
HiveApi Documentation
Release 1.0.0

Johannes Schobel

Jul 11, 2018

Getting Started

1 Software Requirements 1

2 Installation 3
2.1 HiveApi Application Installation . 3
2.2 B) Development Environment Setup . 5
2.3 C) Play . 7

3 Overview 9
3.1 Quickstart . 9

4 Architecture Pattern 11
4.1 Porto . 11
4.2 MVC . 12

5 Requests 17
5.1 Form Content Types (W3C) . 17
5.2 HTTP Request Headers . 17
5.3 Calling Endpoints . 18

6 Responses 19
6.1 Paginated Response: . 20
6.2 Including Resources . 20
6.3 Change the default Response payload: . 20
6.4 Resource Keys . 21
6.5 Error Responses Formats . 21
6.6 Building a Responses from the Controller . 21

7 Conventions and Principles 23
7.1 HTTP Methods usage in RESTful APIs . 23
7.2 Naming Conventions for Routes & Actions . 23
7.3 General Guidelines and Principles for RESTful URLs . 23

8 Actions 27
8.1 Rules . 27
8.2 Folder Structure . 27
8.3 Code Sample . 27
8.4 Examples . 28

i

9 Configuration Files 31
9.1 Principles . 31
9.2 Rules . 31
9.3 Folder Structure . 32
9.4 Code Samples . 32

10 Controllers 33
10.1 Rules . 33
10.2 Folder Structure . 33
10.3 Code Sample . 34
10.4 Controller Response Builder Helper Functions . 35

11 Migration Files 37
11.1 Rules . 37
11.2 Structure . 37
11.3 Code Samples . 37

12 Models 39
12.1 Rules . 39
12.2 Folder Structure . 39
12.3 Code Sample . 39
12.4 Casts . 40

13 Repositories 41
13.1 Principles . 41
13.2 Rules . 41
13.3 Folder Structure . 41
13.4 Code Samples . 42

14 Routes 45
14.1 Rules . 45
14.2 Folder Structure . 45
14.3 Web Routes . 46
14.4 Protecting Endpoints: . 46

15 SubActions 47
15.1 Rules . 47
15.2 Folder Structure . 47
15.3 Code Sample . 47

16 Tasks 49
16.1 Rules . 49
16.2 Folder Structure . 49
16.3 Code Sample . 49

17 Transformers 51
17.1 Rules . 51
17.2 Folder Structure . 51
17.3 Code Samples . 51
17.4 Relationships (Includes) . 53
17.5 Helper Functions for Transformers . 54

18 Transporters 55
18.1 Rules . 55
18.2 Folder Structure . 55

ii

18.3 Code Sample . 55
18.4 Automatically Transforming a Request to a Transporter . 57
18.5 Data Access . 57
18.6 Instance Access . 58

19 Views 59
19.1 Rules . 59
19.2 Folder Structure . 59
19.3 Code Sample . 59
19.4 Namespaces . 60

20 Commands 61
20.1 Principles . 61
20.2 Rules . 61
20.3 Folder Structure . 62
20.4 Code Samples . 62
20.5 Define Consoles Routes . 63

21 Criteria 65
21.1 Principles . 65
21.2 Rules . 65
21.3 Folder Structure . 65
21.4 Code Samples . 66

22 Events 67
22.1 Principles . 67
22.2 Enabling Events . 68
22.3 Usage . 68

23 Exceptions 73
23.1 Principles . 73
23.2 Rules . 73
23.3 Folder Structure . 73
23.4 Code Samples . 74
23.5 Usage . 75
23.6 Application Error Codes . 76

24 Exception Formatters 79
24.1 Rules . 79
24.2 Folder Structure . 79
24.3 Code Sample . 79
24.4 Creating Your Own Formatter . 81

25 Factories 83
25.1 Rules . 83
25.2 Folder Structure . 83
25.3 Code Samples . 83

26 Jobs 85
26.1 Rules . 85
26.2 Folder Structure . 85
26.3 Code Samples . 86

27 Languages 87
27.1 Rules . 87

iii

27.2 Folder Structure . 87
27.3 Usage . 87

28 Mails 89
28.1 Principles . 89
28.2 Rules . 89
28.3 Folder Structure . 89
28.4 Code Samples . 90
28.5 Email Templates . 90
28.6 Configure Emails . 91
28.7 Queueing Notifications for Later Use . 91

29 Middlewares 93
29.1 Principles . 93
29.2 Rules . 93
29.3 Folder Structure . 94
29.4 Code Sample . 94

30 Notifications 97
30.1 Principles . 97
30.2 Rules . 97
30.3 Folder Structure . 97
30.4 Code Samples . 98
30.5 Select Channels . 99
30.6 Queueing a Notification . 99
30.7 Use Database Channel . 99

31 Service Providers 101
31.1 Principles . 101
31.2 Rules . 101
31.3 Folder Structure . 102
31.4 Code Samples . 102
31.5 Register Service Providers . 103
31.6 Laravel 5.5 Auto Discovery feature. 103
31.7 Information about Laravel Service Providers . 103

32 Requests 105
32.1 Rules . 105
32.2 Folder Structure . 105
32.3 Code Samples . 106
32.4 Using Requests in the Contorller . 106
32.5 Request Properties . 107
32.6 How the Authorize Function Works . 109
32.7 Allow a Role to access every endpoint . 110
32.8 Request Helper Functions . 110
32.9 Storing Data on the Request . 113

33 Seeders 115
33.1 Principles . 115
33.2 Rules . 115
33.3 Folder Structure . 115
33.4 Code Samples . 116
33.5 Running the Seeders . 116
33.6 HiveApi Seeder Commands . 117

iv

34 Values 119
34.1 Rules . 119
34.2 Folder Structure . 119
34.3 Code Sample . 119

35 Authentication 121
35.1 API Authentication (with OAuth 2.0) . 121
35.2 Web Authentication . 125
35.3 Refresh Token . 126
35.4 Force Email Confirmation . 127

36 Authorization 129
36.1 Usage . 129
36.2 Example . 129
36.3 Responses . 130
36.4 Seeding Users . 130
36.5 Roles & Permissions guards . 131
36.6 Permissions Inheriting with Levels . 131

37 Caching 133
37.1 Enable / Disable Eloquent Query Caching . 133
37.2 Change Different Caching Settings . 133

38 Default Endpoints 135

39 ETags 137

40 Generators 139
40.1 Available Code Generator Commands . 139
40.2 Custom Code Stubs (aka. Customizing the Generator) . 140

41 Hash IDs 141
41.1 Enable Hash ID . 141
41.2 Example: . 141
41.3 Usage . 141
41.4 Configuration . 142
41.5 Testing . 142
41.6 Availability . 142

42 Localization 143
42.1 Select Request Language . 143
42.2 Support New Languages . 144
42.3 Translating Strings . 144
42.4 Disable the Localization Feature . 144
42.5 Get Available Localizations . 144
42.6 Tests . 145

43 Pagination 147
43.1 Change the Default Pagination Limit . 147
43.2 Limit . 147
43.3 Usage . 147
43.4 Skip the Pagination Limit . 148

44 Profiler 149
44.1 Sample Profiler Response . 149
44.2 Configuration . 151

v

45 Query Parameters: Search 153

46 Rate Limiting (API Throttling) 155
46.1 Enable/Disable Rate Limiting: . 155

47 Request Monitor 157
47.1 Enable Requests Logging . 157
47.2 Usage . 157
47.3 Change the Default Log File . 157

48 System Settings 159
48.1 Seed Default Settings . 159
48.2 Read Settings . 159

49 Validation 161
49.1 Request . 161
49.2 Responses . 162

50 Versioning 163
50.1 Usage . 163
50.2 Version the API in Header instead of URL . 163

51 Magical Call 165
51.1 Usage . 165
51.2 Transactional Magical Call . 167
51.3 Use Case Example . 167

52 Task Queuing 169
52.1 Beanstalkd . 169

53 Task Scheduling 171
53.1 Setup Server . 171
53.2 Setup and Configure your Application . 171

54 Useful Commands 173
54.1 Available Commands (Excerpt) . 173
54.2 List All Actions / Tasks Command . 173
54.3 List Container Dependencies Command . 173

vi

CHAPTER 1

Software Requirements

• GIT

• PHP >= 7.1.3

• PHP Extensions:

– OpenSSL PHP Extension

– PDO PHP Extension

– Mbstring PHP Extension

– Tokenizer PHP Extension

– BCMath PHP Extension (required when the Hash ID feature is enabled)

– Intl Extension (required when you use the Localization Container)

• Composer

• Node (required for the API Docs generator feature)

• Web Server (Nginx is recommended)

• Database Engine (no specific Database Engine recommended)

• Cache Engine (Redis is recommended)

• Queues Engine (Beanstalkd is recommended)

1

https://git-scm.com/downloads
https://php.net
https://getcomposer.org/download/
https://nodejs.org/en/
https://www.nginx.com/
http://redis.io/download
https://github.com/kr/beanstalkd

HiveApi Documentation, Release 1.0.0

2 Chapter 1. Software Requirements

CHAPTER 2

Installation

2.1 HiveApi Application Installation

HiveApi can be installed automatically with Composer (recommended way) or manually (via Git or via direct down-
load):

2.1.1 1) Download

In the following, both methods are described in short:

1.A) Automatically via Composer

1. Clone the repo, install dependencies and setup the project:

Option 1: Latest stable release release:

composer create-project hiveapi/framework my-awesome-api

Option 2: Target a specific version:

composer create-project hiveapi/framework my-awesome-api ~major.minor

Option 3: Ongoing development branch dev-master (unstable):

Heads up!

This may provide (unstable) features from the upcoming releases. You may need to keep syncing your
project with the upstream master branch and run composer update in order to apply changes!*

composer create-project hiveapi/framework my-awesome-api dev-master

1. Edit your .env variables to match with your environment (set database credentials, app url, . . .).

2. Continue from 2) Database Setup below.

3

https://github.com/hiveapi/framework/releases/latest
https://github.com/hiveapi/framework/releases
https://github.com/hiveapi/framework/commits/master

HiveApi Documentation, Release 1.0.0

1.B) Manually

You can download the code directly from the repository as .zip file or clone the repository using git (recommended
approach):

1. Clone the repository using git:

git clone https://github.com/hiveapi/framework.git

1. Install all dependency packages (including containers dependencies):

composer install

1. Create a new .env file by copying the provided .env.example file.

cp .env.example .env

Heads up!

heck all variables and edit accordingly!

1. Generate a random APP_KEY

php artisan key:generate

1. Delete the existing .git folder from the root directory and initialize your own one with git init.

2.1.2 2) Database Setup

1. Migrate the provided database by runing the migration artisan command:

php artisan migrate

1. Seed the database with the artisan command:

php artisan hive:seed:deploy

1. (optional) By default HiveApi seeds a “Super User”, given the default admin role (the role has no permissions
set to it).

To give the admin role, access to all the seeded permissions in the system, run the following command at any time.

php artisan hive:permissions:toRole admin

If you are using Laradock, you need to run those commands from the workspace container, you can enter that
container by running docker-compose exec workspace bash from the Laradock folder.

2.1.3 3) OAuth 2.0 Setup

1. Create encryption keys to generate secure access tokens and create “personal access” and “password grant”
clients, which will be used to generate access tokens for your users or applications:

php artisan passport:install

4 Chapter 2. Installation

HiveApi Documentation, Release 1.0.0

2.1.4 4) Documentation Setup

If you are planning to use ApiDoc JS then proceed with this setup, else skip this and use whatever you prefer:

1. Install ApiDocJs using NPM or your favorite dependencies manager:

Install it Globally with -g or locally in the project without -g

npm install apidoc -g

or install it by just running npm install on the root of the project, after checking the package.json file on the
root.

1. run php artisan hive:docs

Behind the scene hive:docs executes a command like this

apidoc -c app/Containers/Documentation/ApiDocJs/public -f public.php -i app -o public/
→˓api/documentation

See the API Docs Generator page for more details.

2.1.5 5) Tests Setup

1. Open .env.testing and set up the environment variables correctly.

2. Open the /tests/_data/presets/* files and adapt the urls accordingly to fit your domains.

3. Run the tests

vendor/bin/codecept run

2.2 B) Development Environment Setup

You can run HiveApi on your favorite environment. Below you see how you can run it on top of Vagrant (using
Laravel Homestead) or Docker (using Laradock).

We will see how to use both tools and you can pick one, or you can use other options like Larvel Valet, Laragon or
even run it directly on your machine.

Heads up!

The ICANN has now officially approved .dev as a generic top level domain (gTLD). Therefore, it is not
recommended to use .dev domains any more in your local development setup! The docs here has been
changed to use .develop instead of .dev, however, you may change to .localhost, .test, or
whatever suits your needs.

2.2.1 B.1) Using Docker (with Laradock)

Laradock is a Docker PHP development environment. It facilitate running PHP Apps on Docker.

1. Install Laradock.

2. Navigate into the laradock directory:

cd laradock

2.2. B) Development Environment Setup 5

http://apidocjs.com/
./../features/api-docs-generator.html
https://www.vagrantup.com/
https://laravel.com/docs/master/homestead
https://www.docker.com/
https://github.com/Laradock/laradock
https://laravel.com/docs/valet
https://laragon.org/
https://github.com/LaraDock/laradock#installation

HiveApi Documentation, Release 1.0.0

This directory contains a docker-compose.yml file. (From the Laradock project).

2.1) If you haven’t done so, rename env-example to .env.

cp env-example .env

1. Run the Docker containers:

docker-compose up -d nginx mysql redis beanstalkd

1. Make sure you are setting the Docker IP as Host for the DB and Redis in your .env file.

2. Add the domain to the hosts file:

5.1) Open the hosts file on your local machine /etc/hosts.

We’ll be using hive.local as local domain (you can change it if you want).

5.2) Map the domain and its subdomains to 127.0.0.1:

127.0.0.1 hive.local
127.0.0.1 api.hive.local
127.0.0.1 admin.hive.local

If you are using NGINX or Apache, make sure the server_name (in case of NGINX) or ServerName (in case of
Apache) in your the server config file, is set to the following hive.local api.hive.local admin.hive.
local. Also don’t forget to set your root or DocumentRoot to the public directory inside hive (i.e., hive/public).

2.2.2 B.2) Using Vagrant (with Laravel Homestead)

1. Configure Homestead:

1.1) Open the Homestead config file:

homestead edit

1.2) Map the api.hive.local domain to the project public directory - Example:

sites:
- map: api.hive.local

to: /{full-project-path}/hive/public

1.3) You can also map other domains like hive.local and admin.hive.local to other web apps:

- map: hive.local
to: /{full-project-path}/clients/web/user

- map: admin.hive.local
to: /{full-project-path}/clients/web/admin

Note: in the example above the /{full-project-path}/clients/web/xxx are separate apps, who live in
their own repositories and in different folder than the HiveApi. If your admins, users or other type of applications
are within HiveApi, then you must point them all to the HiveApi project folder /{full-project-path}/
hive/public. So in that case you would have something like this:

- map: api.hive.local
to: /{full-project-path}/hive/public

- map: hive.local
to: /{full-project-path}/hive/public

(continues on next page)

6 Chapter 2. Installation

HiveApi Documentation, Release 1.0.0

(continued from previous page)

- map: admin.hive.local
to: /{full-project-path}/hive/public

1. Add the domain to the hosts file:

2.1) Open the hosts file on your local machine /etc/hosts.

We’ll be using hive.local as local domain (you can change it if you want).

2.2) Map the domain and its subdomains to the Vagrant IP Address:

192.168.10.10 hive.local
192.168.10.10 api.hive.local
192.168.10.10 admin.hive.local

If you are using NGINX or Apache, make sure the server_name (in case of NGINX) or ServerName (in case of
Apache) in your the server config file, is set to the following hive.local api.hive.local admin.hive.
local. Also don’t forget to set your root or DocumentRoot to the public directory inside hive (i.e., hive/public).

2.3) Run the Virtual Machine:

homestead up --provision

If you see No input file specified on the sub-domains!try running this command homestead halt &&
homestead up --provision.

2.2.3 B.3) Using something else

If you’re not into virtualization solutions, you can setup your environment directly on your machine. Check the
software requirements list.

2.3 C) Play

Now let’s see it in action

1.a. Open your web browser and visit:

• http://hive.local You should see an HTML page, with HiveApi in the middle.

• http://admin.hive.local You should see an HTML Login page.

1.b. Open your HTTP client and call:

• http://api.hive.local/You should see a JSON response with message: "Welcome to HiveApi.
",

• http://api.hive.local/v1 You should see a JSON response with message: "Welcome to
HiveApi (API V1).",

1. Make some HTTP calls to the API:

Heads up!

To make HTTP calls you can use Postman, HTTPIE or any other tool you prefer.

here is a postman file available that provides most of the pre-defined routes of HiveApi.

2.3. C) Play 7

./../getting-started/requirements.html
https://www.getpostman.com/
https://github.com/jkbrzt/httpie

HiveApi Documentation, Release 1.0.0

8 Chapter 2. Installation

CHAPTER 3

Overview

3.1 Quickstart

When a HTTP request is received, it first hits your predefined Endpoint (each endpoint has its own Route file).

3.1.1 Sample Route Endpoint

<?php

$router->get('/hello', [
'uses' => 'Controller@sayHello',

]);

After the user makes a request to the endpoint [GET] api.hive.develop/v1/hello it calls the function
(sayHello()) in the respective Controller class.

3.1.2 Sample Controller Function

<?php

class Controller extends ApiController
{

public function sayHello(SayHelloRequest $request)
{

$helloMessage = Hive::call(SayHelloAction::class);

$this->json([
$helloMessage

]);
}

}

9

HiveApi Documentation, Release 1.0.0

This sayHello() function takes a Request class SayHelloRequest and automatically checks, if the user has
the proper role (or permission) to call this endpoint. An Exception is immediately thrown, if the user does not have
the proper access level. Otherwise, the actual function is executed.

In this context, the function calls an Action (SayHelloAction) to perform the actual business logic.

3.1.3 Sample Action

<?php

class SayHelloAction extends Action
{

public function run()
{

return 'Hello World!';
}

}

An Action can do anything then (maybe) return a result. When the Action finishes its execution, the Controller
function gets ready to build a Response and return this to the client that called the endpoint.

Json responses can be built using the helper function json() ($this->json(['foo' => 'bar']);).

3.1.4 Sample User Response

[
"Hello World!"

]

10 Chapter 3. Overview

CHAPTER 4

Architecture Pattern

The two most common architectures, used for building projects on top of HiveApi are:

• Porto (Route Request Controller Action Task Model Transformer).

• MVC (Model View Controller. The HiveApi MVC version is a little different than the standard MVC)

Porto is the HiveApi recommended architecture for building scalable APIs. However, it also support building APIs
using the popular and well-known MVC architecture (with slight modifications).

Heads up!

HiveApi features are written using Porto, and can be used by any architecture.

Below you will see how you can both any of the architectures to build your project.

4.1 Porto

4.1.1 Introduction

Porto is an architecture pattern that consists of 2 layers, called Containers and Ship layer.

The Container layer holds your application business logic. This is similar to Modular, DDD and plugins architectures
design. HiveApi, however, allows separating the business logic into multiple folders called Containers. The Ship
layer, on the other hand, holds the infrastructure code (i.e., shared code between all Containers). This code is rarely
modified at all.

HiveApi features themselves are developed using the Porto Software Architectural Pattern. This means, features
provided by HiveApi live in their own Containers.

Spending 15 minutes, reading the Porto Document before getting started, is a great investment of time.

4.1.2 The Containers Layer

Read about the Containers layer here

11

https://github.com/Mahmoudz/Porto
https://github.com/Mahmoudz/Porto#Containers-Layer

HiveApi Documentation, Release 1.0.0

Removing Containers

HiveApi comes with some default containers (e.g., for Authentication or User management). All containers
are optional and can be easily re-written or extended.

Let’s say you don’t want to use the built in documentation generator feature of HiveApi. In order to get rid of that
feature you can simply delete the Documentation container from your application.

To remove a container, simply delete the folder then run composer update to remove its dependencies.

Create new Container

In order to extend your application with new features, you can call follow various approaches.

Option 1) Using the Code Generator:

Call the command php artisan hive:generate:container from the command line. A wizard will guide
you through the process of creating the most important aspects.

Refer to the Code Generator page for more details.

Option 2) manually:

1. Create a folder in the app\Containers folder.

2. Start creating components (i.e., Actions, Tasks) and wiring them all together.

3. The Ship layer will autoload and register everything for you.

For the autoloading to work flawlessly you MUST adhere to the component’s naming conventions and directories. So
you need to refer to the documentation page of the component when creating it.

Naming Conventions

• Containers names SHOULD start with Capital Letters. Use CamelCase to rename Containers.

• Namespace should be the same as the container name (i.e., if container name is Printer, the corresponding
namespace should be App\Containers\Printer).

• Container MAY be named to anything however. A good practice, however, is to name it to its most important
Model name.

Example

If the user story is “A User can create a Books and Books can have Comments” then you could have
3 Containers (i.e., User, Book, Comments).

4.1.3 The Ship Layer

Read about the Ship layer here

4.2 MVC

4.2.1 MVC Introduction

Due to the popularity of MVC, and the fact that many developers don’t have enough time to learn about new architec-
ture patterns, HiveApi also supports the MVC architecture. That is 97% compatible with the Laravel MVC.

12 Chapter 4. Architecture Pattern

./../features/code-generator.html
https://github.com/Mahmoudz/Porto#Port-Layer

HiveApi Documentation, Release 1.0.0

Below you will learn how you can build your API on top of HiveApi, using your previous knowledge of the Laravel
framework.

4.2.2 Difference between Standard MVC and HiveApi MVC

The Porto architecture, does not replace the MVC architecture, but rather extends it. So Models, Views, Routes
and Controllers still exist, but in different places with a strict set of responsibilities for each component.

4.2.3 Setup an HiveApi MVC Project

1) First get a fresh version of HiveApi

2) Create the Application

If you open app/Containers/ you will see a list of containers, whereas each container provide some features for
you. However, you don’t need to modify them, whether you are using the Porto or MVC architecture. So forget about
all these folders for now.

All we need is to create a new folder (i.e., a new Container) called Application (which holds your MVC
application). This is an alternative to the app folder on the root of the Laravel project. This folder will hold all your
Models, Views, Routes, Controllers files, as you know it from a regular Laravel project.

3) Create route file

In Laravel 5.6, the Route files live in the routes/ folder on the root of the project. But in HiveApi MVC, the routes
files should live in:

• app/Containers/Application/UI/API/Routes/ (for API Routes)

• app/Containers/Application/UI/WEB/Routes/ (for WEB Routes)

Create api.php at app/Containers/Application/UI/API/Routes/api.php (i.e., Laravels routes/
api.php) Create web.php at app/Containers/Application/UI/API/Routes/web.php (i.e., Lar-
avels routes/web.php)

In both files create all your endpoints as you would in Laravel.

Heads up!

You must use $router-> instead of the facade Route:: in the route files.

Example:

<?php

// Use this `$router` variable instead of Route::
$router->get('/', function () {

return view('welcome');
});

// DO not use the `Route` facade
Route::get('/', function () {

return view('welcome');
});

4.2. MVC 13

HiveApi Documentation, Release 1.0.0

4) Create Controller

In Laravel 5.6, the Controller classes live in the app/Http/Controllers/ folder. But in HiveApi MVC, the
Controller classes should live in:

• app/Containers/Application/UI/API/Controllers/Controller.php (to handle API
Routes) and MUST extend from App\Ship\Parents\Controllers\ApiController

• app/Containers/Application/UI/WEB/Controllers/Controller.php (to handle WEB
Routes) and MUST extend from App\Ship\Parents\Controllers\WebController

5) Create Models

In Laravel 5.6, the Model classes live in the root of the app/ folder. But in HiveApi MVC, the Model classes should
live in app/Containers/Application/Models.

All model MUST extend from App\Ship\Parents\Models\Model.

Note the User Model should remain in the User Container (app/Containers/User/Models/
User.php), to keep all the features working without any modifications.

6) Create Views

In Laravel 5.6, the View files live in the resources/views/ folder. In HiveApi MVC, the View files can live in
that same directory or/and in this container folder app/Containers/Application/UI/WEB/Views/.

7) Create Transformers

In Laravel 5.6, the Transformer classes live in the app/Transformers/ folder. But in HiveApi MVC, the
Transformer classes should live in app/Containers/Application/UI/API/Transformers/.

Transformers, in turn, MUST extend from App\Ship\Parents\Transformers\Transformer.

8) Create Service Providers

In Laravel 5.6, the Service Provider classes live in the app/Providers/ folder. But in Hiveapi MVC, the
Service Provider classes can live in app/Containers/Application/Providers/. You can, however,
put them anywhere else.

If you want the Service Providers to be automatically loaded (without having to register it
in the config/app.php file), rename your file to MainServiceProvider.php (full path app/
Containers/Application/Providers/MainServiceProvider.php). Otherwise you can create
Service Providers anywhere and register them manually in Laravels app.php configuration file.

9) Create Migrations

In Laravel 5.6, the Migration classes live in the database/migrations/ folder on the root of the project.
In HiveApi MVC, the Migration classes can live in that same directory or/and in this container folder app/
Containers/Application/Data/Migrations/.

14 Chapter 4. Architecture Pattern

HiveApi Documentation, Release 1.0.0

10) Create Seeds

In Laravel 5.6, the Database Seeder files live in the database/migrations/ folder on the root of the
project. In HiveApi MVC, the Database Seeder files can live in that same directory or/and in this container
folder app/Containers/Application/Data/Seeders/.

More Classes

All other class types work the same way, you can refer to the documentation for where to place them and what they
should extend. For more details you can always get in touch with us on Slack.

4.2.4 How to use HiveApi features

HiveApi features are all provided as Actions & Tasks classes.

• Each Action class has single function run which does one feature only.

• Each Task class has single function run which does one job only (a tiny piece of the business logic).

You can use Actions/Tasks classes anyway you want:

• Using HiveApi Facade with HiveApi caller style $user = \Hive::call('Car@GetDriversAction',
[$request->id]);

• Using HiveApi Facade with full class name $user = \Hive::call(GetDriversAction::class,
[$request->id]);

• Using the helper call() function with full class name $user =
$this->call(GetDriversAction::class, [$request->id]);

• Using the helper call() function with HiveApi caller style $user =
$this->call('Car@GetDriversAction', [$request->id]);

• Without HiveApi involvement using plain PHP $user = $action = new
GetDriversAction::class; $action->run($request->id);

• Without HiveApi involvement using plain Laravel IoC $user = \App::make(GetDriversAction::class)->run($request->id);

Be creative, at the end of the day it’s a class with a function.

4.2. MVC 15

HiveApi Documentation, Release 1.0.0

16 Chapter 4. Architecture Pattern

CHAPTER 5

Requests

5.1 Form Content Types (W3C)

By default HiveApi is configured to encode simple text/ASCII data as application/json. However, it does
support other types as well.

5.1.1 JSON Payload

To tell the web server that you are sending JSON formatted payload ({"name" : "John Doe", "age":
25}), you need to add the Content-Type : application/json request header.

5.1.2 ASCII payload

To tell the server that you are sending simple text/ASCII payload (name=John+Doe&age=25), you need to add the
Content-Type : x-www-form-urlencoded request header.

5.2 HTTP Request Headers

Heads Up!

Normally you should include the accept : application/json HTTP header when you call a
JSON API. However, in HiveApi you can force your users to send application/json by setting
'force-accept-header' => true, in app/Ship/Configs/hive.php or allow them to
skip it completely by setting the 'force-accept-header' => false,. By default this flag is set
to true.

17

HiveApi Documentation, Release 1.0.0

5.3 Calling Endpoints

5.3.1 Calling unprotected Endpoints (example):

curl -X POST -H "Accept: application/json" -H "Content-Type: application/x-www-form-
→˓urlencoded; -F "email=admin@admin.com" -F "password=admin" -F "=" "http://api.hive.
→˓local/v1/register"

5.3.2 Calling protected Endpoints by passing a Bearer Token (example):

curl -X GET -H "Accept: application/json" -H "Authorization: Bearer
→˓eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9..." -H "http://api.hive.local/v1/users"

18 Chapter 5. Requests

CHAPTER 6

Responses

In HiveApi you can define your own response payload or use one of the supported serializers. Currently the supported
serializers are (ArraySerializer, DataArraySerializer and JsonApiSerializer) provided by Frac-
tal.

By default HiveApi uses DataArraySerializer. Below is an example of the response payload.

{
"data": [
{

"id": 100,
...
"relation 1": {

"data": [// multiple items
{
"id": 11,
...

}
]

},
"relation 2": {

"data": { // single item
"id": 22,
...
}

}
}

},
...

],
"meta": {
"pagination": {

"total": 999,
"count": 999,
"per_page": 999,

(continues on next page)

19

http://fractal.thephpleague.com/transformers/
http://fractal.thephpleague.com/transformers/

HiveApi Documentation, Release 1.0.0

(continued from previous page)

"current_page": 999,
"total_pages": 999,
"links": {

"next": "http://api.hive.local/v1/accounts?page=999"
}

}
},
"include": [// the other resources that may be included dynamically on request
"xxx",
"yyy"

],
"custom": []

}

6.1 Paginated Response:

When the returned data is paginated the response payload will contain a meta description with information about the
pagination.

{
"meta": {
"pagination": {

"total": 999,
"count": 999,
"per_page": 999,
"current_page": 999,
"total_pages": 999,
"links": {

"next": "http://api.hive.local/v1/accounts?page=999"
}

}
},
"include": [// what can be included
"xxx",
"yyy"

],
"custom": []

}

6.2 Including Resources

The include field in the response informs the client about relationships that can be include on request. The client,
in turn, may tell the server by adding additional query parameter, for example /users?include=roles

For more details read the Relationships section in the Query Parameters page.

6.3 Change the default Response payload:

By default, HiveApi returns the data by applying the DataArray Fractal Serializer
(League\Fractal\Serializer\DataArraySerializer). To change this behaviour, you can adapt

20 Chapter 6. Responses

./../features/query-parameters.html

HiveApi Documentation, Release 1.0.0

your .env file accordingly:

API_RESPONSE_SERIALIZER=League\Fractal\Serializer\DataArraySerializer

Currently, the supported Serializers are

• ArraySerializer

• DataArraySerializer

• JsonApiSerializer

More details can be found at the Fractal website and Laravel Fractal Wrapper.

In case of returning JSON data (JsonApiSerializer), you may also want to check some JSON response stan-
dards:

• JSON API (very popular and well documented)

• JSEND (very basic)

• HAL (useful in case of hypermedia)

6.4 Resource Keys

6.4.1 JsonApiSerializer

The selected serializer allows appending a ResourceKey to the transformed resource. You can set the
ResourceKey in your response payload in 2 ways:

1. Manually set it via the respective parameter in the $this->transform() call. Note that this will only set
the top level resource key and does not affect the resource keys from included resources!

2. Specify it on the respective Model by overriding the $resourceKey (protected
$resourceKey = 'FooBar';). If no $resourceKey is defined at Model level, the lower-
cased, pluralized ShortClassName is used as key. For example, the ShortClassName of
App\Containers\User\Models\User::class is simply User. The resulting $resourceKey,
therefore, is users.

6.4.2 DataArraySerializer

By default the object keyword is used as a resource key for each response, and is manually defined in each trans-
former,

6.5 Error Responses Formats

Visit each feature, example the Authentication and there you will see how an unauthenticated response looks like,
same for Authorization, Validation and so on.

6.6 Building a Responses from the Controller

Checkout the Controller Response Builder Helper functions for more information on this topic.

6.4. Resource Keys 21

http://fractal.thephpleague.com/transformers
https://github.com/spatie/laravel-fractal
http://jsonapi.org/format/
https://labs.omniti.com/labs/jsend
http://stateless.co/hal_specification.html
./../components/controllers.html

HiveApi Documentation, Release 1.0.0

22 Chapter 6. Responses

CHAPTER 7

Conventions and Principles

Below you find some naming conventions and basic principles to be used and applied in HiveApi.

7.1 HTTP Methods usage in RESTful APIs

• GET (SELECT) to retrieve a specific resource from the server, or a collection of resources.

• POST (CREATE) to create a new resource on the server.

• PUT (UPDATE) to update a resource on the server, providing the entire resource.

• PATCH (UPDATE) to update a resource on the server, providing only changed attributes.

• DELETE (DELETE) to remove a resource from the server.

7.2 Naming Conventions for Routes & Actions

• GetAllResource to fetch all resources. You can apply ?search query parameter to filter data.

• FindResourceById to search for single resource by its unique identifier.

• CreateResource to create a new resource.

• UpdateResource to update/edit existing resource.

• DeleteResource to delete a resource.

7.3 General Guidelines and Principles for RESTful URLs

• A URL identifies a resource.

• URLs should include nouns, not verbs (verbs are “added” by HTTP methods)

23

HiveApi Documentation, Release 1.0.0

• Use plural nouns only for consistency (no singular nouns).

• Use HTTP verbs (GET, POST, PUT, DELETE) to operate on the collections and elements.

• You should not need to go deeper than resource/identifier/resource.

• Put the version number at the base of your URL, for example http://api.hive.local/v1/path/to/
resource.

• If an input data changes the logic of the endpoint, it should be passed in the URL. If not you should add it to the
header (e.g., like the Authentication Token)

• Don’t use query parameters to alter state.

• Don’t use mixed-case paths if you can help it; lowercase is best.

• Don’t use implementation-specific extensions in your URIs (.php, .py, .pl, etc.)

• Limit your URI space as much as possible. And keep path segments short.

• Don’t put metadata in the body of a response that should be in a header

7.3.1 Good URL Examples

• Find a single Car by its unique identifier (ID):

– GET http://api.hive.local/v1/cars/123

• Get all Cars:

– GET http://api.hive.local/v1/cars

• Find/Search cars by one or more fields:

– GET http://api.hive.local/v1/cars?search=maker:mercedes

– GET http://api.hive.local/v1/cars?search=maker:mercedes;color:white

• Order and Sort query result:

– GET http://api.hive.local/v1/cars?orderBy=created_at&sortedBy=desc

– GET http://api.hive.local/v1/cars?search=maker:mercedes&orderBy=created_at&sortedBy=desc

• Specify optional fields:

– GET http://api.hive.local/v1/cars?filter=id;name;status

– GET http://api.hive.local/v1/cars/123?filter=id;name;status

• Get all Drivers belonging to a Car:

– GET http://api.hive.local/v1/cars/123/drivers

– GET http://api.hive.local/v1/cars/123/drivers/123/addresses

• Include Drivers objects relationship with the car response:

– GET http://api.hive.local/v1/cars/123?include=drivers

– GET http://api.hive.local/v1/cars/123?include=drivers,owner

• Add new Car:

– POST http://api.hive.local/v1/cars

• Add new Driver to a Car:

– POST http://api.hive.local/v1/cars/123/drivers

24 Chapter 7. Conventions and Principles

HiveApi Documentation, Release 1.0.0

7.3.2 General Principles for HTTP Methods

• Don’t ever use GET to alter state (e.g., to prevent Googlebot from corrupting your data).

• Use GET as much as possible.

• Don’t use PUT unless you are updating an entire resource. You should also provide a GET on the same URI.

• Don’t use POST to retrieve information that is long-lived or that might be reasonable to cache.

• Don’t perform an operation that is not idempotent with PUT.

• Use GET for things like calculations, unless your input is large, in which case use POST.

• Use POST in preference to PUT when in doubt.

• Use POST whenever you have to do something that feels RPC-like.

• Use PUT for classes of resources that are larger or hierarchical.

• Use DELETE in preference to POST to remove resources.

7.3. General Guidelines and Principles for RESTful URLs 25

HiveApi Documentation, Release 1.0.0

26 Chapter 7. Conventions and Principles

CHAPTER 8

Actions

Read the section in the Porto SAP Documentation (#Actions).

8.1 Rules

• All Actions MUST extend App\Ship\Parents\Actions\Action.

8.2 Folder Structure

app
Containers

{container-name}
Actions

CreateUserAction.php
DeleteUserAction.php
...

8.3 Code Sample

Simplified Example from the RegisterUserAction

<?php

namespace App\Containers\User\Actions;

class RegisterUserAction extends Action
{

public function run(DataTransporter $data): User

(continues on next page)

27

https://github.com/Mahmoudz/Porto#Actions

HiveApi Documentation, Release 1.0.0

(continued from previous page)

{
// create user record in the database and return it.
$user = Hive::call(CreateUserByCredentialsTask::class, [

$isClient = true,
$data->email,
$data->password,
$data->name,

]);

Mail::send(new UserRegisteredMail($user));

return $user;
}

}

Heads up!

Instead of passing these parameters string $email, string $password, string $name,
bool $isClient = false from place to another over and over, consider using the Transporters
classes (simple DTOs “Data Transfer Objects”). For more details read the Transporters page.

Injecting each Task in the constructor and then using it below through its property is really boring and the more Tasks
you use the worse it gets. So instead you can use the function call to call whichever Task you want and pass any
parameters to it.

The Action itself was also called using Hive::call() from the Controller, triggering run() function.

Refer to the Magical Call page for more info and examples on how to properly use the call() function.

8.4 Examples

<?php

namespace App\Containers\User\Actions;

use App\Containers\User\Tasks\DeleteUserTask;
use App\Ship\Parents\Actions\Action;

class DeleteUserAction extends Action
{

public function run($userId)
{

return Hive::call(DeleteUserTask::class, [$userId]);
}

}

<?php

namespace App\Containers\Email\Actions;

use App\Containers\Xxx\Tasks\Sample1Task;
use App\Containers\Xxx\Tasks\Sample2Task;
use App\Ship\Parents\Actions\Action;

class DemoAction extends Action

(continues on next page)

28 Chapter 8. Actions

./../components/transporters.html
./../miscellaneous/magical-call.html

HiveApi Documentation, Release 1.0.0

(continued from previous page)

{
public function run($xxx, $yyy, $zzz)
{

$foo = Hive::call(Sample1Task::class, [$xxx, $yyy]);

$bar = Hive::call(Sample2Task::class, [$zzz]);
}

}

8.4.1 Calling an Action from a Controller

<?php

public function deleteUser(DeleteUserRequest $request)
{

$user = Hive::call(DeleteUserAction::class, [$request->xxx, $request->yyy]);

return $this->deleted($user);
}

The same Action MAY be called by multiple Controllers (API, WEB and CLI).

8.4. Examples 29

HiveApi Documentation, Release 1.0.0

30 Chapter 8. Actions

CHAPTER 9

Configuration Files

Configs are files that hold configurations for the specific container. For more details about them check the official
Laravel documentation.

In each container, there are two types of config files:

• the container specific config file that contains the container specific configurations.

• the container third-party packages config files (i.e., a config file that belongs to a third-party package, required
by the composer file of the container).

9.1 Principles

• Your custom config files and the third-party packages config files, should be placed in the container. If they are
too generic then it can be placed on the Ship layer.

• Container can have as many config files as they need.

9.2 Rules

• When publishing a third-party package config file you SHOULD move it manually to its respective container
or to the Ship Config folder.

• Framework config files (provided by Laravel) lives at the default config directory in the root of the project.

• You SHOULD NOT add any config file to the config directory.

• The container specific config file, MUST have the same name of the container in lower letters and post-fixed
with -container, to prevent conflicts between third-party packages and container specific packages.

31

https://laravel.com/docs/5.6/configuration

HiveApi Documentation, Release 1.0.0

9.3 Folder Structure

app
Containers

{container-name}
Configs

{container-name}-container.php
package-config-file1.php
...

Ship
Configs

hashids.php
hive.php
...

config
app.php
...

9.4 Code Samples

<?php

return [

/*
|--
| Basic Configuration
|--

*/
'custom-value' => 'foo',
'enabled' => true,

// some other config params here...

You can access the respective configuration key like this:

$value = Config::get('{container-name}-container.custom-value'); // returns 'foo'
$value = config('{container-name}-container.custom-value'); // same, but
→˓using a function and not the Facade

$defaultValue = Config::get('{container-name}-container.unknown.key', 'defaultvalue');
→˓ // returns 'defaultvalue' as the key is not set!

32 Chapter 9. Configuration Files

CHAPTER 10

Controllers

Read from the Porto SAP Documentation (#Controllers).

10.1 Rules

• All APIController MUST extend from App\Ship\Parents\Controllers\ApiController.

• All WebController MUST extend from App\Ship\Parents\Controllers\WebController.

• Controllers SHOULD use the call() function to call an Action. Do not manually inject the Action and
invoke the run() method.

• Controllers SHOULD pass the Transporter object to the Action instead of passing data from the request.
The Transporter object can be derived from the Request. Transporters are the best classes to store
the state of the Request during its lifecycle.

10.2 Folder Structure

app
Containers

{container-name}
UI

API
Controllers

Controller.php
WEB

Controllers
Controller.php

33

https://github.com/Mahmoudz/Porto#Controllers

HiveApi Documentation, Release 1.0.0

10.3 Code Sample

Controller for the User Container (WEB)

<?php

class Controller extends WebController
{

public function sayWelcome()
{

return view('welcome');
}

}

Controller for the User Container (API)

<?php

class Controller extends ApiController
{

public function registerUser(RegisterUserRequest $request)
{

$user = Hive::call(RegisterUserAction::class, [$request->toTransporter()]);

return $this->transform($user, UserTransformer::class);
}

public function deleteUser(DeleteUserRequest $request)
{

$user = Hive::call(DeleteUserAction::class, [$request->toTransporter()]);

return $this->deleted($user);
}

}

Note that Actions are called by using Hive::call(), which automatically invokes the run() function in the
Action as well inform the action which UI called it, ($this->getUI()) in case you wanna handle the same
Action differently based on the UI type.

The second parameter of the call() function is an array of the Action parameters in order. When you need to pass
data to the Action, it is recommended to pass the Transporter object as it should be the place that holds the state
of your current request.

Refer to the Magical Call page for more info and examples on how to use the call() function.

10.3.1 Calling a Controller function from a Route file

<?php

$router->post('login', [
'uses' => 'Controller@loginUser',

]);

$router->post('logout', [
'uses' => 'Controller@logoutUser',
'middleware' => [

(continues on next page)

34 Chapter 10. Controllers

./../miscellaneous/magical-call.html

HiveApi Documentation, Release 1.0.0

(continued from previous page)

'api.auth',
],

]);

10.4 Controller Response Builder Helper Functions

Many helper function are there to help you build your Response faster, those helpers exist in the vendor/
hiveapi/core/src/Traits/ResponseTrait.php.

10.4.1 Some functions

transform() is the most useful function, which you will be using in most cases.

• First required parameter accepts data as object or Collection of objects.

• Second required parameter is the Transformer class to be applied.

• Third (optional) parameter take the includes that should be returned by the response ($availableIncludes and
$defaultIncludes in the Transformer class).

• Fourth (optional) parameter accepts meta data to be injected in the Response.

<?php
// $user is a User Object
return $this->transform($user, UserTransformer::class);

// $orders is a Collection of Order Objects
return $this->transform($orders, OrderTransformer::class, ['products', 'recipients',
→˓'store', 'invoice'], ['foo' => 'bar']);

withMeta allows including meta data in the response.

<?php
$metaData = ['total_credits', 10000];

return $this->withMeta($metaData)->transform($receipt, ReceiptTransformer::class);

json allows passing data (as array) to be represented as json.

<?php
return $this->json([

'foo' => 'bar'
]);

Other functions

• accepted

• deleted

• noContent

Some functions might not be documented here, so refer to the vendor/hiveapi/core/src/Traits/
ResponseTrait.php and check the public functions.

10.4. Controller Response Builder Helper Functions 35

HiveApi Documentation, Release 1.0.0

36 Chapter 10. Controllers

CHAPTER 11

Migration Files

Migration files (short name for Database Migration Files are the version control of your database. They are very useful
for generating and documenting the database tables.

11.1 Rules

• Migrations SHOULD be created inside the respective Containers.

• Migrations will be autoloaded by HiveApi

• There is no need to publish the Database Migrations yourself. Just run the artisan migrate command and
Laravel will read the Migrations from your Containers.

11.2 Structure

app
Containers

{container-name}
Data

Migrations
2200_01_01_000001_create_users_table.php
2200_01_02_000001_add_fields_to_users_table.php
...

11.3 Code Samples

Below is a code sample for the 2200_01_01_000001_create_users_table migration file.

37

HiveApi Documentation, Release 1.0.0

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateUsersTable extends Migration
{

public function up()
{

Schema::create('users', function (Blueprint $table) {
$table->increments('id');
$table->string('name');
$table->string('email')->unique();
$table->string('password');
$table->rememberToken();
$table->timestamps();
$table->softDeletes();

});
}

public function down()
{

Schema::drop('users');
}

}

For more information about the Database Migrations read the official Laravel Docs.

38 Chapter 11. Migration Files

https://laravel.com/docs/master/migrations

CHAPTER 12

Models

Read the official Porto SAP Documentation (#Models).

12.1 Rules

• All Models MUST extend from App\Ship\Parents\Models\Model.

• If the name of a model differs from the Container name you have to set the $container attribute in the
repository. More details can be found here.

12.2 Folder Structure

app
Containers

{container-name}
Models

User.php
Person.php

12.3 Code Sample

<?php

namespace App\Containers\Demo\Models;

use App\Ship\Parents\Models\Model;

class Demo extends Model

(continues on next page)

39

https://github.com/Mahmoudz/Porto#Models
./../components/repositories.html

HiveApi Documentation, Release 1.0.0

(continued from previous page)

{
protected $table = 'demos';

protected $fillable = [
'label',
'user_id'

];

protected $hidden = [
'token',

];

protected $casts = [
'total_credits' => 'float',

];

protected $dates = [
'created_at',
'updated_at',

];

public function user()
{

return $this->belongsTo(\App\Containes\User\Models\User::class);
}

}

Notice the Demo Model has a relationship with the User Model, which lives in another Container.

12.4 Casts

The $casts attribute can be used to cast any of the model’s attributes to a specific type when reading from and
writing to the database. In the shown code sample the total_credits is casted to float.

More information about the available cast-types can be found in the Laravel eloquent-mutators documentation.

Date values can be defined within the $dates array to be automatically parsed to a Carbon class.

40 Chapter 12. Models

https://laravel.com/docs/5.6/eloquent-mutators

CHAPTER 13

Repositories

The Repository classes are an implementation of the Repository Design Pattern. Their major roles are
separating the business logic from the data (or the data access Task). Repositories save and retrieve Models to/from
the underlying storage mechanism (i.e., databases).

The Repository is used to separate the logic that retrieves the data and maps it to a Model, from the business logic
that works on the Model.

13.1 Principles

• Every Model SHOULD have their own Repository.

• A Model SHOULD always get accessed through its Repository. You should never directly access the Model.

13.2 Rules

• All Repositories MUST extend from App\Ship\Parents\Repositories\Repository. Extending
from this class will give access to functions like find(), create(), update() and much more.

• The name of the Repository SHOULD be same like its Model name (Model: Foo -> Repository:
FooRepository).

• If a Repository belongs to a Model whose name is not equal to its Container name, then the Repository must set
the $container property manually like this: $container = 'ContainerName'.

13.3 Folder Structure

41

HiveApi Documentation, Release 1.0.0

app
Containers

{container-name}
Data

Repositories
UserRepository.php

13.4 Code Samples

Example for the UserRepository

<?php

namespace App\Containers\User\Data\Repositories;

use App\Containers\User\Contracts\UserRepositoryInterface;
use App\Containers\User\Models\User;
use App\Ship\Parents\Repositories\Repository;

class UserRepository extends Repository
{

protected $fieldSearchable = [
'name' => 'like',
'email' => '=',

];
}

13.4.1 Using the Repository

<?php

// paginate the data by 10
$users = $userRepository->paginate(10);

// search by 1 field
$cars = $carRepository->findByField('color', $color);

// searching multiple fields
$offer = $offerRepository->findWhere([

'offer_id' => $offer_id,
'user_id' => $user_id,

])->first();

13.4.2 Manually “linking” a Model and its Repository

If the Repository belongs to Model with a name different than its Container name, the Repository class of that Model
must manually set the property $container and define the Container name.

<?php

namespace App\Containers\Authorization\Data\Repositories;

(continues on next page)

42 Chapter 13. Repositories

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Ship\Parents\Repositories\Repository;

class RoleRepository extends Repository
{

protected $container = 'Authorization'; // the container name. Must be set when
→˓the model has different name than the container

protected $fieldSearchable = [
];

}

13.4.3 Other Properties:

API Query Parameters Property

To enable query parameters (?search=text, . . .) in your API you need to set the property $fieldSearchable
on the Repository class, to instruct the querying on your model.

<?php

protected $fieldSearchable = [
'name' => 'like',
'email' => '=',

];

All Other Properties

HiveApi uses the andersao/l5-repository package, to provide a lot of powerful features to the repository
class. To learn more about all the properties you can use, visit the andersao/l5-repository package docu-
mentation.

13.4. Code Samples 43

https://github.com/andersao/l5-repository
https://github.com/andersao/l5-repository

HiveApi Documentation, Release 1.0.0

44 Chapter 13. Repositories

CHAPTER 14

Routes

Read from the Porto SAP Documentation (#Routes).

14.1 Rules

• The API Routes files MUST be named according to their API version, exposure and functionality. Exam-
ples are CreateOrder.v1.public.php, FulfillOrder.v2.public.php, CancelOrder.v1.
private.php. . .

• Web Routes files are pretty similar to API route files but they can be named anything.

14.2 Folder Structure

app
Containers

{container-name}
UI

API
Routes

CreateItem.v1.public.php
DeleteItem.v1.public.php
CreateItem.v2.public.php
DeleteItem.v1.private.php
ApproveItem.v1.private.php

WEB
Routes

main.php
...

45

https://github.com/Mahmoudz/Porto#Routes

HiveApi Documentation, Release 1.0.0

14.2.1 API Routes

Example for the User Login API Endpoint

<?php

$router->post('/login', [
'uses' => 'Controller@loginUser',

]);

Example for a protected route to List All Users API Endpoint

<?php

$router->get('users', [
'uses' => 'Controller@listAllUsers',
'middleware' => [

'api.auth', // use the authentication middleware to protect this endpoint!
]

]);

14.2.2 Difference between Public & Private routes files

HiveApi has two different types of endpoints:

• Public (External) endpoints mainly provided for third parties clients, and

• Private (Internal) endpoints for your own applications.

This will help generating separate documentations for each type and keep your internal API endpoints private.

14.3 Web Routes

Example Endpoint to display a Hello View in the browser

<?php

$router->get('/hello', [
'uses' => 'Controller@sayHello',

]);

In all the Web Routes files the $router variable is an instance of the default Laravel Router
Illuminate\Routing\Router.

14.4 Protecting Endpoints:

Checkout the Authorization Page.

46 Chapter 14. Routes

./../features/authorization.html

CHAPTER 15

SubActions

Read from the Porto SAP Documentation (#Sub-Actions).

15.1 Rules

• All SubActions MUST extend from App\Ship\Parents\Actions\SubAction.

15.2 Folder Structure

app
Containers

{container-name}
Actions

ValidateAddressSubAction.php
BuildOrderSubAction.php
...

15.3 Code Sample

ValidateAddressSubAction

<?php

namespace App\Containers\Shipment\Actions;

use App\Containers\Recipient\Models\Recipient;
use App\Containers\Recipient\Tasks\UpdateRecipientTask;
use App\Containers\Shipment\Tasks\ValidateAddressWithEasyPostTask;

(continues on next page)

47

https://github.com/Mahmoudz/Porto#Sub-Actions

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Containers\Shipment\Tasks\ValidateAddressWithMelissaDataTask;
use App\Ship\Parents\Actions\SubAction;

class ValidateAddressSubAction extends SubAction
{

public function run(Recipient $recipient)
{

$hasValidAddress = true;

$easyPostResponse = Hive::call(ValidateAddressWithEasyPostTask::class, [
→˓$recipient]);

// ...
}

}

Heads up!

Every feature available for Actions, is also available for SubActions.

48 Chapter 15. SubActions

CHAPTER 16

Tasks

Read from the Porto SAP Documentation (#Tasks).

16.1 Rules

• All Tasks MUST extend from App\Ship\Parents\Tasks\Task.

16.2 Folder Structure

app
Containers

{container-name}
Tasks

ConfirmUserEmailTask.php
GenerateEmailConfirmationUrlTask.php
SendConfirmationEmailTask.php
ValidateConfirmationCodeTask.php
SetUserEmailTask.php
...

16.3 Code Sample

Simplified example for FindUserByIdTask:

<?php

namespace App\Containers\User\Tasks;

(continues on next page)

49

https://github.com/Mahmoudz/Porto#Tasks

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Containers\User\Data\Repositories\UserRepository;
use App\Ship\Exceptions\NotFoundException;
use App\Ship\Parents\Tasks\Task;
use Exception;

class FindUserByIdTask extends Task
{

private $userRepository;

public function __construct(UserRepository $userRepository)
{

$this->userRepository = $userRepository;
}

public function run($id)
{

try {
return $this->userRepository->find($id);

} catch (Exception $e) {
throw new NotFoundException();

}
}

}

16.3.1 Calling the Task from an Action

<?php

namespace App\Containers\User\Actions;

use App\Containers\User\Models\User;
use App\Containers\User\Tasks\FindUserByIdTask;
use App\Ship\Exceptions\NotFoundException;
use App\Ship\Parents\Actions\Action;
use App\Ship\Transporters\DataTransporter;
use HiveApi\Core\Foundation\Facades\Hive;

class FindUserByIdAction extends Action
{

public function run(DataTransporter $data): User
{

$user = Hive::call(FindUserByIdTask::class, [$data->id]);

return $user;
}

}

Note that the Task is called via the Hive Facade. All Controllers, Actions, Tasks and SubActions,
however, also implement the CallableTrait, which allows you to directly call() another class via
$this->call(Classname::class).

50 Chapter 16. Tasks

CHAPTER 17

Transformers

Read from the Porto SAP Documentation (#Transformers).

17.1 Rules

• All API responses MUST be formatted via a Transformer.

• Every Transformer SHOULD extend from App\Ship\Parents\Transformers\Transformer.

• Each Transformer MUST have a transform() function.

17.2 Folder Structure

app
Containers

{container-name}
UI

API
Transformers

UserTransformer.php

17.3 Code Samples

<?php

namespace App\Containers\Item\UI\API\Transformers;

use App\Containers\Item\Models\Item;

(continues on next page)

51

https://github.com/Mahmoudz/Porto#Transformers

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Ship\Parents\Transformers\Transformer;

class ItemTransformer extends Transformer
{

protected $availableIncludes = [
'images',

];

protected $defaultIncludes = [
'roles',

];

public function transform(Item $item)
{

$response = [
'object' => 'Item',
'id' => $item->getHashedKey(),
'name' => $item->name,
'description' => $item->description,
'price' => $item->price,
'weight' => $item->weight,
'created_at' => $item->created_at,
'updated_at' => $item->updated_at,

];

return $response;
}

public function includeImages(Item $item)
{

return $this->collection($item->images, new ItemImageTransformer());
}

public function includeRoles(User $user)
{

return $this->collection($user->roles, new RoleTransformer());
}

}

17.3.1 Using a Transformer to Return Data from a Controller

<?php

public function getAllClients(GetAllUsersRequest $request)
{

$users = Hive::call(GetAllClientsAction::class);

return $this->transform($users, UserTransformer::class);
}

You can even pass a Transformer object to the transform() method, like so:

<?php

(continues on next page)

52 Chapter 17. Transformers

HiveApi Documentation, Release 1.0.0

(continued from previous page)

public function getAllClients(GetAllUsersRequest $request)
{

$users = Hive::call(GetAllClientsAction::class);

$transformer = new MyCustomUserTransformer(true, 'foo', 4711);

return $this->transform($users, $transformer);
}

The parameters are passed to the Transformer via the __construct() constructor and can be used to
parametrize the actual transform() method (e.g., based on specific flags).

17.4 Relationships (Includes)

Loading relationships with the Transformer (calling other Transformers) can be done in 2 ways:

1. The Client can specify the relationships to be included via Query Parameters.

2. The Developer can define relationships to be automatically included.

17.4.1 Apply Relationships via Query Parameters

The clients can request data with their relationships directly when calling the API by adding the ?include=x query
parameter. The Transformer, in turn, needs to have the availableIncludes defined with their functions like this:

<?php

namespace App\Containers\Account\UI\API\Transformers;

use App\Ship\Parents\Transformers\Transformer;
use App\Containers\Account\Models\Account;
use App\Containers\Tag\Transformers\TagTransformer;
use App\Containers\User\Transformers\UserTransformer;

class AccountTransformer extends Transformer
{

protected $availableIncludes = [
'tags',
'user',

];

public function transform(Account $account)
{

return [
'id' => $account->id,
'url' => $account->url,
'username' => $account->username,
'secret' => $account->secret,
'note' => $account->note,

];
}

public function includeTags(Account $account)
{

(continues on next page)

17.4. Relationships (Includes) 53

HiveApi Documentation, Release 1.0.0

(continued from previous page)

return $this->collection($account->tags, new TagTransformer());
}

public function includeUser(Account $account)
{

return $this->item($account->user, new UserTransformer());
}

}

In order to get the Tags with the response when Accounts are requested, the clients needs to pass the ?
include=tags parameter with the GET request. To get Tags with User use the a comma separated list ?
include=tags,user.

17.4.2 Apply Relationships from Application Code

From the controller you can dynamically set the DefaultInclude:

<?php

public function getAllClients(GetAllUsersRequest $request)
{

$users = Hive::call(GetAllClientsAction::class);

return $this->transform($users, UserTransformer::class, ['tags', 'account']);
}

You need to have includeTags() and includeAccount() functions defined on the transformer. If you want
to include a relation with every response from this transformer you can define the relation directly in the transformer
by adding it to the $defaultIncludes.

<?php

protected $availableIncludes = [
'users',

];

protected $defaultIncludes = [
'tags',

];

// ..

17.5 Helper Functions for Transformers

• user() : returns the currently authenticated User.

• ifAdmin($adminResponse, $clientResponse) : merges normal client response with the admin
extra or modified results, when current authenticated user is an admin user.

For more information about the Transformers read the official package documentation.

54 Chapter 17. Transformers

http://fractal.thephpleague.com/transformers/

CHAPTER 18

Transporters

Transporters is a name chosen by HiveApi for DTO’s (Data Transfer Objects). The latter are used to pass user data
(coming from Requests, Commands, or other components) from one place to another (Actions to Tasks /
Controller to Action / Command to Action / . . .).

They are very useful for reducing the number of parameters in functions, which prevents the duplication of long
parameters.

HiveApi relies on this third-party package as DTO. Refer to the dto package wiki for more details.

18.1 Rules

• All Transporters MUST extend from App\Ship\Parents\Transporters\Transporter.

18.2 Folder Structure

app
Containers

{container-name}
Data

Transporters
CreateUserTransporter.php

18.3 Code Sample

<?php

namespace App\Containers\Authentication\Transporters;

(continues on next page)

55

https://github.com/fireproofsocks/dto
https://github.com/fireproofsocks/dto/wiki

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Ship\Parents\Transporters\Transporter;

class ProxyApiLoginTransporter extends Transporter
{

/**
* @var array

*/
protected $schema = [

'properties' => [
'email',
'password',
'client_id',
'client_password',
'grant_type',
'scope',

],
'required' => [

'email',
'password',
'client_id',
'client_password',

],
'default' => [

'scope' => '',
]

];
}

18.3.1 Using a Transporter within a Controller

Normally you would use it like this

<?php
$dataTransporter = new DataTransporter($request);
$dataTransporter->bearerToken = $request->bearerToken();

Hive::call(ApiLogoutAction::class, [$dataTransporter]);

Since this example above has some required data, that data must be sent to the constructor:

<?php
$dataTransporter = new ProxyApiLoginTransporter(

array_merge($request->all(), [
'client_id' => Config::get('authentication-container.clients.web.admin.

→˓id'),
'client_password' => Config::get('authentication-container.clients.web.admin.

→˓secret')
])

);

$result = Hive::call(ProxyApiLoginAction::class, [$dataTransporter]);

56 Chapter 18. Transporters

HiveApi Documentation, Release 1.0.0

18.3.2 Creating a Transporter for Tests

<?php

$data = [
'foo' => 'bar'

];

$transporter = new DataTransporter($data);
$action = App::make(RegisterUserAction::class);

$user = $action->run($transporter);

18.4 Automatically Transforming a Request to a Transporter

If you want to directly transform a Request to a Transporter you can simply call

$transporter = $request->toTransporter();

This method does take the protected $transporter of the Request class into account. If none is defined, a
regular DataTransporter will be created.

Note, that $transporter will now have all fields from $request - so you can directly access them. In order to
do so, you can call:

<?php
// "simple" access via direct properties
$name = $transporter->name;

// complex access via method
$username = $transporter->getInputByKey('your.nested.username.field');

Of course, you can also “sanitize” the data, like you would have done in the Request classes by using
sanitizeData(array). Finally, if you need to access the original Request object, you can access it via

$originalRequest = $transporter->request;

18.5 Data Access

18.5.1 Set Data

You can set data of a Transporter in many ways

$dataTransporter = new DataTransporter($request);
$dataTransporter->bearerToken = $request->bearerToken();

If the data is defined as required like this on the Transporter:

<?php
protected $schema = [

'type' => 'object',
'properties' => [

(continues on next page)

18.4. Automatically Transforming a Request to a Transporter 57

HiveApi Documentation, Release 1.0.0

(continued from previous page)

'email',
'password',
'clientId',
'clientPassword',

],
'required' => [

'email',
'password',
'clientId',
'clientPassword',

],
];

Then can set data on the Transporter like this:

$dataTransporter = new ProxyApiLoginTransporter(
array_merge($request->all(), [

'clientId' => Config::get('authentication-container.clients.web.admin.id
→˓'),

'clientPassword' => Config::get('authentication-container.clients.web.admin.
→˓secret')

])
);

18.5.2 Get Data

To get all data from the Transporter you can call $data->toArray() or $data->toJson(). There are many
other functions on the class. To get specific data just call the data name, as you would when accessing data from a
Request object $data->username.

18.6 Instance Access

18.6.1 Set Instances

Passing Objects does not work, because the third-party package cannot hydrate it. In order to pass an instances from
one place to another within a Transporter object, you can do the following:

$transporter = new DataTransporter();
$transporter->setInstance("command_instance", $this);

Heads up!

Although you can set instances this way, they do not appear when calling toArray() or other similar
functions, since they cannot be hydrated. See below how you can get the instance form the Transporter
object.

18.6.2 Get Instances

$console = $data->command_instance;

58 Chapter 18. Transporters

CHAPTER 19

Views

Read from the Porto SAP Documentation (#Views).

19.1 Rules

• Views SHOULD be created inside the containers and, in turn, will be automatically available for use in the
WebControllers.

• All Views are automatically namespaced with the lowercase name of the container.

19.2 Folder Structure

app
Containers

{container-name}
UI

WEB
Views

welcome.blade.php
profile.blade.php

19.3 Code Sample

Take a look at the Welcome page, that looks like this (simplified example!)

<!DOCTYPE html>
<html>
<head>

(continues on next page)

59

https://github.com/Mahmoudz/Porto#Views

HiveApi Documentation, Release 1.0.0

(continued from previous page)

<title>Welcome</title>
</head>
<body>
<div class="container">

<div class="content">
<div class="title">Welcome</div>

</div>
</div>
</body>
</html>

This view can be used within a WebController like this:

<?php

namespace App\Containers\Welcome\UI\WEB\Controllers;

use App\Ship\Parents\Controllers\WebController;

class Controller extends WebController
{

public function sayWelcome()
{

return view('welcome');
}

}

19.4 Namespaces

By default all the views are namespaced to the lowercase name of their respective container. For exam-
ple, if a Container is named Store and has a View product-details, you can access the view like this
view('store::product-details'). If you try to access a view without the namespace (for example
view('just-welcome')), it will not find your view.

60 Chapter 19. Views

CHAPTER 20

Commands

A command

• is a Laravel artisan command. Laravel has it’s own default commands and you create your own application-
specific commands as well.

• provides a way to interact with the Laravel application.

• can be scheduled by a Task scheduler, like CronJob or by the Laravel built in wrapper of the Cron Job “laravel
scheduler”.

• could be Closure based or Class based.

• “dispatch” is the term that is usually used to call a Command.

20.1 Principles

• Containers MAY or MAY NOT have one or more Commands.

• Every Command SHOULD call an Action to perform its job.

• Commands itself SHOULD NOT contain any business logic.

• The Ship layer MAY contain application wide commands.

20.2 Rules

• All Commands MUST extend from App\Ship\Parents\Commands\ConsoleCommand.

61

HiveApi Documentation, Release 1.0.0

20.3 Folder Structure

app
Containers

{container-name}
UI

CLI
Commands

SayHelloCommand.php
...

Ship
Commands

GeneralCommand.php
...

20.4 Code Samples

<?php

namespace App\Containers\Welcome\UI\CLI\Commands;

use App\Ship\Parents\Commands\ConsoleCommand;

class SayHelloCommand extends ConsoleCommand
{

protected $signature = 'hive:welcome';

protected $description = 'Just saying "Hi"';

public function handle()
{

$this->info('Welcome to HiveApi'); // green color
$this->line('Welcome to HiveApi'); // normal color

}
}

20.4.1 Calling a Command from the Console

You can call your custom commands like any other artisan command:

php artisan hive:welcome

20.4.2 Calling a Command from your Application

You can call a command from your own application code like this:

<?php
Artisan::call('hive:welcome');

62 Chapter 20. Commands

HiveApi Documentation, Release 1.0.0

20.4.3 Schedule Commands Execution

To schedule the execution of a Command checkout the Tasks Scheduling page.

20.5 Define Consoles Routes

To define Console route go to app/Ship/Commands/Routes.php.

20.5. Define Consoles Routes 63

./../miscellaneous/tasks-scheduling.html

HiveApi Documentation, Release 1.0.0

64 Chapter 20. Commands

CHAPTER 21

Criteria

Criteria are classes used to hold and apply query condition when retrieving data from the database through a
Repository. Without using a Criteria class, you can add your query conditions to a Repository or to a Model
as scope. However, by using Criteria, your query conditions can be shared across multiple Models and Repositories.
It allows you to define the query condition once and use it anywhere in the App.

21.1 Principles

• Every Container MAY have its own Criteria. However, shared Criteria SHOULD be created in the Ship layer.

• A Criteria MUST NOT contain any extra code, if it needs data, the data SHOULD be passed to it from the
Action or Task. It SHOULD NOT run (i.e., execute) any Task for data.

21.2 Rules

• All Criteria MUST extend from App\Ship\Parents\Criterias\Criteria.

• Every Criteria SHOULD have an apply() function.

• A simple query condition example "where user_id = $id", this can be named ThisUserCriteria,
and used with all Models who has relations with the User Model.

21.3 Folder Structure

app
Containers

{container-name}
Data

Criterias

(continues on next page)

65

HiveApi Documentation, Release 1.0.0

(continued from previous page)

ColourRedCriteria.php
RaceCarsCriteria.php
...

Ship
Criterias

Eloquent
CreatedTodayCriteria.php
NotNullCriteria.php
...

21.4 Code Samples

Example for a shared Criteria (in the Ship layer)

<?php

namespace App\Ship\Criterias\Eloquent;

use App\Ship\Parents\Criterias\Criteria;
use Prettus\Repository\Contracts\RepositoryInterface as PrettusRepositoryInterface;

class NotNullCriteria extends Criteria
{

private $field;

public function __construct($field)
{

$this->field = $field;
}

public function apply($model, PrettusRepositoryInterface $repository)
{

return $model->whereNotNull($this->field);
}

}

21.4.1 Calling a Criteria from within a Task

<?php

public function run()
{

$this->userRepository->pushCriteria(new NotNullCriteria('email'));

return $this->userRepository->paginate();
}

For more information about Criteria read the official package documentation.

66 Chapter 21. Criteria

https://github.com/andersao/l5-repository#create-a-criteria

CHAPTER 22

Events

Events

• provide a simple Observer implementation, allowing you to subscribe and listen for various events that occur
in your application.

• are classes that can be fired from anywhere in your application.

• will usually be bound to one or many Events Listeners classes or has those Listeners registered to listen
to it.

• “fire” is the term that is usually used to call an Event.

More details can be found at the official Laravel documentation.

22.1 Principles

• Events CAN be fired from Actions or Tasks. They are preferable to choose one place only (Tasks are
recommended).

• Events SHOULD be created inside the Containers. However, generic Events CAN be created in the Ship layer.

22.1.1 Rules

• All Events MUST extend from App\Ship\Parents\Events\Event.

22.1.2 Folder Structure

app
Containers

{container-name}
Events

(continues on next page)

67

https://laravel.com/docs/events

HiveApi Documentation, Release 1.0.0

(continued from previous page)

SomethingHappenedEvent.php
Listeners

ListenToMusicListener.php
Ship

Events
GlobalStateChanged.php
SomethingBigHappenedEvent.php

22.2 Enabling Events

Before you can use events you need to add the EventServiceProvider to the MainServiceProvider of
the Ship (if this has not been registered so far). See example below.

<?php

namespace App\Containers\Car\Providers;

class MainServiceProvider extends MainProvider
{

/**
* Container Service Providers.

* @var array

*/
public $serviceProviders = [

EventServiceProvider::class,
];

// ...
}

22.3 Usage

In Laravel you can create and register events in multiple way. Below is an example of an Event that handles itself.

<?php

namespace App\Containers\User\Events;

use App\Containers\User\Models\User;
use App\Ship\Parents\Events\Event;
use Illuminate\Broadcasting\PrivateChannel;
use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Support\Facades\Log;

class UserRegisteredEvent extends Event implements ShouldQueue
{

protected $user;

public function __construct(User $user)
{

(continues on next page)

68 Chapter 22. Events

HiveApi Documentation, Release 1.0.0

(continued from previous page)

$this->user = $user;
}

public function handle()
{

Log::info('New User registration. ID = ' . $this->user->getHashedKey() . ' |
→˓Email = ' . $this->user->email . '.');

// ...
}

public function broadcastOn()
{

return new PrivateChannel('channel-name');
}

}

You will get more benefits creating Events Listeners for each Event. To do this you will need to extend this
EventsProvider HiveApi\Core\Abstracts\Providers\EventsProvider.

Your custom EventServiceProvider needs to be registered in the containers MainServiceProvider as
well.

<?php

namespace App\Containers\Car\Providers;

use App\Ship\Parents\Providers\MainProvider;

/**
* Class MainServiceProvider.

* The Main Service Provider of this container, it will be automatically registered
→˓in the framework.

*/
class MainServiceProvider extends MainProvider
{

/**
* Container Service Providers.

* @var array

*/
public $serviceProviders = [

EventServiceProvider::class,
];

// ...
}

22.3.1 Dispatch Events

You can dispatch an Event from anywhere you want (ideally from Actions and Tasks). Consider the following
example for dispatching the Event class from the example above.

<?php

// using helper function

(continues on next page)

22.3. Usage 69

HiveApi Documentation, Release 1.0.0

(continued from previous page)

event(New UserEmailChangedEvent($user));

// manually
\App::make(\Illuminate\Contracts\Bus\Dispatcher\Dispatcher::class)->dispatch(New
→˓UserEmailChangedEvent($user));

22.3.2 Queueing an Event

Events can implement Illuminate\Contracts\Queue\ShouldQueue to be queued.

22.3.3 Handling an Event

You can handle jobs on dispatching an event. To do so you need to implement one of the following interfaces:

• HiveApi\Core\Abstracts\Events\Interfaces\ShouldHandleNow

• HiveApi\Core\Abstracts\Events\Interfaces\ShouldHandle

This will force you to implement the handle method and will make HiveApi execute the method upon dispatching
the event.

• The ShouldHandleNow Interface will make the event execute the handle method as soon as the event gets
dispatched.

• The ShouldHandle Interface will create an event job and execute the handle method async (through Laravel
jobs).

<?php

namespace App\Containers\Example\Events;

use HiveApi\Core\Abstracts\Events\Interfaces\ShouldHandle;
use App\Ship\Parents\Events\Event;

class ExampleEvent extends Event implements ShouldHandle
{

/**
* If ShouldHandle interface is implemented this variable

* sets the time (in seconds or timestamp) to wait before a job is executed

*
* @var \DateTimeInterface|\DateInterval|int|null $jobDelay

*/
public $jobDelay = 60;

/**
* If ShouldHandle interface is implemented this variable

* sets the name of the queue to push the job on

*
* @var string $jobQueue

*/
public $jobQueue = "example_queue";

public function handle()
{

// Do some handling here

(continues on next page)

70 Chapter 22. Events

HiveApi Documentation, Release 1.0.0

(continued from previous page)

}
}

22.3.4 Broadcasting

To define Broadcasting route go to app/Ship/Boardcasts/Routes.php.

22.3. Usage 71

HiveApi Documentation, Release 1.0.0

72 Chapter 22. Events

CHAPTER 23

Exceptions

Exceptions are classes the handles errors, and helps developers debug their code in a more efficient way.

23.1 Principles

• Exceptions CAN be thrown from anywhere in the application.

• Exceptions SHOULD be created inside the Containers. However, generic Exceptions CAN be created in the
Ship layer.

23.2 Rules

• All Exceptions MUST extend App\Ship\Parents\Exceptions\Exception.

• Shared (generic) Exceptions between all Containers SHOULD be created in the Ship (i.e., app/Ship/
Exceptions/*).

• Every Exception SHOULD have two properties httpStatusCode and message. Both properties will be
displayed when an error occurs. You can override those values while throwing the error.

23.3 Folder Structure

app
Containers

{container-name}
Exceptions

AccountFailedException.php
Ship

Exceptions

(continues on next page)

73

HiveApi Documentation, Release 1.0.0

(continued from previous page)

IncorrectIdException.php
InternalErrorException.php

23.4 Code Samples

<?php

namespace App\Containers\User\Exceptions;

use App\Ship\Parents\Exceptions\Exception;
use Symfony\Component\HttpFoundation\Response;

class AccountFailedException extends Exception
{

public $httpStatusCode = Response::HTTP_CONFLICT;

public $message = 'Failed creating new User.';

public $code = 4711;
}

<?php

namespace App\Ship\Exceptions;

use App\Ship\Parents\Exceptions\Exception;
use Symfony\Component\HttpFoundation\Response as SymfonyResponse;

class InternalErrorException extends Exception
{

public $httpStatusCode = SymfonyResponse::HTTP_INTERNAL_SERVER_ERROR;

public $message = 'Something went wrong!';
}

You can also add custom data to your Exception.

<?php

namespace App\Ship\Exceptions;

use App\Ship\Parents\Exceptions\Exception;
use Symfony\Component\HttpFoundation\Response as SymfonyResponse;

class AwesomeExceptionWithCustomData extends Exception
{

public $httpStatusCode = SymfonyResponse::HTTP_INTERNAL_SERVER_ERROR;

public $message = 'Something went wrong!';

public $code = 1234;

/*
(continues on next page)

74 Chapter 23. Exceptions

HiveApi Documentation, Release 1.0.0

(continued from previous page)

* Everything you add here will be automatically added to the ExceptionFormatter
→˓on the top level!

* You can define any structure you want or maybe include translated messages

*/
public function addCustomData() {

return [
'title' => 'nice',
'description' => 'one fancy description here',
'foo' => true,
'meta' => [

'bar' => 1234,
]

];
}

}

23.4.1 Throwing an Exception in your Application

<?php

throw new AccountFailedException();

23.5 Usage

23.5.1 With Log for Debugging:

<?php

throw (new AccountFailedException())->debug($e); // debug() accepts string or
→˓\Exception instance

23.5.2 Overriding the default message:

<?php

throw new AccountFailedException('I am the message to be displayed for the user');

23.5.3 Overwriting pre-set Custom Data

<?php

throw (new AwesomeExceptionWithCustomData())->overrideCustomData(['foo' => 'bar']);

23.5. Usage 75

HiveApi Documentation, Release 1.0.0

23.6 Application Error Codes

HiveApi provides a convenient way to manage all application error codes in one place. Therefore, HiveApi
provides, amongst others, the \App\Ship\Exceptions\Codes\ApplicationErrorCodesTable class,
which already holds various information for multiple errors.

Thereby, one error look like this:

<?php
const BASE_GENERAL_ERROR = [

'code' => 1001,
'title' => 'Unknown / Unspecified Error.',
'description' => 'Something unexpected happened.',

];

Note that the code is used to be sent back to the client. The title and description, however, can be used
to automatically generate a documentation regarding all defined error codes and their meaning. Please note that this
feature is currently not implemented but will be added later on.

23.6.1 Linking Exceptions and Error Codes

In order to link an error code to an Exception, you simply need override the useErrorCode() method of
the Exception.

Consider the following example:

<?php
class InternalErrorException extends Exception
{

public $httpStatusCode = SymfonyResponse::HTTP_INTERNAL_SERVER_ERROR;

public $message = 'Something went wrong!';

public $code = 4711; // this code will be overwritten by the useErrorCode()
→˓method!

public function useErrorCode()
{

return ApplicationErrorCodes::BASE_INTERNAL_ERROR;
}

}

Please note that already defined $code values may be overwritten by the useErrorCode() method! Furthermore,
this feature is completely optional - you may still use the known public $code = 4711; approach to manually
set an error code.

23.6.2 Defining Own Error Code Tables

Of course, HiveApi allows you to define your own CustomErrorCodesTable. In fact, there already exists such
a file where you can define your own error codes. Please note that the ApplicationErrorCodesTable may be
adapted by HiveApi - the others will not.

If you like to split the errors in various files, you can easily create a UserErrorCodesTable in respective names-
pace and define the errors accordingly. However, you need to manually “register” this code table. This can be achieved
in the ErrorCodeManager::getCodeTables() method.

76 Chapter 23. Exceptions

HiveApi Documentation, Release 1.0.0

Now you can easily use your UserErrorCodesTable::USER_NOT_VERIFIED error in your Exception
class.

23.6. Application Error Codes 77

HiveApi Documentation, Release 1.0.0

78 Chapter 23. Exceptions

CHAPTER 24

Exception Formatters

In HiveApi you can format any Exception response the way you want, by using the ExceptionFormatters.
They act similar as Transformers but work on Exception instead of “normal” objects.

HiveApi uses Heimdal, which allows you to format your API exceptions responses using Formatter classes. For more
details visit the official package documentation.

By default, HiveApi provides some basic ExceptionFormatters for outputting Exceptions in an appropriate
format. These Formatters, however, can by modified to your specific needs. For example, in case using the JSON
API payloads, you may change the provided formatters to return JSON API Error response.

24.1 Rules

• All Formatters MUST extend from HiveApi\Core\Exceptions\Formatters\ExceptionsFormatter.

24.2 Folder Structure

app
Ship

Exceptions
Formatters

HttpExceptionFormatter.php
ExceptionFormatter.php
- ...

24.3 Code Sample

79

./../components/transformers.html
https://github.com/esbenp/heimdal
https://github.com/esbenp/heimdal
http://jsonapi.org/format/#error-objects

HiveApi Documentation, Release 1.0.0

<?php

namespace App\Ship\Exceptions\Formatters;

use HiveApi\Core\Exceptions\Formatters\ExceptionsFormatter as CoreExceptionsFormatter;
use Exception;
use Illuminate\Http\JsonResponse;

class AuthorizationExceptionFormatter extends CoreExceptionsFormatter
{

CONST STATUS_CODE = 403;

public function responseData(Exception $exception, JsonResponse $response)
{

return [
'code' => $exception->getCode(),
'message' => $exception->getMessage(),
'errors' => 'You have no access to this resource!',
'status_code' => self::STATUS_CODE,

];
}

function modifyResponse(Exception $exception, JsonResponse $response)
{

return $response;
}

public function statusCode()
{

return self::STATUS_CODE;
}

}

• The responseData() is where you format the response. This is similar to the transform() function in
Transformers.

• The STATUS_CODE is the status code which will be sent in header. (status_code could be the same as the
header code).

• The modifyResponse() allows you to alter the response when needed. Example:

<?php

public function modifyResponse(Exception $exception, JsonResponse $response)
{

// append exception headers to the response headers.
if (count($headers = $exception->getHeaders())) {

$response->headers->add($headers);
}

return $response;
}

80 Chapter 24. Exception Formatters

HiveApi Documentation, Release 1.0.0

24.4 Creating Your Own Formatter

You can create and add your own Formatters (or override existing ones) at any time. All Formatters live in App/
Ship/Exceptions/Formatters. By default, HiveApi provides formatters to format basic Exceptions (or HTTP
Exceptions) as well as “common” Exceptions like AuthenticationException and so on.

24.4.1 Registering Your Formatters

In order to inform HiveApi to use your new AwesomeExceptionFormatter you need to register it. This
can be done in the App/Ship/Configs/optimus.heimdal.php configuration file. Take a look at the
optimus.heimdal.formatters key. This array defines a key-value list that declares a mapping between an
Exception class and the corresponding Formatter.

Say, you want to register your newly created AwesomeExceptionFormatter for all HttpExceptions
add a new line to the top of this array, like so:

'formatters' => [
SymfonyException\HttpException::class =>

→˓\Your\Custom\Namespace\AwesomeExceptionFormatter::class,

// the already defined exception formatters from HiveApi
// ...

]

Please note that the order of the formatters matter. When throwing an Exception with throw new
XException() the first Formatter that matches respective criteria is used to format the Exception. In the re-
spective example, your newly created AwesomeExceptionFormatter would be applied to format and output the
Exception to the client.

24.4. Creating Your Own Formatter 81

HiveApi Documentation, Release 1.0.0

82 Chapter 24. Exception Formatters

CHAPTER 25

Factories

Factories (short name for Models Factories) are used to generate fake data with the help of Faker to be used for
testing purposes. Factories are mainly used from Tests.

25.1 Rules

• Factories SHOULD be created in the containers.

• A Factory is just a plain PHP script. There are no classes or namespaces required.

25.2 Folder Structure

app
Containers

{container-name}
Data

Factories
UserFactory.php
...

25.3 Code Samples

<?php

// User
$factory->define(App\Containers\User\Models\User::class, function (Faker\Generator
→˓$faker) {

return [

(continues on next page)

83

HiveApi Documentation, Release 1.0.0

(continued from previous page)

'name' => $faker->name,
'email' => $faker->email,

];
});

25.3.1 Calling the Factory from a Test Class

<?php

// creating 4 users
factory(User::class, 4)->create();

25.3.2 Example with Relationships

<?php

$countries = Country::all();

// creating 3 rewards and attaching country relation to them
$rewards = factory(Reward::class, 3)->make()->each(function ($reward) use (
→˓$countries) {

$reward->save();
$reward->countries()->attach([$countries->random(1)->id, $countries->random(1)->

→˓id]);
$reward->save();

});

Use make instance of create() and pass any data you want, then save() after establishing the relationship.

25.3.3 Usage while overriding some values

<?php

// creating single Offer and setting a user id
$offer = factory(Offer::class)->make();
$offer->user_id = $user->id;
$offer->save();

// ANOTHER EXAMPLE:
// creating multiple Accounts
$users = factory(Account::class, 3)->make()->each(function ($account) use ($user) {

$account->user_id = $user->id;
$account->save();

});

For more information about the Model Factories read the official Laravel documentation.

84 Chapter 25. Factories

https://laravel.com/docs/master/testing#model-factories

CHAPTER 26

Jobs

A Job

• is a simple class that can execute one specific task.

• is a name given to a class that is usually created to be queued (its execution is usually deferred for later, after
the execution of previous Jobs are completed).

• can be scheduled to be executed later by a queuing mechanism (queue system like beanstalkd).

• class is dispatched, it performs its specific job and dies.

• Laravel’s queue worker will process every Job as it is pushed onto the queue.

More information can be found in the official Laravel documentation.

26.1 Rules

• All Jobs MUST extend from App\Ship\Parents\Jobs\Job.

• A Container MAY have more than one Job.

26.2 Folder Structure

app
Containers

{container-name}
Jobs

DoSomethingJob.php
DoSomethingElseJob.php

85

https://laravel.com/docs/queues

HiveApi Documentation, Release 1.0.0

26.3 Code Samples

CreateAndValidateAddressJob

<?php

namespace App\Containers\Shipment\Jobs;

use App\Port\Job\Abstracts\Job;

class CreateAndValidateAddressJob extends Job
{

private $recipients;

public function __construct(array $recipients)
{

$this->recipients = $recipients;
}

public function handle()
{

foreach ($this->recipients as $recipient) {
// do whatever you like

}
}

}

26.3.1 Calling a Job from an Action

<?php

// using helper function
dispatch(new CreateAndValidateAddressJob($recipients));

// manually
App::make(\Illuminate\Contracts\Bus\Dispatcher\Dispatcher::class)->dispatch(new
→˓CreateAndValidateAddressJob($recipients));

26.3.2 Execute Jobs

For running your Jobs checkout the Tasks Queuing page.

86 Chapter 26. Jobs

./../miscellaneous/tasks-queuing.html

CHAPTER 27

Languages

Languages are not real components, but rather serve as additional resources to a specific container. More specifically,
these files hold translations.

27.1 Rules

• Language files CAN be placed inside the containers. However, the default laravel resources/lang lan-
guages files are still loaded and can be used as well.

• All translations are automatically namespaced as the lowercase name of the container.

27.2 Folder Structure

app
Containers

{container-name}
Resources

Languages
en

messages.php
users.php

de
messages.php
users.php

27.3 Usage

To get a translation from a specific container, call it like this:

87

HiveApi Documentation, Release 1.0.0

<?php

trans('welcome::messages.headline.title');

where welcome is the name of the container to search for the localization file, messages is the actual file to search
for, and headline.title is the localization key to be resolved within this file.

For more info about the localization checkout the Localization page.

88 Chapter 27. Languages

./../features/localization.html

CHAPTER 28

Mails

The Mail component allows you to define an email and send it whenever needed. For more details refer to the offiicial
Laravel documentation.

28.1 Principles

• Containers MAY or MAY NOT have one or more Mail.

• The Ship MAY contain general Mails.

28.2 Rules

• All Notifications MUST extend from App\Ship\Parents\Mails\Mail.

• Email Templates must be placed inside the Mails/Templates directory within the container (i.e., app/
Containers/{container}/Mails/Templates).

28.3 Folder Structure

app
Containers

{container-name}
Mails

UserRegisteredMail.php
Templates

user-registered.blade.php
Ship

Mails
SomeMail.php

(continues on next page)

89

https://laravel.com/docs/mail
https://laravel.com/docs/mail

HiveApi Documentation, Release 1.0.0

(continued from previous page)

Templates
some-template.blade.php

28.4 Code Samples

<?php

namespace App\Containers\User\Mails;

use App\Containers\User\Models\User;
use Illuminate\Bus\Queueable;
use App\Ship\Parents\Mails\Mail;
use Illuminate\Contracts\Queue\ShouldQueue;

class UserRegisteredMail extends Mail implements ShouldQueue
{

use Queueable;

protected $user;

public function __construct(User $user)
{

$this->user = $user;
}

public function build()
{

return $this->view('user::user-registered')
->to($this->user->email, $this->user->name)
->with([

'name' => $this->user->name,
]);

}
}

28.4.1 Sending the Mail from an Action

Notifications can be sent from Actions or Tasks using Laravels Mail Facade.

Mail::send(new UserRegisteredMail($user));

28.5 Email Templates

Templates should be placed inside the Mails/Templates folder. To access a Mail template (i.e., same as loading
a view) you must call the container name then the view name.

In the example below we are using the user-registered.blade.php template in the User Container.

$this->view('user::user-registered')

90 Chapter 28. Mails

HiveApi Documentation, Release 1.0.0

28.6 Configure Emails

Open the .env file and set the FROM_MAIL_ADDRESS and MAIL_FROM_NAME keys. These keys, in turn, will be
used globally whenever the from function is not called in the Mail.

MAIL_FROM_ADDRESS=support@example.com
MAIL_FROM_NAME="Support"

To use different email address in some classes, simply add ->to($this->email, $this->name) to the
build function in your Mail class.

By default HiveApi is configured to use Log Driver MAIL_DRIVER=log, you can change that from the .env file.

28.7 Queueing Notifications for Later Use

To queue a notification you should use Illuminate\Bus\Queueable and implement
Illuminate\Contracts\Queue\ShouldQueue.

28.6. Configure Emails 91

HiveApi Documentation, Release 1.0.0

92 Chapter 28. Mails

CHAPTER 29

Middlewares

Middleware provide a convenient mechanism for filtering and manipulating HTTP Requests entering your applica-
tion or Responses sent back to the client. You can read more about middlewares in the official Laravel documenta-
tion.

29.1 Principles

• In HiveApi there are two types of middlewares: General (applied to all the endpoints by default) and Endpoint
Middlewares (applied to specific endpoints).

• The Middlewares CAN be placed in Ship layer or the Container layer depend on their roles.

29.2 Rules

• If the Middleware is placed inside a Container it MUST be registered inside that Container.

• To register Middlewares in a Container the container needs to have a MiddlewareServiceProvider. And
like all other Container Providers it MUST be registered in the MainServiceProvider of that Container.

• General Middlewares (like some default Laravel Middlewares) SHOULD live in the Ship layer app/Ship/
Middlewares/* and are registered in the Ship main ServiceProvider.

• Third-Party packages Middleware CAN be registered in Containers or on the Ship layer (wherever they make
more sense).

For example, The jwt.auth middleware “provided by the JWT package” is registered in the Authentication Con-
tainer (Containers/Authentication/Providers/MiddlewareServiceProvider.php).

93

https://laravel.com/docs/middleware
https://laravel.com/docs/middleware

HiveApi Documentation, Release 1.0.0

29.3 Folder Structure

app
Containers

{container-name}
Middlewares

WebAuthentication.php
Ship

Middleware
Http

EncryptCookies.php
VerifyCsrfToken.php

29.4 Code Sample

<?php

namespace App\Containers\Authentication\Middlewares;

use App\Ship\Engine\Butlers\Facades\ContainersButler;
use App\Ship\Parents\Middlewares\Middleware;
use Closure;
use Illuminate\Contracts\Auth\Guard;
use Illuminate\Http\Request;

class WebAuthentication extends Middleware
{

protected $auth;

public function __construct(Guard $auth)
{

$this->auth = $auth;
}

public function handle(Request $request, Closure $next)
{

if ($this->auth->guest()) {
return response()->view(ContainersButler::getLoginWebPageName(), [

'errorMessage' => 'Credentials Incorrect.'
]);

}

return $next($request);
}

}

29.4.1 Registering a Middleware within a Container

<?php

namespace App\Containers\Authentication\Providers;

(continues on next page)

94 Chapter 29. Middlewares

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Containers\Authentication\Middlewares\WebAuthentication;
use App\Ship\Parents\Providers\MiddlewareProvider;
use Tymon\JWTAuth\Middleware\GetUserFromToken;
use Tymon\JWTAuth\Middleware\RefreshToken;

class MiddlewareServiceProvider extends MiddlewareProvider
{

protected $middleware = [
];

protected $middlewareGroups = [
'web' => [
],

'api' => [
],

];

protected $routeMiddleware = [
'jwt.auth' => GetUserFromToken::class,
'jwt.refresh' => RefreshToken::class,
'auth:web' => WebAuthentication::class,

];

public function boot()
{

$this->loadContainersInternalMiddlewares();
}

}

29.4.2 Registering a Middleware within the Ship

<?php

namespace App\Ship\Kernels;

use App\Ship\Middlewares\Http\ProcessETagHeadersMiddleware;
use App\Ship\Middlewares\Http\ProfilerMiddleware;
use App\Ship\Middlewares\Http\ValidateJsonContent;
use Illuminate\Foundation\Http\Kernel as LaravelHttpKernel;

class HttpKernel extends LaravelHttpKernel
{

/**
* The application's global HTTP middleware stack.

* These middleware are run during every request to your application.

*
* @var array

*/
protected $middleware = [

// Laravel middleware's
\Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,
\Illuminate\Foundation\Http\Middleware\ValidatePostSize::class,
\Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull::class,
\App\Ship\Middlewares\Http\TrimStrings::class,

(continues on next page)

29.4. Code Sample 95

HiveApi Documentation, Release 1.0.0

(continued from previous page)

\App\Ship\Middlewares\Http\TrustProxies::class,

// CORS package middleware
\Barryvdh\Cors\HandleCors::class,

];

/**
* The application's route middleware groups.

*
* @var array

*/
protected $middlewareGroups = [

'web' => [
\App\Ship\Middlewares\Http\EncryptCookies::class,
\Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,
\Illuminate\Session\Middleware\StartSession::class,
\Illuminate\View\Middleware\ShareErrorsFromSession::class,
\App\Ship\Middlewares\Http\VerifyCsrfToken::class,
\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

'api' => [
ValidateJsonContent::class,
'bindings',
ProcessETagHeadersMiddleware::class,
ProfilerMiddleware::class,
// The throttle Middleware is registered by the RoutesLoaderTrait in the

→˓Core
],

];

/**
* The application's route middleware.

* These middleware may be assigned to groups or used individually.

*
* @var array

*/
protected $routeMiddleware = [

'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,
'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,
'can' => \Illuminate\Auth\Middleware\Authorize::class,
'auth' => \Illuminate\Auth\Middleware\Authenticate::class,

];
}

96 Chapter 29. Middlewares

CHAPTER 30

Notifications

Notifications allows you to inform the client about a state changes in your application. Laravel supports sending such
notifications across a variety of channels such as mail, SMS, Slack, Databases, . . .

When using the Database channel the notifications will be stored in a database to be displayed in your client interface.

For more details refer to the official Laravel documentation.

30.1 Principles

• Containers MAY or MAY NOT have one or more Notification.

• The Ship layer MAY contain Application general Notifications.

30.2 Rules

• All Notifications MUST extend from App\Ship\Parents\Notifications\Notification.

30.3 Folder Structure

app
Containers

{container-name}
Notifications

UserRegisteredNotification.php
...

Ship
Notifications

SystemFailureNotification.php
...

97

https://laravel.com/docs/notifications

HiveApi Documentation, Release 1.0.0

30.4 Code Samples

Example for a simple Notification

<?php

namespace App\Containers\User\Notifications;

use App\Containers\User\Models\User;
use App\Ship\Parents\Notifications\Notification;
use Illuminate\Bus\Queueable;
use Illuminate\Contracts\Queue\ShouldQueue;

class BirthdayReminderNotification extends Notification implements ShouldQueue
{

use Queueable;

protected $notificationMessage;

public function __construct($notificationMessage)
{

$this->notificationMessage = $notificationMessage;
}

public function toArray($notifiable)
{

return [
'content' => $this->notificationMessage,

];
}

public function toMail($notifiable)
{

// $notifiable is the object you want to notify "e.g. user"
return (new MailMessage)

->subject("Happy Birthday")
->line("Hi, $notifiable->name")
->line($this->notificationMessage);

}

public function toSms($notifiable)
{

// ...
}

// ...
}

30.4.1 Using a Notification within an Action or Task

Notifications can be sent from Actions or Tasks using the Notification Facade.

\Notification::send($user, new BirthdayReminderNotification($notificationMessage));

Alternatively, you can use the Illuminate\Notifications\Notifiable trait on the notifiable object (e.g.,
the User) and then call it as follow:

98 Chapter 30. Notifications

HiveApi Documentation, Release 1.0.0

// call notify, found on the Notifiable trait
$user->notify(new BirthdayReminderNotification($notificationMessage));

30.5 Select Channels

To select a notification channel, HiveApi provides the app/Ship/Configs/notification.php config file,
where you can specify an array of supported channels (e.g., SMS, Email, WebPush, . . .), to be used for all your
notifications.

If you wan to override the configuration for specific Notification classes, or if you prefer to defined the channels
within each Notification class itself, you can override the public function via($notifiable) in
respective class and define your channels.

Checkout the Laravel Notification Channels documentation for list of supported integrations.

30.6 Queueing a Notification

In order to queue a notification for later use, you should use Illuminate\Bus\Queueable and implement
Illuminate\Contracts\Queue\ShouldQueue.

30.7 Use Database Channel

First you need to generate a notification migration file that holds your Notifications to be displayed for your
clients. You can easily call respective Artisan command php artisan notifications:table or use php
artisan hive:generate:migration. Then run php artisan migrate to migrate your database,

Please note that HiveApi already provides the xxxxxx_create_notifications_table.php in the default
migrations files directory app/Ship/Migrations/. So you don’t need to create / configure it manually. Nice,
isn’t it?

30.5. Select Channels 99

http://laravel-notification-channels.com

HiveApi Documentation, Release 1.0.0

100 Chapter 30. Notifications

CHAPTER 31

Service Providers

Providers (short names for Service Providers) are the central place of configuring and bootstrapping a Container. They
are the place where you register container bindings, event listeners, middlewares, routes, other providers, aliases, . . .
to the framework service container.

31.1 Principles

• There are two types of Providers in a Container, the main Provider and additional (job specific) Providers
(e.g., EventsProvider, BroadcastsProvider, AuthProvider, MiddlewareProvider,
RoutesProvider).

• A Container MAY have one or many Providers, or MAY have no Provider at all.

• A Container CAN have only one single main Provider.

• The main Provider is the place where all other job specific Providers are registered.

• Third-party package Providers MUST be registered inside the Containers main service provider. The same
applies to their Aliases.

• Providers CAN be registered on the Ship main Provider, if they are general or are intended to be used across
many containers. The same applies to their Aliases.

31.2 Rules

• The main Provider will be auto-registered by the Ship engine, so no need to register it manually anywhere.

• All Main Providers MUST extend from App\Ship\Parents\Providers\MainProvider.

• All other types of Providers (EventsProvider, BroadcastsProvider, AuthProvider,
MiddlewareProvider, RoutesProvider) must extend from their parent providers Ship/Parents/
Providers/***.

• The Main Provider MUST be named MainServiceProvider in every container.

101

HiveApi Documentation, Release 1.0.0

• You SHOULD NOT register any Provider in the framework (config/app.php), only the
HiveApiProvider should be registered there.

Heads up!

Laravel 5.5 introduces an auto-discovery feature that lets you automatically register
ServiceProviders. Due to the nature and structure of HiveApi applications, this features is turned
off, because it messes up the way how config files are loaded in HiveApi. This means, that you still need
to manually register third-party ServiceProviders in the ServiceProvider of a Container.

31.3 Folder Structure

app
Containers

User
Providers

EventsServiceProvider.php
MainServiceProvider.php
...

31.4 Code Samples

Main Service Provider Example:

<?php

namespace App\Containers\Excel\Providers;

use App\Ship\Parents\Providers\MainProvider;

class MainServiceProvider extends MainProvider
{

public $serviceProviders = [
// ...

];

public $aliases = [
// ...

];

public function register()
{

parent::register();

$this->app->bind(UserRepositoryInterface::class, UserRepository::class);
}

}

Heads up!

When defining the register() or boot() function in your Main provider “only”, you must call the
parent functions (parent::register(), parent::boot()) from your extended function.

102 Chapter 31. Service Providers

HiveApi Documentation, Release 1.0.0

31.5 Register Service Providers

31.5.1 Containers Main Service Provider

There is no need to register the MainServiceProvider anywhere, as it will be automatically registered by
HiveApi. The MainServiceProvider, in turn, is responsible for registering all the Containers additional (job
specific) Providers.

31.5.2 Containers Additional Service Providers

You MAY add further Service Providers in a Container. However, in order to get them loaded in the
framework you MUST register them all in the MainServiceProvider as follow:

<?php

private $containerServiceProviders = [
AuthServiceProvider::class,
EventsServiceProvider::class,
// ...
];

The same rule applies to Aliases.

31.5.3 Third party packages Service Providers

If a package requires registering its service provider in the config/app.php, you SHOULD register its service
provider in the container where you rely on this package. However, if it is a “generic” package used by the en-
tire framework and not one specific Container or feature, you can register that service provider in the app/Ship/
Providers/ShipProvider.php. You should, however, NEVER register additional service providers in the
config/app.php file.

31.6 Laravel 5.5 Auto Discovery feature.

This feature is disabled in HiveApi so far. More details can be found here.

31.7 Information about Laravel Service Providers

By default Laravel provides some service providers in its app/providers directory. In HiveApi those providers
have been renamed and moved to the Ship Layer app/Ship/Parents/Providers/*:

• AppServiceProvider

• RouteServiceProvider

• AuthServiceProvider

• BroadcastServiceProvider

• EventsServiceProvider

31.5. Register Service Providers 103

./../miscellaneous/faq.html

HiveApi Documentation, Release 1.0.0

Heads up!

You SHOULD NOT touch those providers, instead you have to extend them from a custom provider
in order to modify them. For example: the app/Containers/Authentication/Providers/
AuthProvider.php is extending the AuthServiceProvider in order to modify it.

Those providers are not auto-registered by default, thus writing any code will not be available, unless you extend them.
Once extended, the child provider should be registered in the containers MainServiceProvider, which makes
the parent available through inheritance.

This rule, however, does not apply to the RouteServiceProvider since it is required by HiveApi. This Provider
is directly registered by the HiveApiProvider.

Check out how Service Providers are auto-loaded.

104 Chapter 31. Service Providers

./../miscellaneous/faq.html

CHAPTER 32

Requests

Read from the Porto SAP Documentation (#Requests).

32.1 Rules

• All Requests MUST extend from App\Ship\Parents\Requests\Request.

• A Request MUST have a rules() function, returning an array and an authorize() function to check for
authorization (can return true when no authorization is required).

32.2 Folder Structure

app
Containers

{container-name}
UI

API
Requests

UpdateUserRequest.php
DeleteUserRequest.php
...

WEB
Requests

UpdateUserRequest.php
DeleteUserRequest.php
...

105

https://github.com/Mahmoudz/Porto#Requests

HiveApi Documentation, Release 1.0.0

32.3 Code Samples

See an example for the UpdateUserRequest class:

<?php

namespace App\Containers\User\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class UpdateUserRequest extends Request
{

protected $access = [
'permission' => '',
'roles' => 'admin',

];

protected $decode = [
];

protected $urlParameters = [
];

public function rules()
{

return [
'email' => 'email|unique:users,email',
'password' => 'min:100|max:200',
'name' => 'min:300|max:400',

];
}

public function authorize()
{

return $this->check([
'hasAccess|isOwner',

]);
}

}

The properties of the Request class will be discussed in the further course of this section.

32.4 Using Requests in the Contorller

<?php

public function updateUser(UpdateUserRequest $updateUserRequest)
{

$data = $updateUserRequest->all();
// or
$name = $updateUserRequest->name;
// or
$name = $updateUserRequest['name'];

}

106 Chapter 32. Requests

HiveApi Documentation, Release 1.0.0

By just injecting the Request class you already applied the validation and authorization rules. When you need to
pass data to the Action, you should pass the Request object as it is to the Action parameter. A more elaborate
approach, however, would be to “morph” the Request to a Transporter class!

32.5 Request Properties

HiveApi adds some new properties to the existing Request class from Laravel. Each of these properties are very
useful for some situations, and let you achieve your goals faster and cleaner. Below we will see a description for each
property:

32.5.1 decode

The $decode property is used for decoding hashed IDs from any Request on the fly if you have enabled the HashID
feature provided by HiveApi. Most probably you are passing or allowing your users to pass hashed (encoded) IDs
into your application in order to “hide” your true IDs. Thus these IDs needs to be decoded somewhere. HiveApi
has a property on its Request component to specify those hashed IDs in order to decode them before applying the
validation rules.

Example:

<?php

namespace App\Containers\Authorization\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class AssignUserToRoleRequest extends Request
{

protected $decode = [
'id',

];

// ...
}

Heads up!

Validations rules that relies on your ID like (exists:users,id) will not work unless you decode your
ID before passing it to the validation!

32.5.2 urlParameters

The $urlParameters property is used for applying validation rules on the URL parameters. Laravel, by default,
does not allow validating URL parameters (i.e., the id in /stores/{id}/items). In order to be able to apply
validation rules on URL parameters you can simply define your URL parameters in the $urlParameters property.
This will also allow you to access those parameters directly from the Controller in the same way you access the data
from the Request.

32.5. Request Properties 107

HiveApi Documentation, Release 1.0.0

Example:

<?php

namespace App\Containers\Store\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class GetItemFromShopRequest extends Request
{

/**
* Defining the URL parameters (`/stores/{store_id}/items/{item_id}`) allows

→˓applying

* validation rules on them and allows accessing them like request data.

*
* @var array

*/
protected $urlParameters = [

'store_id',
'item_id',

];

public function rules()
{

return [
'store_id' => 'required|integer', // url parameter
'item_id' => 'required|min:35|max:45', // url parameter

];
}

// ...
}

32.5.3 access

The $access property, allows to define set of Roles and Permissions a client accessing the API must have
in order to access this endpoint. The $access property is used by the hasAccess function defined below in the
authorize function, to check if the user has the necessary Roles and Permissions to call this endpoint (i.e.,
access the controller function, where this Request object is injected).

Example:

<?php

namespace App\Containers\User\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class DeleteUserRequest extends Request
{

/**
* Define which Roles and/or Permissions has access to this request.

*
(continues on next page)

108 Chapter 32. Requests

HiveApi Documentation, Release 1.0.0

(continued from previous page)

* @var array

*/
protected $access = [

'permission' => 'delete-users|another-permissions',
'roles' => ['manager','admin']

];

public function authorize()
{

return $this->check([
'hasAccess|isOwner',
'isKing',

]);
}

}

If you do not like the laravelish style with | in order to separate the different roles or permissions (e.g.,
see the example above), you can also use the array notation.

32.6 How the Authorize Function Works

The authorize function calls a check function, which accepts an array of functions names, each returning a
boolean. In the example above, three functions (i.e., hasAccess, isOwner, and isKing) are called.

The separator | between the functions indicates an OR operation, so if any of the functions hasAccess or isOwner
returns true, the user will gain access and only when both return false the user will be prevented from accessing
this endpoint.

Furthermore, if isKing (i.e., a custom function that could be implemented by you) returns false, no matter what all
other functions returns, the user will be prevented from accessing this endpoint, because the default operation between
all functions in the array is AND.

32.6.1 Add Custom Authorize Functions

The best way to add a custom authorize function is through a Trait, which can be added to your Request classes. In
the example below we create a Trait named isKingPermissionTrait with a single method called isKing.

The isKing() method, in turn, calls a Task to verify that the current user is a king (e.g., if the user has the proper
Role assigned).

<?php
namespace App\Containers\User\Traits;

use Apiato\Core\Foundation\Facades\Apiato;

trait isKingPermissionTrait
{

public function isKing()
{

// The task needs to be implemented properly!
return Apiato::call('User@CheckIfUserHasProperRoleTask', [$this->user(), [

→˓'king']]);
}

}

32.6. How the Authorize Function Works 109

HiveApi Documentation, Release 1.0.0

Now, add the newly created Trait to the Request to use the isKing function in the authorization check.

<?php

namespace App\Containers\User\UI\API\Requests;

use App\Containers\User\Traits\isKingPermissionTrait;
use App\Ship\Parents\Requests\Request;

class FindUserByIdRequest extends Request
{

use isKingPermissionTrait;

// ...

public function authorize()
{

return $this->check([
'isKing',

]);
}

}

Now, the Request uses the newly created isKing method to check the proper access rights.

32.7 Allow a Role to access every endpoint

You can allow some Roles to access every endpoint in the system without having to define that role in each Request
object. This is useful you want to let users with Admin role access everything.

To do this define those roles in app/Ship/Configs/hive.php as follow:

'requests' => [
'allow-roles-to-access-all-routes' => ['admin',],

],

This will append the admin role to all roles access in every Request.

32.8 Request Helper Functions

HiveApi also provides some helpful functions by default, so you can use them whenever you need them.

32.8.1 hasAccess

The hasAccess function, decides if the the user has access to this endpoint based on the $access property.

• If the user has any Role or Permission defined in the access‘ property, he will be given access.

• If you need more or less roles/permissions just add | between each permission.

• If you do not need to set a roles/permissions just set 'permission' => '' or 'permission' =>
null.

110 Chapter 32. Requests

HiveApi Documentation, Release 1.0.0

32.8.2 isOwner

The hasAccess function, checks if the passed URL ID is the same as the User ID of the request.

Example:

Let’s say we have an endpoint api.example.develop/v1/users/{ID}/delete that deletes a specified
user. And we only need users to delete their own user accounts.

With isOwner, the user of ID 1 can only call /users/1/delete and won’t be able to call /users/2/delete
or any other ID. This also works with hashed IDs!

32.8.3 getInputByKey

Use this method to get data from within the $request by entering the name of the field. This function behaves like
$request->input('key.here'), however, it works on the decoded values instead of the original data.

Consider the following Request data in case you are passing application/json data instead of
x-www-form-urlencoded:

{
"data" : {
"name" : "foo",
"description" : "bar"

},
"id" : "a2423nadabada0"

}

Calling $request->input('id') would return "a2423nadabada0", however
$request->getInputByKey('id') would return the decoded value (e.g., 4).

Furthermore, one can define a default value to be returned, if the key is not present (or not set), like so:
$request->getInputByKey('data.name', 'undefined name')

32.8.4 sanitizeData

Especially for PATCH requests, you like to submit only the fields, to be changed to the API in order to:

a) minimize the traffic b) partially update the respective resource

Checking for the presence (or absence) of specific keys in the request typically results in huge if blocks, like so:

<?php
// ...
if($request->has('data.name')) {

$data['name'] = $request->input('data.name'); // or better use getInputByKey()
}
if($request->has('data.description')) {

$data['description'] = $request->input('data.description'); // or better use
→˓getInputByKey()
}
// ...

To avoid those if blocks, use array_filter($data) in order to remove empty fields from the request. How-
ever, in PHP false and '' (empty string) are also considered as empty resulting in removing those fields from the
request data (which is clearly not what you want).

32.8. Request Helper Functions 111

HiveApi Documentation, Release 1.0.0

You can read more about this problem here.

In order to simplify sanitizing your Request Data when using application/json instead of
x-www-form-urlencoded, HiveApi offers a convenient sanitizeInput(array $fields) method.

Consider the following Request data:

{
"data" : {

"is_private" : false,
"description" : "this is a rather long description text",
"a" : null,
"b" : 3453,
"foo" : {

"a" : "a",
"b" : "b",
"c" : 1234

},
"bar" : [

"a", "b", "c"
]

}
}

The method lets you specify a list of $fields to be accessed and extracted from the $request. This is done by
using the DOT notation. Finally, call the sanitizeInput() method on the $request:

$fields = ['data.name', 'data.description', 'data.is_private', 'data.blabla', 'data.
→˓foo.c'];
$data = $request->sanitizeInput($fields);

The extracted $data looks like this:

[
"data" => [
"is_private" => false
"description" => "this is a rather long description text"
"foo" => [

"c" => 1234
]

]
]

Note that data.blabla is not within the $data array, as it was not present within the $request. Furthermore,
all other fields from the $request are omitted as they are not specified. So basically, the method creates some kind
of filter on the $request, only passing the defined values. Furthermore, the DOT notation allows you to easily
specify the fields to would like to pass through. This makes partially updating an resource quite easy!

Heads Up:

Note that the fillable fields of an entity can be easily obtained with
$entity->getFillable()!

32.8.5 mapInput

Sometimes you might want to map input from the request to other fields in order to automatically pass it to a Action
or Task. Of course, you can manually map those fields, but you can also rely on the mapInput(array $fields)
helper function.

112 Chapter 32. Requests

https://github.com/apiato/apiato/issues/186

HiveApi Documentation, Release 1.0.0

This helper, in turn, allows to “redefine” keys in the request for subsequent processing. Consider the following example
request:

{
"data" : {

"name" : "John Doe"
}

}

Your Task to process this data, however, requests the field data.name as data.username. You can call the the
helper like this:

$request->mapInput([
'data.name' => 'data.username',

]);

The resulting structure would look like this:

{
"data" : {

"username" : "John Doe"
}

}

32.9 Storing Data on the Request

During the Request lifecycle you may want to store some data on the request object and pass it to other
SubActions (or maybe if you prefer to Tasks). To store (additional) data on the Request you may use:

$request->keep(['someKey' => $someValue]);

To retrieve the data back at any time during the request lifecycle use:

$someValue = $request->retrieve('someKey')

32.9. Storing Data on the Request 113

HiveApi Documentation, Release 1.0.0

114 Chapter 32. Requests

CHAPTER 33

Seeders

Seeders (short name for Database Seeders) are classes made to seed the database with real data. Tthis data usually
should exist in the application after the installation, for example the default Users, their associated Roles and
Permissions, or a list of available Countries for shippment.

33.1 Principles

• Seeders SHOULD be created in the Containers.

• If the container is using a third-party package that publishes a Seeder class, this class should be manually placed
in the Container that make use of it. Do not rely on the package to place it on its right location.

33.2 Rules

• Seeders SHOULD be in the right directory inside the container to be loaded.

• To avoid any conflict between containers seeders classes, you SHOULD always prepend the Seed-
ers of each container with the container name. For example use UserPermissionsSeeder,
ItemPermissionsSeeder). If 2 seeders classes have the same name but live in different containers, one of
them will not be loaded.

• If you wish to order the seeding of the classes, you can just append _1, _2 to your classes.

33.3 Folder Structure

app
Containers

{container-name}
Data

(continues on next page)

115

HiveApi Documentation, Release 1.0.0

(continued from previous page)

Seeders
ContainerNameRolesSeeder_1.php
ContainerNamePermissionsSeeder_2.php
...

33.4 Code Samples

RoleSeeder

<?php

namespace App\Containers\Order\Data\Seeders;

use App\Ship\Parents\Seeders\Seeder;
use HiveApi\Core\Foundation\Facades\Hive;

class OrderPermissionsSeeder_1 extends Seeder
{

public function run()
{

Hive::call('Authorization@CreatePermissionTask', ['approve-reject-orders']);
Hive::call('Authorization@CreatePermissionTask', ['find-orders']);
Hive::call('Authorization@CreatePermissionTask', ['list-orders']);
// ...

}
}

Note that one Seeder class may seed multiple Model classes.

33.5 Running the Seeders

After registering the Seeders you can run this command:

php artisan db:seed

To run specific Seeder class you can specific its class in the parameter as follow:

php artisan db:seed --class="App\Containers\X\Data\Seeders\YourCustomSeeder"

33.5.1 Migrate & Seed at the same time

php artisan migrate --seed

For more information about the Database Seeders read the official Laravel documentation.

116 Chapter 33. Seeders

https://laravel.com/docs/master/seeding

HiveApi Documentation, Release 1.0.0

33.6 HiveApi Seeder Commands

33.6.1 Testing

It’s useful sometimes to create a big set of testing data. HiveApi facilitates this task:

1. Open app/Ship/Seeders/SeedTestingData.php and write your testing data here.

2. Run this command any time you want this data available (example at staging servers):

php artisan hive:seed:test

33.6.2 Deployment

HiveApi also provides a Seeder for your production data. You can call the artisan command

php artisan hive:seed:deploy

33.6. HiveApi Seeder Commands 117

HiveApi Documentation, Release 1.0.0

118 Chapter 33. Seeders

CHAPTER 34

Values

Values are short names for the known Value Objects which are simple objects similar to Models in the concept
of representing data, but they do not get stored in the DB, thus they don’t have “official” Ids. They also do not hold
functionality or change any state, they just hold data.

A Value Object is an immutable object that is defined by its encapsulated attributes. We create Value Object when we
need it to represent/serve/manipulate some data that is attached as attributes. Usually such Values are destroyed later
when they are not needed any more.

34.1 Rules

• All Values MUST extend from App\Ship\Parents\Values\Value.

34.2 Folder Structure

app
Containers

{container-name}
Values

Output.php
Region.php
...

34.3 Code Sample

<?php

use App\Ship\Parents\Values\Value;

(continues on next page)

119

HiveApi Documentation, Release 1.0.0

(continued from previous page)

class Location extends Value
{

private $lat = null;
private $long = null;

protected $resourceKey = 'locations';

public function __construct($lat, $long)
{

$this->lat = $lat;
$this->long = $long;

}

public function getCoordinatesAsString()
{

return $this->lat . ' - ' . $this->long;
}

public function getCoordinatesAsArray()
{

return [$this->lat, $this->long];
}

}

Note that these Value objects also need to have a $resourceKey if you plan to output them via Serializers
(e.g., see the Response page for more details).

120 Chapter 34. Values

./../getting-started/responses.html

CHAPTER 35

Authentication

Middlewares are probably the best solution to apply a solid Authentication for your API. With HiveApi you can
use two pre-defined Authentication Middlewares, to protect your endpoints:

• API Authentication: auth:api

• Web Authentication: auth:web

35.1 API Authentication (with OAuth 2.0)

To protect an API endpoints from being accessed by unauthenticated users, you may apply the auth:api middle-
ware.

<?php

$router->get('secret/info', [
'uses' => 'Controller@getSecretInfo',
'middleware' => [

'auth:api',
],

]);

All endpoints that are protected with the auth:api middleware are only accessible when sending them a valid
access token. The auth:api middleware is provided by the official Laravel Passport package. So you can read
its documentation for more details.

35.1.1 Overview

OAuth lets you authenticate using different methods, these methods are called grants. In order how to decide, which
grant type you should use, please refer to this website and keep reading this documentation.

Definitions

• The client credentials are client_id & client_secret.

121

https://laravel.com/docs/passport
https://oauth2.thephpleague.com/authorization-server/which-grant/

HiveApi Documentation, Release 1.0.0

• The proxy is an endpoint, that you should call instead of calling the OAuth server endpoints directly. The proxy
endpoint, in turn, will append the client credentials to your request and calls the OAuth server for you, then
returns its response back to the client. Each first-client application should have its own proxy endpoints
(at least one of /login and one of /refresh-token). By default, HiveApi provides an Admin Web
Client endpoint.

You can Login to the first party app with proxy or without proxy, while for the third party you only need
to login without proxy. (same apply to refreshing token).

For first party apps:

• With Proxy << best and easiest way, (requires manually generating clients creating proxy endpoints
for each client)

• Without Proxy << if your frontend is not exposing the client credentials, you can call the Auth server
endpoints directly without proxy.

For third party apps:

• Without Proxy << you don’t need a proxy for the third party clients as they usually integrate with
your API from the backend side which protects the client credentials.

35.1.2 A: First-Party Clients

First-party clients (i.e., your own frontend / mobile / web / . . . application) usually consumes your private API. Those
clients need to use the Resource Owner Credentials Grant (a.k.a Password Grant Tokens).

When this grant type is used, your server needs to authenticate the client application first (ensuring the request is sent
from your trusted frontend application) and then needs to check if the user credentials are correct (ensuring the user is
registered and has the proper access rights), before issuing an access token.

Note:

• On register, the API returns user data. You will need to log that user in (using the same credentials he
passed) to get his access token and make other API calls.

• On login, the API returns the users access token and a refresh token. You will need to request the
user data by making another call to the user endpoint, using his private token.

Example

1. Create a password client in your database to represent one of your applications (e.g., your mobile application).
Call php artisan passport:client --password to generate a new password client.

2. After registration the user can enter his credentials (i.e., email & password) in your mobile application login
screen.

3. Your mobile application should send a POST request to http://api.example.develop/v1/oauth/
token containing the user credentials (username and password) and the client credentials (client_id
and client_secret) in addition to the scope and grant_type=password:

Request

122 Chapter 35. Authentication

HiveApi Documentation, Release 1.0.0

curl --request POST \
--url http://api.example.develop/v1/oauth/token \
--header 'accept: application/json' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'username=admin%40local.host&password=admin&client_id=2&client_

→˓secret=SGUVv02b1ppQCgI7ZVeoTZDN6z8SSFLYiMOzzfiE&grant_type=password&scope='

Response

{
"token_type": "Bearer",
"expires_in": 31536000,
"access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUz...",
"refresh_token": "TPSPA1S6H8Wydjkjl+xt+hPGWTagL..."

}

1. Your mobile application should save the access token and start requesting secure data, by sending the latter
in the HTTP Header Authorization = Bearer {Access-Token}.

More information can be found at the official Laravel Passport documentation.

WARNING:

The Client ID and Secret should not be stored in JavaScript or browser cache, or made accessible in any
way.

So in case of web applications (i.e., Angular, Vue, . . . applications) you need to hide your client credentials behind a
proxy. By default, HiveApi provides a Login Proxy to use for all your trusted first party clients.

Login with Proxy for First-Party Clients

The overall idea is to create a designated endpoint for each trusted client, to be used for login.

HiveApi, by default, has one URL ready for your Web Admin Dashboard (i.e., clients/web/admin/login).
You can add more as you need for each of your trusted first party clients applications (example: clients/web/
users/login, clients/mobile/users/login).

Behind the scene, that endpoint appends the corresponding client ID and secret to your request and makes another call
to your OAuth server with all the required data. This way, the client does not need to send the ID and secret with the
request. Further, the client uses his own URL, which gives even more control to which client is accessing your API.
Then, it returns the authentication response back to the client with the proper access tokens in it.

Heads up!

You have to manually extract the Client credentials from the database and put them in the .env, for each
client.

When running passport:install it automatically creates one client for you with a new ID, so you can use that
for your first app. Or you can use php artisan passport:client --password to generate them.

Example ENV File
CLIENT_WEB_ADMIN_ID=2
CLIENT_WEB_ADMIN_SECRET=VkjYCUk5DUexJTE9yFAakytWCOqbShLgu9Ql67TI

35.1. API Authentication (with OAuth 2.0) 123

https://laravel.com/docs/5.6/passport#password-grant-tokens

HiveApi Documentation, Release 1.0.0

Login without Proxy for First-Party Clients

Login from your application by sending a POST request to http://api.example.develop/v1/oauth/
token with grant_type=password, the user credentials (username & password), client credentials
(client_id & client_secret) and finally the scope for this token (can be empty).

35.1.3 B: For Third-Party Clients

Third-party clients (custom external applications, who wants to integrate with your API) always consumes your public
API (external API) only.

For third-party clients you need to use the Client credentials grant (a.k.a Personal Access
Tokens). This grant type is the simplest and is suitable for machine-to-machine authentication.

With this grant type your server needs to authenticate the client application only, before issuing an access token.

Example

1. User logs in to your clients application interface (an external application made for your users only), go to
settings, create a new client (of type personal) and copy the ID and Secret. This step can be done via an API
request as well, if you prefer. You may generate a personal client for testing purposes using php artisan
passport:client --personal.

2. The user adds the client credentials to his “server side software” and sends a POST request to http://
api.example.develop/v1/oauth/token containing the issued client credentials (client_id and
client_secret) in addition to the scope and grant_type=client_credentials:

Request

curl --request POST \
--url http://api.example.develop/v1/oauth/token \
--header 'accept: application/json' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=1&client_secret=y1RbtnOvh9rpA91zPI2tiVKmFlepNy9dhHkzUKle&grant_

→˓type=client_credentials&scope='

Response

{
"token_type": "Bearer",
"expires_in": 31536000,
"access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1Ni...",
"refresh_token": "ZFDPA1S7H8Wydjkjl+xt+hPGWTagX..."

}

1. The Client will be granted an access token to be saved. Then the client can start requesting secure data, by
sending the access token in the HTTP Header Authorization = Bearer {Access-Token}.

Note: When a new user is registered, will be issued a personal Access Token automatically. Check the User “Regis-
tration page”.

More information can be obtained via the official Laravel Passport documentation

124 Chapter 35. Authentication

https://laravel.com/docs/5.6/passport#personal-access-tokens

HiveApi Documentation, Release 1.0.0

Login without Proxy for Third-Party Clients

We usually do not need a proxy for third-party clients as they are most likely making calls form their servers, thus the
Client ID and Secret should be secure and not exposed to the users.

Login by sending a POST request to http://api.example.develop/v1/oauth/token with
grant_type=client_credentials, Client Credentials (client_id & client_secret) and finally the
scope (can be empty).

Once issued, you can use that access token to make requests to protected endpoints. The access token
should be sent in the Authorization header of type Bearer (example: Authorization = Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUz...)

Heads up!

There is no “session state” when using tokens for authentication

35.1.4 Login With Custom Attributes

By default, HiveApi allows Users to login with their email address. However, you may want to also allow
username and phone to login your users.

Here is, how to configure and use this feature.

• You may need to adapt your database accordingly (e.g., add the respective field to the users table).

• You may need to adapt the Task that create a User object (e.g., the
CreateUserByCredentialsTask) accordingly to support the new fields. This may also affect
your Register logic.

• Check the App\Containers\Authentication\Configs\authentication-container Con-
figuration file and check the login params in order to configure this feature.

• Adapt the ProxyApiLoginTransporter accordingly to support your new Login Fields. These fields need
to be added to properties

35.1.5 Logout

Logout by sending a DELETE request to http://api.example.develop/v1/logout/ containing the valid
access token in the header.

{
"message": "Token revoked successfully."

}

35.2 Web Authentication

To protect a Web endpoint from being accessible by unauthenticated users you can use the auth:web Middleware.

<?php

$router->get('private/page', [
'uses' => 'Controller@showPrivatePage',
'middleware' => [

'auth:web',

(continues on next page)

35.2. Web Authentication 125

HiveApi Documentation, Release 1.0.0

(continued from previous page)

],
]);

This middleware is provided by HiveApi and is different than the default Laravel Auth Middleware. If authentication
failed, users will be redirected to a login page. To change the login page view go to the config file app/Ship/
Configs/hive.php, and set the name of your login page there as follow:

<?php

/*
|--
| The Login Page URL
|--

*/

'login-page-url' => 'login',

This will be search for a login.html, login.php, or login.blade.php file.

35.3 Refresh Token

In case your server is issuing a short-living access tokens, the users will need to refresh their access tokens via
the refresh token that was provided to them when the logging in.

35.3.1 Refresh Token with proxy for first-party clients

By default HiveApi provide this ready to use endpoint http://api.example.develop/v1/clients/
web/admin/refresh for the Web Admin Dashboard Client to be used when you need to refresh tokens for
that client. You can, of course, create as many other endpoints as you want for each client. See the code within
app/Containers/Authentication/UI/API/Routes/ProxyRefreshForAdminWebClient.
v1.public.php and create similar ones for each client. The most important change will be the
env('CLIENT_WEB_ADMIN_ID') and env('CLIENT_WEB_ADMIN_SECRET'), passed to the
ProxyApiRefreshAction.

Those proxy refresh endpoints work in 2 ways. Either by passing the refresh_token manually to the endpoint. Or
by passing it with the HttpCookie. In both cases the code will work and the server will reply with a response similar
to this:

{
"token_type": "Bearer",
"expires_in": 31500,
"access_token": "tnJ1eXAiOiJKV1QiLCJhbGciOiJSUzI1Zx...",
"refresh_token": "ZFDPA1S7H8Wydjkjl+xt+hPGWTagX..."

}

Note that the response contains a new access token for login as well as a new refresh token.

35.3.2 Refresh Token without Proxy for First-Party or Third-Party Clients

The request to http://api.example.develop/v1/oauth/token should contain
grant_type=refresh_token, the client_id & client_secret, in addition to the refresh_token
and finally the scope which could be empty.

126 Chapter 35. Authentication

HiveApi Documentation, Release 1.0.0

35.4 Force Email Confirmation

By default a user does not have to confirm his email address to be able to login. How-
ever, to enforce users to confirm their email (i.e., to prevent unconfirmed users from
accessing the API), you can set 'require_email_confirmation' => true, in
App\Containers\Authentication\Configs\authentication.php.

When the email confirmation is enabled (i.e., value set to true), the API throws an exception, if the User is not yet
confirmed.

35.4. Force Email Confirmation 127

HiveApi Documentation, Release 1.0.0

128 Chapter 35. Authentication

CHAPTER 36

Authorization

HiveApi provides a Role-Based Access Control (RBAC) from its Authorization Container. Behind the scenes HiveApi
uses Laravels Authorization functionality that was introduced in version 5.1.11 with the helper package laravel-
permission. You can always refer to the correspond documentation for more information.

36.1 Usage

Authorization in HiveApi is very simple and easy.

1. First you need to make sure you have a seeded Super Admin, an admin role and optionally your custom
permissions (usually permissions should be statically created in the code). HiveApi provides most of these
features for you, you can find the code at any container .../Data/Seeders/* directory.

2. Second create some basic Roles, and attach some Permissions to these roles.

3. Now start creating Users (or use any existing user), and assign them to the newly created roles.

4. Finally, you need to protect your endpoints by Permissions (or/and Roles). The right place to do that is the
Requests class.

36.2 Example

Protecting an endpoint with a specific permission

<?php

namespace App\Containers\User\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class DeleteUserRequest extends Request
{

(continues on next page)

129

https://laravel.com/docs/master/authorization
https://github.com/spatie/laravel-permission
https://github.com/spatie/laravel-permission

HiveApi Documentation, Release 1.0.0

(continued from previous page)

/**
* Define which Roles and/or Permissions has access to this request.

*
* @var array

*/
protected $access = [

'permissions' => 'delete-users', // Accepts Array and String ['delete-users',
→˓'create-users'],

'roles' => '',
];

/**
* @return bool

*/
public function authorize()
{

return $this->check([
'hasAccess|isOwner',

]);
}

}

For a detailed explanation of this example, please visit the Requests page.

36.3 Responses

If the authorization fails, HiveApi throws an Exception that may look similar to this.

{
"errors": "You have no access to this resource!",
"status_code": 403,
"message": "This action is unauthorized."

}

36.4 Seeding Users

By default, HiveApi ships with a Super Admin with Access to the Admin Dashboard. This user has the role admin
assigned by default. The admin role, however, has no permissions assigned. This Super Admin Credentials are:

• email: admin@admin.com

• password: admin

This user is seeded by app/Containers/Authorization/Data/Seeders/
AuthorizationDefaultUsersSeeder_3.php.

To give permissions to the admin role (or any other role), you can use the dedicated endpoints (from your custom
Admin Interface) or use this command php artisan apiato:permissions:toRole admin to assign all
permissions available in the system.

Checkout each container Seeder directories app/Containers/{container-name}/Data/Seeders/, to
edit the default Users, Roles and Permissions.

130 Chapter 36. Authorization

./../components/requests.html

HiveApi Documentation, Release 1.0.0

36.5 Roles & Permissions guards

By default HiveApi uses a single guard called web for all it’s roles and permissions, you can add/edit this behavior
and support multiple guards at any time. Refer to the laravel-permission package for more details.

36.6 Permissions Inheriting with Levels

When you create a role you can set an optional parameter, called level (set to 0 by default). The default seeded
admin role has it set to 999.

Level allows inheriting permissions. Role with higher level is inheriting permission from roles with lower level.

Below is a short example of how it works:

Imagine, you have three roles: User, Moderator and Admin. User has a permission to read articles, Moderator
can manage comments and Admin can create articles. User has a level 1, Moderator level 2 and Admin level 3. It
means, Moderator and Administrator has also permission to read articles, but Administrator can manage
comments as well.

if ($user->getRoleLevel() > 10) {
//

}

If a User has multiple roles, the getRoleLevel() method returns the highest one. If you don’t need the permis-
sions inheriting feature, simply ignore the optional level parameter when creating roles.

36.5. Roles & Permissions guards 131

https://github.com/spatie/laravel-permission#using-multiple-guards

HiveApi Documentation, Release 1.0.0

132 Chapter 36. Authorization

CHAPTER 37

Caching

37.1 Enable / Disable Eloquent Query Caching

By default caching is disabled. To enable the latter, go to app/Ship/Configs/repository.php config file
and set cache.enabled => true, or set it from the .env file using the ELOQUENT_QUERY_CACHE key.

Clients can skip the query caching and request new data by passing specific parameter to the endpoint. For more
details, we refer to the Query Parameters page.

More details can be found at the offical package documentation.

37.2 Change Different Caching Settings

You can use different cache setting for each repository. To set cache settings on each repository, first the caching must
be enabled. Second you need to set up some properties on the repository class to override the default values.

You don’t need to use the CacheableRepository trait or implement the CacheableInterface since they
already exist on the AbstractRepository class (App\Ship\Parents\Repositories\Repository).

133

./../features/query-parameters.html
https://github.com/andersao/l5-repository#cache-config

HiveApi Documentation, Release 1.0.0

134 Chapter 37. Caching

CHAPTER 38

Default Endpoints

HiveApi comes shipped with many useful API endpoints to help speeding up the development process. To see all the
endpoints in a beautiful documentation run the php artisan apidocjs:generate command, after installing
the apidocjs tool.

See the API Docs Generator page for more details.

135

./../features/api-docs-generator.html

HiveApi Documentation, Release 1.0.0

136 Chapter 38. Default Endpoints

CHAPTER 39

ETags

HiveApi provides an ETag Middleware (located in app/Ship/Middlewares/Http/
ProcessETagHeadersMiddleware.php) that implements the shallow technique. It can be used to reduce
bandwidth on the client side (especially useful for mobile devices like smartphones or tablets).

By default the feature is disabled. To enable it go to app/Ship/Configs/hive.php configuration file and set
use-etag to true. Of course your client should send the If-None-Match HTTP Header (= etag) in all
requests for this feature to work properly.

137

HiveApi Documentation, Release 1.0.0

138 Chapter 39. ETags

CHAPTER 40

Generators

Code Generators are a nice and easy way to speed up development by creating boiler-plate code based on your inputs.
You may already be familiar with the Laravel code generators (e.g., php artisan make:controller).

HiveApi code generator works the same way. However, they are far more powerful and can generate an entire Con-
tainer with fully working CRUD operations, including routes, requests, controller, Actions, Repositories, Models,
Migrations, documentation, . . . and and and.

40.1 Available Code Generator Commands

To see the list of code generators type php artisan hive:generate.

hive:generate:container Create a Container for HiveApi from scratch
hive:generate:action Create a Action file for a Container
hive:generate:configuration Create a Configuration file for a Container
hive:generate:controller Create a controller for a container
hive:generate:exception Create a new Exception class
hive:generate:job Create a new Job class
hive:generate:mail Create a new Mail class
hive:generate:migration Create an "empty" migration file for a Container
hive:generate:model Create a new Model class
hive:generate:notification Create a new Notification class
hive:generate:repository Create a new Repository class
hive:generate:request Create a new Request class
hive:generate:route Create a new Route class
hive:generate:seeder Create a new Seeder class
hive:generate:serviceprovider Create a ServiceProvider for a Container
hive:generate:subaction Create a new SubAction class
hive:generate:task Create a Task file for a Container
hive:generate:transformer Create a new Transformer class for a given Model

To get more info about each command, add --help to the command. Example: php artisan
hive:generate:route --help. The help page shows all options, which can be directly passed to the com-
mand.

139

HiveApi Documentation, Release 1.0.0

If you do not provide respective information via the command line options, a wizard will be displayed to guide you
through the process of creating specific components.

For example, you can directly call php artisan hive:generate:controller
--file=UserController to directly specify the class to be generated. The wizard, however, will ask
you for the --container as well.

Note that all generators automatically inherit the options --container and --file (these are documented as
well in the help page). Furthermore, a generator may have specific options as well (e.g., the --ui (user-interface) to
generate something for).

40.2 Custom Code Stubs (aka. Customizing the Generator)

If you don’t like the automatically generated code (or would like to adapt it to your specific needs) you can do this
quite easily.

The existing Generators allow to read custom stubs from the app/Ship/Generators/CustomStubs
folder. The name of file needs to be the same as in vendor/hiveapi/core/src/Generator/Stubs.

Say, if you like to change the config.stub, simply copy the file to app/Ship/Generators/CustomStubs/
config.stub and start adapting it to your needs.

If you run the respective command (e.g., in this case php artisan hive:generate:configuration) this
would read your specific config.stub file instead the pre-defined one!

140 Chapter 40. Generators

CHAPTER 41

Hash IDs

Hashing your internal IDs, is very helpful feature for securing your application (i.e., to prevent some kind of attacks)
and business reasons (to hide the real total records from your competitors).

41.1 Enable Hash ID

Set the HASH_ID=true in the .env file. Also with the feature make sure to always use the getHashedKey() on
any model, whenever you need to return an ID (mainly within Transformers) whether hashed ID or not.

41.2 Example:

'id' => $user->getHashedKey(),

Note that if the feature is set to false (e.g., HASH_ID=false) the getHashedKey() will return the normal (un-
hashed) ID.

41.3 Usage

There are 2 ways an ID’s can be passed to your system via the API:

• Via URL Segment: (e.g., www.hive.local/items/abcdef).

• Via URL Query Parameters (e.g., GET www.hive.local/items?id=abcdef.

In both cases, however, you will need to inform your API about specific parts of that need to be decoded..

Checkout the Requests page. After setting the $decode and $urlParameters properties on your Request
class, the ID will be automatically decoded for you, to apply validation rules on it or/and use it from your controller
($request->id will now return the decoded ID).

141

./../components/transformers.html
./../components/requests.html

HiveApi Documentation, Release 1.0.0

41.4 Configuration

You can change the default length and characters used in the ID from the config file app/Ship/Configs/
hashids.php or in the .env file by editing the HASH_ID_LENGTH value.

You can set the HASH_ID_KEY in the .env file to any random string. You can generate this from any of the online
random string generators, or run head /dev/urandom | tr -dc 'A-Za-z0-9!"#$%&'\''()*+,-./
:;<=>?@[\]^_{|}~' | head -c 32 ; echo on the linux commandline. HiveApi defaults to the APP_KEY
should this not be set.

The HASH_ID_KEY acts as the salt during the process of hashing IDs. This should never be changed in production as
it renders all previously generated IDs useless!

41.5 Testing

In your tests you must hash the ID’s before making the calls, because if you tell your Request class to decode an ID
for you, it will throw an exception when the ID is not encoded.

41.5.1 For Parameter ID’s

Always use getHashedKey() on your models when you want to get the ID.

Example:

$data = [
'roles_ids' => [

$role1->getHashedKey(),
$role2->getHashedKey(),

],
'user_id' => $randomUser->getHashedKey(),

];
$response = $this->makeCall($data);

*Or you can do this manually Hashids::encode($id);. *

41.5.2 For URL ID’s

You can use this helper function injectId($id, $skipEncoding = false, $replace = '{id}').

Example:

$response = $this->injectId($admin->id)->makeCall();

More details on the [Tests Helpers]({{ site.baseurl }}{% link _docs/miscellaneous/tests-helpers.md %}) page.

41.6 Availability

You can apply the HiveApi\Core\Traits\HashIdTrait to any Model or class, in order to have the encode
and decode functions ready set up. By default you have access to these functions $this->encode($id) and
$this->decode($id) from all your Tests class and Controllers.

142 Chapter 41. Hash IDs

CHAPTER 42

Localization

The Localization feature of HiveApi is provided by the Localization Container.

42.1 Select Request Language

A client can select the language of the response by adding the Accept-Language header to a request. By default
the Accept-Language is set to the language defined in config/app.php locale.

Please note that Accept-Language only determines, that the client would like to get the information in this specific
language. It is not given, that the API responds in this language (e.g., if respective language cannot be found). When
the Accept-Language header is missing, the default locale will be applied.

Heads up!

Please be sure that your client does not send an Accept-Language header automatically. Some REST
clients (e.g., POSTMAN) automatically add header-fields based on the operating systems settings. So your
Accept-Language header may be set automatically without knowing!

The API will answer with the applied language in the Content-Language header of the response.

If the requested language cannot be resolved (e.g., it is not defined) the API throws an
UnsupportedLanguageException to tell the client about this.

The overall workflow of the provided Middleware is as follows:

1. Extract the Accept-Language field from the request header. If none is set, use the default locale from the
config file

2. Build a list of all supported localizations based on the configuration of the respective container. If a language
(top level) contains regions (sub-level), order them like this: ['en-GB', 'en-US', 'en'] (the regions
are ordered before languages, as regions are more specific)

3. Check, if the value from 1) is within the list from 2). If the value is within this list, set it as application
language, if not throw an Exception.

143

HiveApi Documentation, Release 1.0.0

42.2 Support New Languages

1. All languages to be supported are defined within the app/Containers/Localization/Configs/
localization.php configuration file. For example, the configuration file may look like this:

<?php
'supported_languages' => [

'de',
'en' => [

'en-GB',
'en-US',

],
'es',
'fr',

],

1. Create new language files:

Language file can be placed in any container, not only the Localization Container. Refer to the Localization page for
more details. Example languages files are included in the Welcome container at app/Containers/Welcome/
Resources/Languages.

42.3 Translating Strings

By default all the translation within a Container are namespaced to the Container name.

42.3.1 Example

If a Container named Store has en translation file called notifications that contains translation for welcome
like “Welcome to our store”. You can access this translation as follow trans('store::notifications.
welcome'). If you remove the namespace (which is the lowercase of the container name) and try to access it like
this trans('notifications.welcome') it will not find your translation and will print notifications.
welcome only.

Heads up!

If you try to load a string for a language that is not available (e.g., there is no folder for this language),
HiveApiwill stick to the default one that is defined in app.locale config file. This is also true, if the
requested locale is present in the supported_languages array from the configuration file.

42.4 Disable the Localization Feature

You can remove the LocalizationMiddleware, by simply going to app/Containers/Localization/
Providers/MainServiceProvider.php and removing the MiddlewareServiceProvider from the
$serviceProviders property.

42.5 Get Available Localizations

HiveApi provides a convenient way to get all defined Localizations. These localizations can be retrieved via GET
/localizations by default. Note that this route only outputs the “top level” locales, like en from the example

144 Chapter 42. Localization

./../components/localization.html

HiveApi Documentation, Release 1.0.0

above. However, if specific regions (e.g., en-US) are defined, these will show up in the result as well.

The Transformer for the localizations not only provide the language (e.g., de), but also outputs the name of
the language in this specific language (e.g., locale_name => Deutsch). Furthermore, the language name is
outputted in the applications default name (e.g., configured in app.locale). This would result in default_name
=> German.

The same applies to the regions that are defined (e.g., de-DE). Consequently, this results in locale_name =>
Deutschland and default_name = Germany.

42.6 Tests

To change the default language in your tests requests. You can set the env language in the configuration files.

42.6. Tests 145

HiveApi Documentation, Release 1.0.0

146 Chapter 42. Localization

CHAPTER 43

Pagination

For pagination HiveApi relies on the L5 Repository Package and the pagination gets applied whenever you use the
paginate function on any model repository

43.1 Change the Default Pagination Limit

Open the .env file and set a number for PAGINATION_LIMIT_DEFAULT:

PAGINATION_LIMIT_DEFAULT=10

This is used in the config/repository.php, which is the config file of the L5 Repository package.

43.2 Limit

The ?limit= query parameter can be applied by clients to define, how many results should be returned on one page
(see also Pagination!).

43.3 Usage

api.domain.develop/endpoint?limit=100

This would return 100 items of a resource within one page of the response. Of course, the limit and page query
parameter can be combined in order to get the next 100 resources:

api.domain.develop/endpoint?limit=100&page=2

In order to allow clients to request all data that matches their criteria (e.g., search-criteria) and disable pagination, you
can manually override the $allowDisablePagination property in your specific Repository class. A client

147

https://packagist.org/packages/prettus/l5-repository

HiveApi Documentation, Release 1.0.0

can then get all data (with no pagination applied) by requesting api.domain.develop/endpoint?limit=0.
This will return all matching entities.

43.4 Skip the Pagination Limit

You can allow developers to skip the pagination limit as follow. First, you need to enable that feature from the server by
setting PAGINATION_SKIP = true. Second, inform the developers (users) to pass ?limit=0 with the request
they wish to get all it’s data un-paginated.

148 Chapter 43. Pagination

CHAPTER 44

Profiler

Profiling is very important to optimize the performance of your developed application. Further, it helps you to better
understand what happens when a request is received, as well as it can speed up the debugging process.

HiveAPi uses the third-party package laravel-debugbar, which uses the PHP Debug Bar, to collect the profiling data.

By default the Laravel-DebugBar package displays the profiling data in the web browser. However, HiveApi uses
a custom middleware (app/Ship/Middlewares/Http/ProfilerMiddleware.php) to append the profil-
ing data to the response.

Please note that this middleware MAY severely slow down your application and SHOULD NOT be used in production
mode!

44.1 Sample Profiler Response

{
// Actual Response Here...

"_profiler": {
"__meta": {

"id": "X167f293230e3457f1bbd95d9c82aba4a",
"datetime": "2017-09-22 18:45:27",
"utime": 1506105927.799299,
"method": "GET",
"uri": "/",
"ip": "172.20.0.1"

},
"messages": {

"count": 0,
"messages": []

},
"time": {

"start": 1506105922.742068,
"end": 1506105927.799333,

(continues on next page)

149

https://github.com/barryvdh/laravel-debugbar
http://phpdebugbar.com/

HiveApi Documentation, Release 1.0.0

(continued from previous page)

"duration": 5.057265043258667,
"duration_str": "5.06s",
"measures": [

{
"label": "Booting",
"start": 1506105922.742068,
"relative_start": 0,
"end": 1506105923.524004,
"relative_end": 1506105923.524004,
"duration": 0.7819359302520752,
"duration_str": "781.94ms",
"params": [],
"collector": null

},
{

"label": "Application",
"start": 1506105923.535343,
"relative_start": 0.7932748794555664,
"end": 1506105927.799336,
"relative_end": 0.00000286102294921875,
"duration": 4.26399302482605,
"duration_str": "4.26s",
"params": [],
"collector": null

}
]

},
"memory": {

"peak_usage": 13234248,
"peak_usage_str": "12.62MB"

},
"exceptions": {

"count": 0,
"exceptions": []

},
"route": {

"uri": "GET /",
"middleware": "api, throttle:30,1",
"domain": "http://api.hive.local",
"as": "apis_root_page",
"controller":

→˓"App\\Containers\\Welcome\\UI\\API\\Controllers\\Controller@apiRoot",
"namespace": "App\\Containers\\Welcome\\UI\\API\\Controllers",
"prefix": "/",
"where": [],
"file": "app/Containers/Welcome/UI/API/Controllers/Controller.php:20-25"

},
"queries": {

"nb_statements": 0,
"nb_failed_statements": 0,
"accumulated_duration": 0,
"accumulated_duration_str": "0𝜇s",
"statements": []

},
"swiftmailer_mails": {

"count": 0,
"mails": []

(continues on next page)

150 Chapter 44. Profiler

HiveApi Documentation, Release 1.0.0

(continued from previous page)

},
"logs": {

"count": 3,
"messages": [

{
"message": "...",
"message_html": null,
"is_string": false,
"label": "error",
"time": 1506105927.694807

},
{

"message": "...",
"message_html": null,
"is_string": false,
"label": "error",
"time": 1506105927.694811

},
{

"message": "[2017-09-18 17:38:15] testing.INFO: New User
→˓registration. ID = 970ylqvaogmxnbdr | Email = user@mail.develop. Thank you for
→˓signing up.\n</div>\n</body>\n</html>\n \n",

"message_html": null,
"is_string": false,
"label": "info",
"time": 1506105927.694812

}
]

},
"auth": {

"guards": {
"web": "array:2 [\n \"name\" => \"Guest\"\n \"user\" => array:1 [\n

→˓ \"guest\" => true\n]\n]",
"api": "array:2 [\n \"name\" => \"Guest\"\n \"user\" => array:1 [\n

→˓ \"guest\" => true\n]\n]"
},
"names": ""

},
"gate": {

"count": 0,
"messages": []

}
}

}

44.2 Configuration

By default the profiler feature is turned off. To turn it on edit the .env file and set DEBUGBAR_ENABLED=true. To
control and modify the profiler response, you need to edit this config file app/Ship/Configs/debugbar.php.

44.2. Configuration 151

HiveApi Documentation, Release 1.0.0

152 Chapter 44. Profiler

CHAPTER 45

Query Parameters: Search

Below you see how to setup a Search Query Parameter, on a Model:

1. First, you need to define searchable fields on the Model Repository

<?php

namespace App\Containers\User\Data\Repositories;

class UserRepository extends Repository
{

protected $fieldSearchable = [
'name' => 'like',
'id' => '=',
'email' => '=',

];
}

1. Next, you need to create a basic List and Search Task

<?php

namespace App\Containers\User\Tasks;

class ListUsersTask extends Task
{

private $userRepository;

public function __construct(UserRepositoryInterface $userRepository)
{

$this->userRepository = $userRepository;
}

public function run()
{

return $this->userRepository->paginate();
(continues on next page)

153

HiveApi Documentation, Release 1.0.0

(continued from previous page)

}
}

1. Create an Action to call this Task

<?php

namespace App\Containers\User\Actions;

class ListAndSearchUsersAction extends Action
{

public function run()
{

return Hive::call(ListUsersTask::class, [], ['applyRequestCriteria']);
}

}

1. Use the Action from a Controller

<?php

public function listAllUsers(Request $request)
{

$users = Hive::call(ListAndSearchUsersAction::class);

return $this->transform($users, UserTransformer::class);
}

1. Call it from anywhere as follow GET http://api.hive.local/users?search=example@test.
com

154 Chapter 45. Query Parameters: Search

CHAPTER 46

Rate Limiting (API Throttling)

HiveApi uses the default Laravel middleware for rate limiting (throttling). All API endpoints are throttled to prevent
abuse and ensure stability. The exact number of calls that your client can make per day varies based on the type of
request you are making.

The rate limit window is 1 minute per endpoint, with most individual calls allowing for 30 requests in each window.
In other words, each client is allowed to make 30 calls per endpoint every 1 minute (for each unique access token).

You can change these values within the app/Ship/Configs/hive.php config file, or in your ENV file.

'throttle' => [
'enabled' => env('API_RATE_LIMIT_ENABLED', true),
'attempts' => env('API_RATE_LIMIT_ATTEMPTS', '30'),
'expires' => env('API_RATE_LIMIT_EXPIRES', '1'),

]

API_RATE_LIMIT_ENABLED=true
API_RATE_LIMIT_ATTEMPTS=30
API_RATE_LIMIT_EXPIRES=1

HiveApi automatically returns how many hits you can preform on an endpoint in the response header:

X-RateLimit-Limit : 30
X-RateLimit-Remaining : 29

46.1 Enable/Disable Rate Limiting:

The API rate limiting middleware is enabled by default and applied to all endpoints by default. To disable it this
feature set API_RATE_LIMIT_ENABLED to false in your .env file.

155

HiveApi Documentation, Release 1.0.0

156 Chapter 46. Rate Limiting (API Throttling)

CHAPTER 47

Request Monitor

HiveApi provides a simple and easy way to monitor and log all the HTTP requests reaching your application. The
request monitor can be very useful when testing and debugging your frontend applications who consumes your API.
Especially when the frontend apps (mobile applications, JavaScript applications, ,..) are built by other developers.

The requests monitor is provided by the Debugger Container, more specifically by a dedicated
RequestsMonitorMiddleware middleware.

47.1 Enable Requests Logging

Set the REQUESTS_DEBUG to true within your .env file. In order for this to start displaying the results you need to
enable the debugging mode in Laravel by setting APP_DEBUG to true in the .env as well.

47.2 Usage

Simply tail the log file

tail -f storage/logs/debugger.log

47.3 Change the Default Log File

By default everything is logged in the debugger.log file, to change the default file go to app/Containers/
Debugger/Configs/debugger.php config file and specify a file name.

<?php

/*
|--

(continues on next page)

157

HiveApi Documentation, Release 1.0.0

(continued from previous page)

| Log File
|--
| What to name the log file in the `storage/log` path.

*/

'log_file' => 'debugger.log',

This feature will not run in the testing environments, to enable it you need to manually edit the middleware.

158 Chapter 47. Request Monitor

CHAPTER 48

System Settings

At many cases you need to have some dynamic system settings, such as in a referral program, where you give gifts
to anyone who refers new users. But those gifts can be changed in the future, so it’s better not have them statically
created in the code, instead read from the database where an Admin can manage them at any time.

The app/Containers/Settings Container helps storing and retrieving those key values settings. It also seed
the database with the default configurations during the installation.

48.1 Seed Default Settings

Default Settings should be added to the app/Containers/Settings/Database/Seeders/
DefaultSystemSettingsSeeder.php

48.2 Read Settings

You can use the pre-defined Tasks to read / write settings from the database

<?php
$value = $this->findSettingsByKeyTask->run('whateverSettingsName');

You can search for settings by Key as in the example above, or create a class for each settings as follow:

<?php
$value = $this->findWhateverSettingsTask->run();

159

HiveApi Documentation, Release 1.0.0

160 Chapter 48. System Settings

CHAPTER 49

Validation

HiveApi internally uses the powerful Laravel validation system. However, HiveApi validations must be defined within
the Requests components, since every request might have different rules.

The Validations rules are automatically applied, once injecting the Request in the Controller. Requests helps validating
data sent to the API, accessibility, ownership and more. . .

49.1 Request

Consider the following example for a validation within a Request

<?php

namespace App\Containers\User\UI\API\Requests;

use App\Ship\Parents\Requests\Request;

class RegisterUserRequest extends Request
{

/**
* @return array

*/
public function rules()
{

return [
'email' => 'required|email|max:200|unique:users,email',
'password' => 'required|min:20|max:300',
'name' => 'required|min:2|max:400',

];
}

}

161

https://laravel.com/docs/validation

HiveApi Documentation, Release 1.0.0

49.1.1 Using a Request (with Validation) within a Controller

Usage from Controller Example:

<?php
public function registerUser(RegisterUserRequest $request)
{

// if this method is called, the Request was successfully validated!
$user = Hive::call(RegisterUserAction::class, [$request->toTransporter()]);

return $this->transform($user, UserTransformer::class);
}

49.2 Responses

If the Request data cannot be validated, the framework responds with an Exception similar to this

{
"errors": {
"email": [

"The email field is required."
],
"password": [

"The password field is required."
]

},
"status_code": 422,
"message": "The given data failed to pass validation."

}

162 Chapter 49. Validation

CHAPTER 50

Versioning

Since Laravel does not support API versioning, HiveApi provide a very easy way to implement versioning for your
API.

When creating a new API endpoint, specify the version number in the route file name following this naming format
{endpoint-name}.{version-number}.{documentation-name}.php.

Example:

• MakeOrder.v1.public.php

• MakeOrder.v2.public.php

• ListOrders.v1.private.php

50.1 Usage

The endpoint inside that route file will be automatically accessible by adding the version number to the URL. Example:

• http://api.hive.local/v1/register

• http://api.hive.local/v1/orders

• http://api.hive.local/v2/stores/123

50.2 Version the API in Header instead of URL

First remove the URL version prefix:

1. Edit app/Ship/Configs/hive.php and set the prefix to 'enable_version_prefix' =>
'false'.

2. Implement the Header versioning anyway you prefer. This is not implemented in yet.

163

HiveApi Documentation, Release 1.0.0

164 Chapter 50. Versioning

CHAPTER 51

Magical Call

This magical function allows you to call() any Action or Task run() function, from anywhere. Using the
Hive::call() Facade.

The function call() is mainly used for calling HiveApi Actions from Controllers, and calling HiveApi
Tasksfrom Actions.

Each Action knows which UI called it, using $this->getUI(). This may be useful for handling the
same Action differently based on the UI type (WEB or API). This will work when calling the Action from
Controllers and Commands using the magical call() function.

51.1 Usage

In the first argument you can pass the class full name, as follow App\Containers\User\Tasks\CreateUserTask::class,
or you can pass the container name and class name, as follow User@CreateUserTask.

Using the “string based” style (i.e., containerName@className) helps removing direct dependencies between
containers. The call() function, in turn, will verify the Container exist before calling the function and inform the
user to install Container if not exist.

A huge downside of the “string-based” approach, however, is that you will lose auto-completion features from your
IDE!

When a class is directly called using its full name, a warning will be logged informing you to use the
“string based caller style”. This message, however, can be disabled by changing the flag hive.logging.
log-wrong-hive-caller-style in the Ship/Configs/hive.php file accordingly.

<?php

// Call "AssignUserToRoleTask" Task from the "Authorization" Container using the
→˓hiveapi caller style
Hive::call('Authorization@AssignUserToRoleTask');

// Call "AssignUserToRoleTask" Task from the "Authorization" Container using class
→˓full name. (continues on next page)

165

HiveApi Documentation, Release 1.0.0

(continued from previous page)

// This will cause to add an INFO entry to the log file!
Hive::call(\App\Containers\Authorization\Tasks\AssignUserToRoleTask::class);

51.1.1 Example Basic Usage

$foo = \HiveApi\Core\Foundation\Facades\Hive::call('Container@ActionOrTask');

• From Controllers and Actions you can use the $this->call('Container@ActionOrTask')
instead of the Facade but it is not recommended.

• The magical call() function accepts the class full namespace (\App\Containers\User\Tasks\GetAllUsersTask::class)
and the HiveApi caller style (Containers@GetAllUsersTask).

• There is also a transactionalCall() method available, that wraps everything in a DB::Transaction
(see below).

51.1.2 Passing arguments to the run() function

$foo = Hive::call('Container@ActionOrTask', [$runArgument1, $runArgument2,
→˓$runArgument3]);

51.1.3 Calling other functions before calling the run()

$foo = Hive::call('Container@ActionOrTask', [$runArgument], ['otherFunction1',
→˓'otherFunction2']);

51.1.4 Calling other functions and pass them arguments before calling the run()

<?php
$foo = Hive::call('Container@ActionOrTask', [$runArgument], [

[
'function1' => ['function1-argument1', 'function1-argument2']

],
[

'function2' => ['function2-argument1']
],

]);

$foo = Hive::call('Container@ActionOrTask', [$runArgument], [
'function-without-argument',
[

'function1' => ['function1-argument1', 'function1-argument2']
],

]);

$foo = Hive::call('Container@ActionOrTask', [], [
'function-without-argument',
[

'function1' => ['function1-argument1', 'function1-argument2']

(continues on next page)

166 Chapter 51. Magical Call

HiveApi Documentation, Release 1.0.0

(continued from previous page)

],
'another-function-without-argument',
[

'function2' => ['function2-argument1', 'function2-argument2', 'function2-
→˓argument3']

],
]);

51.2 Transactional Magical Call

Sometimes, you want to wrap a call into one Database Transaction (see theofficial Laravel Documentation).

Consider the following example: You want to create a new Team and automatically assign yourself (i.e., your own
User) to this newly created Team. Your CreateTeamAction may call a dedicated CreateTeamTask and
a AssignMemberToTeamTask afterwards. However, if the AssignMemberToTeamTask fails, for unknown
reasons, you may want to “rollback” (i.e., remove) the newly created Team from the database in order to keep the
database in a valid state.

That’s where DB::transactions comes into play!

HiveApi provides a transactionalCall($class, $params, $extraMethods) method with the similar
parameters as already known from the call() method. Internally, this method calls this call() method anyways,
but wraps it into a DB::transaction.

If any Exception occurs during the execution of the $class to be called, everything done in this context is
automatically rolled-back from the database. However, respective operations on the file system (e.g., you may also
have uploaded a profile picture for this Team already that needs to be removed in this case) need to be performed
manually!

Typically, you may want to use the transactionalCall() on the Controller level!

51.3 Use Case Example

<?php

return Hive::call('User@ListUsersTask', [], ['ordered']);
// can be called this way as well Hive::call(ListUsersTask::class, [], ['ordered']);

return Hive::call('User@ListUsersTask', [], ['ordered', 'clients']);

return Hive::call('User@ListUsersTask', [], ['admins']);

return Hive::call('User@ListUsersTask', [], ['admins', ['roles' => ['manager',
→˓'employee']]]);

51.3.1 The ListUsersTask class

<?php

namespace App\Containers\User\Tasks;

(continues on next page)

51.2. Transactional Magical Call 167

https://laravel.com/docs/5.6/database#database-transactions

HiveApi Documentation, Release 1.0.0

(continued from previous page)

use App\Containers\User\Data\Criterias\AdminsCriteria;
use App\Containers\User\Data\Criterias\ClientsCriteria;
use App\Containers\User\Data\Criterias\RoleCriteria;
use App\Containers\User\Data\Repositories\UserRepository;
use App\Ship\Criterias\Eloquent\OrderByCreationDateDescendingCriteria;
use App\Ship\Parents\Tasks\Task;

class ListUsersTask extends Task
{

private $userRepository;

public function __construct(UserRepository $userRepository)
{

$this->userRepository = $userRepository;
}

public function run()
{

return $this->userRepository->paginate();
}

public function clients()
{

$this->userRepository->pushCriteria(new ClientsCriteria());
}

public function admins()
{

$this->userRepository->pushCriteria(new AdminsCriteria());
}

public function ordered()
{

$this->userRepository->pushCriteria(new
→˓OrderByCreationDateDescendingCriteria());

}

public function withRole($roles)
{

$this->userRepository->pushCriteria(new RoleCriteria($roles));
}

}

168 Chapter 51. Magical Call

CHAPTER 52

Task Queuing

• Queues System, which executes Jobs one by one once he receives it or once it’s scheduled (after being serial-
ized and stored in a string somewhere).

• to be able to queue the Jobs you need a Queuing System such as Beanstalkd, Redis, Amazon SQS or simply the
Database.

• Laravel has a “queue worker” that will process new Jobs as they are pushed onto the queue system,
(“queue:work” and “queue:listen”). Its job is to push the jobs to the queue system in order to be executed
later.

• to keep the “queue worker php artisan queue:work command, running permanently in the background,
you should use a process monitor such as “Supervisor” to ensure that the queue worker does not stop running.
It will simply make sure to execute the php artisan queue:work command.

• so its role is to schedule the execution of Artisan Command, Jobs, Event Listeners, and some other classes, at
specific intervals or dates using the third party Queueing System.

More info can be found at the official Laravel documentation.

HiveApi detects by default, which queue you are planning to use (based on the configurations), and creates the required
migration files (if driver databaes is used)

if (Config::get('queue.default') == 'database')
{

// do something
}

52.1 Beanstalkd

In order to use Beanstalkd as your queue driver, you need to require the "pda/pheanstalk": "^3.1" package
first. You can include this in any composer.json file you want.

169

https://laravel.com/docs/queues

HiveApi Documentation, Release 1.0.0

170 Chapter 52. Task Queuing

CHAPTER 53

Task Scheduling

• is a script executor program, such as Cron Job. A Cron Job is a time-based scripts scheduler in Unix-like
computer operating systems.

• its role is to schedule the execution of Artisan Commands”, periodically at fixed times, dates, or intervals.

• Laravel has a wrapper around the “Cron Job” called the Laravel scheduler. This allows the framework to
schedule class like and Artisan Commands, Queued Jobs in addition to custom Shell Commands, to run later.

Below is a quick guide for how to schedule some scripts execution such as (custom Shell Commands, Laravel Com-
mands, Laravel Jobs, and other classes), in order to run at specific intervals or dates.

53.1 Setup Server

First you need to setup your server by adding a single Cron entry as follow:

1. On the command line, type crontab -e

2. At the last line add the following: * * * * * php /path/to/your/project/artisan
schedule:run >> /dev/null 2>&1

More details regarding the configuration can be found in the official Laravel documentation.

53.2 Setup and Configure your Application

First you need to create some commands, that needs to be scheduled. The can be created in the Containers (app/
Containers/{container-name}/UI/CLI/Commands) or in the Ship (app/Ship/Commands). See the
Commands Page for more details.

Once you have your command ready, go to app/Ship/Kernels/ConsoleKernel.php and start adding the
commands you need to schedule inside the schedule function.

Note that you do not need to register the commands with the $commands property or point to them in the
commands() function. HiveApi will do that automatically for you.

171

https://laravel.com/docs/master/queues
https://laravel.com/docs/master/scheduling#introduction
./../components/commands.html

HiveApi Documentation, Release 1.0.0

Example:

<?php
protected function schedule(Schedule $schedule)
{

$schedule->command('hive:welcome')->everyMinute();
$schedule->job(new myJob)->hourly();
$schedule->exec('touch me.txt')->dailyAt('12:00');
// ...

}

The official Laravel documentation provides more details.

172 Chapter 53. Task Scheduling

https://laravel.com/docs/scheduling#defining-schedules

CHAPTER 54

Useful Commands

HiveApi already ships with many useful commands to help you speed up the development process. You can see list of
all commands, by typing php artisan hive and look for the HiveApi (hive) section.

54.1 Available Commands (Excerpt)

• php artisan hive:list:actions Show all Actions within the application

• php artisan hive:list:tasks Show all Tasks within the application

• php artisan hive:seed:test Seeds your custom testing data from app/Ship/Seeders/
SeedTestingData.php.

• php artisan hive:seed:deploy Seeds your custom deployment data from app/Ship/Seeders/
SeedDeploymentData.php.

• php artisan hive:generate:xxx Generate a specific component for the framework (e.g., Action,
Task, . . .). For more details on the Code Generator.

54.2 List All Actions / Tasks Command

It’s useful to be able to see all the implemented use cases in your application. To do so type php
artisan hive:list:actions. You can also pass --withfilename flag to see all Actions with the files
names.hive:list:actions --withfilename.

The same command works for Tasks as well.

54.3 List Container Dependencies Command

Sometimes it is required to show dependencies between containers (e.g., how they are interlinked amongst each oth-
ers). HiveApi provides a command to list all dependencies for one specific container. The command does take the

173

./../features/code-generator.html

HiveApi Documentation, Release 1.0.0

Hive::call() and $this->call() (with use X) into account.

If you want to get the dependencies for one container, you can call

php artisan hive:list:dependencies app/Containers/X

where X is the name of the requested container (e.g., User).

174 Chapter 54. Useful Commands

	Software Requirements
	Installation
	HiveApi Application Installation
	B) Development Environment Setup
	C) Play

	Overview
	Quickstart

	Architecture Pattern
	Porto
	MVC

	Requests
	Form Content Types (W3C)
	HTTP Request Headers
	Calling Endpoints

	Responses
	Paginated Response:
	Including Resources
	Change the default Response payload:
	Resource Keys
	Error Responses Formats
	Building a Responses from the Controller

	Conventions and Principles
	HTTP Methods usage in RESTful APIs
	Naming Conventions for Routes & Actions
	General Guidelines and Principles for RESTful URLs

	Actions
	Rules
	Folder Structure
	Code Sample
	Examples

	Configuration Files
	Principles
	Rules
	Folder Structure
	Code Samples

	Controllers
	Rules
	Folder Structure
	Code Sample
	Controller Response Builder Helper Functions

	Migration Files
	Rules
	Structure
	Code Samples

	Models
	Rules
	Folder Structure
	Code Sample
	Casts

	Repositories
	Principles
	Rules
	Folder Structure
	Code Samples

	Routes
	Rules
	Folder Structure
	Web Routes
	Protecting Endpoints:

	SubActions
	Rules
	Folder Structure
	Code Sample

	Tasks
	Rules
	Folder Structure
	Code Sample

	Transformers
	Rules
	Folder Structure
	Code Samples
	Relationships (Includes)
	Helper Functions for Transformers

	Transporters
	Rules
	Folder Structure
	Code Sample
	Automatically Transforming a Request to a Transporter
	Data Access
	Instance Access

	Views
	Rules
	Folder Structure
	Code Sample
	Namespaces

	Commands
	Principles
	Rules
	Folder Structure
	Code Samples
	Define Consoles Routes

	Criteria
	Principles
	Rules
	Folder Structure
	Code Samples

	Events
	Principles
	Enabling Events
	Usage

	Exceptions
	Principles
	Rules
	Folder Structure
	Code Samples
	Usage
	Application Error Codes

	Exception Formatters
	Rules
	Folder Structure
	Code Sample
	Creating Your Own Formatter

	Factories
	Rules
	Folder Structure
	Code Samples

	Jobs
	Rules
	Folder Structure
	Code Samples

	Languages
	Rules
	Folder Structure
	Usage

	Mails
	Principles
	Rules
	Folder Structure
	Code Samples
	Email Templates
	Configure Emails
	Queueing Notifications for Later Use

	Middlewares
	Principles
	Rules
	Folder Structure
	Code Sample

	Notifications
	Principles
	Rules
	Folder Structure
	Code Samples
	Select Channels
	Queueing a Notification
	Use Database Channel

	Service Providers
	Principles
	Rules
	Folder Structure
	Code Samples
	Register Service Providers
	Laravel 5.5 Auto Discovery feature.
	Information about Laravel Service Providers

	Requests
	Rules
	Folder Structure
	Code Samples
	Using Requests in the Contorller
	Request Properties
	How the Authorize Function Works
	Allow a Role to access every endpoint
	Request Helper Functions
	Storing Data on the Request

	Seeders
	Principles
	Rules
	Folder Structure
	Code Samples
	Running the Seeders
	HiveApi Seeder Commands

	Values
	Rules
	Folder Structure
	Code Sample

	Authentication
	API Authentication (with OAuth 2.0)
	Web Authentication
	Refresh Token
	Force Email Confirmation

	Authorization
	Usage
	Example
	Responses
	Seeding Users
	Roles & Permissions guards
	Permissions Inheriting with Levels

	Caching
	Enable / Disable Eloquent Query Caching
	Change Different Caching Settings

	Default Endpoints
	ETags
	Generators
	Available Code Generator Commands
	Custom Code Stubs (aka. Customizing the Generator)

	Hash IDs
	Enable Hash ID
	Example:
	Usage
	Configuration
	Testing
	Availability

	Localization
	Select Request Language
	Support New Languages
	Translating Strings
	Disable the Localization Feature
	Get Available Localizations
	Tests

	Pagination
	Change the Default Pagination Limit
	Limit
	Usage
	Skip the Pagination Limit

	Profiler
	Sample Profiler Response
	Configuration

	Query Parameters: Search
	Rate Limiting (API Throttling)
	Enable/Disable Rate Limiting:

	Request Monitor
	Enable Requests Logging
	Usage
	Change the Default Log File

	System Settings
	Seed Default Settings
	Read Settings

	Validation
	Request
	Responses

	Versioning
	Usage
	Version the API in Header instead of URL

	Magical Call
	Usage
	Transactional Magical Call
	Use Case Example

	Task Queuing
	Beanstalkd

	Task Scheduling
	Setup Server
	Setup and Configure your Application

	Useful Commands
	Available Commands (Excerpt)
	List All Actions / Tasks Command
	List Container Dependencies Command

