
pyFFTW Documentation
Release 0.10.5.dev0+fea306e

Henry Gomersall

Nov 07, 2017





Contents

1 Introduction 1

2 Contents 3
2.1 Overview and A Short Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Indices and tables 33

Python Module Index 35

i



ii



CHAPTER 1

Introduction

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified
interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of abitrary shaped and strided ar-
rays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports
the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

The core interface is provided by a unified class, pyfftw.FFTW . This core interface can be accessed directly, or
through a series of helper functions, provided by the pyfftw.builders module. These helper functions provide
an interface similar to numpy.fft for ease of use.

In addition to using pyfftw.FFTW , a convenient series of functions are included through pyfftw.interfaces
that make using pyfftw almost equivalent to numpy.fft or scipy.fftpack.

The source can be found in github and its page in the python package index is here.

A comprehensive unittest suite is included with the source on the repository. If any aspect of this library is not covered
by the test suite, that is a bug (please report it!).

1

http://www.fftw.org/
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://github.com/pyFFTW/pyFFTW
http://pypi.python.org/pypi/pyFFTW


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

2 Chapter 1. Introduction



CHAPTER 2

Contents

2.1 Overview and A Short Tutorial

Before we begin, we assume that you are already familiar with the discrete Fourier transform, and why you want a
faster library to perform your FFTs for you.

FFTW is a very fast FFT C library. The way it is designed to work is by planning in advance the fastest way to
perform a particular transform. It does this by trying lots of different techniques and measuring the fastest way, so
called planning.

One consequence of this is that the user needs to specify in advance exactly what transform is needed, including things
like the data type, the array shapes and strides and the precision. This is quite different to how one uses, for example,
the numpy.fft module.

The purpose of this library is to provide a simple and pythonic way to interact with FFTW, benefiting from the
substantial speed-ups it offers. In addition to the method of using FFTW as described above, a convenient series of
functions are included through pyfftw.interfaces that make using pyfftw almost equivalent to numpy.fft.

This tutorial is split into three parts. A quick introduction to the pyfftw.interfaces module is given, the most
simple and direct way to use pyfftw . Secondly an overview is given of pyfftw.FFTW , the core of the library. Fi-
nally, the pyfftw.builders helper functions are introduced, which ease the creation of pyfftw.FFTW objects.

2.1.1 Quick and easy: the pyfftw.interfaces module

The easiest way to begin using pyfftw is through the pyfftw.interfaces module. This module implements
three APIs: pyfftw.interfaces.numpy_fft, pyfftw.interfaces.scipy_fftpack, and pyfftw.
interfaces.dask_fft, which are (apart from a small caveat1) drop in replacements for numpy.fft, scipy.
fftpack, and dask.fft respectively.

1 pyfftw.interfaces deals with repeated values in the axes argument differently to numpy.fft (and probably to scipy.fftpack
to, but that’s not documented clearly). Specifically, numpy.fft takes the transform along a given axis as many times as it appears in the axes
argument. pyfftw.interfaces takes the transform only once along each axis that appears, regardless of how many times it appears. This is
deemed to be such a fringe corner case that it is ignored.

3

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://www.fftw.org/
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

>>> import pyfftw
>>> import numpy
>>> a = pyfftw.empty_aligned(128, dtype='complex128', n=16)
>>> a[:] = numpy.random.randn(128) + 1j*numpy.random.randn(128)
>>> b = pyfftw.interfaces.numpy_fft.fft(a)
>>> c = numpy.fft.fft(a)
>>> numpy.allclose(b, c)
True

We initially create and fill a complex array, a, of length 128. pyfftw.empty_aligned() is a helper function that
works like numpy.empty() but returns the array aligned to a particular number of bytes in memory, in this case
16. If the alignment is not specified then the library inspects the CPU for an appropriate alignment value. Having byte
aligned arrays allows FFTW to performed vector operations, potentially speeding up the FFT (a similar pyfftw.
byte_align() exists to align a pre-existing array as necessary).

Calling pyfftw.interfaces.numpy_fft.fft() on a gives the same output (to numerical precision) as call-
ing numpy.fft.fft() on a.

If you wanted to modify existing code that uses numpy.fft to use pyfftw.interfaces, this is done sim-
ply by replacing all instances of numpy.fft with pyfftw.interfaces.numpy_fft (similarly for scipy.
fftpack and pyfftw.interfaces.scipy_fftpack), and then, optionally, enabling the cache (see below).

The first call for a given transform size and shape and dtype and so on may be slow, this is down to FFTW needing
to plan the transform for the first time. Once this has been done, subsequent equivalent transforms during the same
session are much faster. It’s possible to export and save the internal knowledge (the wisdom) about how the transform
is done. This is described below.

Even after the first transform of a given specification has been performed, subsequent transforms are never as fast as
using pyfftw.FFTW objects directly, and in many cases are substantially slower. This is because of the internal
overhead of creating a new pyfftw.FFTW object on every call. For this reason, a cache is provided, which is recom-
mended to be used whenever pyfftw.interfaces is used. Turn the cache on using pyfftw.interfaces.
cache.enable(). This function turns the cache on globally. Note that using the cache invokes the threading
module.

The cache temporarily stores a copy of any interim pyfftw.FFTW objects that are created. If they are not used for
some period of time, which can be set with pyfftw.interfaces.cache.set_keepalive_time(), then
they are removed from the cache (liberating any associated memory). The default keepalive time is 0.1 seconds.

Monkey patching 3rd party libraries

Since pyfftw.interfaces.numpy_fft and pyfftw.interfaces.scipy_fftpack are drop-in re-
placements for their numpy.fft and scipy.fftpack libraries respectively, it is possible use them as replace-
ments at run-time through monkey patching.

The following code demonstrates scipy.signal.fftconvolve() being monkey patched in order to speed it
up.

import pyfftw
import scipy.signal
import numpy
from timeit import Timer

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

a[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)
b[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)

4 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

t = Timer(lambda: scipy.signal.fftconvolve(a, b))

print('Time with scipy.fftpack: %1.3f seconds' % t.timeit(number=100))

# Monkey patch fftpack with pyfftw.interfaces.scipy_fftpack
scipy.fftpack = pyfftw.interfaces.scipy_fftpack
scipy.signal.fftconvolve(a, b) # We cheat a bit by doing the planning first

# Turn on the cache for optimum performance
pyfftw.interfaces.cache.enable()

print('Time with monkey patched scipy_fftpack: %1.3f seconds' %
t.timeit(number=100))

which outputs something like:

Time with scipy.fftpack: 0.598 seconds
Time with monkey patched scipy_fftpack: 0.251 seconds

Note that prior to Scipy 0.16, it was necessary to patch the individual functions in scipy.signal.signaltools.
For example:

scipy.signal.signaltools.ifftn = pyfftw.interfaces.scipy_fftpack.ifftn

2.1.2 The workhorse pyfftw.FFTW class

The core of this library is provided through the pyfftw.FFTW class. FFTW is fully encapsulated within this class.

The following gives an overview of the pyfftw.FFTW class, but the easiest way to of dealing with it is through the
pyfftw.builders helper functions, also discussed in this tutorial.

For users that already have some experience of FFTW, there is no interface distinction between any of the supported
data types, shapes or transforms, and operating on arbitrarily strided arrays (which are common when using numpy)
is fully supported with no copies necessary.

In its simplest form, a pyfftw.FFTW object is created with a pair of complementary numpy arrays: an input array
and an output array. They are complementary insomuch as the data types and the array sizes together define exactly
what transform should be performed. We refer to a valid transform as a scheme.

Internally, three precisions of FFT are supported. These correspond to single precision floating point, double precision
floating point and long double precision floating point, which correspond to numpy’s float32, float64 and
longdouble dtypes respectively (and the corresponding complex types). The precision is decided by the relevant
scheme, which is specified by the dtype of the input array.

Various schemes are supported by pyfftw.FFTW . The scheme that is used depends on the data types of the input
array and output arrays, the shape of the arrays and the direction flag. For a full discussion of the schemes available,
see the API documentation for pyfftw.FFTW .

One-Dimensional Transforms

We will first consider creating a simple one-dimensional transform of a one-dimensional complex array:

import pyfftw

a = pyfftw.empty_aligned(128, dtype='complex128')

2.1. Overview and A Short Tutorial 5

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

b = pyfftw.empty_aligned(128, dtype='complex128')

fft_object = pyfftw.FFTW(a, b)

In this case, we create 2 complex arrays, a and b each of length 128. As before, we use pyfftw.
empty_aligned() to make sure the array is aligned.

Given these 2 arrays, the only transform that makes sense is a 1D complex DFT. The direction in this case is the
default, which is forward, and so that is the transform that is planned. The returned fft_object represents such a
transform.

In general, the creation of the pyfftw.FFTW object clears the contents of the arrays, so the arrays should be filled
or updated after creation.

Similarly, to plan the inverse:

c = pyfftw.empty_aligned(128, dtype='complex128')
ifft_object = pyfftw.FFTW(b, c, direction='FFTW_BACKWARD')

In this case, the direction argument is given as 'FFTW_BACKWARD' (to override the default of 'FFTW_FORWARD').

The actual FFT is performed by calling the returned objects:

import numpy

# Generate some data
ar, ai = numpy.random.randn(2, 128)
a[:] = ar + 1j*ai

fft_a = fft_object()

Note that calling the object like this performs the FFT and returns the result in an array. This is the same array as b:

>>> fft_a is b
True

This is particularly useful when using pyfftw.builders to generate the pyfftw.FFTW objects.

Calling the FFT object followed by the inverse FFT object yields an output that is numerically the same as the original
a (within numerical accuracy).

>>> fft_a = fft_object()
>>> ifft_b = ifft_object()
>>> ifft_b is c
True
>>> numpy.allclose(a, c)
True
>>> a is c
False

In this case, the normalisation of the DFT is performed automatically by the inverse FFTW object (ifft_object).
This can be disabled by setting the normalise_idft=False argument.

It is possible to change the data on which a pyfftw.FFTW operates. The pyfftw.FFTW.__call__() accepts
both an input_array and an output_array argument to update the arrays. The arrays should be compatible
with the arrays with which the pyfftw.FFTW object was originally created. Please read the API docs on pyfftw.
FFTW.__call__() to fully understand the requirements for updating the array.

6 Chapter 2. Contents



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

>>> d = pyfftw.empty_aligned(4, dtype='complex128')
>>> e = pyfftw.empty_aligned(4, dtype='complex128')
>>> f = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft_object = pyfftw.FFTW(d, e)
>>> fft_object.input_array is d # get the input array from the object
True
>>> f[:] = [1, 2, 3, 4] # Add some data to f
>>> fft_object(f)
array([ 10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> fft_object.input_array is d # No longer true!
False
>>> fft_object.input_array is f # It has been updated with f :)
True

If the new input array is of the wrong dtype or wrongly strided, pyfftw.FFTW.__call__() method will copy
the new array into the internal array, if necessary changing it’s dtype in the process.

It should be made clear that the pyfftw.FFTW.__call__() method is simply a helper routine around the other
methods of the object. Though it is expected that most of the time pyfftw.FFTW.__call__() will be sufficient,
all the FFTW functionality can be accessed through other methods at a slightly lower level.

Multi-Dimensional Transforms

Arrays of more than one dimension are easily supported as well. In this case, the axes argument specifies over which
axes the transform is to be taken.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

# Plan an fft over the last axis
fft_object_a = pyfftw.FFTW(a, b)

# Over the first axis
fft_object_b = pyfftw.FFTW(a, b, axes=(0,))

# Over the both axes
fft_object_c = pyfftw.FFTW(a, b, axes=(0,1))

For further information on all the supported transforms, including real transforms, as well as full documentaion on all
the instantiation arguments, see the pyfftw.FFTW documentation.

Wisdom

When creating a pyfftw.FFTW object, it is possible to instruct FFTW how much effort it should put into finding the
fastest possible method for computing the DFT. This is done by specifying a suitable planner flag in flags argument
to pyfftw.FFTW . Some of the planner flags can take a very long time to complete which can be problematic.

When the a particular transform has been created, distinguished by things like the data type, the shape, the stridings
and the flags, FFTW keeps a record of the fastest way to compute such a transform in future. This is referred to as
wisdom. When the program is completed, the wisdom that has been accumulated is forgotten.

It is possible to output the accumulated wisdom using the wisdom output routines. pyfftw.export_wisdom()
exports and returns the wisdom as a tuple of strings that can be easily written to file. To load the wisdom back in, use

2.1. Overview and A Short Tutorial 7

http://www.fftw.org/fftw3_doc/Wisdom.html


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

the pyfftw.import_wisdom() function which takes as its argument that same tuple of strings that was returned
from pyfftw.export_wisdom().

If for some reason you wish to forget the accumulated wisdom, call pyfftw.forget_wisdom().

2.1.3 The pyfftw.builders functions

If you absolutely need the flexibility of dealing with pyfftw.FFTW directly, an easier option than constructing valid
arrays and so on is to use the convenient pyfftw.builders package. These functions take care of much of the
difficulty in specifying the exact size and dtype requirements to produce a valid scheme.

The pyfftw.builders functions are a series of helper functions that provide an interface very much like that
provided by numpy.fft, only instead of returning the result of the transform, a pyfftw.FFTW object (or in some
cases a wrapper around pyfftw.FFTW ) is returned.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

# Generate some data
ar, ai = numpy.random.randn(2, 128, 64)
a[:] = ar + 1j*ai

fft_object = pyfftw.builders.fft(a)

b = fft_object()

fft_object is an instance of pyfftw.FFTW , b is the result of the DFT.

Note that in this example, unlike creating a pyfftw.FFTW object using the direct interface, we can fill the array in
advance. This is because by default all the functions in pyfftw.builders keep a copy of the input array during
creation (though this can be disabled).

The pyfftw.builders functions construct an output array of the correct size and type. In the case of the regular
DFTs, this always creates an output array of the same size as the input array. In the case of the real transform, the
output array is the right shape to satisfy the scheme requirements.

The precision of the transform is determined by the dtype of the input array. If the input array is a floating point array,
then the precision of the floating point is used. If the input array is not a floating point array then a double precision
transform is used. Any calls made to the resultant object with an array of the same size will then be copied into the
internal array of the object, changing the dtype in the process.

Like numpy.fft, it is possible to specify a length (in the one-dimensional case) or a shape (in the multi-
dimensional case) that may be different to the array that is passed in. In such a case, a wrapper object of type
pyfftw.builders._utils._FFTWWrapper is returned. From an interface perspective, this is identical to
pyfftw.FFTW . The difference is in the way calls to the object are handled. With pyfftw.builders._utils.
_FFTWWrapper objects, an array that is passed as an argument when calling the object is copied into the internal
array. This is done by a suitable slicing of the new passed-in array and the internal array and is done precisely because
the shape of the transform is different to the shape of the input array.

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

fft_wrapper_object = pyfftw.builders.fftn(a, s=(32, 256))

b = fft_wrapper_object()

Inspecting these objects gives us their shapes:

8 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

>>> b.shape
(32, 256)
>>> fft_wrapper_object.input_array.shape
(32, 256)
>>> a.shape
(128, 64)

It is only possible to call fft_wrapper_object with an array that is the same shape as a. In this case, the first
axis of a is sliced to include only the first 32 elements, and the second axis of the internal array is sliced to include
only the last 64 elements. This way, shapes are made consistent for copying.

Understanding numpy.fft, these functions are largely self-explanatory. We point the reader to the API docs for
more information.

2.2 API Reference

2.2.1 pyfftw - The core

The core of pyfftw consists of the FFTW class, wisdom functions and a couple of utility functions for dealing with
aligned arrays.

This module represents the full interface to the underlying FFTW library. However, users may find it easier to use the
helper routines provided in pyfftw.builders.

FFTW Class

class pyfftw.FFTW(input_array, output_array, axes=(-1, ), direction=’FFTW_FORWARD’,
flags=(’FFTW_MEASURE’, ), threads=1, planning_timelimit=None)

FFTW is a class for computing the complex N-Dimensional DFT or inverse DFT of an array using the FFTW
library. The interface is designed to be somewhat pythonic, with the correct transform being inferred from the
dtypes of the passed arrays.

On instantiation, the dtypes and relative shapes of the input array and output arrays are compared to the set
of valid (and implemented) FFTW schemes. If a match is found, the plan that corresponds to that scheme is
created, operating on the arrays that are passed in. If no scheme can be created, then ValueError is raised.

The actual FFT or iFFT is performed by calling the execute() method.

The arrays can be updated by calling the update_arrays() method.

The created instance of the class is itself callable, and can perform the execution of the FFT, both with or without
array updates, returning the result of the FFT. Unlike calling the execute() method, calling the class instance
will also optionally normalise the output as necessary. Additionally, calling with an input array update will also
coerce that array to be the correct dtype.

See the documentation on the __call__() method for more information.

Arguments:

• input_array and output_array should be numpy arrays. The contents of these arrays will be
destroyed by the planning process during initialisation. Information on supported dtypes for the arrays is
given below.

• axes describes along which axes the DFT should be taken. This should be a valid list of axes. Repeated
axes are only transformed once. Invalid axes will raise an IndexError exception. This argument is

2.2. API Reference 9

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://www.fftw.org/


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

equivalent to the same argument in numpy.fft.fftn(), except for the fact that the behaviour of re-
peated axes is different (numpy.fft will happily take the fft of the same axis if it is repeated in the
axes argument). Rudimentary testing has suggested this is down to the underlying FFTW library and so
unlikely to be fixed in these wrappers.

• direction should be a string and one of 'FFTW_FORWARD' or 'FFTW_BACKWARD', which dictate
whether to take the DFT (forwards) or the inverse DFT (backwards) respectively (specifically, it dictates
the sign of the exponent in the DFT formulation).

Note that only the Complex schemes allow a free choice for direction. The direction must agree with
the the table below if a Real scheme is used, otherwise a ValueError is raised.

• flags is a list of strings and is a subset of the flags that FFTW allows for the planners:

– 'FFTW_ESTIMATE', 'FFTW_MEASURE', 'FFTW_PATIENT' and 'FFTW_EXHAUSTIVE' are
supported. These describe the increasing amount of effort spent during the planning stage to create the
fastest possible transform. Usually 'FFTW_MEASURE' is a good compromise. If no flag is passed,
the default 'FFTW_MEASURE' is used.

– 'FFTW_UNALIGNED' is supported. This tells FFTW not to assume anything about the alignment of
the data and disabling any SIMD capability (see below).

– 'FFTW_DESTROY_INPUT' is supported. This tells FFTW that the input array can be destroyed
during the transform, sometimes allowing a faster algorithm to be used. The default behaviour is, if
possible, to preserve the input. In the case of the 1D Backwards Real transform, this may result in a
performance hit. In the case of a backwards real transform for greater than one dimension, it is not
possible to preserve the input, making this flag implicit in that case. A little more on this is given
below.

– 'FFTW_WISDOM_ONLY' is supported. This tells FFTW to raise an error if no plan for this transform
and data type is already in the wisdom. It thus provides a method to determine whether planning would
require additional effor or the cached wisdom can be used. This flag should be combined with the var-
ious planning-effort flags ('FFTW_ESTIMATE', 'FFTW_MEASURE', etc.); if so, then an error will
be raised if wisdom derived from that level of planning effort (or higher) is not present. If no planning-
effort flag is used, the default of 'FFTW_ESTIMATE' is assumed. Note that wisdom is specific to
all the parameters, including the data alignment. That is, if wisdom was generated with input/output
arrays with one specific alignment, using 'FFTW_WISDOM_ONLY' to create a plan for arrays with
any different alignment will cause the 'FFTW_WISDOM_ONLY' planning to fail. Thus it is important
to specifically control the data alignment to make the best use of 'FFTW_WISDOM_ONLY'.

The FFTW planner flags documentation has more information about the various flags and their impact.
Note that only the flags documented here are supported.

• threads tells the wrapper how many threads to use when invoking FFTW, with a default of 1.

• planning_timelimit is a floating point number that indicates to the underlying FFTW planner the
maximum number of seconds it should spend planning the FFT. This is a rough estimate and corresponds
to calling of fftw_set_timelimit() (or an equivalent dependent on type) in the underlying FFTW
library. If None is set, the planner will run indefinitely until all the planning modes allowed by the flags
have been tried. See the FFTW planner flags page for more information on this.

Schemes

The currently supported schemes are as follows:

10 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn
http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags
http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

Type input_array.dtype output_array.dtype Direction
Complex complex64 complex64 Both
Complex complex128 complex128 Both
Complex clongdouble clongdouble Both
Real float32 complex64 Forwards
Real float64 complex128 Forwards
Real longdouble clongdouble Forwards
Real1 complex64 float32 Backwards
Real1 complex128 float64 Backwards
Real1 clongdouble longdouble Backwards

1 Note that the Backwards Real transform for the case in which the dimensionality of the transform is greater
than 1 will destroy the input array. This is inherent to FFTW and the only general work-around for this is to
copy the array prior to performing the transform. In the case where the dimensionality of the transform is 1, the
default is to preserve the input array. This is different from the default in the underlying library, and some speed
gain may be achieved by allowing the input array to be destroyed by passing the 'FFTW_DESTROY_INPUT'
flag.

clongdouble typically maps directly to complex256 or complex192, and longdouble to float128
or float96, dependent on platform.

The relative shapes of the arrays should be as follows:

• For a Complex transform, output_array.shape == input_array.shape

• For a Real transform in the Forwards direction, both the following should be true:

– output_array.shape[axes][-1] == input_array.shape[axes][-1]//2 + 1

– All the other axes should be equal in length.

• For a Real transform in the Backwards direction, both the following should be true:

– input_array.shape[axes][-1] == output_array.shape[axes][-1]//2 + 1

– All the other axes should be equal in length.

In the above expressions for the Real transform, the axes arguments denotes the unique set of axes on which
we are taking the FFT, in the order passed. It is the last of these axes that is subject to the special case shown.

The shapes for the real transforms corresponds to those stipulated by the FFTW library. Further information can
be found in the FFTW documentation on the real DFT.

The actual arrangement in memory is arbitrary and the scheme can be planned for any set of strides on either
the input or the output. The user should not have to worry about this and any valid numpy array should work
just fine.

What is calculated is exactly what FFTW calculates. Notably, this is an unnormalized transform so should be
scaled as necessary (fft followed by ifft will scale the input by N, the product of the dimensions along which the
DFT is taken). For further information, see the FFTW documentation.

The FFTW library benefits greatly from the beginning of each DFT axes being aligned on the correct byte
boundary, enabling SIMD instructions. By default, if the data begins on such a boundary, then FFTW will be al-
lowed to try and enable SIMD instructions. This means that all future changes to the data arrays will be checked
for similar alignment. SIMD instructions can be explicitly disabled by setting the FFTW_UNALIGNED flags,
to allow for updates with unaligned data.

byte_align() and empty_aligned() are two methods included with this module for producing aligned
arrays.

2.2. API Reference 11

http://www.fftw.org/fftw3_doc/Guru-Real_002ddata-DFTs.html
http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

The optimum alignment for the running platform is provided by pyfftw.simd_alignment, though a dif-
ferent alignment may still result in some performance improvement. For example, if the processor supports
AVX (requiring 32-byte alignment) as well as SSE (requiring 16-byte alignment), then if the array is 16-byte
aligned, SSE will still be used.

It’s worth noting that just being aligned may not be sufficient to create the fastest possible transform. For
example, if the array is not contiguous (i.e. certain axes are displaced in memory), it may be faster to plan
a transform for a contiguous array, and then rely on the array being copied in before the transform (which
pyfftw.FFTW will handle for you when accessed through __call__()).

N
The product of the lengths of the DFT over all DFT axes. 1/N is the normalisation constant. For any input
array A, and for any set of axes, 1/N * ifft(fft(A)) = A

simd_aligned
Return whether or not this FFTW object requires simd aligned input and output data.

input_alignment
Returns the byte alignment of the input arrays for which the FFTW object was created.

Input array updates with arrays that are not aligned on this byte boundary will result in a ValueError being
raised, or a copy being made if the __call__() interface is used.

output_alignment
Returns the byte alignment of the output arrays for which the FFTW object was created.

Output array updates with arrays that are not aligned on this byte boundary will result in a ValueError
being raised.

flags
Return which flags were used to construct the FFTW object.

This includes flags that were added during initialisation.

input_array
Return the input array that is associated with the FFTW instance.

output_array
Return the output array that is associated with the FFTW instance.

input_shape
Return the shape of the input array for which the FFT is planned.

output_shape
Return the shape of the output array for which the FFT is planned.

input_strides
Return the strides of the input array for which the FFT is planned.

output_strides
Return the strides of the output array for which the FFT is planned.

input_dtype
Return the dtype of the input array for which the FFT is planned.

output_dtype
Return the shape of the output array for which the FFT is planned.

direction
Return the planned FFT direction. Either ‘FFTW_FORWARD’ or ‘FFTW_BACKWARD’.

12 Chapter 2. Contents



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

axes
Return the axes for the planned FFT in canonical form. That is, as a tuple of positive integers. The order
in which they were passed is maintained.

ortho
If ortho=True both the forward and inverse transforms are scaled by 1/sqrt(N).

normalise_idft
If normalise_idft=True, the inverse transform is scaled by 1/N.

__call__()

__call__(input_array=None, output_array=None, normalise_idft=True, ortho=False)

Calling the class instance (optionally) updates the arrays, then calls execute(), before optionally nor-
malising the output and returning the output array.

It has some built-in helpers to make life simpler for the calling functions (as distinct from manually updat-
ing the arrays and calling execute()).

If normalise_idft is True (the default), then the output from an inverse DFT (i.e. when the direction
flag is 'FFTW_BACKWARD') is scaled by 1/N, where N is the product of the lengths of input array on
which the FFT is taken. If the direction is 'FFTW_FORWARD', this flag makes no difference to the output
array.

If ortho is True, then the output of both forward and inverse DFT operations is scaled by 1/sqrt(N),
where N is the product of the lengths of input array on which the FFT is taken. This ensures that the DFT
is a unitary operation, meaning that it satisfies Parseval’s theorem (the sum of the squared values of the
transform output is equal to the sum of the squared values of the input). In other words, the energy of the
signal is preserved.

If either normalise_idft or ortho are True, then ifft(fft(A)) = A.

When input_array is something other than None, then the passed in array is coerced to be the same
dtype as the input array used when the class was instantiated, the byte-alignment of the passed in array is
made consistent with the expected byte-alignment and the striding is made consistent with the expected
striding. All this may, but not necessarily, require a copy to be made.

As noted in the scheme table, if the FFTW instance describes a backwards real transform of more than one
dimension, the contents of the input array will be destroyed. It is up to the calling function to make a copy
if it is necessary to maintain the input array.

output_array is always used as-is if possible. If the dtype, the alignment or the striding is incorrect
for the FFTW object, then a ValueError is raised.

The coerced input array and the output array (as appropriate) are then passed as arguments to
update_arrays(), after which execute() is called, and then normalisation is applied to the output
array if that is desired.

Note that it is possible to pass some data structure that can be converted to an array, such as a list, so long
as it fits the data requirements of the class instance, such as array shape.

Other than the dtype and the alignment of the passed in arrays, the rest of the requirements on the arrays
mandated by update_arrays() are enforced.

A None argument to either keyword means that that array is not updated.

The result of the FFT is returned. This is the same array that is used internally and will be overwritten
again on subsequent calls. If you need the data to persist longer than a subsequent call, you should copy
the returned array.

update_arrays(new_input_array, new_output_array)
Update the arrays upon which the DFT is taken.

2.2. API Reference 13



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

The new arrays should be of the same dtypes as the originals, the same shapes as the originals and should
have the same strides between axes. If the original data was aligned so as to allow SIMD instructions (e.g.
by being aligned on a 16-byte boundary), then the new array must also be aligned so as to allow SIMD
instructions (assuming, of course, that the FFTW_UNALIGNED flag was not enabled).

The byte alignment requirement extends to requiring natural alignment in the non-SIMD cases as well,
but this is much less stringent as it simply means avoiding arrays shifted by, say, a single byte (which
invariably takes some effort to achieve!).

If all these conditions are not met, a ValueError will be raised and the data will not be updated (though
the object will still be in a sane state).

execute()
Execute the planned operation, taking the correct kind of FFT of the input array (i.e. FFTW.
input_array), and putting the result in the output array (i.e. FFTW.output_array).

get_input_array()
Return the input array that is associated with the FFTW instance.

Deprecated since 0.10. Consider using the FFTW.input_array property instead.

get_output_array()
Return the output array that is associated with the FFTW instance.

Deprecated since 0.10. Consider using the FFTW.output_array property instead.

Wisdom Functions

Functions for dealing with FFTW’s ability to export and restore plans, referred to as wisdom. For further information,
refer to the FFTW wisdom documentation.

pyfftw.export_wisdom()
Return the FFTW wisdom as a tuple of strings.

The first string in the tuple is the string for the double precision wisdom. The second string in the tuple is the
string for the single precision wisdom. The third string in the tuple is the string for the long double precision
wisdom.

The tuple that is returned from this function can be used as the argument to import_wisdom().

pyfftw.import_wisdom(wisdom)
Function that imports wisdom from the passed tuple of strings.

The first string in the tuple is the string for the double precision wisdom. The second string in the tuple is the
string for the single precision wisdom. The third string in the tuple is the string for the long double precision
wisdom.

The tuple that is returned from export_wisdom() can be used as the argument to this function.

This function returns a tuple of boolean values indicating the success of loading each of the wisdom types
(double, float and long double, in that order).

pyfftw.forget_wisdom()
Forget all the accumulated wisdom.

Utility Functions

pyfftw.simd_alignment
An integer giving the optimum SIMD alignment in bytes, found by inspecting the CPU (e.g. if AVX is supported,
its value will be 32).

14 Chapter 2. Contents

http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

This can be used as n in the arguments for byte_align(), empty_aligned(), zeros_aligned(),
and ones_aligned() to create optimally aligned arrays for the running platform.

pyfftw.byte_align(array, n=None, dtype=None)
Function that takes a numpy array and checks it is aligned on an n-byte boundary, where n is an optional
parameter. If n is not provided then this function will inspect the CPU to determine alignment. If the array is
aligned then it is returned without further ado. If it is not aligned then a new array is created and the data copied
in, but aligned on the n-byte boundary.

dtype is an optional argument that forces the resultant array to be of that dtype.

pyfftw.empty_aligned(shape, dtype=’float64’, order=’C’, n=None)
Function that returns an empty numpy array that is n-byte aligned, where n is determined by inspecting the CPU
if it is not provided.

The alignment is given by the final optional argument, n. If n is not provided then this function will inspect the
CPU to determine alignment. The rest of the arguments are as per numpy.empty().

pyfftw.zeros_aligned(shape, dtype=’float64’, order=’C’, n=None)
Function that returns a numpy array of zeros that is n-byte aligned, where n is determined by inspecting the
CPU if it is not provided.

The alignment is given by the final optional argument, n. If n is not provided then this function will inspect the
CPU to determine alignment. The rest of the arguments are as per numpy.zeros().

pyfftw.ones_aligned(shape, dtype=’float64’, order=’C’, n=None)
Function that returns a numpy array of ones that is n-byte aligned, where n is determined by inspecting the CPU
if it is not provided.

The alignment is given by the final optional argument, n. If n is not provided then this function will inspect the
CPU to determine alignment. The rest of the arguments are as per numpy.ones().

pyfftw.is_byte_aligned()
is_n_byte_aligned(array, n=None)

Function that takes a numpy array and checks it is aligned on an n-byte boundary, where n is an optional
parameter, returning True if it is, and False if it is not. If n is not provided then this function will inspect the
CPU to determine alignment.

pyfftw.n_byte_align(array, n, dtype=None)
This function is deprecated: byte_align should be used instead.

Function that takes a numpy array and checks it is aligned on an n-byte boundary, where n is an optional
parameter. If n is not provided then this function will inspect the CPU to determine alignment. If the array is
aligned then it is returned without further ado. If it is not aligned then a new array is created and the data copied
in, but aligned on the n-byte boundary.

dtype is an optional argument that forces the resultant array to be of that dtype.

pyfftw.n_byte_align_empty(shape, n, dtype=’float64’, order=’C’)
This function is deprecated: empty_aligned should be used instead.

Function that returns an empty numpy array that is n-byte aligned.

The alignment is given by the first optional argument, n. If n is not provided then this function will inspect the
CPU to determine alignment. The rest of the arguments are as per numpy.empty().

pyfftw.is_n_byte_aligned(array, n)
This function is deprecated: is_byte_aligned should be used instead.

Function that takes a numpy array and checks it is aligned on an n-byte boundary, where n is a passed parameter,
returning True if it is, and False if it is not.

2.2. API Reference 15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

pyfftw.next_fast_len(target)
Find the next fast transform length for FFTW.

FFTW has efficient functions for transforms of length 2**a * 3**b * 5**c * 7**d * 11**e * 13**f, where e + f
is either 0 or 1.

Parameters target (int) – Length to start searching from. Must be a positive integer.

Returns out – The first fast length greater than or equal to target.

Return type int

Examples

On a particular machine, an FFT of prime length takes 2.1 ms:

>>> from pyfftw.interfaces import scipy_fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = numpy.random.randn(min_len)
>>> b = scipy_fftpack.fft(a)

Zero-padding to the next fast length reduces computation time to 406 us, a speedup of ~5 times:

>>> next_fast_len(min_len)
10080
>>> b = scipy_fftpack.fft(a, 10080)

Rounding up to the next power of 2 is not optimal, taking 598 us to compute, 1.5 times as long as the size
selected by next_fast_len.

>>> b = fftpack.fft(a, 16384)

Similar speedups will occur for pre-planned FFTs as generated via pyfftw.builders.

2.2.2 pyfftw.builders - Get FFTW objects using a numpy.fft like interface

Overview

This module contains a set of functions that return pyfftw.FFTW objects.

The interface to create these objects is mostly the same as numpy.fft, only instead of the call returning the result
of the FFT, a pyfftw.FFTW object is returned that performs that FFT operation when it is called. Users should be
familiar with numpy.fft before reading on.

In the case where the shape argument, s (or n in the 1-dimensional case), dictates that the passed-in input array
be copied into a different processing array, the returned object is an instance of a child class of pyfftw.FFTW ,
_FFTWWrapper, which wraps the call method in order to correctly perform that copying. That is, subsequent calls
to the object (i.e. through __call__()) should occur with an input array that can be sliced to the same size as the
expected internal array. Note that a side effect of this is that subsequent calls to the object can be made with an array
that is bigger than the original (but not smaller).

Only the call method is wrapped; update_arrays() still expects an array with the correct size, alignment, dtype
etc for the pyfftw.FFTW object.

When the internal input array is bigger along any axis than the input array that is passed in (due to s dictating a larger
size), then the extra entries are padded with zeros. This is a one time action. If the internal input array is then extracted
using pyfftw.FFTW.input_array , it is possible to persistently fill the padding space with whatever the user

16 Chapter 2. Contents

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

desires, so subsequent calls with a new input only overwrite the values that aren’t padding (even if the array that is
used for the call is bigger than the original - see the point above about bigger arrays being sliced to fit).

The precision of the FFT operation is acquired from the input array. If an array is passed in that is not of float type, or
is of an unknown float type, an attempt is made to convert the array to a double precision array. This results in a copy
being made.

If an array of the incorrect complexity is passed in (e.g. a complex array is passed to a real transform routine, or
vice-versa), then an attempt is made to convert the array to an array of the correct complexity. This results in a copy
being made.

Although the array that is internal to the pyfftw.FFTW object will be correctly loaded with the values within the
input array, it is not necessarily the case that the internal array is the input array. The actual internal input array can
always be retrieved with pyfftw.FFTW.input_array .

The behaviour of the norm option in all builder routines matches that of the corresponding numpy functions. In short,
if norm is None, then the output from the forward DFT is unscaled and the inverse DFT is scaled by 1/N, where N is
the product of the lengths of input array on which the FFT is taken. If norm == 'ortho', then the output of both
forward and inverse DFT operations are scaled by 1/sqrt(N).

Example:

>>> import pyfftw
>>> a = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft = pyfftw.builders.fft(a)
>>> a[:] = [1, 2, 3, 4]
>>> fft() # returns the output
array([ 10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])

More examples can be found in the tutorial.

Supported Functions and Caveats

The following functions are supported. They can be used with the same calling signature as their respective functions
in numpy.fft.

Standard FFTs

• fft()

• ifft()

• fft2()

• ifft2()

• fftn()

• ifftn()

Real FFTs

• rfft()

• irfft()

• rfft2()

• irfft2()

• rfftn()

• irfftn()

2.2. API Reference 17

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

The first caveat is that the dtype of the input array must match the transform. For example, for fft and ifft, the
dtype must be complex, for rfft it must be real, and so on. The other point to note from this is that the precision of
the transform matches the precision of the input array. So, if a single precision input array is passed in, then a single
precision transform will be used.

The second caveat is that repeated axes are handled differently; with the returned pyfftw.FFTW object, axes that are
repeated in the axes argument are considered only once, as compared to numpy.fft in which repeated axes results
in the DFT being taken along that axes as many times as the axis occurs (this is down to the underlying library).

Note that unless the auto_align_input argument to the function is set to True, the 'FFTW_UNALIGNED' flag
is set in the returned pyfftw.FFTW object. This disables some of the FFTW optimisations that rely on aligned
arrays. Also worth noting is that the auto_align_input flag only results in a copy when calling the resultant
pyfftw.FFTW object if the input array is not already aligned correctly.

Additional Arguments

In addition to the arguments that are present with their complementary functions in numpy.fft, each of these
functions also offers the following additional keyword arguments:

• overwrite_input: Whether or not the input array can be overwritten during the transform. This sometimes
results in a faster algorithm being made available. It causes the 'FFTW_DESTROY_INPUT' flag to be passed
to the pyfftw.FFTW object. This flag is not offered for the multi-dimensional inverse real transforms, as
FFTW is unable to not overwrite the input in that case.

• planner_effort: A string dictating how much effort is spent in planning the FFTW routines. This is passed
to the creation of the pyfftw.FFTW object as an entry in the flags list. They correspond to flags passed to the
pyfftw.FFTW object.

The valid strings, in order of their increasing impact on the time to compute are: 'FFTW_ESTIMATE',
'FFTW_MEASURE' (default), 'FFTW_PATIENT' and 'FFTW_EXHAUSTIVE'.

The Wisdom that FFTW has accumulated or has loaded (through pyfftw.import_wisdom()) is used
during the creation of pyfftw.FFTW objects.

• threads: The number of threads used to perform the FFT.

• auto_align_input: Correctly byte align the input array for optimal usage of vector instructions. This can
lead to a substantial speedup.

Setting this argument to True makes sure that the input array is correctly aligned. It is possible to correctly byte
align the array prior to calling this function (using, for example, pyfftw.byte_align()). If and only if a
realignment is necessary is a new array created. If a new array is created, it is up to the calling code to acquire
that new input array using pyfftw.FFTW.input_array .

The resultant pyfftw.FFTW object that is created will be designed to operate on arrays that are aligned. If the
object is called with an unaligned array, this would result in a copy. Despite this, it may still be faster to set the
auto_align_input flag and incur a copy with unaligned arrays than to set up an object that uses aligned
arrays.

It’s worth noting that just being aligned may not be sufficient to create the fastest possible transform. For
example, if the array is not contiguous (i.e. certain axes have gaps in memory between slices), it may be faster
to plan a transform for a contiguous array, and then rely on the array being copied in before the transform (which
pyfftw.FFTW will handle for you). The auto_contiguous argument controls whether this function also
takes care of making sure the array is contiguous or not.

• auto_contiguous: Make sure the input array is contiguous in memory before performing the transform on
it. If the array is not contiguous, it is copied into an interim array. This is because it is often faster to copy
the data before the transform and then transform a contiguous array than it is to try to take the transform of a

18 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

non-contiguous array. This is particularly true in conjunction with the auto_align_input argument which
is used to make sure that the transform is taken of an aligned array.

Like auto_align_input, If a new array is created, it is up to the calling code to acquire that new input array
using pyfftw.FFTW.input_array .

• avoid_copy: By default, these functions will always create a copy (and sometimes more than one) of the
passed in input array. This is because the creation of the pyfftw.FFTW object generally destroys the contents
of the input array. Setting this argument to True will try not to create a copy of the input array, likely resulting
in the input array being destroyed. If it is not possible to create the object without a copy being made, a
ValueError is raised.

Example situations that require a copy, and so cause the exception to be raised when this flag is set:

– The shape of the FFT input as dictated by s is necessarily different from the shape of the passed-in array.

– The dtypes are incompatible with the FFT routine.

– The auto_contiguous or auto_align flags are True and the input array is not already contiguous
or aligned.

This argument is distinct from overwrite_input in that it only influences a copy during the creation of the
object. It changes no flags in the pyfftw.FFTW object.

The exceptions raised by each of these functions are as per their equivalents in numpy.fft, or as documented above.

The Functions

pyfftw.builders.fft(a, n=None, axis=-1, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 1D FFT.

The first three arguments are as per numpy.fft.fft(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.ifft(a, n=None, axis=-1, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 1D inverse FFT.

The first three arguments are as per numpy.fft.ifft(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.fft2(a, s=None, axes=(-2, -1), overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 2D FFT.

The first three arguments are as per numpy.fft.fft2(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.ifft2(a, s=None, axes=(-2, -1), overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 2D inverse FFT.

The first three arguments are as per numpy.fft.ifft2(); the rest of the arguments are documented in the
module docs.

2.2. API Reference 19

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

pyfftw.builders.fftn(a, s=None, axes=None, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a n-D FFT.

The first three arguments are as per numpy.fft.fftn(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.ifftn(a, s=None, axes=None, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing an n-D inverse FFT.

The first three arguments are as per numpy.fft.ifftn(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.rfft(a, n=None, axis=-1, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 1D real FFT.

The first three arguments are as per numpy.fft.rfft(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.irfft(a, n=None, axis=-1, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 1D real inverse FFT.

The first three arguments are as per numpy.fft.irfft(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.rfft2(a, s=None, axes=(-2, -1), overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing a 2D real FFT.

The first three arguments are as per numpy.fft.rfft2(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.irfft2(a, s=None, axes=(-2, -1), planner_effort=’FFTW_MEASURE’, threads=1,
auto_align_input=True, auto_contiguous=True, avoid_copy=False,
norm=None)

Return a pyfftw.FFTW object representing a 2D real inverse FFT.

The first three arguments are as per numpy.fft.irfft2(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.rfftn(a, s=None, axes=None, overwrite_input=False, plan-
ner_effort=’FFTW_MEASURE’, threads=1, auto_align_input=True,
auto_contiguous=True, avoid_copy=False, norm=None)

Return a pyfftw.FFTW object representing an n-D real FFT.

The first three arguments are as per numpy.fft.rfftn(); the rest of the arguments are documented in the
module docs.

pyfftw.builders.irfftn(a, s=None, axes=None, planner_effort=’FFTW_MEASURE’, threads=1,
auto_align_input=True, auto_contiguous=True, avoid_copy=False,
norm=None)

Return a pyfftw.FFTW object representing an n-D real inverse FFT.

The first three arguments are as per numpy.fft.rfftn(); the rest of the arguments are documented in the
module docs.

20 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

2.2.3 pyfftw.builders._utils - Helper functions for pyfftw.builders

A set of utility functions for use with the builders. Users should not need to use the functions directly, but they are
included here for completeness and to aid with understanding of what is happening behind the scenes.

Certainly, users may encounter instances of _FFTWWrapper.

These everything documented in this module is not part of the public API and may change in future versions.

class pyfftw.builders._utils._FFTWWrapper(input_array, output_array, axes=[-
1], direction=’FFTW_FORWARD’,
flags=[’FFTW_MEASURE’],
threads=1, input_array_slicer=None,
FFTW_array_slicer=None, nor-
malise_idft=True, ortho=False)

A class that wraps pyfftw.FFTW , providing a slicer on the input stage during calls to __call__().

The arguments are as per pyfftw.FFTW , but with the addition of 2 keyword arguments:
input_array_slicer and FFTW_array_slicer.

These arguments represent 2 slicers: input_array_slicer slices the input array that is passed in during a
call to instances of this class, and FFTW_array_slicer slices the internal array.

The arrays that are returned from both of these slicing operations should be the same size. The data is then
copied from the sliced input array into the sliced internal array.

__call__(input_array=None, output_array=None, normalise_idft=None, ortho=None)
Wrap pyfftw.FFTW.__call__() by firstly slicing the passed-in input array and then copying it into
a sliced version of the internal array. These slicers are set at instantiation.

When input array is not None, this method always results in a copy. Consequently, the alignment and
dtype are maintained in the internal array.

output_array and normalise_idft are passed through to pyfftw.FFTW.__call__() un-
touched.

pyfftw.builders._utils._Xfftn(a, s, axes, overwrite_input, planner_effort, threads,
auto_align_input, auto_contiguous, avoid_copy, inverse, real,
normalise_idft=True, ortho=False)

Generic transform interface for all the transforms. No defaults exist. The transform must be specified exactly.

pyfftw.builders._utils._setup_input_slicers(a_shape, input_shape)
This function returns two slicers that are to be used to copy the data from the input array to the FFTW object
internal array, which can then be passed to _FFTWWrapper:

(update_input_array_slicer, FFTW_array_slicer)

On calls to _FFTWWrapper objects, the input array is copied in as:

FFTW_array[FFTW_array_slicer] = input_array[update_input_array_slicer]

pyfftw.builders._utils._compute_array_shapes(a, s, axes, inverse, real)
Given a passed in array a, and the rest of the arguments (that have been fleshed out with _cook_nd_args()),
compute the shape the input and output arrays need to be in order to satisfy all the requirements for the transform.
The input shape may be different to the shape of a.

returns: (input_shape, output_shape)

pyfftw.builders._utils._precook_1d_args(a, n, axis)
Turn *(n, axis) into (s, axes)

pyfftw.builders._utils._cook_nd_args(a, s=None, axes=None, invreal=False)
Similar to numpy.fft.fftpack._cook_nd_args().

2.2. API Reference 21



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

2.2.4 pyfftw.interfaces - Drop in replacements for other FFT implementations

numpy.fft interface

This module implements those functions that replace aspects of the numpy.fft module. This module provides the
entire documented namespace of numpy.fft, but those functions that are not included here are imported directly
from numpy.fft.

It is notable that unlike numpy.fftpack, these functions will generally return an output array with the same preci-
sion as the input array, and the transform that is chosen is chosen based on the precision of the input array. That is, if
the input array is 32-bit floating point, then the transform will be 32-bit floating point and so will the returned array.
Half precision input will be converted to single precision. Otherwise, if any type conversion is required, the default
will be double precision.

One known caveat is that repeated axes are handled differently to numpy.fft; axes that are repeated in the axes
argument are considered only once, as compared to numpy.fft in which repeated axes results in the DFT being
taken along that axes as many times as the axis occurs.

The exceptions raised by each of these functions are mostly as per their equivalents in numpy.fft, though there are
some corner cases in which this may not be true.

pyfftw.interfaces.numpy_fft.fft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D FFT.

The first four arguments are as per numpy.fft.fft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.ifft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D inverse FFT.

The first four arguments are as per numpy.fft.ifft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.fft2(a, s=None, axes=(-2, -1), norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True, auto_contiguous=True)

Perform a 2D FFT.

The first four arguments are as per numpy.fft.fft2(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.ifft2(a, s=None, axes=(-2, -1), norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform a 2D inverse FFT.

The first four arguments are as per numpy.fft.ifft2(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.fftn(a, s=None, axes=None, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform an n-D FFT.

The first four arguments are as per numpy.fft.fftn(); the rest of the arguments are documented in the
additional arguments docs.

22 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

pyfftw.interfaces.numpy_fft.ifftn(a, s=None, axes=None, norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform an n-D inverse FFT.

The first four arguments are as per numpy.fft.ifftn(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.rfft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D real FFT.

The first four arguments are as per numpy.fft.rfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.irfft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D real inverse FFT.

The first four arguments are as per numpy.fft.irfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.rfft2(a, s=None, axes=(-2, -1), norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform a 2D real FFT.

The first four arguments are as per numpy.fft.rfft2(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.irfft2(a, s=None, axes=(-2, -1), norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform a 2D real inverse FFT.

The first four arguments are as per numpy.fft.irfft2(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.rfftn(a, s=None, axes=None, norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform an n-D real FFT.

The first four arguments are as per numpy.fft.rfftn(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.irfftn(a, s=None, axes=None, norm=None, over-
write_input=False, planner_effort=’FFTW_ESTIMATE’,
threads=1, auto_align_input=True,
auto_contiguous=True)

Perform an n-D real inverse FFT.

The first four arguments are as per numpy.fft.rfftn(); the rest of the arguments are documented in the
additional arguments docs.

2.2. API Reference 23

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

pyfftw.interfaces.numpy_fft.hfft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D FFT of a signal with hermitian symmetry. This yields a real output spectrum. See numpy.fft.
hfft() for more information.

The first four arguments are as per numpy.fft.hfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.numpy_fft.ihfft(a, n=None, axis=-1, norm=None, overwrite_input=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D inverse FFT of a real-spectrum, yielding a signal with hermitian symmetry. See numpy.fft.
ihfft() for more information.

The first four arguments are as per numpy.fft.ihfft(); the rest of the arguments are documented in the
additional arguments docs.

scipy.fftpack interface

This module implements those functions that replace aspects of the scipy.fftpack module. This module provides
the entire documented namespace of scipy.fftpack, but those functions that are not included here are imported
directly from scipy.fftpack.

The exceptions raised by each of these functions are mostly as per their equivalents in scipy.fftpack, though
there are some corner cases in which this may not be true.

It is notable that unlike scipy.fftpack, these functions will generally return an output array with the same preci-
sion as the input array, and the transform that is chosen is chosen based on the precision of the input array. That is, if
the input array is 32-bit floating point, then the transform will be 32-bit floating point and so will the returned array.
Half precision input will be converted to single precision. Otherwise, if any type conversion is required, the default
will be double precision.

Some corner (mis)usages of scipy.fftpack may not transfer neatly. For example, using scipy.fftpack.
fft2() with a non 1D array and a 2D shape argument will return without exception whereas pyfftw.
interfaces.scipy_fftpack.fft2() will raise a ValueError.

pyfftw.interfaces.scipy_fftpack.fft(x, n=None, axis=-1, overwrite_x=False, plan-
ner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D FFT.

The first three arguments are as per scipy.fftpack.fft(); the rest of the arguments are documented in
the additional argument docs.

pyfftw.interfaces.scipy_fftpack.ifft(x, n=None, axis=-1, overwrite_x=False, plan-
ner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D inverse FFT.

The first three arguments are as per scipy.fftpack.ifft(); the rest of the arguments are documented in
the additional argument docs.

pyfftw.interfaces.scipy_fftpack.fftn(x, shape=None, axes=None, overwrite_x=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform an n-D FFT.

The first three arguments are as per scipy.fftpack.fftn(); the rest of the arguments are documented in
the additional argument docs.

24 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

pyfftw.interfaces.scipy_fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform an n-D inverse FFT.

The first three arguments are as per scipy.fftpack.ifftn(); the rest of the arguments are documented
in the additional argument docs.

pyfftw.interfaces.scipy_fftpack.rfft(x, n=None, axis=-1, overwrite_x=False, plan-
ner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D real FFT.

The first three arguments are as per scipy.fftpack.rfft(); the rest of the arguments are documented in
the additional argument docs.

pyfftw.interfaces.scipy_fftpack.irfft(x, n=None, axis=-1, overwrite_x=False, plan-
ner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 1D real inverse FFT.

The first three arguments are as per scipy.fftpack.irfft(); the rest of the arguments are documented
in the additional argument docs.

pyfftw.interfaces.scipy_fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 2D FFT.

The first three arguments are as per scipy.fftpack.fft2(); the rest of the arguments are documented in
the additional argument docs.

pyfftw.interfaces.scipy_fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False,
planner_effort=’FFTW_ESTIMATE’, threads=1,
auto_align_input=True, auto_contiguous=True)

Perform a 2D inverse FFT.

The first three arguments are as per scipy.fftpack.ifft2(); the rest of the arguments are documented
in the additional argument docs.

pyfftw.interfaces.scipy_fftpack.next_fast_len(target)
Find the next fast transform length for FFTW.

FFTW has efficient functions for transforms of length 2**a * 3**b * 5**c * 7**d * 11**e * 13**f, where e + f
is either 0 or 1.

Parameters target (int) – Length to start searching from. Must be a positive integer.

Returns out – The first fast length greater than or equal to target.

Return type int

Examples

On a particular machine, an FFT of prime length takes 2.1 ms:

>>> from pyfftw.interfaces import scipy_fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = numpy.random.randn(min_len)
>>> b = scipy_fftpack.fft(a)

2.2. API Reference 25

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

Zero-padding to the next fast length reduces computation time to 406 us, a speedup of ~5 times:

>>> next_fast_len(min_len)
10080
>>> b = scipy_fftpack.fft(a, 10080)

Rounding up to the next power of 2 is not optimal, taking 598 us to compute, 1.5 times as long as the size
selected by next_fast_len.

>>> b = fftpack.fft(a, 16384)

Similar speedups will occur for pre-planned FFTs as generated via pyfftw.builders.

dask.fft interface

This module implements those functions that replace aspects of the dask.fft module. This module provides the
entire documented namespace of dask.fft, but those functions that are not included here are imported directly from
dask.fft.

It is notable that unlike numpy.fftpack, which dask.fft wraps, these functions will generally return an output
array with the same precision as the input array, and the transform that is chosen is chosen based on the precision of
the input array. That is, if the input array is 32-bit floating point, then the transform will be 32-bit floating point and so
will the returned array. Half precision input will be converted to single precision. Otherwise, if any type conversion is
required, the default will be double precision.

The exceptions raised by each of these functions are mostly as per their equivalents in dask.fft, though there are
some corner cases in which this may not be true.

pyfftw.interfaces.dask_fft.fft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.fft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.fft docstring follows below:

Perform a 1D FFT.

The first four arguments are as per numpy.fft.fft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.dask_fft.ifft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.ifft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ifft docstring follows below:

Perform a 1D inverse FFT.

The first four arguments are as per numpy.fft.ifft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.dask_fft.rfft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.rfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.rfft docstring follows below:

26 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

Perform a 1D real FFT.

The first four arguments are as per numpy.fft.rfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.dask_fft.irfft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.irfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.irfft docstring follows below:

Perform a 1D real inverse FFT.

The first four arguments are as per numpy.fft.irfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.dask_fft.hfft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.hfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.hfft docstring follows below:

Perform a 1D FFT of a signal with hermitian symmetry. This yields a real output spectrum. See numpy.fft.
hfft() for more information.

The first four arguments are as per numpy.fft.hfft(); the rest of the arguments are documented in the
additional arguments docs.

pyfftw.interfaces.dask_fft.ihfft(a, n=None, axis=None)
Wrapping of pyfftw.interfaces.numpy_fft.ihfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ihfft docstring follows below:

Perform a 1D inverse FFT of a real-spectrum, yielding a signal with hermitian symmetry. See numpy.fft.
ihfft() for more information.

The first four arguments are as per numpy.fft.ihfft(); the rest of the arguments are documented in the
additional arguments docs.

The pyfftw.interfaces package provides interfaces to pyfftw that implement the API of other, more com-
monly used FFT libraries; specifically numpy.fft and scipy.fftpack. The intention is to satisfy two clear use
cases:

1. Simple, clean and well established interfaces to using pyfftw , removing the requirement for users to know
or understand about creating and using pyfftw.FFTW objects, whilst still benefiting from most of the speed
benefits of FFTW.

2. A library that can be dropped into code that is already written to use a supported FFT library, with no significant
change to the existing code. The power of python allows this to be done at runtime to a third party library,
without changing any of that library’s code.

The pyfftw.interfaces implementation is designed to sacrifice a small amount of the flexibility compared to
accessing the pyfftw.FFTW object directly, but implements a reasonable set of defaults and optional tweaks that
should satisfy most situations.

The precision of the transform that is used is selected from the array that is passed in, defaulting to double precision if
any type conversion is required.

2.2. API Reference 27

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

This module works by generating a pyfftw.FFTW object behind the scenes using the pyfftw.builders in-
terface, which is then executed. There is therefore a potentially substantial overhead when a new plan needs to be
created. This is down to FFTW’s internal planner process. After a specific transform has been planned once, subse-
quent calls in which the input array is equivalent will be much faster, though still not without potentially significant
overhead. This overhead can be largely alleviated by enabling the pyfftw.interfaces.cache functionality.
However, even when the cache is used, very small transforms may suffer a significant relative slow-down not present
when accessing pyfftw.FFTW directly (because the transform time can be negligibly small compared to the fixed
pyfftw.interfaces overhead).

In addition, potentially extra copies of the input array might be made.

If speed or memory conservation is of absolutely paramount importance, the suggestion is to use pyfftw.FFTW
(which provides better control over copies and so on), either directly or through pyfftw.builders. As always,
experimentation is the best guide to optimisation.

In practice, this means something like the following (taking numpy_fft as an example):

>>> import pyfftw, numpy
>>> a = pyfftw.empty_aligned((128, 64), dtype='complex64', n=16)
>>> a[:] = numpy.random.randn(*a.shape) + 1j*numpy.random.randn(*a.shape)
>>> fft_a = pyfftw.interfaces.numpy_fft.fft2(a) # Will need to plan

>>> b = pyfftw.empty_aligned((128, 64), dtype='complex64', n=16)
>>> b[:] = a
>>> fft_b = pyfftw.interfaces.numpy_fft.fft2(b) # Already planned, so faster

>>> c = pyfftw.empty_aligned(132, dtype='complex128', n=16)
>>> fft_c = pyfftw.interfaces.numpy_fft.fft(c) # Needs a new plan
>>> c[:] = numpy.random.randn(*c.shape) + 1j*numpy.random.randn(*c.shape)

>>> pyfftw.interfaces.cache.enable()
>>> fft_a = pyfftw.interfaces.numpy_fft.fft2(a) # still planned
>>> fft_b = pyfftw.interfaces.numpy_fft.fft2(b) # much faster, from the cache

The usual wisdom import and export functions work well for the case where the initial plan might be prohibitively
expensive. Just use pyfftw.export_wisdom() and pyfftw.import_wisdom() as needed after having
performed the transform once.

Implemented Functions

The implemented functions are listed below. numpy.fft is implemented by pyfftw.interfaces.
numpy_fft and scipy.fftpack by pyfftw.interfaces.scipy_fftpack. All the implemented func-
tions are extended by the use of additional arguments, which are documented below.

Not all the functions provided by numpy.fft and scipy.fftpack are implemented by pyfftw.interfaces.
In the case where a function is not implemented, the function is imported into the namespace from the corresponding
library. This means that all the documented functionality of the library is provided through pyfftw.interfaces.

One known caveat is that repeated axes are potentially handled differently. This is certainly the case for numpy.fft
and probably also true for scipy.fftpack (though it is not defined in the docs); axes that are repeated in the axes
argument are considered only once, as compared to numpy.fft in which repeated axes results in the DFT being
taken along that axes as many times as the axis occurs.

28 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

numpy_fft

• pyfftw.interfaces.numpy_fft.fft()

• pyfftw.interfaces.numpy_fft.ifft()

• pyfftw.interfaces.numpy_fft.fft2()

• pyfftw.interfaces.numpy_fft.ifft2()

• pyfftw.interfaces.numpy_fft.fftn()

• pyfftw.interfaces.numpy_fft.ifftn()

• pyfftw.interfaces.numpy_fft.rfft()

• pyfftw.interfaces.numpy_fft.irfft()

• pyfftw.interfaces.numpy_fft.rfft2()

• pyfftw.interfaces.numpy_fft.irfft2()

• pyfftw.interfaces.numpy_fft.rfftn()

• pyfftw.interfaces.numpy_fft.irfftn()

• pyfftw.interfaces.numpy_fft.hfft()

• pyfftw.interfaces.numpy_fft.ihfft()

scipy_fftpack

• pyfftw.interfaces.scipy_fftpack.fft()

• pyfftw.interfaces.scipy_fftpack.ifft()

• pyfftw.interfaces.scipy_fftpack.fft2()

• pyfftw.interfaces.scipy_fftpack.ifft2()

• pyfftw.interfaces.scipy_fftpack.fftn()

• pyfftw.interfaces.scipy_fftpack.ifftn()

• pyfftw.interfaces.scipy_fftpack.rfft()

• pyfftw.interfaces.scipy_fftpack.irfft()

• pyfftw.interfaces.scipy_fftpack.next_fast_len()

dask_fft

• pyfftw.interfaces.dask_fft.fft()

• pyfftw.interfaces.dask_fft.ifft()

• pyfftw.interfaces.dask_fft.rfft()

• pyfftw.interfaces.dask_fft.irfft()

• pyfftw.interfaces.dask_fft.hfft()

• pyfftw.interfaces.dask_fft.ihfft()

2.2. API Reference 29



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

Additional Arguments

In addition to the equivalent arguments in numpy.fft and scipy.fftpack, all these functions also add several
additional arguments for finer control over the FFT. These additional arguments are largely a subset of the keyword
arguments in pyfftw.builders with a few exceptions and with different defaults.

• overwrite_input: Whether or not the input array can be overwritten during the transform. This sometimes
results in a faster algorithm being made available. It causes the 'FFTW_DESTROY_INPUT' flag to be passed
to the intermediate pyfftw.FFTW object. Unlike with pyfftw.builders, this argument is included with
every function in this package.

In scipy_fftpack, this argument is replaced by overwrite_x, to which it is equivalent (albeit at the same
position).

The default is False to be consistent with numpy.fft.

• planner_effort: A string dictating how much effort is spent in planning the FFTW routines. This is passed
to the creation of the intermediate pyfftw.FFTW object as an entry in the flags list. They correspond to flags
passed to the pyfftw.FFTW object.

The valid strings, in order of their increasing impact on the time to compute are: 'FFTW_ESTIMATE',
'FFTW_MEASURE' (default), 'FFTW_PATIENT' and 'FFTW_EXHAUSTIVE'.

The Wisdom that FFTW has accumulated or has loaded (through pyfftw.import_wisdom()) is used
during the creation of pyfftw.FFTW objects.

Note that the first time planning stage can take a substantial amount of time. For this reason, the default is
to use 'FFTW_ESTIMATE', which potentially results in a slightly suboptimal plan being used, but with a
substantially quicker first-time planner step.

• threads: The number of threads used to perform the FFT.

The default is 1.

• auto_align_input: Correctly byte align the input array for optimal usage of vector instructions. This can
lead to a substantial speedup.

This argument being True makes sure that the input array is correctly aligned. It is possible to correctly byte
align the array prior to calling this function (using, for example, pyfftw.byte_align()). If and only if a
realignment is necessary is a new array created.

It’s worth noting that just being aligned may not be sufficient to create the fastest possible transform. For
example, if the array is not contiguous (i.e. certain axes have gaps in memory between slices), it may be faster
to plan a transform for a contiguous array, and then rely on the array being copied in before the transform (which
pyfftw.FFTW will handle for you). The auto_contiguous argument controls whether this function also
takes care of making sure the array is contiguous or not.

The default is True.

• auto_contiguous: Make sure the input array is contiguous in memory before performing the transform on
it. If the array is not contiguous, it is copied into an interim array. This is because it is often faster to copy
the data before the transform and then transform a contiguous array than it is to try to take the transform of a
non-contiguous array. This is particularly true in conjunction with the auto_align_input argument which
is used to make sure that the transform is taken of an aligned array.

The default is True.

Caching

During calls to functions implemented in pyfftw.interfaces, a pyfftw.FFTW object is necessarily created.
Although the time to create a new pyfftw.FFTW is short (assuming that the planner possesses the necessary wisdom

30 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

to create the plan immediately), it may still take longer than a short transform.

This module implements a method by which objects that are created through pyfftw.interfaces are temporarily
cached. If an equivalent transform is then performed within a short period, the object is acquired from the cache rather
than a new one created. The equivalency is quite conservative and in practice means that if any of the arguments
change, or if the properties of the array (shape, strides, dtype) change in any way, then the cache lookup will fail.

The cache temporarily stores a copy of any interim pyfftw.FFTW objects that are created. If they are not used for
some period of time, which can be set with pyfftw.interfaces.cache.set_keepalive_time(), then
they are removed from the cache (liberating any associated memory). The default keepalive time is 0.1 seconds.

Enable the cache by calling pyfftw.interfaces.cache.enable(). Disable it by calling pyfftw.
interfaces.cache.disable(). By default, the cache is disabled.

Note that even with the cache enabled, there is a fixed overhead associated with lookups. This means that for small
transforms, the overhead may exceed the transform. At this point, it’s worth looking at using pyfftw.FFTW directly.

When the cache is enabled, the module spawns a new thread to keep track of the objects. If threading is not
available, then the cache is not available and trying to use it will raise an ImportError exception.

The actual implementation of the cache is liable to change, but the documented API is stable.

pyfftw.interfaces.cache.enable()
Enable the cache.

pyfftw.interfaces.cache.disable()
Disable the cache.

pyfftw.interfaces.cache.set_keepalive_time(keepalive_time)
Set the minimum time in seconds for which any pyfftw.FFTW object in the cache is kept alive.

When the cache is enabled, the interim objects that are used through a pyfftw.interfaces function are
cached for the time set through this function. If the object is not used for the that time, it is removed from the
cache. Using the object zeros the timer.

The time is not precise, and sets a minimum time to be alive. In practice, it may be quite a bit longer before the
object is deleted from the cache (due to implementational details - e.g. contention from other threads).

2.2. API Reference 31

https://docs.python.org/2/library/threading.html#module-threading


pyFFTW Documentation, Release 0.10.5.dev0+fea306e

32 Chapter 2. Contents



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

33



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

34 Chapter 3. Indices and tables



Python Module Index

p
pyfftw, 9
pyfftw.builders, 16
pyfftw.builders._utils, 21
pyfftw.interfaces, 27
pyfftw.interfaces.cache, 30
pyfftw.interfaces.dask_fft, 26
pyfftw.interfaces.numpy_fft, 22
pyfftw.interfaces.scipy_fftpack, 24

35



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

36 Python Module Index



Index

Symbols
_FFTWWrapper (class in pyfftw.builders._utils), 21
_Xfftn() (in module pyfftw.builders._utils), 21
__call__() (pyfftw.FFTW method), 13
__call__() (pyfftw.builders._utils._FFTWWrapper

method), 21
_compute_array_shapes() (in module

pyfftw.builders._utils), 21
_cook_nd_args() (in module pyfftw.builders._utils), 21
_precook_1d_args() (in module pyfftw.builders._utils),

21
_setup_input_slicers() (in module pyfftw.builders._utils),

21

A
axes (pyfftw.FFTW attribute), 12

B
byte_align() (in module pyfftw), 15

D
direction (pyfftw.FFTW attribute), 12
disable() (in module pyfftw.interfaces.cache), 31

E
empty_aligned() (in module pyfftw), 15
enable() (in module pyfftw.interfaces.cache), 31
execute() (pyfftw.FFTW method), 14
export_wisdom() (in module pyfftw), 14

F
fft() (in module pyfftw.builders), 19
fft() (in module pyfftw.interfaces.dask_fft), 26
fft() (in module pyfftw.interfaces.numpy_fft), 22
fft() (in module pyfftw.interfaces.scipy_fftpack), 24
fft2() (in module pyfftw.builders), 19
fft2() (in module pyfftw.interfaces.numpy_fft), 22
fft2() (in module pyfftw.interfaces.scipy_fftpack), 25
fftn() (in module pyfftw.builders), 19

fftn() (in module pyfftw.interfaces.numpy_fft), 22
fftn() (in module pyfftw.interfaces.scipy_fftpack), 24
FFTW (class in pyfftw), 9
flags (pyfftw.FFTW attribute), 12
forget_wisdom() (in module pyfftw), 14

G
get_input_array() (pyfftw.FFTW method), 14
get_output_array() (pyfftw.FFTW method), 14

H
hfft() (in module pyfftw.interfaces.dask_fft), 27
hfft() (in module pyfftw.interfaces.numpy_fft), 23

I
ifft() (in module pyfftw.builders), 19
ifft() (in module pyfftw.interfaces.dask_fft), 26
ifft() (in module pyfftw.interfaces.numpy_fft), 22
ifft() (in module pyfftw.interfaces.scipy_fftpack), 24
ifft2() (in module pyfftw.builders), 19
ifft2() (in module pyfftw.interfaces.numpy_fft), 22
ifft2() (in module pyfftw.interfaces.scipy_fftpack), 25
ifftn() (in module pyfftw.builders), 20
ifftn() (in module pyfftw.interfaces.numpy_fft), 22
ifftn() (in module pyfftw.interfaces.scipy_fftpack), 24
ihfft() (in module pyfftw.interfaces.dask_fft), 27
ihfft() (in module pyfftw.interfaces.numpy_fft), 24
import_wisdom() (in module pyfftw), 14
input_alignment (pyfftw.FFTW attribute), 12
input_array (pyfftw.FFTW attribute), 12
input_dtype (pyfftw.FFTW attribute), 12
input_shape (pyfftw.FFTW attribute), 12
input_strides (pyfftw.FFTW attribute), 12
irfft() (in module pyfftw.builders), 20
irfft() (in module pyfftw.interfaces.dask_fft), 27
irfft() (in module pyfftw.interfaces.numpy_fft), 23
irfft() (in module pyfftw.interfaces.scipy_fftpack), 25
irfft2() (in module pyfftw.builders), 20
irfft2() (in module pyfftw.interfaces.numpy_fft), 23

37



pyFFTW Documentation, Release 0.10.5.dev0+fea306e

irfftn() (in module pyfftw.builders), 20
irfftn() (in module pyfftw.interfaces.numpy_fft), 23
is_byte_aligned() (in module pyfftw), 15
is_n_byte_aligned() (in module pyfftw), 15

N
N (pyfftw.FFTW attribute), 12
n_byte_align() (in module pyfftw), 15
n_byte_align_empty() (in module pyfftw), 15
next_fast_len() (in module pyfftw), 15
next_fast_len() (in module

pyfftw.interfaces.scipy_fftpack), 25
normalise_idft (pyfftw.FFTW attribute), 13

O
ones_aligned() (in module pyfftw), 15
ortho (pyfftw.FFTW attribute), 13
output_alignment (pyfftw.FFTW attribute), 12
output_array (pyfftw.FFTW attribute), 12
output_dtype (pyfftw.FFTW attribute), 12
output_shape (pyfftw.FFTW attribute), 12
output_strides (pyfftw.FFTW attribute), 12

P
pyfftw (module), 9
pyfftw.builders (module), 16
pyfftw.builders._utils (module), 21
pyfftw.interfaces (module), 27
pyfftw.interfaces.cache (module), 30
pyfftw.interfaces.dask_fft (module), 26
pyfftw.interfaces.numpy_fft (module), 22
pyfftw.interfaces.scipy_fftpack (module), 24
pyfftw.simd_alignment (in module pyfftw), 14

R
rfft() (in module pyfftw.builders), 20
rfft() (in module pyfftw.interfaces.dask_fft), 26
rfft() (in module pyfftw.interfaces.numpy_fft), 23
rfft() (in module pyfftw.interfaces.scipy_fftpack), 25
rfft2() (in module pyfftw.builders), 20
rfft2() (in module pyfftw.interfaces.numpy_fft), 23
rfftn() (in module pyfftw.builders), 20
rfftn() (in module pyfftw.interfaces.numpy_fft), 23

S
set_keepalive_time() (in module pyfftw.interfaces.cache),

31
simd_aligned (pyfftw.FFTW attribute), 12

U
update_arrays() (pyfftw.FFTW method), 13

Z
zeros_aligned() (in module pyfftw), 15

38 Index


	Introduction
	Contents
	Overview and A Short Tutorial
	API Reference

	Indices and tables
	Python Module Index

