
hirefire Documentation
Release 0.5

Jannis Leidel and contributors

Dec 10, 2018

Contents

1 Installation 3

2 Configuration 5
2.1 Django . 5
2.2 Tornado . 6
2.3 Flask . 7

3 Proc backends 9
3.1 hirefire.procs.Proc . 9
3.2 hirefire.procs.ClientProc . 10
3.3 Contributed backends . 10

4 Issues & Feedback 15

5 Thanks 17
5.1 Authors . 17

6 Changes 19

7 0.7 (2018-12-10) 21

8 0.6 (2018-10-10) 23

9 0.5 (2017-01-20) 25

10 0.4 (2016-06-04) 27

11 0.3 (2015-05-05) 29

12 0.2.2 (2014-11-27) 31

13 0.2.1 (2014-05-27) 33

14 0.2 (2014-04-20) 35

15 0.1 (2013-02-17) 37

i

ii

hirefire Documentation, Release 0.5

This is a Python package for HireFire – The Heroku Process Manager:

HireFire has the ability to automatically scale your web and worker dynos up and down when necessary.
When new jobs are queued in to your application’s worker queue [..], HireFire will spin up new worker
dynos to process these jobs. When the queue is empty, HireFire will shut down the worker dynos again
so you’re not paying for idle workers.

HireFire also has the ability to scale your web dynos. When your web application experiences heavy traffic
during certain times of the day, or if you’ve been featured somewhere, chances are your application’s
backlog might grow to a point that your web application will run dramatically slow, or even worse, it
might result in a timeout. In order to prevent this, HireFire will automatically scale your web dynos
up when traffic increases to ensure that your application runs fast at all times. When traffic decreases,
HireFire will spin down your web dynos again.

—from the HireFire frontpage

It supports the following Python queuing systems as backends:

• Celery

• HotQueue

• Huey

• Queues

• RQ

Feel free to contribute other backends if you’re using a different queuing system.

Contents 1

http://hirefire.io/
http://www.heroku.com/
http://hirefire.io/
http://celeryproject.com/
http://richardhenry.github.com/hotqueue/
https://huey.readthedocs.io/
http://queues.googlecode.com/
http://python-rq.org/
https://github.com/jezdez/hirefire/

hirefire Documentation, Release 0.5

2 Contents

CHAPTER 1

Installation

Install the HireFire package with your favorite installer, e.g.:

pip install HireFire

Sign up for HireFire and set the HIREFIRE_TOKEN environment variable with the Heroku CLI as provided on the
specific HireFire application page, e.g.:

heroku config:set HIREFIRE_TOKEN=f69f0c0ddebe041248daf187caa6abb3e5d943ca

Now follow the quickstart guide below and don’t forget to tweak the options in the HireFire management system.

For more help see the Hirefire documentation.

3

http://hirefire.io/
https://devcenter.heroku.com/articles/heroku-command
https://manager.hirefire.io/applications
https://manager.hirefire.io/
http://hirefire.io/documentation/guides/getting-started

hirefire Documentation, Release 0.5

4 Chapter 1. Installation

CHAPTER 2

Configuration

The hirefire Python package currently supports two frameworks: Django and Tornado. Implementations for other
frameworks are planned but haven’t been worked on: Flask, Pyramid (PasteDeploy), WSGI middleware, ..

Feel free to contribute one if you can’t wait.

The following guides imply you have defined at least one hirefire.procs.Proc subclass defined matching one
of the processes in your Procfile. For each process you want to monitor you have to have one subclass.

For example here is a Procfile which uses RQ for the “worker” proccess:

web: python manage.py runserver
worker: DJANGO_SETTINGS_MODULE=mysite.settings rqworker high default low

Define a RQProc subclass somewhere in your project, e.g. mysite/procs.py, with the appropriate attributes
(name and queues)

from hirefire.procs.rq import RQProc

class WorkerProc(RQProc):
name = 'worker'
queues = ['high', 'default', 'low']

See the procs API documentation if you’re using another backend. Now follow the framework specific guidelines
below.

2.1 Django

Setting up HireFire support for Django is easy:

1. Add 'hirefire.contrib.django.middleware.HireFireMiddleware' to your MIDDLEWARE
setting

5

http://flask.pocoo.org/
http://www.pylonsproject.org/
http://www.python.org/dev/peps/pep-3333/
https://github.com/jezdez/hirefire/
http://python-rq.org/

hirefire Documentation, Release 0.5

Use ``MIDDLEWARE_CLASSES`` prior to Django 1.10
MIDDLEWARE = [

'hirefire.contrib.django.middleware.HireFireMiddleware',
...

]

Make sure it’s the first item in the list/tuple.

2. Set the HIREFIRE_PROCS setting to a list of dotted paths to your procs. For the above example proc

HIREFIRE_PROCS = ['mysite.procs.WorkerProc']

3. Set the HIREFIRE_TOKEN setting to the token that HireFire shows on the specific application page (optional)

HIREFIRE_TOKEN = 'f69f0c0ddebe041248daf187caa6abb3e5d943ca'

This is only needed if you haven’t set the HIREFIRE_TOKEN environment variable already (see the installation
section how to do that on Heroku).

4. Check that the middleware has been correctly setup by opening the following URL in a browser:

http://localhost:8000/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire checks to get the number of current tasks:

http://localhost:8000/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or – in case you haven’t set the token in
your settings or environment – just use development.

2.2 Tornado

Setting up HireFire support for Tornado is also easy:

1. Use hirefire.contrib.tornado.handlers.hirefire_handlers when defining your
tornado.web.Application instance

import os
from hirefire.contrib.tornado.handlers import hirefire_handlers

application = tornado.web.Application([
.. some patterns and handlers

] + hirefire_handlers(os.environ['HIREFIRE_TOKEN'],
['mysite.procs.WorkerProc']))

Make sure to pass a list of dotted paths to the hirefire_handlers function.

2. Set the HIREFIRE_TOKEN environment variable to the token that HireFire shows on the specific application
page (optional)

export HIREFIRE_TOKEN='f69f0c0ddebe041248daf187caa6abb3e5d943ca'

See the installation section above for how to do that on Heroku.

3. Check that the handlers have been correctly setup by opening the following URL in a browser:

6 Chapter 2. Configuration

https://manager.hirefire.io/applications
http://hirefire.io/
https://manager.hirefire.io/applications
https://manager.hirefire.io/applications

hirefire Documentation, Release 0.5

http://localhost:8888/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire checks to get the number of current tasks:

http://localhost:8888/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or – in case you haven’t set the token as an
environment variable – just use development.

2.3 Flask

Setting up HireFire support for Flask is (again!) also easy:

1. The module hirefire.contrib.flask.blueprint provides a build_hirefire_blueprint
factory function that should be called with HireFire token and procs as arguments. The result is a blueprint
providing the hirefire routes and which should be registered inside your app

import os
from flask import Flask
from hirefire.contrib.flask.blueprint import build_hirefire_blueprint

app = Flask(__name__)
bp = build_hirefire_blueprint(os.environ['HIREFIRE_TOKEN'],

['mysite.procs.WorkerProc'])
app.register_blueprint(bp)

Make sure to pass a list of dotted paths to the build_hirefire_blueprint function.

2. Set the HIREFIRE_TOKEN environment variable to the token that HireFire shows on the specific application
page (optional)

export HIREFIRE_TOKEN='f69f0c0ddebe041248daf187caa6abb3e5d943ca'

See the installation section above for how to do that on Heroku.

3. Check that the handlers have been correctly setup by opening the following URL in a browser:

http://localhost:8080/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire checks to get the number of current tasks:

http://localhost:8080/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or – in case you haven’t set the token as an
environment variable – just use development.

2.3. Flask 7

http://hirefire.io/
https://manager.hirefire.io/applications
https://manager.hirefire.io/applications
http://hirefire.io/

hirefire Documentation, Release 0.5

8 Chapter 2. Configuration

CHAPTER 3

Proc backends

Two base classes are includes that you can use to implement custom backends. All the other contributed backends use
those base classes, too.

3.1 hirefire.procs.Proc

class hirefire.procs.Proc(name=None, queues=None)
The base proc class. Use this to implement custom queues or other behaviours, e.g.:

import mysite.sekrit
from hirefire import procs

class MyCustomProc(procs.Proc):
name = 'worker'
queues = ['default']

def quantity(self):
return sum([mysite.sekrit.count(queue)

for queue in self.queues])

Parameters

• name (str) – the name of the proc (required)

• queues (str or list of str) – list of queue names to check (required)

name = None
The name of the proc

quantity(**kwargs)
Returns the aggregated number of tasks of the proc queues.

Needs to be implemented in a subclass.

kwargs must be captured even when not used, to allow for future extensions.

9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hirefire Documentation, Release 0.5

The only kwarg currently implemented is cache, which is a dictionary made available for cross-proc
caching. It is empty when the first proc is processed.

queues = []
The list of queues to check

3.2 hirefire.procs.ClientProc

class hirefire.procs.ClientProc(*args, **kwargs)
A special subclass of the Proc class that instantiates a list of clients for each given queue, e.g.:

import mysite.sekrit
from hirefire import procs

class MyCustomProc(procs.ClientProc):
name = 'worker'
queues = ['default']

def client(self, queue):
return mysite.sekrit.Client(queue)

def quantity(self):
return sum([client.count(queue)

for client in self.clients])

See the implementation of the RQProc class for an example.

client(queue, *args, **kwargs)
Returns a client instance for the given queue to be used in the quantity method.

Needs to be implemented in a subclass.

quantity(**kwargs)
Returns the aggregated number of tasks of the proc queues.

Needs to be implemented in a subclass.

kwargs must be captured even when not used, to allow for future extensions.

The only kwarg currently implemented is cache, which is a dictionary made available for cross-proc
caching. It is empty when the first proc is processed.

3.3 Contributed backends

See the following API overview of the other supported queuing backends.

3.3.1 Procs

This is a auto-generated list of supported Proc classes.

Celery

class hirefire.procs.celery.CeleryProc(name=None, queues=[’celery’], app=None)
A proc class for the Celery library.

10 Chapter 3. Proc backends

http://celeryproject.org

hirefire Documentation, Release 0.5

Parameters

• name (str) – the name of the proc (required)

• queues (str or list) – list of queue names to check (required)

• app (Celery) – the Celery app to check for the queues (optional)

Declarative example:

from celery import Celery
from hirefire.procs.celery import CeleryProc

celery = Celery('myproject', broker='amqp://guest@localhost//')

class WorkerProc(CeleryProc):
name = 'worker'
queues = ['celery']
app = celery

Or a simpler variant:

worker_proc = CeleryProc('worker', queues=['celery'], app=celery)

In case you use one of the non-standard Celery clients (e.g. django-celery) you can leave the app attribute
empty because Celery will automatically find the correct Celery app:

from hirefire.procs.celery import CeleryProc

class WorkerProc(CeleryProc):
name = 'worker'
queues = ['celery']

Querying the tasks that are on the workers is a more expensive process, and if you’re sure that you don’t need
them, then you can improve the response time by not looking for some statuses. The default statuses that are
looked for are active, reserved, and scheduled. You can configure to not look for those by overriding
the inspect_statuses property. For example, this proc would not look at any tasks held by the workers.

class WorkerProc(CeleryProc):
name = 'worker'
queues = ['celery']
inspect_statuses = []

scheduled tasks are tasks that have been triggered with an eta, the most common example of which is using
retry on tasks. If you’re sure you aren’t using these tasks, you can skip querying for these tasks.

reserved tasks are tasks that have been taken from the queue by the main process (coordinator) on the worker
dyno, but have not yet been given to a worker run. If you’ve configured Celery to only fetch the tasks that it is
currently running, then you may be able to skip querying for these tasks. See http://docs.celeryproject.org/en/
latest/userguide/optimizing.html#prefetch-limits form more information.

active tasks are currently running tasks. If your tasks are short-lived enough, then you may not need to look
for these tasks. If you choose to not look at active tasks, look out for WorkerLostError exceptions. See
https://github.com/celery/celery/issues/2839 for more information.

If you have a particular simple case, you can use a shortcut to eliminate one inspect call when inspecting
statuses. The active_queues inspect call is needed to map exchange and routing_key back to the
celery queue that it is for. If all of your queue, exchange, and routing_key are the same (which is
the default in Celery), then you can use the simple_queues = True flag to note that all the queues in

3.3. Contributed backends 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
http://docs.celeryproject.org/en/latest/reference/celery.html#celery.Celery
http://docs.celeryproject.org/en/latest/userguide/optimizing.html#prefetch-limits
http://docs.celeryproject.org/en/latest/userguide/optimizing.html#prefetch-limits
https://github.com/celery/celery/issues/2839

hirefire Documentation, Release 0.5

the proc use the same name for their exchange and routing_key. This defaults to False for backward
compatibility, but if your queues are using this simple setup, you’re encouraged to use it like so:

class WorkerProc(CeleryProc):
name = 'worker'
queues = ['celery']
simple_queues = True

Because of how this is implemented, you will almost certainly wish to use this feature on all of your procs,
or on none of them. This is because both variants have separate caches that make separate calls to the inspect
methods, so having both kinds present will mean that the inspect calls will be run twice.

app = None
The Celery app to check for the queues (optional).

inspect_count(cache)
Use Celery’s inspect() methods to see tasks on workers.

inspect_statuses = ['active', 'reserved', 'scheduled']
The Celery task status to check for on workers (optional). Valid options are ‘active’, ‘reserved’, and
‘scheduled’.

name = None
The name of the proc (required).

quantity(cache=None, **kwargs)
Returns the aggregated number of tasks of the proc queues.

queues = ['celery']
The list of queues to check (required).

simple_queues = False
Whether or not the exchange and routing_key are the same as the queue name for the queues in this proc.
Default: False.

HotQueue

class hirefire.procs.hotqueue.HotQueueProc(name=None, queues=[], connec-
tion_params={})

A proc class for the HotQueue library.

Parameters

• name (str) – the name of the proc (required)

• queues (str or list) – list of queue names to check (required)

• connection_params (dict) – the connection parameter to use by default (optional)

Example:

from hirefire.procs.hotqueue import HotQueueProc

class WorkerHotQueueProc(HotQueueProc):
name = 'worker'
queues = ['myqueue']
connection_params = {

'host': 'localhost',
'port': 6379,
'db': 0,

}

12 Chapter 3. Proc backends

http://richardhenry.github.com/hotqueue/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

hirefire Documentation, Release 0.5

client(queue)
Given one of the configured queues returns a hotqueue.HotQueue instance with the
connection_params.

connection_params = {}
The connection parameter to use by default (optional).

name = None
The name of the proc (required).

quantity(**kwargs)
Returns the aggregated number of tasks of the proc queues.

queues = []
The list of queues to check (required).

Huey

Queues

class hirefire.procs.queues.QueuesProc(name=None, queues=[])
A proc class for the queues library.

Parameters

• name (str) – the name of the proc (required)

• queues (str or list of str or queues.queues.Queue) – list of queue names to check
(required)

Example:

from hirefire.procs.queues import QueuesProc

class WorkerQueuesProc(QueuesProc):
name = 'worker'
queues = ['default', 'thumbnails']

client(queue)
Given one of the configured queues returns a queues.queues.Queue instance.

name = None
The name of the proc (required).

quantity(**kwargs)
Returns the aggregated number of tasks of the proc queues.

queues = []
The list of queues to check (required).

RQ

class hirefire.procs.rq.RQProc(name=None, queues=[’default’], connection=None)
A proc class for the RQ library.

Parameters

• name (str) – the name of the proc (required)

• queues (str or list) – list of queue names to check (required)

3.3. Contributed backends 13

http://queues.googlecode.com/
https://docs.python.org/3/library/stdtypes.html#str
http://python-rq.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

hirefire Documentation, Release 0.5

• connection (redis.Redis) – the connection to use for the queues (optional)

Example:

from hirefire.procs.rq import RQProc

class WorkerRQProc(RQProc):
name = 'worker'
queues = ['high', 'default', 'low']

client(queue)
Given one of the configured queues returns a rq.Queue instance using the connection.

connection = None
The connection to use for the queues (optional).

name = None
The name of the proc (required).

quantity(**kwargs)
Returns the aggregated number of tasks of the proc queues.

queues = ['default']
The list of queues to check (required).

14 Chapter 3. Proc backends

CHAPTER 4

Issues & Feedback

For bug reports, feature requests and general feedback, please use the Github issue tracker.

15

https://github.com/jezdez/hirefire/issues

hirefire Documentation, Release 0.5

16 Chapter 4. Issues & Feedback

CHAPTER 5

Thanks

Many thanks to the folks at Hirefire for building a great tool for the Heroku ecosystem.

5.1 Authors

• Emmanuel Leblond

• Jannis Leidel

• Marc Tamlyn

• Ryan Hiebert

• Ryan West

• Shravan Reddy

17

http://hirefire.io/

hirefire Documentation, Release 0.5

18 Chapter 5. Thanks

CHAPTER 6

Changes

19

hirefire Documentation, Release 0.5

20 Chapter 6. Changes

CHAPTER 7

0.7 (2018-12-10)

• Make ProcSerializer inherit from object (#47)

21

hirefire Documentation, Release 0.5

22 Chapter 7. 0.7 (2018-12-10)

CHAPTER 8

0.6 (2018-10-10)

• Use concurrent futures to reduce blocking IO (#37)

• Add a test suite (#41)

• Fix RabbitMQ connection TimeoutError (#42). Acquire and dispose broker connection per request

23

hirefire Documentation, Release 0.5

24 Chapter 8. 0.6 (2018-10-10)

CHAPTER 9

0.5 (2017-01-20)

• Add simple_queues feature to Celery Proc, to enable optionally skipping one inspect call. (#23)

• Make the default quantity 0 by the recommendation of the HireFire team.

25

hirefire Documentation, Release 0.5

26 Chapter 9. 0.5 (2017-01-20)

CHAPTER 10

0.4 (2016-06-04)

• Consider all Celery tasks including the ones in the active, reserved and scheduled queues. This fixes a long
standing issue where tasks in those queues could have been dropped if HireFire were to scale down the workers.
Many thanks to Ryan Hiebert for working on this.

• Removed django-pq backend since the library is unmaintained.

27

hirefire Documentation, Release 0.5

28 Chapter 10. 0.4 (2016-06-04)

CHAPTER 11

0.3 (2015-05-05)

• Added Flask blueprint.

• Fixed Celery queue length measurement for AMQP backends.

29

hirefire Documentation, Release 0.5

30 Chapter 11. 0.3 (2015-05-05)

CHAPTER 12

0.2.2 (2014-11-27)

• Fixed a regression in 0.2.1 fix. Thanks to Ryan West.

31

hirefire Documentation, Release 0.5

32 Chapter 12. 0.2.2 (2014-11-27)

CHAPTER 13

0.2.1 (2014-05-27)

• Fix the RQ Proc implementation to take the number of task into account that are currently being processed by
the workers to prevent accidental shutdown mid-processing. Thanks to Jason Lantz for the report and initial
patch.

33

http://python-rq.org/

hirefire Documentation, Release 0.5

34 Chapter 13. 0.2.1 (2014-05-27)

CHAPTER 14

0.2 (2014-04-20)

• Got rid of d2to1 dependency.

• Added django-pq backend.

• Ported to Python 3.

• Added Tornado contrib handlers.

35

hirefire Documentation, Release 0.5

36 Chapter 14. 0.2 (2014-04-20)

CHAPTER 15

0.1 (2013-02-17)

• Initial release with backends:

– Celery

– HotQueue

– Huey

– Queues

– RQ

37

http://celeryproject.com/
http://richardhenry.github.com/hotqueue/
https://huey.readthedocs.io/
http://queues.googlecode.com/
http://python-rq.org/

hirefire Documentation, Release 0.5

38 Chapter 15. 0.1 (2013-02-17)

Index

A
app (hirefire.procs.celery.CeleryProc attribute), 12

C
CeleryProc (class in hirefire.procs.celery), 10
client() (hirefire.procs.ClientProc method), 10
client() (hirefire.procs.hotqueue.HotQueueProc method),

12
client() (hirefire.procs.queues.QueuesProc method), 13
client() (hirefire.procs.rq.RQProc method), 14
ClientProc (class in hirefire.procs), 10
connection (hirefire.procs.rq.RQProc attribute), 14
connection_params (hire-

fire.procs.hotqueue.HotQueueProc attribute),
13

H
HotQueueProc (class in hirefire.procs.hotqueue), 12

I
inspect_count() (hirefire.procs.celery.CeleryProc

method), 12
inspect_statuses (hirefire.procs.celery.CeleryProc at-

tribute), 12

N
name (hirefire.procs.celery.CeleryProc attribute), 12
name (hirefire.procs.hotqueue.HotQueueProc attribute),

13
name (hirefire.procs.Proc attribute), 9
name (hirefire.procs.queues.QueuesProc attribute), 13
name (hirefire.procs.rq.RQProc attribute), 14

P
Proc (class in hirefire.procs), 9

Q
quantity() (hirefire.procs.celery.CeleryProc method), 12
quantity() (hirefire.procs.ClientProc method), 10

quantity() (hirefire.procs.hotqueue.HotQueueProc
method), 13

quantity() (hirefire.procs.Proc method), 9
quantity() (hirefire.procs.queues.QueuesProc method), 13
quantity() (hirefire.procs.rq.RQProc method), 14
queues (hirefire.procs.celery.CeleryProc attribute), 12
queues (hirefire.procs.hotqueue.HotQueueProc attribute),

13
queues (hirefire.procs.Proc attribute), 10
queues (hirefire.procs.queues.QueuesProc attribute), 13
queues (hirefire.procs.rq.RQProc attribute), 14
QueuesProc (class in hirefire.procs.queues), 13

R
RQProc (class in hirefire.procs.rq), 13

S
simple_queues (hirefire.procs.celery.CeleryProc at-

tribute), 12

39

	Installation
	Configuration
	Django
	Tornado
	Flask

	Proc backends
	hirefire.procs.Proc
	hirefire.procs.ClientProc
	Contributed backends

	Issues & Feedback
	Thanks
	Authors

	Changes
	0.7 (2018-12-10)
	0.6 (2018-10-10)
	0.5 (2017-01-20)
	0.4 (2016-06-04)
	0.3 (2015-05-05)
	0.2.2 (2014-11-27)
	0.2.1 (2014-05-27)
	0.2 (2014-04-20)
	0.1 (2013-02-17)

