

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Hyperledger Fabric SDK for Node.js

The Hyperledger Fabric SDK allows applications to interact with a Fabric blockchain network. It provides a simple API to submit transactions to a ledger or query the contents of a ledger with minimal code.

The SDK implements the Fabric programming model as described in the Developing Applications [https://hyperledger-fabric.readthedocs.io/en/latest/developapps/developing_applications.html] chapter of the Fabric documentation.

Documentation

Full documentation is published for each of the following versions:

	2.2 [https://hyperledger.github.io/fabric-sdk-node/release-2.2/module-fabric-network.html]

	1.4 [https://hyperledger.github.io/fabric-sdk-node/release-1.4/module-fabric-network.html]

Install

The client API is published to the npm registry in the fabric-network [https://www.npmjs.com/package/fabric-network] package.

npm install fabric-network

Samples

Sample Node.js client applications can be found in the Fabcar and Commercial Paper samples within the fabric-samples repository [https://github.com/hyperledger/fabric-samples].

 This tutorial illustrates the common connection profile. A common connection
profile describes the Hyperledger Fabric network to the Hyperledger
Fabric Node.js client.

Overview

A connection profile contain entries that describe the Hyperledger Fabric network.
The application will load a configuration file and then it will be used by
fabric-network to simplify the steps needed to setup and use the network.
The connection profile has specific addresses and settings of the network endpoints.

Loading connection profile configurations

The application may build a Javascript object from a yaml or a json
formatted file.
The application will then pass this to the Gateway.connect
which provides the network configuration.

The following examples will create a new instance of the Gateway using a
common connection profile. The common connection profile object may be created
by reading a json or a yaml formatted file.

YAML

// read a common connection profile in yaml format
const data = fs.readFileSync(path);
const yaml = require('js-yaml');
const connectionProfile = yaml.safeLoad(data);

// use the loaded connection profile
const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);

const network = await gateway.getNetwork('mychannel');

JSON

// read a common connection profile in json format
const data = fs.readFileSync(path);
const connectionProfile = JSON.parse(data);

// or
const connectionProfile = require(path);

// use the loaded connection profile
const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);

const network = await gateway.getNetwork('mychannel');

A common connection profile in YAML

name: "Network"
version: "1.1"

channels:
 mychannel:
 orderers:
 - orderer.example.com
 peers:
 - peer0.org1.example.com
 - peer0.org2.example.com

organizations:
 Org1:
 mspid: Org1MSP
 peers:
 - peer0.org1.example.com

 Org2:
 mspid: Org2MSP
 peers:
 - peer0.org2.example.com

orderers:
 orderer.example.com:
 url: grpcs://localhost:7050
 grpcOptions:
 ssl-target-name-override: orderer.example.com
 tlsCACerts:
 path: test/ordererOrganizations/example.com/orderers/orderer.example.com/tlscacerts/example.com-cert.pem

peers:
 peer0.org1.example.com:
 url: grpcs://localhost:7051
 grpcOptions:
 ssl-target-name-override: peer0.org1.example.com
 tlsCACerts:
 path: test/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tlscacerts/org1.example.com-cert.pem

 peer0.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer0.org2.example.com
 tlsCACerts:
 path: test/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tlscacerts/org2.example.com-cert.pem

A common connection profile in JSON

{
 "name": "Network",
 "version": "1.1",
 "channels": {
 "mychannel": {
 "orderers": [
 "orderer.example.com"
],
 "peers": [
 "peer0.org1.example.com",
 "peer0.org2.example.com"
]
 }
 },
 "organizations": {
 "Org1": {
 "mspid": "Org1MSP",
 "peers": [
 "peer0.org1.example.com"
]
 },
 "Org2": {
 "mspid": "Org2MSP",
 "peers": [
 "peer0.org2.example.com"
]
 }
 },
 "orderers": {
 "orderer.example.com": {
 "url": "grpcs://localhost:7050",
 "grpcOptions": {
 "ssl-target-name-override": "orderer.example.com"
 },
 "tlsCACerts": {
 "path": "test/ordererOrganizations/example.com/orderers/orderer.example.com/tlscacerts/example.com-cert.pem"
 }
 }
 },
 "peers": {
 "peer0.org1.example.com": {
 "url": "grpcs://localhost:7051",
 "grpcOptions": {
 "ssl-target-name-override": "peer0.org1.example.com"
 },
 "tlsCACerts": {
 "path": "test/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tlscacerts/org1.example.com-cert.pem"
 }
 },
 "peer0.org2.example.com": {
 "url": "grpcs://localhost:8051",
 "grpcOptions": {
 "ssl-target-name-override": "peer0.org2.example.com"
 },
 "tlsCACerts": {
 "path": "test/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tlscacerts/org2.example.com-cert.pem"
 }
 }
 }
}

Common Connection Profile

The common connection profile has the following format:

#
How a channel is defined and the peers and orderers on that channel.
#
channels:
 # name of the channel
 mychannel:
 # List of orderers designated by the application to use for transactions on this channel.
 # The values must be orderer names defined under "orderers" section
 orderers:
 - orderer.example.com

 # List of peers from participating organizations
 peers:
 # The values must be peer names defined under "peers" section
 - peer0.org1.example.com

#
list of participating organizations in this network
#
organizations:
 Org1:
 mspid: Org1MSP

 # The peers that are known to be in this organization
 peers:
 - peer0.org1.example.com

 # The following section is only for Fabric-CA servers.
 certificateAuthorities:
 - ca-org1

 # If the application is going to make requests that are reserved to organization
 # administrators, including creating/updating channels, installing/instantiating chaincodes, it
 # must have access to the admin identity represented by the private key and signing certificate.
 # Both properties can be the PEM string or local path to the PEM file.
 # path: <the path to a file containing the byte string>
 # or
 # pem: <the byte string>
 # Note that this is mainly for convenience in development mode, production systems
 # should not expose sensitive information this way.
 # The SDK should allow applications to set the org admin identity via APIs, and only use
 # this route as an alternative when it exists.
 adminPrivateKey:
 path: <path to file>
 or
 pem: <byte string>
 signedCert:
 path: <path to file>
 or
 pem: <byte string>

 # the profile will contain public information about organizations other than the one it belongs to.
 # These are necessary information to make transaction lifecycles work, including MSP IDs and
 # peers with a public URL to send transaction proposals. The file will not contain private
 # information reserved for members of the organization, such as admin key and certificate,
 # fabric-ca registrar enroll ID and secret, etc.
 Org2:
 mspid: Org2MSP
 peers:
 - peer0.org2.example.com
 certificateAuthorities:
 - ca-org2
 adminPrivateKey:
 path: <path to file>
 or
 pem: <byte string>
 signedCert:
 path: <path to file>
 or
 pem: <byte string>

#
List of orderers to send transaction and channel create/update requests.
#
orderers:
 orderer.example.com:
 url: grpcs://localhost:7050

 # these are standard properties defined by the gRPC library
 # they will be passed in as-is to gRPC client constructor
 grpcOptions:
 ssl-target-name-override: orderer.example.com

 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

#
List of peers to send various requests to, including endorsement, query
and event listener registration.
#
peers:
 peer0.org1.example.com:
 # this URL is used to send endorsement and query requests
 url: grpcs://localhost:7051

 grpcOptions:
 ssl-target-name-override: peer0.org1.example.com
 request-timeout: 120001

 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

 peer0.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer0.org2.example.com
 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

certificateAuthorities:
 ca-org1:
 url: https://localhost:7054
 # the properties specified under this object are passed to the 'http' client verbatim when
 # making the request to the Fabric-CA server
 httpOptions:
 verify: true
 tlsCACerts:
 # Comma-Separated list of paths
 path: peerOrganizations/org1.example.com/ca/org1.example.com-cert.pem
 # Client key and cert for TLS mutual auth with Fabric CA. If the target Fabric CA server
 # does not have TLS mutual auth turned on, then this section is not needed
 client:
 keyfile: <path to file>
 certfile: <byte string>

 # Fabric-CA supports dynamic user enrollment via REST APIs. A "root" user, a.k.a registrar, is
 # needed to enroll and invoke new users.
 registrar:
 enrollId: admin
 enrollSecret: adminpw
 # [Optional] The optional name of the CA.
 caName: caNameHere
 ca-org2:
 url: https://localhost:8054
 httpOptions:
 verify: true
 tlsCACerts:
 client:
 keyfile: <path to file>
 certfile: <byte string>
 registrar:
 enrollId: admin
 enrollSecret: adminpw
 caName: caNameHere

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 This tutorial illustrates the use of the service discovery by the Hyperledger Fabric Node.js fabric-network SDK.

For more information on:

	Fabric Service Discovery [https://hyperledger-fabric.readthedocs.io/en/release-1.4/discovery-overview.html#how-service-discovery-works-in-fabric]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers) and the Fabric discovery service.
and of Node application development, including the use of the
Javascript promise and async await.

Overview

The service discovery provided by Hyperledger Fabric helps an application
understand the current view of the network. Service discovery also has insight
into the endorsement policies of chaincodes and is able to provide lists of
peers that are currently active on the network that could be used to endorse a
proposal.
To use the discovery service, the network will be required to be configure with
a least one peer in the connection profile.

fabric-network APIs that can use the service discovery

	gateway.connect - This method has been enhanced by adding the discovery options.

	gateway.getNetwork - This method will initialize the network channel using the
discovery options from the gateway connect. Initialization includes discovering
peers and orderers on the network.

	contract.addDiscoveryInterest - This method will add collections and/or
additional chaincodes and collections to the contract’s discovery interests.
These will be sent to the peer’s discovery service when building an endorsement
plan. This allows the plan to be built based on the policy information of the
contract’s chaincodes and collections. The contract will be initialized with
a discovery interest of the contract’s associated chaincode name.

	contract.resetDiscoveryInterest - This method will re-initialize this
contract’s discovery interests to be this contract’s associated chaincode name.
Any collections that were added to this chaincode or additional chaincodes
that this chaincode may call must be added.

	contract.submitTransaction - When discovery is enabled by the gateway.connect
options, this method will use discovery to help endorse the proposal.
The contract’s discovery interests help the peer’s discovery service
build an endorsement plan that includes peers that will provide a successful
endorsement that will be able to be committed.

	transaction.submit - When discovery is enabled by the gateway.connect
options, this method will use discovery to help endorse the proposal.
The contract’s discovery interests help the peer’s discovery service
build an endorsement plan that includes peers that will provide a successful
endorsement that will be able to be committed.

	contract.evaluateTransaction - When discovery is enabled by the gateway.connect
options, this method will select from the peers that have been discovered during
the network channel initialization.

	transaction.evaluate - When discovery is enabled by the gateway.connect
options, this method will select from the peers that have been discovered during
the network channel initialization.

fabric-network gateway.connect DiscoveryOption settings

	discovery.enabled - boolean - True if discovery should be used; otherwise false.

	discovery.asLocalhost - boolean - Convert discovered host addresses to be
‘localhost’. Will be needed when running a docker composed fabric network on the
local system; otherwise should be disabled.

To use

By default the fabric-network will use the service discovery. To enable the
use of discovery, set the discovery ‘enabled’ attribute to a value of true. The default is true.

await gateway.connect(connectionProfile, {discovery: { enabled: true, asLocalhost: false}});
const network = await gateway.getNetwork('mychannel');

To use with docker-compose

When the fabric network is running in a docker-compose and the node.js application
is running outside of the docker containers, it will be necessary to modify the
addresses returned from the discovery service. The discovery service sees the
addresses of the peers and orderers (host names and ports) as they exist in the
virtual systems. When the node.js application is running outside of docker,
it will only know the endpoints as localhost and port.
In the docker-compose file, notice how Docker is mapping the port addresses,
these must be same when using service discovery. Using - 7061:7051 will not
work as the application does not have visibility into the virtual system and
the port address as seen by the peer’s discovery service.

Set the asLocalhost to true, the default is true.

await gateway.connect(connectionProfile, {discovery: { enabled: true, asLocalhost: true}});
const network = await gateway.getNetwork('mychannel');

Notice in the following definition of a peer from a docker-compose file.
The port number is the same and has been defined along with the
host name peer0.org1.example.com:7051 for the peer and gossip settings.
The node.js fabric-client application running outside of of the docker
containers will use localhost:7051. There is a mapping of the host name to
‘localhost’ but there is no mapping of the port address.

NOTE: All port addresses must be unique within the docker compose configuration
due to the mapping of the virtual host name to the localhost. All port addresses
must also be mapped within the docker compose to the same external address,
this will require that the fabric environment settings indicate to the peer and
orderer that port address.

peer0.org1.example.com:
 container_name: peer0.org1.example.com
 image: hyperledger/fabric-peer
 environment:
	- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
	- CORE_PEER_ID=peer0.org1.example.com
	- CORE_PEER_ADDRESS=peer0.org1.example.com:7051 // notice how this matches the port mapping below
	- CORE_PEER_LISTENADDRESS=peer0.org1.example.com:7051
	- CORE_PEER_GOSSIP_ENDPOINT=peer0.org1.example.com:7051
	- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051
	- FABRIC_LOGGING_SPEC=debug
	## the following setting redirects chaincode container logs to the peer container logs
	- CORE_VM_DOCKER_ATTACHSTDOUT=true
	- CORE_PEER_LOCALMSPID=Org1MSP
	- CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/msp/peer
	##
	- CORE_PEER_TLS_ENABLED=true
	- CORE_PEER_TLS_CLIENTAUTHREQUIRED=true
	- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/msp/peer/tls/key.pem
	- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/msp/peer/tls/cert.pem
	- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/msp/peer/cacerts/org1.example.com-cert.pem
	- CORE_PEER_TLS_CLIENTROOTCAS_FILES=/etc/hyperledger/msp/peer/cacerts/org1.example.com-cert.pem
	# # the following setting starts chaincode containers on the same
	# # bridge network as the peers
	# # https://docs.docker.com/compose/networking/
	- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=fixtures_default
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric
 command: peer node start
 ports:
	- 7051:7051 // notice internal and external are the same
 volumes:
	 - /var/run/:/host/var/run/
	 - ./channel/crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/:/etc/hyperledger/msp/peer
 depends_on:
	- orderer.example.com

using chaincode to chaincode calls and collections

The peer’s discovery service will require information
on chaincodes, and collections that are involved in the
smart contract to develop a valid endorsement plan.
The contract’s chaincode name will be automatically sent to
the peer’s discovery service unless the contract indicates that it requires
other chaincodes and collections. These are known as ‘discovery interests’ to the
peer’s discovery service.

If the endorsement will require one or more chaincode to chaincode calls and/or
be over collections, then the application must tell the contract object
instance of these names. This will assist the discovery service in putting
together an endorsement plan based on all the endorsement policies of the
chaincodes and collections involved and the active peers on the network.
The endorsement plan will include those peers that satisfy the endorsement
policies and the collection policies.

The following examples show how to add to the discovery interests when
the chaincode is in one or more collections or the chaincode is calling
other chaincodes.

// --------- example 0 --
// when the smart contract's chaincode will not be calling another chaincode
// and will not be participating on a collection.
const contract = network.getContract('mychaincode1');

// produces discovery interests of:
[
	{name: 'mychaincode1'}
]

// --------- example 1 --
// when the smart contract's chaincode will be calling another chaincode
const contract = network.getContract('mychaincode1');

// this adds to the interests
contract.addDiscoveryInterest({name: 'mychaincode2'});

// produces discovery interests of:
[
	{name: 'mychaincode1'},
	{name: 'mychaincode2'}
]

// --------- example 2 --
// when the smart contract's chaincode is in a collection
const contract = network.getContract('mychaincode1');

// this adds the collection name to the contract's chaincode interest
contract.addDiscoveryInterest({name: 'mychaincode1', collectionNames: ['mycollection1']});

// produces discovery interests of:
[
	{name: 'mychaincode1', collectionNames: ['mycollection1']}
]

// --------- example 3 --
// when the smart contract's chaincode is in multiple collections
// and will be calling another chaincode that is in
// multiple collections
const contract = network.getContract('mychaincode1');

// this adds the collection names to the contract's chaincode interest
contract.addDiscoveryInterest({name: 'mychaincode1', collectionNames: ['mycollection1', 'mycollection2']});

// this adds to the interests
contract.addDiscoveryInterest({name: 'mychaincode2', collectionNames: ['mycollection1', 'mycollection2']});

// produces discovery interests of:
[
	{name: 'mychaincode1', collectionNames: ['mycollection1', 'mycollection2']},
	{name: 'mychaincode2', collectionNames: ['mycollection1', 'mycollection2']}
]

If the discovery interests are not correct, use the resetDiscoveryInterests method
to return the contract’s discovery interests to the default or initial state.
The initial discovery interests will include just the contract’s chaincode name.

// create contract and default interests
const contract = network.getContract('mychaincode1');
// produces discovery interests of:
[
	{name: 'mychaincode1'}
]

// this adds to the interests
contract.addDiscoveryInterest({name: 'badchaincode'});
// produces discovery interests of:
[
	{name: 'mychaincode1'},
	{name: 'badchaincode'}
]

// this will reset the interests to the default
contract.resetDiscoveryInterests();
// produces discovery interests of:
[
	{name: 'mychaincode1'}
]

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 This tutorial illustrates the different ways of setting the gRPC settings used on connections to the Hyperledger Fabric network with a Hyperledger Fabric Node.js Client as of 2.1

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development.

Overview

The Hyperledger Fabric Node.js javascript SDK, fabric-common, communicates
with a Hyperledger Fabric network using gRPC. The gRPC technology, framework,
handles moving data reliably between the fabric network and the fabric client
application.
fabric-common allows the application to provide settings required to control
the environment.

fabric-common has default connection options that include default gRPC settings.
There are various ways for the application to override the default connection
options.

Default connection options

fabric-common has the following gRPC connection options as defaults.
These are in the default.json system configuration file that is included
with the fabric-common NPM package.

	"connection-options": {
		"grpc.max_receive_message_length": -1,
		"grpc.max_send_message_length": -1,
		"grpc.keepalive_time_ms": 120000,
		"grpc.http2.min_time_between_pings_ms": 120000,
		"grpc.keepalive_timeout_ms": 20000,
		"grpc.http2.max_pings_without_data": 0,
		"grpc.keepalive_permit_without_calls": 1
	}

	grpc.max_receive_message_length - Maximum message length that the channel
can receive. Int valued, bytes. -1 means unlimited.

	grpc.max_send_message_length - Maximum message length that the channel can
send. Int valued, bytes. -1 means unlimited.

	grpc.keepalive_time_ms - After a duration of this time the client/server
pings its peer to see if the transport is still alive. Int valued, milliseconds.

	grpc.keepalive_timeout_ms - After waiting for a duration of this time,
if the keepalive ping sender does not receive the ping ack, it will close the
transport. Int valued, milliseconds.

	grpc.keepalive_permit_without_calls - Is it permissible to send keepalive
pings without any outstanding streams. Int valued, 0(false)/1(true).

	grpc.http2.min_time_between_pings_ms - Minimum time between sending
successive ping frames without receiving any data frame.
Int valued, milliseconds.

	grpc.http2.max_pings_without_data - Minimum allowed time between a server
receiving successive ping frames without sending any data frame.
Int valued, milliseconds.

Change default connection options

The application may have a need to change or add new gRPC settings.
By using the system configuration, the application may change the default
connection options used for all new connections established.

The default connection options are retrieved as a set of options when
the {@link Client} instance builds new {@link Endorsers}s or new {@link Orderer}s.
To modify the default connection options before runtime, update the
default.json file or add your own configuration file to the system configuration.
The last file loaded will override all previous files including the default.json
file shipped with the fabric-common. see {@link BaseClient.addConfigFile}.

const Client = require('fabric-common');
Client.addConfigFile(<path to the config file>);

To modify the default connection options during runtime, get them from the
system configuration, make modifications, then set them back on the system
configuration.

const default_options = client.getConfigSetting('connection-options');
const new_option = {
 'grpc.keepalive_timeout_ms': 10000
};

// use the assign call to keep all other options and only update
// the one setting or add a setting.
const new_defaults = Object.assign(default_options, new_option);
client.setConfigSetting('connection-options', new_defaults);

// peer will have default options
const peer = client.newPeer(url, options);

Note: Making a change to the system configuration will have all new
connections use new default connection options. This includes the
connections that are created by new peers and new orderers that are
created automatically when using the discovery service.
Be careful when assigning new values to not remove other values.
All the default connection options are contained in the one system
configuration setting connection-options.

Add connection options to the client

The application may have a need to change or add new gRPC settings.
The application may add connection options to the client instance
that may be new options or to override existing default connection
options stored in the system configuration. See the above
discussion on how to change the options within the system configuration.

const new_options = {
 'grpc.keepalive_timeout_ms': 10000
};
client.addConnectionOptions(new_options);

// peer will have options from default and from client
const peer = client.newPeer(url, options);

// discovered peers will have options from default and from client
channel.initialize({discover: true, target: peer});

Note: All new connections created by this client, including those created
automatically when using the discovery service will use the client’s
connection options to override the default connection options.

Add connection options on create

The application may need unique connection options for individual
peers or orderers. Unique settings may be passed on the
{@link Client#newPeer} or
{@link Client#newOrderer} calls in the option parameter.
Options passed in on the call will override both the client based
options and the system configuration based options.

const options = {
 pem: '<pem string>',
	'ssl-target-name-override': 'myhost.org1.com',
 'grpc.keepalive_timeout_ms': 10000
};

// peer will have options from default, client, and parameter
const peer = client.newPeer(url, options);

Note: Connection options passed on the newPeer() and the newOrderer()
calls will only be used for that peer or orderer.

Add connection options to a common connection profile

Connection options may be set at the client level or individually on peers and
orderers when using a common connection profile. In the following profile
both the client section and one peer have a gRPC setting.

client:
 # Which organization does this application instance belong to? The value is the name of an org
 # defined under "organizations"
 organization: Org1

 # set connection timeouts for the peer and orderer for the client
 connection:
 timeout:
 peer:
 # the timeout in seconds to be used on requests to a peer,
 # for example 'sendTransactionProposal'
 endorser: 120
 # the timeout in seconds to be used by applications when waiting for an
 # event to occur. This time should be used in a javascript timer object
 # that will cancel the event registration with the channel event hub instance.
 eventHub: 60
 # the timeout in seconds to be used when setting up the connection
 # with the peer event hub. If the peer does not acknowledge the
 # connection within the time, the application will be notified over the
 # error callback if provided.
 eventReg: 3
 # the timeout in seconds to be used on request to the orderer,
 # for example
 orderer: 30
 # connection options, typically these will be common GRPC settings,
 # overriding what has been set in the system config file "default.json"
 options:
 grpc.keepalive_timeout_ms: 10000
peers:
 peer1.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer1.org2.example.com
 grpc.keepalive_timeout_ms: 20000
 tlsCACerts:
 path: test/fixtures/channel/c...
 peer2.org2.example.com:
 url: grpcs://localhost:8052
 grpcOptions:
 ssl-target-name-override: peer2.org2.example.com
 tlsCACerts:
 path: test/fixtures/channel/c...

Note: All new connections created by this client, including those created
automatically when using the discovery service will use the client’s
connection options to override the default connection options. peer1
will be override the one setting with it’s own unique value. peer2
will not override any of the client’s or the system defaults.
The application may call the client.addConnectionOptions() to add
additional settings or override settings. Peers created by a call
to {@link Client#getPeer} or orderers created by a call to
{@link Client#getOrderer} or by a call to {@link Client#getChannel}
after the add call will use the new set of values.
[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 This tutorial illustrates the use of the handlers by the Hyperledger Fabric Node.js Client as of 1.3.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	the configuration of a channel in Hyperledger Fabric and the internal
process of creating and updating see
Hyperledger Fabric channel configuration [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	Service Discovery [https://hyperledger-fabric.readthedocs.io/en/latest/discovery-overview.html]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript promise and async await.

Overview

The fabric-common provides the ability for custom code that will handle the
endorsement process and the submitting of endorsements to the orderer.
There are three plug points defined, the {@link Endorsement#send},
the {@link Query#send}, and the {@link Commit#send}.
The fabric-common will pass
control to the handler to complete the processing. The custom code may
decide to retry, try another end point, or use discovery to help
complete the task.

Service Handler

fabric-common includes a handler called DiscoveryHandler.
The included handler was designed to be used with the Hyperledger Fabric’s
discovery service. The discovery service will provide the peers and orderers
required for endorsing and committing transactions automatically.

A custom service handler should extend the {@link ServiceHandler} and be passed
to the send method of the service in the options object attribute handler.

The following shows how to get a discovery handler from the discover service
and then use that handler on the endorsement call.

	// connect to the peer with discover service
	await discoverer.connect(peer1_endpoint);
	// use the endorsement to build the discovery request
	const endorsement = channel.newEndorsement(chaincode_name);
	discovery.build(idx, {endorsement: endorsement});
	discovery.sign(idx);
	// discovery results will be based on the chaincode of the endorsement
	const discovery_results = await discovery.send({targets: [discoverer], asLocalhost: true});
	testUtil.logMsg('\nDiscovery test 1 results :: ' + JSON.stringify(discovery_results));

	// input to the build a proposal request
	const build_proposal_request = {
		args: ['createCar', '2000', 'GMC', 'Savana', 'grey', 'Jones']
	};

	endorsement.build(idx, build_proposal_request);
	endorsement.sign(idx);

	const handler = discovery.newHandler();

	// do not specify 'targets', use a handler instead
	const endorse_request = {
		handler: handler,
		requestTimeout: 30000
	};

	const endorse_results = await endorsement.send(endorse_request);

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 This tutorial illustrates how to use the Hyperledger Fabric Node.js client logging feature.

Overview

Hyperledger Fabric Node.js client logging uses the Node.js ‘winston’ package.
The logging is initialized when the Node.js application first loads the Hyperledger
Fabric package. All Hyperledger Fabric client objects will use the same settings (Peer, Orderer, ChannelEventHub).

const Client = require('fabric-common');
// the logging is now set

There are four levels of logging

	info

	warn

	error

	debug

By default info, warn, and error log entries will be sent to the ‘console’.
debug will not be recorded.

How to change logging

The Hyperledger Fabric client’s logging is controlled by the configuration setting
hfc-logging and by the environment setting HFC_LOGGING.

	setting the logging settings in the default.json config file with an entry:

"hfc-logging": "{'debug':'console', 'info':'console'}"

	using an environment setting will override the configuration setting:

export HFC_LOGGING='{"debug":"console","info":"console"}'

The logging may use a file to write entries by specifying a file location as the
level value.

export HFC_LOGGING='{"debug":"/temp/debug.log","info":"console"}'

 This tutorial describes potentially breaking changes between the the v1.4 and v2.1 Hyperledger Fabric SDK for Node.js that may affect the migration of existing blockchain client applications.

Overview

The key differences between the API and behavior provided by the v1.4 and v2.1 Hyperledger Fabric SDK for Node.js are:

	fabric-client module has been removed.

	Wallets, used for storing identity implementation, have been redesigned.

	API and behavior of event listeners has been redesigned.

The sections below provide more detail on these changes and recommended approaches for application migration.

fabric-client

The v1.4 SDK provides both the fabric-network and fabric-client APIs for developing client applications that interact with Smart Contracts deployed to a Hyperledger Fabric blockchain. fabric-network implements the Fabric programming model, which provides consistency across programming languages, and is the preferred API. fabric-client is a lower-level, legacy API that is significantly more complex to use. In v2.1, fabric-network is the only recommended API for developing client applications.

Client applications developed using v1.4 fabric-client may continue to work with a v2.x Fabric but will not be able to exploit new v2.0 capabilities. It is recommended to refactor applications to use v2.1 fabric-network.

Client applications developed using v1.4 fabric-network should be able to use v2.1 fabric-network with only minimal changes, described in other sections of this document.

Note that the SDK no longer aims to provide administrative and management capability. The {@link https://hyperledger-fabric.readthedocs.io/en/release-2.0/command_ref.html|command-line interface} should be used for these operations.

Wallets

The client API and usage of wallets remains broadly similar with the following key differences that require changes as part of client application migration:

	Default wallet types are obtained using static factory functions on the {@link module:fabric-network.Wallets|Wallets} class rather than by directly creating instances of implementation classes.

	Functions to {@link module:fabric-network.Wallet#put|put}, {@link module:fabric-network.Wallet#get|get}, {@link module:fabric-network.Wallet#remove|remove} and {@link module:fabric-network.Wallet#list|list} wallet identities are renamed for consistency across different language SDKs.

	The persistent data format used to store wallet identities is redesigned. Identity information must be extracted from v1.4 wallets and added to new v2.1 wallets for use with the v2.1 SDK.

A thorough description of the wallet API and usage is provided in the [wallet tutorial]{@tutorial wallet}.

The {@link https://www.npmjs.com/package/fabric-wallet-migration|fabric-wallet-migration} npm package can be used to:

	Present a v1.4 file system wallet directly as a v2.1 wallet.

	Easily migrate identities from a v1.4 file system wallet to any v2.1 wallet type.

Event listeners

The event listening API has been redesigned and simplified in the v2.1 SDK. Block and contract event listeners are notified of events in block order and without duplication. Listener callback functions are now async to enable them to perform blocking operations (such as I/O) asynchronously while still maintaining event ordering.

Client applications making use of event listening will need to re-implement event listeners to use the new API.

For more details and code examples, refer to:

	{@link module:fabric-network.Network#addBlockListener|Network.addBlockListener()}

	{@link module:fabric-network.Contract#addContractListener|Contract.addContractListener()}

Commit event listening is intended for use only by implementers of custom transaction event handlers. Refer to the [transaction commit event handler tutorial]{@tutorial transaction-commit-events} for more information and sample code.

 This tutorial describes how peers are selected when a transaction is evaluated
and the results are not written to the ledger. The is considered to be a
query.

Query handling strategies

The SDK provides two strategies to evaluate transactions.
The available strategies are defined
in DefaultQueryHandlerStrategies. The desired strategy is (optionally)
specified as an argument to connect() on the Gateway, and is used for
all transaction evaluations on Contracts obtained from that Gateway
instance.

If no query handling strategy is specified, PREFER_MSPID_SCOPE_SINGLE is used
by default. This will evaluate all transactions on the first peer from
which it can obtain a response, and only switch to another peer if this
peer fails. The list of peers will be all peers in the contract’s Network
that belong to the gateway’s organization, if that organization has any peers.
Otherwise, the list of peers will be all peers in the network. If you do not
want to fall back to all peers in the network when the gateway’s organization has
no peers, use MSPID_SCOPE_SINGLE instead which will fail when there are no peers
in the gateway’s organization.

There are another two query handling strategies provided called PREFER_MSPID_SCOPE_ROUND_ROBIN
and MSPID_SCOPE_ROUND_ROBIN.
This will evaluate a transaction starting with the first peer on the list.
It will try the peers in order until a response is received or all peers
have been tried. On the next call the second peer will be tried first and then
continue on in the list until a response is received. The starting point within
the list is incremented on each call, this will distribute the work load among all
responding peers. When using PREFER_MSPID_SCOPE_ROUND_ROBIN, the list of peers
will be all peers in the contract’s Network that belong to the gateway’s organization,
if that organization has any peers. Otherwise, the list of peers will be all peers
in the network. If you do not want to fall back to all peers in the network when the
gateway’s organization has no peers, use MSPID_SCOPE_ROUND_ROBIN instead which will
fail when there are no peers in the gateway’s organization.

const { Gateway, DefaultQueryHandlerStrategies } = require('fabric-network');

const connectOptions = {
 queryHandlerOptions: {
 timeout: 3, // timeout in seconds
 strategy: DefaultQueryHandlerStrategies.MSPID_SCOPE_SINGLE
 }
}

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

Plug-in query handlers

If behavior is required that is not provided by the default query handling
strategies, it is possible to implement your own query handling. This is
achieved by specifying your own factory function as the query handling
strategy. The factory function should return a query handler
object and take one parameter:

	Blockchain network: Network - {@link fabric-network.Network}

The Network instance provides access to peers on which transactions should be
evaluated.

// factory function will return the handler
function createQueryHandler(network) {
 // use the network to get all endorsing peers
 // of all organizations
 const peers = network.getEndorsers();
 // use the network to get endorsing peers
 // of my organization (MSPID of the organization)
 const peers = network.getEndorsers('mymspid');

 // build and return the query handler
 return new MyQueryHandler(peers);
}

const connectOptions = {
 query: {
 timeout: 3, // timeout in seconds (optional will default to 3)
 strategy: createQueryHandler
 }
 }

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

The query handler object returned must implement the following functions.

class MyQueryHandler {
	/**
	 * Evaluate the supplied query on appropriate peers.
	 * @param {Query} query - A query object that will send the
	 * query proposal to the peers and format the responses for this query handler
	 * @returns {Buffer} Query result.
	 */
 async evaluate(query) { /* Your implementation here */ }
}

Use the query instance provided to the evaluate method to make the query call
to the peer or peers of your Fabric network. The query instance will process
the peer responses of the endorsement and provide your handler with the results.
The results will be keyed by peer name and may contain either a QueryResult
or an Error.

The QueryResult:

export interface QueryResponse {
	isEndorsed: boolean; // indicates a good endorsement, required to have query results
	payload: Buffer; // The query results
	status: number; // status of the query, 200 successful, 500 failed
	message: string; // failed reason message
}

The following sample code is in TypeScript to show the object types involved.

	public async evaluate(query: Query): Promise<Buffer> {
		const errorMessages: string[] = [];

		for (const peer of this.peers) {
			const results: QueryResults = await query.evaluate([peer]);
			const result = results[peer.name];
			if (result instanceof Error) {
				errorMessages.push(result.toString());
			} else {
				if (result.isEndorsed) {
					return result.payload;
				}
				errorMessages.push(result.message);
			}
		}

		const message = util.format('Query failed. Errors: %j', errorMessages);
		const error = new Error(message);
		throw error;
	}

For a complete sample plug-in query handler implementation, see sample-query-handler.ts [https://github.com/hyperledger/fabric-sdk-node/blob/main/test/ts-scenario/config/handlers/sample-query-handler.ts].

 This tutorial illustrates how to work with an offline private key with the
Hyperledger Fabric Node.js SDK (fabric-common and fabric-ca-client) APIs.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	The transactional mechanics that take place during a standard asset exchange.
transacton flow in fabric [https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html].

	The Certificate Signing Request (CSR) in a PKI system.
CSR [https://en.wikipedia.org/wiki/Certificate_signing_request]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript promise and async await.

Overview

In most use cases an application will persist the user’s credentials including
the private key and sign transactions for the user. However some business
scenarios may require higher level of privacy. What if the user wants to
keep their private key secret and does not trust another system or backend
server to securely store it and use it?

The fabric-common package comes with the ability to sign a transaction outside
of the application. The application may choose to include the signature when
calling the send method of the service instead of the identity context
that would be used to create the signature.

The Fabric-ca comes with the ability to enroll with a PKCS#10 standard CSR,
which means the user can use an existing key pairs to generate the CSR and
send this CSR to Fabric-ca to get the signed certificate.The fabric-ca-client also accepts a CSR at the API enroll().

How to sign a transaction by an identity’s private key

There might be several digital signature algorithms. If we set the user’s
identity at the fabric client, the fabric client would use ECDSA with
algorithm ‘EC’ by default.

The process is the same for all Service of Endorsement, Commit, Query,
and Discovery, using first the build() method getting the bytes to be
signed. Signing those bytes, then providing the signagure on the sign()
method before calling the send().

	generate proposal bytes with the identity’s certificate

const idx = client.newIdentityContext(user);
const endorsement = channel.newEndorsement(chaincode_name);

const build_options = {fcn: 'move', args: ['a', 'b', '100']};
const proposalBytes = endorsement.build(idx, build_options);

	calculate the hash

A hash algorithm should be picked and calculate the hash of the transaction
proposal bytes.

There exists multiple hash functions (such as SHA2/3). by default,
the fabric client will use ‘SHA2’ with key size 256.

The user may use an alternative implementation

const hashFunction = xxxx; // A hash function by the user's desire

const digest = hashFunction(proposalBytes); // calculate the hash of the proposal bytes

	calculate the signature

We may have a series of choices for the signature algorithm. Including
asymmetric keys (such as ECDSA or RSA), symmetric keys (such as AES).

By default the the fabric client will use ECDSA with algorithm ‘EC’.

// This is a sample code for signing the digest from step 2 with EC.
// Different signature algorithm may have different interfaces

const elliptic = require('elliptic');
const { KEYUTIL } = require('jsrsasign');

const privateKeyPEM = '<The PEM encoded private key>';
const { prvKeyHex } = KEYUTIL.getKey(privateKeyPEM); // convert the pem encoded key to hex encoded private key

const EC = elliptic.ec;
const ecdsaCurve = elliptic.curves['p256'];

const ecdsa = new EC(ecdsaCurve);
const signKey = ecdsa.keyFromPrivate(prvKeyHex, 'hex');
const sig = ecdsa.sign(Buffer.from(digest, 'hex'), signKey);

// now we have the signature, next we should send the signed transaction proposal to the peer
const signature = Buffer.from(sig.toDER());

	use the signature for transaction proposal to peer(s)

endorsement.sign(signature);
const proposalResponses = await endorsement.send();

How to enroll with a CSR

The fabric-ca-client provides the API enroll() that accepts an optional param ‘CSR’.
If the params does not contains CSR, fabric-ca-client will first generate a key pair,
then use the user’s enrollmentID as the common name to create a CSR which is signed with
the new generated private key. The response will contain the private key object if no ‘CSR’
in enroll params.

To enroll with a CSR, first we should call fabric-ca-client API register to register
a new identity at Fabric-ca. After a successfully register, we have the enrollmentID
and enrollmentSecret.

Then we should create the CSR. A common way is using the openssl command.

Notice the CSR must contain the information “common name” and the “common name” must be
same as the “enrollmentID” at the register step.

Here is an example of how to create a CSR with the key algorithm rsa and key size 2048 bits

openssl req -nodes -newkey rsa:2048 -keyout test.key -out test.csr

The test.csr from the above command is represented as a Base64 encoded PKCS#10.

Here is how we call enroll with a CSR

const fs = require('fs');
const csr = fs.readFileSync('the path to test.csr', 'utf8');
const req = {
 enrollmentID: enrollmentID,
 enrollmentSecret: enrollmentSecret,
 csr: csr,
};

const enrollment = await caService.enroll(req);
// the enrollment.certificate contains the signed certificate from Fabric-ca

 This tutorial describes the approaches that can be selected by users of the
fabric-network module for ensuring that submitted transactions are committed
on peers.

Overview

The submit of a transaction involves several steps:

	Send proposals to endorsing peers.

	Send the endorsed transaction to the orderer.

	The transaction is eventually committed on all peers in the network.

In some cases a client application might be happy to proceed immediately after
the transaction is successfully sent to the orderer. In other cases a client
application might need to ensure that the transaction has been committed on
certain peers with which it wants to interact before proceeding.

It is important to note that the blockchain state visible from a specific peer
will remain unchanged until a transaction is committed on that peer. If a
client application queries a peer for state after an endorsed transaction has
been successfully sent to the orderer but before the transaction has been
committed on that peer, the state returned will still be that prior to the
transaction. For example, a query of a bank balance after a transaction to
deduct funds from that bank account is submitted to the orderer will return
the old balance until the transaction is eventually committed on the peer
being queried.

Event handling strategies

The SDK provides several selectable strategies for how it should wait for
commit events following a transaction invocation. The available strategies
are defined in DefaultEventHandlerStrategies. The desired strategy is
(optionally) specified as an argument to connect() on the Gateway, and
is used for all transaction invocations on Contracts obtained from that
Gateway instance.

If no event handling strategy is specified, PREFER_MSPID_SCOPE_ALLFORTX is used
by default. This uses all peers from the current organization if that organization
has any peers, otherwise it uses all peers from the network.

import { Gateway, GatewayOptions, DefaultEventHandlerStrategies } from 'fabric-network';

const connectOptions: GatewayOptions = {
 eventHandlerOptions: {
 strategy: DefaultEventHandlerStrategies.MSPID_SCOPE_ALLFORTX
 }
}

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

Specifying null as the event handling strategy will cause transaction
invocations to return immediately after successfully sending the endorsed
transaction to the orderer. It will not wait for any commit events to be
received from peers.

For more details on Event Handling Options, see
TransactionOptions.

Plug-in event handlers

If behavior is required that is not provided by the default event handling
strategies, it is possible to implement your own event handling. This is
achieved by specifying your own factory function as the event handling
strategy. The factory function should return a transaction event handler
object and take two parameters:

	transactionId: string

	network: Network

The Network instance provides access to an underlying Channel object, from
which endorsing peers can be obtained.

import { Gateway, GatewayOptions, TxEventHandlerFactory } from 'fabric-network';

const createTransactionEventHandler: TxEventHandlerFactory = (transactionId, network) => {
	/* Your implementation here */
 const mspId = network.getGateway().getIdentity().mspId;
 const myOrgPeers = network.getChannel().getEndorsers(mspId);
 return new MyTransactionEventHandler(transactionId, network, myOrgPeers);
}

const connectOptions: GatewayOptions = {
 transaction: {
 strategy: createTransactionEventhandler
 }
 }

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

The transaction event handler object returned must implement the following
functions:

import { TxEventHandler } from 'fabric-network';

class MyTransactionEventHandler implements TxEventHandler {
 /**
 * Called to initiate listening for transaction events.
 */
 async startListening() { /* Your implementation here */ }

 /**
 * Wait until enough events have been received from peers to satisfy the event handling strategy.
 * @throws {Error} if the transaction commit is not successfully confirmed.
 */
 async waitForEvents() { /* Your implementation here */ }

 /**
 * Cancel listening for events.
 */
 cancelListening() { /* Your implementation here */ }
}

The transaction event handler implementation will typically use a commit
listener to monitor commit events from endorsing peers by calling
Network.addCommitListener.

For a complete sample plug-in event handler implementation, see
sample-transaction-event-handler.ts [https://github.com/hyperledger/fabric-sdk-node/blob/main/test/ts-scenario/config/handlers/sample-transaction-event-handler.ts].

 This tutorial describes how to use wallets to manage identities used to connect to a Hyperledger Fabric
network.

Overview

A wallet provides an interface for storing and accessing identity information, backed by a persistent (or
non-persistent) store of your choice. Identity information stored in a wallet can be used to connect to a Hyperledger
Fabric network.

Creating a wallet

A wallet is backed by a wallet store, which is responsible only for storing and retrieving data. Several different
store implementations are provided for convenience:

	In-memory: Non-persistent store. Useful for testing.

	File system: Stores identity information in a directory on the local file system.

	CouchDB: Stores identity information in a CouchDB database.

Wallets using default store implementations are created using static factory functions on the Wallets class, for
example:

const wallet = await Wallets.newFileSystemWallet('/path/to/wallet/directory');

You can write your own custom wallet store to suit your deployment environment by implementing the WalletStore
interface. A wallet backed by a custom wallet store implementation is created as follows:

const walletStore = new MyCustomWalletStore();
const wallet = new Wallet(walletStore);

Storing identity information in a wallet

An identity is a set of information and credentials required to connect to a Hyperledger Fabric network. This
information is described as a simple JavaScript object using a well-defined format, including the Member Services
Provider associated with the user and a type identifier that indicates the type of credentials contained in the
identity. Two identity types are supported by default:

	X.509: X.509 certificate and private key in PEM format.

	HSM-X.509: X.509 certificate in PEM format, with the private key stored in a Hardware Security Module.

Once an identity object has been created from credentials supplied to you by your administrator or certificate
authority, it can be stored and retreived from a wallet using an arbitrary label to locate the identity within the
wallet, for example:

const identity: X509Identity = {
 credentials: {
 certificate: 'PEM format certificate string',
 privateKey: 'PEM format private key string',
 },
 mspId: 'wonderland',
 type: 'X.509',
};
await wallet.put('alice', identity);

Note that a wallet may contain identities of varying types so, in TypeScript, indentity information retrieved from the
wallet is typed as Identity (or undefined if the identity does not exist in the wallet) and will need to be cast to
its specific subtype to access type-specific information, for example:

const identity = await wallet.get('alice');
if (identity && identity.type === 'X.509') {
	const privateKey = (identity as X509Identity).credentials.privateKey;
}

Using a Hardware Security Module

The SDK uses the PKCS #11 [https://en.wikipedia.org/wiki/PKCS_11] interface to
make use of Hardware Security Module (HSM) devices for key management. Identities
using an HSM-managed private key are similar to an X.509 identity but with the
private key omitted (a handle to the key is used instead).
In order to use HSM-managed identities the containing wallet must be configured
with details of the HSM that holds the private key. This is achieved by registering
an IdentityProvider with the wallet, for example:

const hsmProvider = new HsmX509Provider({
 lib: '/path/to/hsm-specific/pkcs11/library',
 pin: '1234567890',
 slot: 0,
});
wallet.getProviderRegistry().addProvider(hsmProvider);

Once the wallet has been confgured with details of the HSM, the crypto suite being
used by the provider may be assigned to a new fabric certificate authority instance.
The crypto suite will have been initialized with the hsmProvider option values
(lib, pin, slot) and it has opened a session with the HSM.

const hsmCAClient = new FabricCAClient(
 'http://localhost:7054',
 {trustedRoots: [], verify: false};,
 'ca-org1', hsmProvider.getCryptoSuite()
);
const enrollmentResults = await hsmCAClient.enroll(options);

HSM-managed identities can be stored and retreived from the wallet. When storing
an indentity, use the actual key returned in the enrollment. This key will contain
all the information needed for the identity’s credentials to be access on the HSM
for signing requests.

const identity: HsmX509Identity = {
 credentials: {
 certificate: enrollmentResults.certificate,
 // PEM format certificate string
 privateKey: enrollmentResults.key.toBytes()
 // PKCS11 key generated by the crypto suite
 // with the HSM handles to the actual keys
 },
 mspId: 'org1',
 type: 'HSM-X.509',
};
await wallet.put('bob', identity);

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

