

HireFire

This is a Python package for HireFire [http://hirefire.io/] – The Heroku [http://www.heroku.com/] Process Manager:

HireFire has the ability to automatically scale your web and worker
dynos up and down when necessary. When new jobs are queued in to your
application’s worker queue [..], HireFire will spin up new worker
dynos to process these jobs. When the queue is empty, HireFire will
shut down the worker dynos again so you’re not paying for idle
workers.

HireFire also has the ability to scale your web dynos. When your web
application experiences heavy traffic during certain times of the day,
or if you’ve been featured somewhere, chances are your application’s
backlog might grow to a point that your web application will run
dramatically slow, or even worse, it might result in a timeout. In
order to prevent this, HireFire will automatically scale your web
dynos up when traffic increases to ensure that your application runs
fast at all times. When traffic decreases, HireFire will spin down
your web dynos again.

—from the HireFire [http://hirefire.io/] frontpage

It supports the following Python queuing systems as backends:

	Celery [http://celeryproject.com/]

	HotQueue [http://richardhenry.github.com/hotqueue/]

	Huey [https://huey.readthedocs.io/]

	Queues [http://queues.googlecode.com/]

	RQ [http://python-rq.org/]

Feel free to contribute other backends [https://github.com/jezdez/hirefire/] if you’re using a different
queuing system.

Installation

Install the HireFire package with your favorite installer, e.g.:

pip install HireFire

Sign up for HireFire [http://hirefire.io/] and set the HIREFIRE_TOKEN environment variable
with the Heroku CLI [https://devcenter.heroku.com/articles/heroku-command] as provided on the specific HireFire application page [https://manager.hirefire.io/applications],
e.g.:

heroku config:set HIREFIRE_TOKEN=f69f0c0ddebe041248daf187caa6abb3e5d943ca

Now follow the quickstart guide below and don’t forget to tweak the
options in the HireFire management system [https://manager.hirefire.io/].

For more help see the Hirefire documentation [http://hirefire.io/documentation/guides/getting-started].

Configuration

The hirefire Python package currently supports two frameworks:
Django and Tornado. Implementations for other frameworks are planned but
haven’t been worked on: Flask [http://flask.pocoo.org/], Pyramid [http://www.pylonsproject.org/] (PasteDeploy), WSGI [http://www.python.org/dev/peps/pep-3333/] middleware, ..

Feel free to contribute one [https://github.com/jezdez/hirefire/] if you can’t wait.

The following guides imply you have defined at least one
hirefire.procs.Proc subclass defined matching one of the processes in your
Procfile. For each process you want to monitor you have to have one subclass.

For example here is a Procfile which uses RQ [http://python-rq.org/] for the “worker” proccess:

web: python manage.py runserver
worker: DJANGO_SETTINGS_MODULE=mysite.settings rqworker high default low

Define a RQProc subclass somewhere in your project, e.g.
mysite/procs.py, with the appropriate attributes (name and
queues)

from hirefire.procs.rq import RQProc

class WorkerProc(RQProc):
 name = 'worker'
 queues = ['high', 'default', 'low']

See the procs API documentation if you’re using another backend. Now follow
the framework specific guidelines below.

Django

Setting up HireFire support for Django is easy:

	Add 'hirefire.contrib.django.middleware.HireFireMiddleware' to your
MIDDLEWARE setting

Use ``MIDDLEWARE_CLASSES`` prior to Django 1.10
MIDDLEWARE = [
 'hirefire.contrib.django.middleware.HireFireMiddleware',
 # ...
]

Make sure it’s the first item in the list/tuple.

	Set the HIREFIRE_PROCS setting to a list of dotted paths to your
procs. For the above example proc

HIREFIRE_PROCS = ['mysite.procs.WorkerProc']

	Set the HIREFIRE_TOKEN setting to the token that HireFire
shows on the specific application page [https://manager.hirefire.io/applications] (optional)

HIREFIRE_TOKEN = 'f69f0c0ddebe041248daf187caa6abb3e5d943ca'

This is only needed if you haven’t set the HIREFIRE_TOKEN
environment variable already (see the installation section how to
do that on Heroku).

	Check that the middleware has been correctly setup by opening the
following URL in a browser:

http://localhost:8000/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire [http://hirefire.io/] checks to get the
number of current tasks:

http://localhost:8000/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or
– in case you haven’t set the token in your settings or environment
– just use development.

Tornado

Setting up HireFire support for Tornado is also easy:

	Use hirefire.contrib.tornado.handlers.hirefire_handlers when defining
your tornado.web.Application instance

import os
from hirefire.contrib.tornado.handlers import hirefire_handlers

application = tornado.web.Application([
 # .. some patterns and handlers
] + hirefire_handlers(os.environ['HIREFIRE_TOKEN'],
 ['mysite.procs.WorkerProc']))

Make sure to pass a list of dotted paths to the hirefire_handlers
function.

	Set the HIREFIRE_TOKEN environment variable to the token that HireFire
shows on the specific application page [https://manager.hirefire.io/applications] (optional)

export HIREFIRE_TOKEN='f69f0c0ddebe041248daf187caa6abb3e5d943ca'

See the installation section above for how to do that on Heroku.

	Check that the handlers have been correctly setup by opening the
following URL in a browser:

http://localhost:8888/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire [http://hirefire.io/] checks to get the
number of current tasks:

http://localhost:8888/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or
– in case you haven’t set the token as an environment variable
– just use development.

Flask

Setting up HireFire support for Flask is (again!) also easy:

	The module hirefire.contrib.flask.blueprint provides a
build_hirefire_blueprint factory function that should be called with
HireFire token and procs as arguments. The result is a blueprint providing
the hirefire routes and which should be registered inside your app

import os
from flask import Flask
from hirefire.contrib.flask.blueprint import build_hirefire_blueprint

app = Flask(__name__)
bp = build_hirefire_blueprint(os.environ['HIREFIRE_TOKEN'],
 ['mysite.procs.WorkerProc'])
app.register_blueprint(bp)

Make sure to pass a list of dotted paths to the build_hirefire_blueprint
function.

	Set the HIREFIRE_TOKEN environment variable to the token that HireFire
shows on the specific application page [https://manager.hirefire.io/applications] (optional)

export HIREFIRE_TOKEN='f69f0c0ddebe041248daf187caa6abb3e5d943ca'

See the installation section above for how to do that on Heroku.

	Check that the handlers have been correctly setup by opening the
following URL in a browser:

http://localhost:8080/hirefire/test

You should see an empty page with ‘HireFire Middleware Found!’.

You can also have a look at the page that HireFire [http://hirefire.io/] checks to get the
number of current tasks:

http://localhost:8080/hirefire/<HIREFIRE_TOKEN>/info

where <HIREFIRE_TOKEN> needs to be replaced with your token or
– in case you haven’t set the token as an environment variable
– just use development.

Proc backends

Two base classes are includes that you can use to implement custom
backends. All the other contributed backends use those base classes,
too.

hirefire.procs.Proc

	
class hirefire.procs.Proc(name=None, queues=None)

	The base proc class. Use this to implement custom queues or
other behaviours, e.g.:

import mysite.sekrit
from hirefire import procs

class MyCustomProc(procs.Proc):
 name = 'worker'
 queues = ['default']

 def quantity(self):
 return sum([mysite.sekrit.count(queue)
 for queue in self.queues])

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the proc (required)

	queues (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – list of queue names to check (required)

	
name = None

	The name of the proc

	
quantity(**kwargs)

	Returns the aggregated number of tasks of the proc queues.

Needs to be implemented in a subclass.

kwargs must be captured even when not used, to allow for
future extensions.

The only kwarg currently implemented is cache, which is
a dictionary made available for cross-proc caching. It is
empty when the first proc is processed.

	
queues = []

	The list of queues to check

hirefire.procs.ClientProc

	
class hirefire.procs.ClientProc(*args, **kwargs)

	A special subclass of the Proc class
that instantiates a list of clients for each given queue, e.g.:

import mysite.sekrit
from hirefire import procs

class MyCustomProc(procs.ClientProc):
 name = 'worker'
 queues = ['default']

 def client(self, queue):
 return mysite.sekrit.Client(queue)

 def quantity(self):
 return sum([client.count(queue)
 for client in self.clients])

See the implementation of the RQProc
class for an example.

	
client(queue, *args, **kwargs)

	Returns a client instance for the given queue to be used
in the quantity method.

Needs to be implemented in a subclass.

	
quantity(**kwargs)

	Returns the aggregated number of tasks of the proc queues.

Needs to be implemented in a subclass.

kwargs must be captured even when not used, to allow for
future extensions.

The only kwarg currently implemented is cache, which is
a dictionary made available for cross-proc caching. It is
empty when the first proc is processed.

Contributed backends

See the following API overview of the other supported queuing backends.

	Procs
	Celery

	HotQueue

	Huey

	Queues

	RQ

Issues & Feedback

For bug reports, feature requests and general feedback, please use the
Github issue tracker [https://github.com/jezdez/hirefire/issues].

Thanks

Many thanks to the folks at Hirefire [http://hirefire.io/] for building a great tool for
the Heroku ecosystem.

Authors

	Emmanuel Leblond

	Jannis Leidel

	Marc Tamlyn

	Ryan Hiebert

	Ryan West

	Shravan Reddy

Changes

0.6 (2018-10-10

	Use concurrent futures to reduce blocking IO (#37)

	Add a test suite (#41)

	Fix RabbitMQ connection TimeoutError (#42).
Acquire and dispose broker connection per request

0.5 (2017-01-20)

	Add simple_queues feature to Celery Proc, to enable optionally
skipping one inspect call. (#23)

	Make the default quantity 0 by the recommendation of the HireFire team.

0.4 (2016-06-04)

	Consider all Celery tasks including the ones in the active, reserved and
scheduled queues. This fixes a long standing issue where tasks in those
queues could have been dropped if HireFire were to scale down the workers.
Many thanks to Ryan Hiebert for working on this.

	Removed django-pq backend since the library is unmaintained.

0.3 (2015-05-05)

	Added Flask blueprint.

	Fixed Celery queue length measurement for AMQP backends.

0.2.2 (2014-11-27)

	Fixed a regression in 0.2.1 fix. Thanks to Ryan West.

0.2.1 (2014-05-27)

	Fix the RQ [http://python-rq.org/] Proc implementation to take the number of task into account
that are currently being processed by the workers to prevent accidental
shutdown mid-processing. Thanks to Jason Lantz for the report and
initial patch.

0.2 (2014-04-20)

	Got rid of d2to1 dependency.

	Added django-pq backend.

	Ported to Python 3.

	Added Tornado contrib handlers.

0.1 (2013-02-17)

	Initial release with backends:

	Celery [http://celeryproject.com/]

	HotQueue [http://richardhenry.github.com/hotqueue/]

	Huey [https://huey.readthedocs.io/]

	Queues [http://queues.googlecode.com/]

	RQ [http://python-rq.org/]

Procs

This is a auto-generated list of supported Proc classes.

Celery

	
class hirefire.procs.celery.CeleryProc(name=None, queues=['celery'], app=None)

	A proc class for the Celery [http://celeryproject.org] library.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the proc (required)

	queues (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list of queue names to check (required)

	app (Celery [http://docs.celeryproject.org/en/latest/reference/celery.html#celery.Celery]) – the Celery app to check for the queues (optional)

Declarative example:

from celery import Celery
from hirefire.procs.celery import CeleryProc

celery = Celery('myproject', broker='amqp://guest@localhost//')

class WorkerProc(CeleryProc):
 name = 'worker'
 queues = ['celery']
 app = celery

Or a simpler variant:

worker_proc = CeleryProc('worker', queues=['celery'], app=celery)

In case you use one of the non-standard Celery clients (e.g.
django-celery) you can leave the app attribute empty because
Celery will automatically find the correct Celery app:

from hirefire.procs.celery import CeleryProc

class WorkerProc(CeleryProc):
 name = 'worker'
 queues = ['celery']

Querying the tasks that are on the workers is a more expensive
process, and if you’re sure that you don’t need them, then you
can improve the response time by not looking for some statuses.
The default statuses that are looked for are active,
reserved, and scheduled. You can configure to not
look for those by overriding the inspect_statuses property.
For example, this proc would not look at any tasks held by
the workers.

class WorkerProc(CeleryProc):
 name = 'worker'
 queues = ['celery']
 inspect_statuses = []

scheduled tasks are tasks that have been triggered with an
eta, the most common example of which is using retry
on tasks. If you’re sure you aren’t using these tasks, you can
skip querying for these tasks.

reserved tasks are tasks that have been taken from the queue
by the main process (coordinator) on the worker dyno, but have
not yet been given to a worker run. If you’ve configured Celery
to only fetch the tasks that it is currently running, then you
may be able to skip querying for these tasks. See
http://docs.celeryproject.org/en/latest/userguide/optimizing.html#prefetch-limits
form more information.

active tasks are currently running tasks. If your tasks are
short-lived enough, then you may not need to look for these tasks.
If you choose to not look at active tasks, look out for
WorkerLostError exceptions.
See https://github.com/celery/celery/issues/2839 for more information.

If you have a particular simple case, you can use a shortcut to
eliminate one inspect call when inspecting statuses. The
active_queues inspect call is needed to map exchange and
routing_key back to the celery queue that it is for. If all
of your queue, exchange, and routing_key are the same
(which is the default in Celery), then you can use the
simple_queues = True flag to note that all the queues in the
proc use the same name for their exchange and routing_key.
This defaults to False for backward compatibility, but if
your queues are using this simple setup, you’re encouraged to use
it like so:

class WorkerProc(CeleryProc):
 name = 'worker'
 queues = ['celery']
 simple_queues = True

Because of how this is implemented, you will almost certainly
wish to use this feature on all of your procs, or on none of
them. This is because both variants have separate caches that
make separate calls to the inspect methods, so having both
kinds present will mean that the inspect calls will be run twice.

	
app = None

	The Celery app to check for the queues (optional).

	
inspect_count(cache)

	Use Celery’s inspect() methods to see tasks on workers.

	
inspect_statuses = ['active', 'reserved', 'scheduled']

	The Celery task status to check for on workers (optional).
Valid options are ‘active’, ‘reserved’, and ‘scheduled’.

	
name = None

	The name of the proc (required).

	
quantity(cache=None, **kwargs)

	Returns the aggregated number of tasks of the proc queues.

	
queues = ['celery']

	The list of queues to check (required).

	
simple_queues = False

	Whether or not the exchange and routing_key are the same
as the queue name for the queues in this proc.
Default: False.

HotQueue

	
class hirefire.procs.hotqueue.HotQueueProc(name=None, queues=[], connection_params={})

	A proc class for the HotQueue [http://richardhenry.github.com/hotqueue/] library.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the proc (required)

	queues (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list of queue names to check (required)

	connection_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the connection parameter to use by default
(optional)

Example:

from hirefire.procs.hotqueue import HotQueueProc

class WorkerHotQueueProc(HotQueueProc):
 name = 'worker'
 queues = ['myqueue']
 connection_params = {
 'host': 'localhost',
 'port': 6379,
 'db': 0,
 }

	
client(queue)

	Given one of the configured queues returns a
hotqueue.HotQueue instance with the
connection_params.

	
connection_params = {}

	The connection parameter to use by default (optional).

	
name = None

	The name of the proc (required).

	
quantity(**kwargs)

	Returns the aggregated number of tasks of the proc queues.

	
queues = []

	The list of queues to check (required).

Huey

Queues

	
class hirefire.procs.queues.QueuesProc(name=None, queues=[])

	A proc class for the queues [http://queues.googlecode.com/]
library.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the proc (required)

	queues (str or list of str or queues.queues.Queue) – list of queue names to check (required)

Example:

from hirefire.procs.queues import QueuesProc

class WorkerQueuesProc(QueuesProc):
 name = 'worker'
 queues = ['default', 'thumbnails']

	
client(queue)

	Given one of the configured queues returns a
queues.queues.Queue instance.

	
name = None

	The name of the proc (required).

	
quantity(**kwargs)

	Returns the aggregated number of tasks of the proc queues.

	
queues = []

	The list of queues to check (required).

RQ

	
class hirefire.procs.rq.RQProc(name=None, queues=['default'], connection=None)

	A proc class for the RQ [http://python-rq.org/] library.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the proc (required)

	queues (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – list of queue names to check (required)

	connection (redis.Redis) – the connection to use for the queues (optional)

Example:

from hirefire.procs.rq import RQProc

class WorkerRQProc(RQProc):
 name = 'worker'
 queues = ['high', 'default', 'low']

	
client(queue)

	Given one of the configured queues returns a
rq.Queue instance using the
connection.

	
connection = None

	The connection to use for the queues (optional).

	
name = None

	The name of the proc (required).

	
quantity(**kwargs)

	Returns the aggregated number of tasks of the proc queues.

	
queues = ['default']

	The list of queues to check (required).

Index

 A
 | C
 | H
 | I
 | N
 | P
 | Q
 | R
 | S

A

 	
 	app (hirefire.procs.celery.CeleryProc attribute)

C

 	
 	CeleryProc (class in hirefire.procs.celery)

 	client() (hirefire.procs.ClientProc method)

 	(hirefire.procs.hotqueue.HotQueueProc method)

 	(hirefire.procs.queues.QueuesProc method)

 	(hirefire.procs.rq.RQProc method)

 	
 	ClientProc (class in hirefire.procs)

 	connection (hirefire.procs.rq.RQProc attribute)

 	connection_params (hirefire.procs.hotqueue.HotQueueProc attribute)

H

 	
 	HotQueueProc (class in hirefire.procs.hotqueue)

I

 	
 	inspect_count() (hirefire.procs.celery.CeleryProc method)

 	
 	inspect_statuses (hirefire.procs.celery.CeleryProc attribute)

N

 	
 	name (hirefire.procs.celery.CeleryProc attribute)

 	(hirefire.procs.Proc attribute)

 	(hirefire.procs.hotqueue.HotQueueProc attribute)

 	(hirefire.procs.queues.QueuesProc attribute)

 	(hirefire.procs.rq.RQProc attribute)

P

 	
 	Proc (class in hirefire.procs)

Q

 	
 	quantity() (hirefire.procs.celery.CeleryProc method)

 	(hirefire.procs.ClientProc method)

 	(hirefire.procs.Proc method)

 	(hirefire.procs.hotqueue.HotQueueProc method)

 	(hirefire.procs.queues.QueuesProc method)

 	(hirefire.procs.rq.RQProc method)

 	
 	queues (hirefire.procs.celery.CeleryProc attribute)

 	(hirefire.procs.Proc attribute)

 	(hirefire.procs.hotqueue.HotQueueProc attribute)

 	(hirefire.procs.queues.QueuesProc attribute)

 	(hirefire.procs.rq.RQProc attribute)

 	QueuesProc (class in hirefire.procs.queues)

R

 	
 	RQProc (class in hirefire.procs.rq)

S

 	
 	simple_queues (hirefire.procs.celery.CeleryProc attribute)

 nav.xhtml

 Table of Contents

 		
 HireFire

 		
 Procs

 		
 Celery

 		
 HotQueue

 		
 Huey

 		
 Queues

 		
 RQ

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

