.

• (optional) MKL libraries (HODLRlib has improved performance when compiled against MKL)

NOTE: On MacOS, the default compiler is clang which doesn’t have OpenMP support. You will have to use g++ to
make use of the speedups from OpenMP:

user@computer HODLR$ brew install g++-8
user@computer HODLR$ export CXX=g++

2.1.3 Installation

You can either install HODLRlib by using the provided install script provided or manually install and link the needed
dependencies.

3

https://bitbucket.org/eigen/eigen/

HODLRlib Documentation, Release 3.1415

Install Script

The easiest way to get running is to install the needed dependencies by running the install.sh provided in the
root level of this repository:

user@computer HODLR$./install.sh

The above command should create a folder deps/ in the current directory with the needed dependencies. Addition-
ally, the script should set the environment variables that would be needed during the build and execution stages. This
only needs to be done once since the environment variables are automatically written to .bash_profile.

Manually Installing

First set the environment variable HODLR_PATH to the root level of this repository. This is needed by some of the
routines in the plotting of the low-rank structure for the specific kernel. (NOTE: The plotting is carried out using
python, and requires the matplotlib package to be installed in your python environment)

Then, set the environment variable EIGEN_PATH to the location of your Eigen installation. This is needed by the
CMake script.:

user@computer HODLR$ export EIGEN_PATH=path/to/eigen/

Optionally: set the environment variable MKLROOT to take advantage of speedups from MKL.:

user@computer HODLR$ export MKLROOT=path/to/mkl/

2.1.4 Testing

Now, we need to ensure that all the functions of the libraries function as intended. For this purpose, we will be running
the script test/test_HODLR.cpp. By default, during a build this file under test/ gets compiled, and would
show up under the test/ directory in your build folder. To check this on your computer, run the following lines:

user@computer HODLR$ mkdir build && cd build
user@computer build$ cmake ..
user@computer build$./test/test_HODLR

For a succesful test, the final line of output for this run would read:”Reached End of Test File Successfully! All
functions work as intended!”.

2.1.5 Building and Executing

Key in the required .cpp to be used as input under INPUT_FILE in CMakeLists.txt. Here you also set the name of
the output executable under OUTPUT_EXECUTABLE_NAME. Then navigate to your build directory and run cmake
path/to/CMakeLists.txt and run the generated Makefile to get your executable:

user@computer build$ cmake path/to/HODLR/
user@computer build$ make -j n_threads
user@computer build$./executable

4 Chapter 2. Doc Contents

https://matplotlib.org/

HODLRlib Documentation, Release 3.1415

2.2 Tutorial

For the sake of this tutorial, we are going to be using the tutorial.cpp file that is listed under examples/ since it
demonstrates all the features of this library. For the most part, comments in the file demonstrate intended functionality.
However, we go over the main functions that may be of interest to a user on this page.

NOTE: It is assumed that you have already completed the installation process of getting the dependencies.

2.2.1 Setting Parameters in CMakeLists.txt

There are some variables that need to be set by the user at the top of the CMakeLists.txt file:

• INPUT_FILE: This is the input .cpp file that needs to be compiled. For this tutorial, it’s going to be set to
examples/tutorial.cpp.

• OUTPUT_EXECUTABLE: This is the name that the final build executable is given. Here we are just going to set
is as tutorial.

• DTYPE: Datatype that is used in all the computations. Can be set to float, double, complex32 and
complex64. We are going to be using double for this tutorial.

2.2.2 Creating a Derived Class of HODLR_Matrix:

The matrix that needs to be solved for is abstracted through this derived class of HODLR_Matrix. For the sake
of the tutorial, we are calling this derived class Kernel. The main method that needs to be set for this class is
getMatrixEntry which returns the entry at the 𝑖th row and 𝑗th column of the matrix. For instance, for the Hilbert
matrix of size 𝑁 ×𝑁 , this would be set as:

class Kernel : public HODLR_Matrix
{

public:

Kernel(int N) : HODLR_Matrix(N){}

dtype getMatrixEntry(int i, int j)
{

return (1. / (i + j + 1));
}

}

Note that here dtype is set during compilation depending on DTYPE that was set in CMakeLists.txt.

In this tutorial, we have initialized a random set of points in (−1, 1) which are then sorted to obtain a coordinate
vector 𝑥. Using this, we compute the distance between the 𝑖th point and 𝑗th in 𝑥 to obtain 𝑅 which can then be used
in different kernel functions:

class Kernel : public HODLR_Matrix
{

private:
Mat x;

public:

// Constructor:

(continues on next page)

2.2. Tutorial 5

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Kernel(int N, int dim) : HODLR_Matrix(N)
{

// Getting the random distribution of points:
x = (Mat::Random(N, dim)).real();
// This is being sorted to ensure that we get optimal low rank structure:
getKDTreeSorted(x, 0);

};

// In this example, we are illustrating usage of the gaussian kernel:
dtype getMatrixEntry(int i, int j)
{

size_t dim = x.cols();

// Value on the diagonal:
if(i == j)
{

return 10;
}

// Otherwise:
else
{

dtype R2 = 0;

for(int k = 0; k < dim; k++)
{

R2 += (x(i,k) - x(j,k)) * (x(i,k) - x(j,k));
}

return exp(-R2);
}

}
}

2.2.3 Creating the Instance of HODLR_Tree:

The main operations of this library are carried out through the HODLR_Tree class. The parameters that are taken for
the constructor are the number of levels, tolerance for approximation and the earlier created instance of Kernel:

Kernel* K = new Kernel(N, dim);
HODLR_Tree* T = new HODLR_Tree(n_levels, tolerance, K);

We will now proceed to demonstrate the individual methods available under this class.

assembleTree

We proceed to call the assembleTree method. This obtains the complete matrix for the leaf levels and the low-
rank approximation for the off-diagonal blocks. Here we have used mentioned the fact that the matrix that we are
constructing is both symmetric and positive-definite. Note that when we mention that the matrix is symmetric and
positive-definite, the fast symmetric factorization method would be used. In all other cases the fast factorization
method gets used:

6 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

bool is_sym = true;
bool is_pd = true;
T->assembleTree(is_sym, is_pd);

plotTree

This function is used to visualize the rank structure of the matrix encoded through the defined Kernel object. It’s
useful to build a visual understanding of the “low-rankness” of the sub-blocks of the matrix. This function takes the
filename and extension of the output image as a string:

T->plotTree("plot.svg");

For instance, with the gaussian kernel with 𝑁 = 1000, 𝑀 = 100 and tolerance 𝜖 = 10−12, we obtain this image:

If consider the RPY Tensor of dim = 1 for the same parameters, we get this image:

It is easy to see that the gaussian kernel shows a much “stronger” low rank nature than the RPY tensor.

printTreeDetails

This is a function which is mainly used in the process of development to understand how the nodes are being assigned
in the tree. It is a great utility function to understand all the details of the nodes in the tree. For instance, the gaussian
kernel when using 𝑁 = 1000, 𝑀 = 100 and tolerance 𝜖 = 10−12 gives this output:

Level Number :0
Node Number :0
Start of Node :0
Size of Node :1000
Tolerance :1e-12
Left Child:
Start of Child Node:0
Size of Child Node :500
Right Child:
Start of Child Node:500
Size of Child Node :500
Shape of U[0] :500, 11
Shape of U[1] :500, 11
Shape of V[0] :500, 11
Shape of V[1] :500, 11
Shape of K :0, 0
===

Level Number :1
Node Number :0
Start of Node :0
Size of Node :500
Tolerance :1e-12
Left Child:
Start of Child Node:0
Size of Child Node :250
Right Child:

(continues on next page)

2.2. Tutorial 7

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Start of Child Node:250
Size of Child Node :250
Shape of U[0] :250, 8
Shape of U[1] :250, 8
Shape of V[0] :250, 8
Shape of V[1] :250, 8
Shape of K :0, 0
===
Level Number :1
Node Number :1
Start of Node :500
Size of Node :500
Tolerance :1e-12
Left Child:
Start of Child Node:500
Size of Child Node :250
Right Child:
Start of Child Node:750
Size of Child Node :250
Shape of U[0] :250, 10
Shape of U[1] :250, 10
Shape of V[0] :250, 10
Shape of V[1] :250, 10
Shape of K :0, 0
===

Level Number :2
Node Number :0
Start of Node :0
Size of Node :250
Tolerance :1e-12
Left Child:
Start of Child Node:0
Size of Child Node :125
Right Child:
Start of Child Node:125
Size of Child Node :125
Shape of U[0] :125, 6
Shape of U[1] :125, 6
Shape of V[0] :125, 6
Shape of V[1] :125, 6
Shape of K :0, 0
===
Level Number :2
Node Number :1
Start of Node :250
Size of Node :250
Tolerance :1e-12
Left Child:
Start of Child Node:250
Size of Child Node :125
Right Child:
Start of Child Node:375
Size of Child Node :125
Shape of U[0] :125, 8
Shape of U[1] :125, 8

(continues on next page)

8 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Shape of V[0] :125, 8
Shape of V[1] :125, 8
Shape of K :0, 0
===
Level Number :2
Node Number :2
Start of Node :500
Size of Node :250
Tolerance :1e-12
Left Child:
Start of Child Node:500
Size of Child Node :125
Right Child:
Start of Child Node:625
Size of Child Node :125
Shape of U[0] :125, 8
Shape of U[1] :125, 8
Shape of V[0] :125, 8
Shape of V[1] :125, 8
Shape of K :0, 0
===
Level Number :2
Node Number :3
Start of Node :750
Size of Node :250
Tolerance :1e-12
Left Child:
Start of Child Node:750
Size of Child Node :125
Right Child:
Start of Child Node:875
Size of Child Node :125
Shape of U[0] :125, 9
Shape of U[1] :125, 9
Shape of V[0] :125, 9
Shape of V[1] :125, 9
Shape of K :0, 0
===

Level Number :3
Node Number :0
Start of Node :0
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:0
Size of Child Node :62
Right Child:
Start of Child Node:62
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===

(continues on next page)

2.2. Tutorial 9

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Level Number :3
Node Number :1
Start of Node :125
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:125
Size of Child Node :62
Right Child:
Start of Child Node:187
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :2
Start of Node :250
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:250
Size of Child Node :62
Right Child:
Start of Child Node:312
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :3
Start of Node :375
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:375
Size of Child Node :62
Right Child:
Start of Child Node:437
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :4
Start of Node :500
Size of Node :125
Tolerance :1e-12
Left Child:

(continues on next page)

10 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Start of Child Node:500
Size of Child Node :62
Right Child:
Start of Child Node:562
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :5
Start of Node :625
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:625
Size of Child Node :62
Right Child:
Start of Child Node:687
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :6
Start of Node :750
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:750
Size of Child Node :62
Right Child:
Start of Child Node:812
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===
Level Number :3
Node Number :7
Start of Node :875
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:875
Size of Child Node :62
Right Child:
Start of Child Node:937
Size of Child Node :63
Shape of U[0] :0, 0

(continues on next page)

2.2. Tutorial 11

HODLRlib Documentation, Release 3.1415

(continued from previous page)

Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125
===

printNodeDetails

This function is useful if we want to find the details of a particular node in the tree. This function takes in
the arguments of the level number and node number of the node you want to query. For instance if we call
T->printNodeDetails(3, 7) for the above defined tree structure, we get:

Level Number :3
Node Number :7
Start of Node :875
Size of Node :125
Tolerance :1e-12
Left Child:
Start of Child Node:875
Size of Child Node :62
Right Child:
Start of Child Node:937
Size of Child Node :63
Shape of U[0] :0, 0
Shape of U[1] :0, 0
Shape of V[0] :0, 0
Shape of V[1] :0, 0
Shape of K :125, 125

matmatProduct

This function is used to obtain the matrix-matrix / matrix-vector product of the given matrix / vector 𝑥, with the matrix
that is abstracted by the instance of Kernel:

b = T->matmatProduct(x);

factorize

Depends upon whether we intend to perform fast factorization or fast symmetric factorization:

• Fast Factorization - This function performs the factorizations such that the matrix is obtained as 𝐾 =
𝐾𝜅𝐾𝜅−1...𝐾1𝐾0 where 𝐾𝑖 are block diagonal matrices with 𝜅 being the number of levels considered.

• Fast Symmetric Factorization - This function performs the factorizations such that the matrix is obtained as
𝐾 = 𝐾𝜅𝐾𝜅−1...𝐾1𝐾0⏟ ⏞

𝑊

𝐾𝑇
0 𝐾

𝑇
1 ...𝐾

𝑇
𝜅−1𝐾

𝑇
𝜅⏟ ⏞

𝑊𝑇

where 𝐾𝑖 are block diagonal matrices with 𝜅 being the number of

levels considered.

For more details on this factorization refer to the articles [1] [2]

T->factorize();

12 Chapter 2. Doc Contents

https://link.springer.com/article/10.1007/s10915-013-9714-z
https://arxiv.org/abs/1405.0223

HODLRlib Documentation, Release 3.1415

solve

Applies the inverse of the matrix(abstracted by the Kernel object) on the given vector 𝑥. This must be called only
after factorize has been called:

x = T->solve(b);

logDeterminant

Returns the log of the determinant of the matrix that has been described through the Kernel object:

dtype log_det = T->logDeterminant();

symmetricFactorProduct

If the matrix described through the Kernel object is a covariance matrix 𝑄 it can be expressed as 𝑄 = 𝑊𝑊𝑇 . If we
create a random normal vector 𝑥 i.e 𝒩 (𝜇 = 0, 𝜎 = 1), then the random vector 𝑦 with covariance matrix 𝑄 is given by
𝑦 = 𝑊𝑥:

y = T->symmetricFactorProduct(x);

symmetricFactorTransposeProduct

This function returns the product of the transpose of the symmetric factor with the given vector 𝑥 (i.e it returns 𝑊𝑇𝑥):

y = T->symmetricFactorTransposeProduct(x);

getSymmetricFactor

Explicitly builds and returns the symmetric factor 𝑊 :

W = T->getSymmetricFactor();

2.2.4 Running the Program:

For this particular tutorial, the problem parameters are passed to the executable during runtime. In the beginning of
this file, we have the lines:

// Size of the Matrix in consideration:
int N = atoi(argv[1]);
// Size of Matrices at leaf level:
int M = atoi(argv[2]);
// Dimensionality of the problem:
int dim = atoi(argv[3]);
// Tolerance of problem
double tolerance = pow(10, -atoi(argv[4]));

This means that the first argument would be the matrix size considered, the second one would be the size at the leaf
level, the third one would be the dimensionality considered and the final argument is approximately the number of
digits of accuracy we want. For instance, running ./tutorial 1000 100 1 12 would correspond to solving
the problem with parameters 𝑁 = 1000,𝑀 = 100,dim = 1, 𝜖 = 10−12.

2.2. Tutorial 13

HODLRlib Documentation, Release 3.1415

2.3 Benchmarks

All the following benchmarks have been carried out on an i7-8750H(with OpenMP enabled, this is 12 threads), with
Intel’s icpc (ICC) 19.0.1.144 compiler and Eigen version 3.3.7, with DTYPE set to double. The compiler flags that
were utilized are the same are those mentioned in the CMakeLists.txt file.

Presented below are the results as obtained when using different kernels:

2.3.1 Gaussian Kernel

The Gaussian Kernel is given by 𝐾(𝑖, 𝑗) = 𝜎2𝛿2𝑖𝑗 + exp(−||𝑥𝑖 − 𝑥𝑗 ||2). For these benchmarks, we take 𝜎 = 10 with
𝑥 being set as a sorted random vector ∈ (−1, 1). Using the plotTree function of this library, we can look at the
rank structure for this matrix. The following diagram is obtained with 𝑁 = 10000, 𝑀 = 500 and tolerance 10−12

The green blocks are low-rank blocks. Their intensity of colour shows their degree of “low-rankness”. Additionally,
the rank has been displayed in each of these blocks. The red blocks are full-rank blocks and would have the rank of
𝑀 = 500

Time Taken vs Tolerance

These benchmarks were performed for size of the matrix 𝑁 = 1000000, with the size of the leaf node set to 𝑀 = 100.

Fast Factorization

Tolerance Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s)
10−2 1.65059 11.4442 1.47112 0.321805 0.0300901
10−4 1.82825 8.33693 1.94887 0.337377 0.03039
10−6 1.92681 12.4077 2.33157 0.346198 0.0300648
10−8 2.09475 11.5901 2.74718 0.361579 0.0338411
10−10 2.28711 11.8123 3.22611 0.375279 0.0296249
10−12 2.54764 11.2157 3.89779 0.398319 0.0305111
10−14 2.95124 8.55489 5.01199 0.431082 0.0309851

14 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

Tolerance Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) MultSymFactor(s)
10−2 1.61076 11.4741 1.17726 0.387992 0.0366111 0.226509
10−4 1.81511 8.08747 1.56692 0.399085 0.0328679 0.249969
10−6 1.91956 12.3341 1.83361 0.418334 0.031215 0.266352
10−8 2.07343 11.2653 2.29376 0.440591 0.0327439 0.288697
10−10 2.24097 11.7877 2.86431 0.464687 0.0305729 0.339399
10−12 2.57603 11.3027 3.66516 0.494536 0.031522 0.393104
10−14 2.90611 7.89484 4.93738 0.537149 0.030225 0.393285

2.3. Benchmarks 15

HODLRlib Documentation, Release 3.1415

Time Taken vs Size of Matrix

For these benchmarks, the leaf size was fixed at 𝑀 = 100, with tolerance set to 10−12

Fast Factorization

𝑁 Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) Direct LU(s)
103 0.00345016 0.000463963 0.00121403 0.000246048 2.09808e-05 0.024302
5× 103 0.00954294 0.000818014 0.00755906 0.00179601 0.000159979 1.61282
104 0.0180159 0.00202203 0.103507 0.003834 0.000344992 10.4102
5× 104 0.109816 0.0147851 0.103266 0.022316 0.00227404 N/A
105 0.202525 0.066885 0.239639 0.0450559 0.00451112 N/A
5× 105 1.19365 3.68382 1.6615 0.206754 0.015748 N/A
106 2.53519 11.1435 3.93549 0.399695 0.0303771 N/A

16 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

𝑁 Assem-
bly(s)

MatVec(s) Factor-
ize(s)

Solve(s) Determi-
nant(s)

MultSymFac-
tor(s)

Direct
Cholesky(s)

103 0.00344396 0.000510931 0.00103807 0.00030303 2.19345e-05 0.000180006 0.0316679
5 ×
103

0.00925708 0.000812054 0.00626493 0.00209403 0.000108004 0.00113392 2.35399

104 0.0183232 0.00199389 0.010865 0.00471711 0.000352859 0.00263691 18.5745
5 ×
104

0.0946209 0.0151899 0.0787759 0.0285201 0.00230503 0.0157571 N/A

105 0.203769 0.0659761 0.183974 0.058074 0.00438595 0.03263 N/A
5 ×
105

1.18639 3.67825 1.47418 0.245743 0.0180571 0.162066 N/A

106 2.53567 11.2973 3.56786 0.488049 0.0311899 0.377352 N/A

2.3. Benchmarks 17

HODLRlib Documentation, Release 3.1415

2.3.2 Matérn Kernel

Kernel considered is given by 𝐾(𝑟) = 𝜎2
(︁
1 + 𝑟

√
5

𝜌 + 5𝑟2

3𝜌2

)︁
exp

(︁
− 𝑟

√
5

𝜌

)︁
. For these benchmarks, we take 𝜎 = 10,

𝜌 = 5, where 𝑟 = ||𝑥𝑖−𝑥𝑗 || with 𝑥 being set as a sorted random vector ∈ (−1, 1). Using plotTree for 𝑁 = 10000,
𝑀 = 500 and tolerance 10−12, we see this rank structure

Time Taken vs Tolerance

These benchmarks were performed for size of the matrix 𝑁 = 1000000, with the size of the leaf node set to 𝑀 = 100.

Fast Factorization

Tolerance Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s)
10−2 1.70237 13.8247 1.3231 0.388983 0.042177
10−4 1.93746 14.0274 1.37327 0.401342 0.0430369
10−6 1.99264 9.29146 1.6509 0.413971 0.0420959
10−8 2.04502 13.6249 1.80135 0.417019 0.043962
10−10 2.08538 14.7541 2.1616 0.455189 0.0420899
10−12 2.28954 9.11655 2.27049 0.431815 0.043808
10−14 2.19898 13.821 2.74798 0.466761 0.0431418

18 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

Tolerance Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) MultSymFactor(s)
10−2 1.65146 13.4722 0.722689 0.461396 0.0417881 0.257583
10−4 1.87788 13.6014 0.778202 0.471056 0.041806 0.263908
10−6 1.93905 8.81335 0.836078 0.478072 0.0427818 0.268437
10−8 2.05821 13.4592 1.05975 0.496589 0.0437939 0.294927
10−10 2.0032 14.3409 1.31922 0.507549 0.0424139 0.296023
10−12 2.23442 8.84984 1.51609 0.533495 0.0427949 0.311331
10−14 2.18632 13.6219 1.95092 0.551657 0.0439069 0.342182

2.3. Benchmarks 19

HODLRlib Documentation, Release 3.1415

Time Taken vs Size of Matrix

For these benchmarks, the leaf size was fixed at 𝑀 = 100, with tolerance set to 10−12

Fast Factorization

𝑁 Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) Direct LU(s)
103 0.00927687 0.0001921 0.0011642 0.000297 3.19481e-05 0.0489709
5× 103 0.0159199 0.0007879 0.00726509 0.002069 0.000204086 2.52755
104 0.026196 0.0020630 0.0235729 0.005370 0.000522852 16.0086
5× 104 0.098814 0.0144801 0.106045 0.027053 0.00375605
105 0.180091 0.0756569 0.19264 0.054170 0.00687695
5× 105 1.10963 3.33762 0.943877 0.234129 0.0219009
106 2.25833 9.01339 2.33021 0.450053 0.041976

20 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

𝑁 Assem-
bly(s)

MatVec(s) Factor-
ize(s)

Solve(s) Determi-
nant(s)

MultSymFac-
tor(s)

Direct
Cholesky(s)

103 0.0066328 0.000208855 0.000833988 0.00034499 2.81334e-05 0.000160933 0.0281229
5 ×
103

0.0103149 0.000798941 0.00359011 0.00228715 0.000156879 0.00105405 0.231569

104 0.02724 0.00200987 0.0175741 0.00552893 0.000396013 0.00261402 1.05882
5 ×
104

0.08972 0.0151231 0.044107 0.034517 0.00314713 0.0162551 N/A

105 0.192696 0.067266 0.0933969 0.0709021 0.0061872 0.0332701 N/A
5 ×
105

1.09055 3.2381 0.612783 0.263855 0.024405 0.151778 N/A

106 2.19711 8.79683 1.47177 0.545244 0.0434139 0.310443 N/A

2.3. Benchmarks 21

HODLRlib Documentation, Release 3.1415

2.3.3 RPY Tensor

The RPY Tensor is given by

𝐾(𝑖, 𝑗) =

{︃
𝑘𝐵𝑇
6𝜋𝜂𝑎

[︀(︀
1− 9

32
𝑟
𝑎

)︀
I + 3

32𝑎
r⊗r
𝑟

]︀
, if 𝑟 < 2𝑎

𝑘𝐵𝑇
8𝜋𝜂𝑟

[︁
I + r⊗r

𝑟2 + 2𝑎2

3𝑟2

(︀
I − 3 r⊗r

𝑟2

)︀]︁
, if 𝑟 ≥ 2𝑎

where 𝑟 = ||r𝑖 − r𝑗 || with r being set as a sorted random matrix ∈ (−1, 1) with the number of columns set equal to
the dimension considered. For these benchmarks, we take 𝑘𝐵 = 𝑇 = 𝜂 = 1. For 𝑎, we find the minimum of the
interaction distances between all particles 𝑟𝑚𝑖𝑛 and set 𝑎 = 𝑟𝑚𝑖𝑛

2 . This means that for the considered case, the RPY
tensor simplifies to:

𝐾(𝑖, 𝑗) =

{︃
𝑘𝐵𝑇
6𝜋𝜂𝑎 I, if 𝑖 = 𝑗
𝑘𝐵𝑇
8𝜋𝜂𝑟

[︁
I + r⊗r

𝑟2 + 2𝑎2

3𝑟2

(︀
I − 3 r⊗r

𝑟2

)︀]︁
, if 𝑖 ̸= 𝑗

We have used plotTree to reveal the rank structure for the problems below when considering matrix size 𝑁 =
10000, leaf size 𝑀 = 500 and tolerance 10−12.

dim = 1

Time Taken vs Size of Matrix

For these benchmarks, the leaf size was fixed at 𝑀 = 100, with tolerance set to 10−12

22 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Factorization

𝑁 Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) Direct LU(s)
103 0.0284998 0.0002059 0.00317788 0.000329 2.19345e-05 0.022975
5× 103 0.124997 0.0019462 0.028585 0.003378 0.000226021 1.57937
104 0.284125 0.0044059 0.0781479 0.007328 0.000458002 11.3985
5× 104 1.60538 0.033412 0.67361 0.047978 0.001616
105 5.49457 0.145549 2.47014 0.254623 0.00333095
5× 105 28.6773 3.55899 17.4057 0.818555 0.0195651

Fast Symmetric Factorization

𝑁 Assem-
bly(s)

MatVec(s) Factor-
ize(s)

Solve(s) Determi-
nant(s)

MultSymFac-
tor(s)

Direct
Cholesky(s)

103 0.0468209 0.00031209 0.008219 0.00095796 3.19481e-05 0.0005548 0.034517
5 ×
103

0.216226 0.00294399 0.042495 0.00592899 0.000274181 0.0056932 3.34734

104 0.47921 0.00559902 0.10963 0.0136352 0.00058794 0.0109739 12.3261
5 ×
104

2.51609 0.0369091 0.609879 0.091403 0.00190592 0.069257 N/A

105 5.30011 0.124498 1.83744 0.198894 0.00388098 0.161215 N/A
5 ×
105

28.9266 3.54814 13.6953 1.03255 0.0130229 1.06126 N/A

2.3. Benchmarks 23

HODLRlib Documentation, Release 3.1415

dim = 2

Time Taken vs Size of Matrix

For these benchmarks, the leaf size was fixed at 𝑀 = 100, with tolerance set to 10−12

Fast Factorization

𝑁 Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) Direct LU(s)
103 0.237684 0.0022819 0.161561 0.003957 0.000130177 0.0220509
2× 103 0.854779 0.0138352 0.728164 0.013024 0.000378847 0.148836
4× 103 3.31121 0.0200999 2.52401 0.037282 0.000866175 0.88069
8× 103 15.0432 0.0863769 10.1511 0.120667 0.00184798 6.3137
1.6× 104 63.8282 0.278127 53.9138 0.46551 0.0048461 55.4166

24 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

𝑁 Assem-
bly(s)

MatVec(s) Factor-
ize(s)

Solve(s) Determi-
nant(s)

MultSymFac-
tor(s)

Direct
Cholesky(s)

103 0.375776 0.00342607 0.24704 0.00635099 0.000114918 0.0118291 0.026149
2× 103 1.35015 0.00995803 1.05952 0.0212729 0.000280142 0.0441241 0.130154
4× 103 4.89776 0.0418921 4.12168 0.107635 0.000642061 0.142907 1.49561
8× 103 19.4326 0.0971079 16.3962 0.201411 0.00139117 0.547673 6.13806
1.6 ×
104

79.2166 0.539779 66.3061 0.716309 0.00301003 2.18507 52.0411

2.3. Benchmarks 25

HODLRlib Documentation, Release 3.1415

dim = 3

For these benchmarks, the leaf size was fixed at 𝑀 = 100, with tolerance set to 10−12

Fast Factorization

𝑁 Assembly(s) MatVec(s) Factorize(s) Solve(s) Determinant(s) Direct LU(s)
999 0.637549 0.0138719 0.357686 0.006175 0.000198841 0.0427179
2× 999 2.67525 0.0112109 1.915 0.026588 0.000624895 0.209663
3× 999 7.72688 0.0243111 5.49087 0.056867 0.000961065 0.608226
4× 999 16.6299 0.0466208 12.8754 0.105617 0.00150394 1.26595
5× 999 31.9858 0.078845 24.7647 0.169478 0.00192094 2.26981
6× 999 48.5977 0.114865 41.1307 0.241243 0.00212693 3.69254
7× 999 76.1404 0.159873 64.5563 0.32299 0.00276279 5.80262
8× 999 105.803 0.238746 91.5038 0.405407 0.00317407 8.46848

26 Chapter 2. Doc Contents

HODLRlib Documentation, Release 3.1415

Fast Symmetric Factorization

𝑁 Assem-
bly(s)

MatVec(s) Factor-
ize(s)

Solve(s) Determi-
nant(s)

MultSymFac-
tor(s)

Direct
Cholesky(s)

999 0.60924 0.00287509 0.303544 0.00726318 0.000123978 0.012032 0.046663
2 ×
999

2.88964 0.0122139 1.91556 0.0310731 0.000324965 0.107921 0.294039

3 ×
999

8.15757 0.029355 5.2501 0.079915 0.000537872 0.291421 0.848032

4 ×
999

17.7442 0.055275 12.4843 0.159855 0.000857115 0.527207 1.91446

5 ×
999

33.741 0.08866 23.0541 0.211891 0.000997066 0.891842 3.62749

6 ×
999

50.7127 0.150594 39.2222 0.302245 0.00147223 1.60647 6.26212

7 ×
999

77.2103 0.175368 60.007 0.388988 0.00160313 2.15237 9.70271

8 ×
999

103.913 0.232704 82.881 0.490437 0.00186086 2.67931 14.0804

2.3. Benchmarks 27

HODLRlib Documentation, Release 3.1415

28 Chapter 2. Doc Contents

CHAPTER 3

Other Links

Learn more about HODLRlib by visiting the

• Code Repository: http://github.com/sivaramambikasaran/HODLR

• Documentation: http://hodlrlib.rtfd.io

29

http://github.com/sivaramambikasaran/HODLR
http://hodlrlib.rtfd.io

	About HODLRlib:
	Doc Contents
	Installation and Building
	Tutorial
	Benchmarks

	Other Links

