

 Navigation

 	
 index

 	
 next |

 	HSF Technical Notes 1.0 documentation

Welcome to HSF Technical Notes’s documentation!

This site is experimental. For real technical notes, look at http://hepsoftwarefoundation.org.

Contents:

	2016 Technical Notes
	Software Licence AgreementsHSF Policy Guidelines

	Machine/Job Features

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	HSF Technical Notes 1.0 documentation

2016 Technical Notes

This site is experimental. For real technical notes, look at http://hepsoftwarefoundation.org.

Contents:

	Software Licence AgreementsHSF Policy Guidelines
	Introduction

	Basic Terminology

	Main License Types

	Specific Constraints

	Recommendations

	Examples

	Machine/Job Features
	Introduction

	Aims

	Use cases

	Definitions

	Environment variables

	Directories

	$MACHINEFEATURES

	$JOBFEATURES

	Summary

 Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	HSF Technical Notes 1.0 documentation

 	2016 Technical Notes

 THE HEP SOFTWARE FOUNDATION (HSF)

lc@r@

& & HSF-TN-2016-01

& & 16 February 2016

& &

Software Licence AgreementsHSF Policy Guidelines

M.Jouvin J.Harvey A.McNab
E.Sexton-Kennedy T.Wenaus

:math:` ^1`Laboratoire de l’Accélérateur Linéaire (CNRS)
:math:` ^2`CERN :math:` ^3`University of Manchester
:math:` ^4`Fermi National Accelerator Laboratory
:math:` ^5`Brookhaven National Laboratory

©Named authors on behalf of the HSF, licence
CC-BY-4.0 [http://creativecommons.org/licenses/by/4.0/].

Introduction

A simple survey of software packages in common usage in HEP reveals a de
facto widespread adoption of different software licences. Moreover
policy documents on software licensing in HEP are difficult to find. In
2011 CERN setup a Task Force to provide recommendations for the
licensing of software developed at CERN. The final report
:raw-latex:`\cite{[1]}` is worth reading as it contains much useful
background information and reference material. The main recommendation
states that, “Whenever possible, software owned in whole or in part by
CERN should be made available as open-source software and that the
open-source licences used for CERN-owned software should be widely used
licences approved by the Open Source Initiative (OSI)”. This approach is
in broad agreement with the policies adopted at other laboratories and
has therefore been taken as the starting point for the recommendations
contained in this report.

The philosophy of openness is enshrined throughout our field as
exemplified by making the results of our experimental and theoretical
work generally available. The same approach is followed here in order to
help achieve our goal of providing reliable and long-lived software
products through collaborative open-source software development. Open
Source Software (OSS) is computer software with its source code made
available with a licence in which the copyright holder provides the
rights to study, change, and distribute the software to anyone and for
any purpose. The goal of the guidelines described in this note is to
allow HSF and its projects to distribute and build upon their respective
work. In this regard, HSF follows the example of other leading
open-source software endeavours, such as the Apache Software Foundation
:raw-latex:`\cite{[2]}`. This does not preclude the full rights of
contributors (copyright owners) to use their original contributions for
any other purpose outside HSF.

Basic Terminology

We begin by defining some of the key terms as described in
:raw-latex:`\cite{[3]}`.

	Copyright is a legal right created by the law of a country that
grants the creator of original work exclusive rights to its use and
distribution, usually for a limited time. Copyright is a form of
intellectual property, applicable to any expressed representation of
a creative work. It is often shared among multiple authors, each of
whom holds a set of rights to use or licence the work. These rights
frequently include reproduction, control over derivative works,
distribution, and “moral rights” such as attribution.

	Public domain software is software that has been placed in the
public domain. In other words there is absolutely no ownership such
as copyright, trademark, or patent. Unlike other classes of licences,
there are no restrictions as to what can be done with the software.
The software can be modified, distributed, or sold even without any
attribution. This is the simplest way to make open source software
and allows people to share the program and their improvements, if
they are so minded, but it also allows the program to be converted
into proprietary software. They can make changes, many or few, and
distribute the result as a proprietary product. People who receive
the program in that modified form do not have the freedom that the
original author gave them. A software licence is a legal instrument
governing the use or redistribution of software. A typical software
licence grants an end-user permission to use one or more copies of
software in ways where such a use would otherwise potentially
constitute copyright infringement of the software owner’s exclusive
rights under copyright law.

	An open source software licence is a notice that grants the
recipient of a piece of software extensive rights to modify and
redistribute that software. Copyright law usually prohibits these
actions, but the rights-holder (usually the author) of a piece of
software can remove these restrictions by accompanying the software
with a software licence that grants the recipient these rights.
Software using such a licence can meet the conditions to be classed
as open source software as conferred by the copyright holder. Open
source licenses broadly divide into free software licenses and
permissive software licenses. Free software licences include
“copyleft” provisions, which require all future versions to also be
distributed with these freedoms. These are termed “restrictive”
licences.

	Permissive software licences do not impose these additional
conditions and are usually just a grant of rights and a disclaimer of
warranty, thus also allowing distributors to add restrictions for
further recipients, or to produce an extended proprietary version of
the software All major open source software licences require that
acknowledgement is given to authors of the software in documentation
and/or at runtime. In an academic context these provisions can be
useful in establishing the impact of a software project, and even
when software released under a permissive licence is reused in a
closed-source commercial product.

Main License Types

Copyleft License

Copyleft is a general method for making a program free, and requiring
all modified and extended versions of the program to be free as well.
Copyleft says that anyone who redistributes the software, with or
without changes, must pass along the freedom to further copy and change
it. Copyleft guarantees that every user has freedom and provides an
incentive for other programmers to add to free software. A good example
is the GNU C++ compiler.

The spirit behind a Copyleft licence is the creation of an open
community of users or developers where the licencees are encouraged not
only to improve, correct, complement and integrate the software they
receive but also to make available these enhancements to the entire
community. The difference between copyleft and non-copyleft licences is
that users cannot take the free software and turn it into proprietary
software, thus preventing any member of this open community to depart
from the principles of reciprocal contribution.

The Copyleft principles were laid down by Richard Stallman of the Free
Software Foundation in 1985, which was at the inception of the OSS
movement through the creation of the GNU project. Copyleft is a general
concept, and therefore cannot be used directly; you can only use a
specific implementation of the concept. In the GNU Project, for example,
the specific distribution terms used for most software are contained in
the GNU General Public Licence (GPL) :raw-latex:`\cite{[4]}`. GPL
version 3 was published in 2007 but many copyleft projects (eg Linux)
have chosen to continue with GPL version 2. GPL 2 and 3 software amount
to 24% and 10% of open source software respectively [6].

Weak Copyleft License

These typically follow the same rules as the GPL except that the user
may use, unmodified, the free software component in a larger program
which is released under a licence different from the free licence. The
chief consequence is that the user is not obliged to provide the full
source code of its larger work under a copyleft licence.

The most widely used example of this type of licence is the GNU Lesser
General Public Licence (LGPL). Licences such as LGPL target libraries of
software, which are designed to be incorporated unchanged into larger
programs. For example, the ROOT software project :raw-latex:`\cite{[5]}`
has adopted an LGPL licence.

LGPL is also frequently used for non-library software when there is a
particular concern from the licensor that the obligation to release the
source of a work incorporating unchanged the GPL-licensed software would
seriously hamper its wide adoption. The most common case is when a free
library’s features are readily available for proprietary software
through other alternative libraries. In that case, the library cannot
give free software any particular advantage, so it is better to use the
LGPL for that library. The LGPL licence is used for the GNU C library,
for example, since using the GPL would have driven proprietary software
developers to use one of the many other C libraries.

As with full copyleft licences which prevent modified versions from
being distributed under a proprietary licence, weak copyleft licenses
are intended to ensure the non-appropriation by third parties of the
Open Source software. As of July 2013, the LGPL was used by 7% of all
open source licenced projects :raw-latex:`\cite{[6]}`.

Permissive License

These licences allow redistribution of the original or modified software
and source code, including under a different licence. Depending on the
terms of the permissive licence, the different licences may be
proprietary licences or copyleft licences or other permissive licences.

The Apache Software License (ASL), initially from 1999 and currently at
version 2.0, is one of the most widely used examples of a permissive
licence. Like other open source software licences, the licence allows
the user of the software the freedom to use the software for any
purpose, to distribute it, to modify it, and to distribute modified
versions of the software, under the terms of the licence, without
concern for royalties. The Apache Licence does not require a derivative
work of the software, or modifications to the original, to be
distributed using the same licence (unlike copyleft licences). The
Apache Software Foundation and the Free Software Foundation agreed that
the Apache Licence 2.0 is a free software licence, compatible with
version 3 of the GPL licence, meaning that code under GPL version 3 and
Apache Licence 2.0 can be combined, as long as the resulting software is
licensed under GPL version 3.

Other well-known examples of widely used free software licences approved
by the OSI include the MIT and BSD licences. The MIT licences from 1988
onwards permit reuse within proprietary software provided all copies of
the licensed software include a copy of the MIT Licence terms and the
copyright notice. Such proprietary software retains its proprietary
nature even though it incorporates software under the MIT Licence. The
licence is also GPL-compatible, meaning that the GPL permits combination
and redistribution with software that uses the MIT Licence.

BSD licences from 1988 onwards are another family of permissive free
software licences, imposing minimal restrictions on the redistribution
of covered software. Two variants of the licence, the New BSD
Licence/Modified BSD Licence (3-clause), and the Simplified BSD
Licence/FreeBSD Licence (2-clause) have been verified as GPL-compatible
free software licences by the Free Software Foundation, and have been
vetted as open source licences by the Open Source Initiative.

As of July 2013, the ASL, BSD and MIT permissive licences accounted for
42% of all open source licensed projects [6].

Specific Constraints

Changing the License

The ability to change the license term of a project, including the right
to dual-license it, is an exclusive right of copyright holders. Except
when explicitly stated otherwise, copyright holders are all the people
who contributed to the project. In large projects, after some time, it
may make impossible to change the license used by a project.

Although this rule applies to any license, it is more a concern for
copyleft licences as permissive licenses give anybody the right to fork
the project with a new license. For this reason, some projects, when
there is no risk (or a low risk) of appropriation of the work by a third
party, prefer to use a permissive license in order to keep a greater
flexibility to evolve (including restrict) the licence in the future. A
well known example is Apache where a development community exists and
where most people (including commercial vendors) contribute their
modification back to the community even though this is not a legal
requirement of the permissive Apache licence.

To avoid problems in changing licence, some projects or software
foundations (like the Apache Software Foundation) have an explicit
transfer of copyright to one single legal entity by each project
contributor. This is the main alternative for project with copyleft
licenses. As with any change related to licensing, it has to be decided
early in the life of the project as it requires the agreement of all
copyright holders.

Where a non-permissive licence is required to distribute software
binaries or packages, one option is maintain the source code repository
under a permissive licence but re-licence the software at distribution
time under the required licence. This maintains flexibility about what
licence to use in the future, but allows linking or repackaging with
more restrictively-licensed open source software in the present.

Collaboration Agreements

For software developed in collaboration between partners from different
institutes consideration may be given to establishing a Collaboration
Agreement. This should define the licence to be used for the jointly
developed software and typically also describes other rules for
governing the way decisions are taken e.g. rules for accepting new
members and rules for managing the development life cycle of the
product. Typically, it also identifies a ’prime distributor’ that takes
the role of managing and deploying new releases of the software.
Transferring copyright to the prime distributor may also help ensure the
software can be maintained over the full life-time of the project in
situations where the original developer (i.e. owner) can no longer be
contacted.

Commercial Exploitation

Any software distributed under a given licence may also be distributed
under one or more different licence(s). This is often referred to as
dual or multiple licensing. A frequent case of dual licensing is the
public release of a programme under a Copyleft licence (such as GPL)
and, contemporaneously, a bilateral agreement between the programme
owner and a third party company for the commercial exploitation of the
software.

In the case of permissive free software licences, as all permissions for
appropriation have been given to any third party, and so commercial
exploitation by dual licensing becomes unnecessary. Therefore,
permissive licenses, such as the ASL, MIT and BSD licenses, are
preferred by many companies because such licenses make it possible to
use open-source software code without having to turn proprietary
enhancements back over to the open source software community. These
licenses encourage commercial adoption of open-source software because
they make it possible for companies to profit from investing in
enhancements made to existing open-source software solutions.

Recommendations

HSF encourages all its members and partners to make available the
software they develop as Open Source, unless forbidden due to external
constraints such as collaborative agreement. Only open-source software
can become HSF projects. The open-source licence(s) adopted should be
widely used licences approved by the Open Source Initiative (OSI). It
should not be necessary to create a new licence and using a unusual
licence may hinder the redistribution of the software by third parties.

The exact licence chosen may depend on several factors but they should
enable the following key points:

	Make the software distributable by other projects through their
natural software distribution channels. This should anticipate their
need to distribute modified versions of the software to fix bugs
downstream or address compatibility requirements.

	Make the software and its source code reusable by other HSF or
open-source projects using the most widely used open-source licences,
whether copyleft or permissive.

	Build a community around the software project and maximize the
contributions by the users back to the project.

The GNU and Apache projects have demonstrated that these goals can be
achieved either with copyleft or permissive licence approaches. Both
approaches have vocal supporters and no consensus has emerged in the
last 30 years of open source software development.

For projects producing libraries and taking the copyleft route, LGPL
should be preferred for program libraries when the goal is to allow wide
and rapid adoptions by applications with different licenses.

Permissive licences are good candidates when adoption by commercial
partners must be possible and that there is a risk that at a later stage
it will be difficult to contact all the copyright holders to discuss
dual licensing. This is sometimes a requirement in projects funded by
governmental bodies. In the copyleft case, it may be necessary to
require that the copyright of contributions are assigned to the project
to achieve this.

Whatever the licence chosen, software must contain in the notice a
statement acknowledging the copyright owner(s) and the licence chosen.
See next section for examples.

In addition, the following points must be taken into consideration:

	When contributing to an existing project, release your modified
versions under the same licence as the original work.

	A licence should be assigned to tutorials, reference manuals and
other large works of documentation. The GNU Free Documentation
Licence (GFDL) :raw-latex:`\cite{[7]}` is a strong copyleft licence
for educational works, initially written for software manuals, and
includes terms that specifically address common issues arising when
those works are distributed or modified. Licences from the Creative
Commons family are also gaining ground in this area and provide a
viable alternative.:raw-latex:cite{[8]}

Examples

This section contains examples for specifying licence terms, based on
real licenses from different HEP laboratories. You can use them as a
source of inspiration but you need to customize them to your specific
needs and local context.

The licence should contain a statement in the header of each source file
acknowledging the copyright of the owner(s) and the applicable licence.
(i) Copyright

Copyright

In the following we give some examples of Copyright statements that are
used by CERN depending on whether the software is owned solely by CERN
or by CERN and external partners:

	for software owned solely by a single institute, in this case CERN:

© Copyright [year] CERN

	for software developed by a collaboration but where ownership has
been transferred to a single institute, in this case CERN:

© Copyright [year] CERN [for the benefit of the [Name of
appropriate group] Collaboration]

	for software owned by partners in small collaborations:

© Copyright [year] [names of all copyright holders]

	for software owned by partners in large collaborations:

© Copyright [year] Copyright Holders of [name of the
collaboration or joint project]. See [https://link] for details
of the Copyright Holders

Applicable licence

One of the following licence statements must be included, immediately
following the copyright statement, and followed by the text of the
relevant license as shown in the references:

	For software distributed under the default GPLv3
licence:raw-latex:cite{[9]}:

This software is distributed under the terms of the GNU General
Public Licence version 3 (GPL Version 3).

	For software distributed under the LGPLv3
licence:raw-latex:cite{[10]}:

This software is distributed under the terms of the GNU Lesser
General Public Licence version 3 (LGPL Version 3).

	For software distributed under the Apache licence
v2:raw-latex:cite{[11]}:

This software is distributed under the terms of the Apache
version 2.0 licence.

	For software distributed under the BSD-2-Clause
licence:raw-latex:cite{[12]}:

This software is distributed under the terms of the BSD-2-Clause
licence.

	For software distributed under the BSD-3-Clause
licence:raw-latex:cite{[13]}:

This software is distributed under the terms of the BSD-3-Clause
licence.

	For software distributed under the MIT
licence:raw-latex:cite{[14]}:

This software is distributed under the terms of the MIT licence.

The verbatim text of the licence should be copied either in a dedicated
file which is part of the distribution (in this case the filename is
COPYING) or directly below the licence statement.

The text of each licence to be copied verbatim for each of these
licences can be found here [9,10,11,12,13,14].

9 Final Report from the task force on Open Source Software Licence at
CERN: http://indico.cern.ch/category/4252/ The Apache Software
Foundation: http://www.apache.org
http://en.wikipedia.org/wiki/Software_licence GNU GENERAL PUBLIC LICENCE
Version 3, 29 June 2007 http://www.gnu.org/copyleft/gpl.html ROOT
software terms and conditions: https://root.cern.ch/root/License.html
Top Open Source Licences, source BLACKDUCK, July 2015:
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
GNU Free Documentation Licence (GFDL):
http://www.gnu.org/licences/fdl.html Creative Commons licences:
http://creativecommons.org Text of GPL v3 licence, June 2007:
http://opensource.org/licenses/GPL-3.0 Text of LGPL v3 licence, June
2007: http://opensource.org/licenses/LGPL-3.0 Text of Apache 2.0 licence
Jan 2004: http://opensource.org/licenses/Apache-2.0 Text of BSD-2-Clause
licence: http://opensource.org/licenses/BSD-2-Clause Text of
BSD-3-Clause licence: http://opensource.org/licenses/BSD-3-Clause Text
of MIT licence: http://opensource.org/licenses/MIT

 Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	HSF Technical Notes 1.0 documentation

 	2016 Technical Notes

 THE HEP SOFTWARE FOUNDATION (HSF)

lc@r@

& & HSF-TN-2016-02

& & February 4, 2016

& &

Machine/Job Features

M.Alef, T.Cass, J.J.Keijser,
A.McNab, S.Roiser,
U.Schwickerath, I.Sfiligoi

*:math:` ^1`Karlsruhe Institute of Technology
:math:` ^2`CERN
:math:` ^3`NIKHEF
:math:` ^4`University of Manchester
:math:` ^5`Fermi National Accelerator Laboratory
*

©Named authors on behalf of the HSF, licence
CC-BY-4.0 [http://creativecommons.org/licenses/by/4.0/].

Introduction

Within the HEPiX virtualization group:raw-latex:cite{HEPIXMJF} and
the WLCG MJF Task Force:raw-latex:cite{WLCGMJF}, a mechanism has been
developed which provides access to detailed information about the
current host and the current job to the job itself. This allows user
payloads to access meta information, independent of the current batch
system or virtual machine model.

The proposed schema is made to be extensible so that additional
information can be added. The purpose of this note is to define the
specifications and use case of this schema. It should be seen as the
source of information for the actual implementation of the scripts
required by the sites to provide it.

Aims

	The proposed schema must be unique and leave no room for
interpretation of the values provided. For this reason, basic
information is used which is well defined across sites.

	Host and job information can be both static (like the
HS06:raw-latex:cite{HEPIXHS06} rating of the hardware) and dynamic
(eg shutdown time may be set at any time by the site.)

	Job specific files will be readable and possibly owned by the user
and residing on a /tmp like area

	The implementation, that is the creation of the files and their
contents, can be highly site specific. A sample implementation can be
done per batch system in use, but it is understood that sites are
allowed to change the implementation, provided that the created
numbers match the definitions given in this note.

Use cases

The use cases considered in developing the protocols included:

	The job needs to calculate the remaining time it is allowed to run.

	The job needs to know how long it was already running.

	The job wants to know the performance of the processors allocated to
it in order to calculate the remaining time it will need to complete
(for CPU intensive jobs).

	A host needs to be drained, and the payload needs to be informed of
the planned shutdown time.

	A multiprocessor user job on a non-exclusive node needs to know how
many threads or processes it is allowed to start. This especially
useful in a late-binding scenario where the pilot reserved the
processors and the user payload needs to discover this.

	A user job wants to know how many processors are allocated to the
current job.

	A user job wants to know the maximum amount of scratch disk it is
allowed to use.

	A user job wants to set up memory limits to protect itself from being
killed by the batch system automatically.

Definitions

On VM-based systems, references to “jobs” are to be interpreted as
“virtual machines” and “machines” as “hypervisors”.

When jobs are running within virtual machines, the entity that provides
the system level configuration or contextualization of the VM acts as
the resource provider referred to in the rest of this note.

Environment variables

For each job, two environment variables may be set, with the names
$MACHINEFEATURES and $JOBFEATURES.

These environment variables are the base interface for the user payload.
Their values must be provided for the job by the resource provider.

In the case of virtual machines on IaaS cloud platforms, the virtual
machine may discover the values to set for the environment variables
from “machinefeatures” and “jobfeatures” metadata keys provided by
resource provider via the cloud infrastructure. These metadata keys
should only be accessed once in the lifetime of each virtual machine.
Alternatively, the values to set may be supplied as part of the
contextualization of the virtual machines.

Directories

The environment variables point to directories created by the resource
provider. Inside, the file name is the key, the contents are the values,
so that files can be referred to with expressions like
$MACHINEFEATURES/shutdowntime . The directory name should not include
the trailing slash. These directories are either local directories in
the filesystem or sections of the URL space on an HTTP(S) server. The
user positively determines whether the files are to be opened locally or
over HTTP(S) by checking for a leading slash or the prefix http:// or
https:// respectively. Typically this can achieved using library
functions which can transparently handle local files and remote URLs
when opening files.

Unlike metadata keys, the key/value files may be accessed multiple times
to check for changes in value or in the absence of caching by the user.
An HTTP(S) server may provide HTTP cache control and expiration
information which the user may use to reduce the number of queries. All
files in the directories must be readable by both the user and the
resource provider services, and have file names which only consist of
lowercase letters, numbers, and underscores.

$MACHINEFEATURES

Host-specific key/value pairs which are all:

	Found in the directory pointed to by $MACHINEFEATURES

	Readable by the user who is executing the original job. In the case
of pilots this would be the pilot user at the site.

	Required unless the resource provider cannot determine their value.

	Static unless otherwise stated.

	total_cpu

	Number of processors which may be allocated to jobs. Typically the
number of processors seen by the operating system on one worker node
(that is the number of “processor :” lines in /proc/cpuinfo on
Linux), but potentially set to more or less than this for
performance reasons. (Use case 3.)

	hs06

	Total HS06 rating of the full machine in its current setup. HS06 is
measured following the HEPiX
recommendations:raw-latex:cite{HEPIXHS06}, with HS06 benchmarks
run in parallel, one for each processor which may be allocated to
jobs. (Use case 3.)

	shutdowntime

	Shutdown time for the machine as a UNIX time stamp in seconds. The
value is dynamic and optional. If the file is missing, no shutdown
is foreseen. (Use case 4.)

	grace_secs

	If the resource provider announces a shutdown time to the jobs on
this host, that time will not be less than grace_secs seconds after
the moment the shutdown time is set. This allows jobs to begin
packages of work knowing that there will be sufficient time for them
to be completed even if a shutdown time is announced. This value is
required if a shutdown time will be set or changed which will affect
any jobs which have already started on this host.

$JOBFEATURES

Job specific key/value pairs which are all:

	Found in the directory pointed to by $JOBFEATURES

	Readable and possibly owned by the user who is executing the original
job. In the case of pilots this would be the pilot user at the site.

	Required unless the resource provider cannot determine their value.

	Created before the job starts and static unless otherwise stated, or
unless the batch system has a recognised way of changing the
parameters of the job in a way the job is guaranteed to be aware of.
For example, if there is a mechanism for a job to release processors,
then the resource provider may update allocated_cpu when this
happens.

	allocated_cpu

	Number of processors allocated to the current job. (Use case5.)

	hs06_job

	Total HS06 rating for the processors allocated to this job. The
job’s share is calculated by the resource provider from
per-processor HS06 measurements made for the machine. (Use case3.)

	shutdowntime_job

	Dynamic value. Shutdown time as a UNIX time stamp in seconds. If the
file is missing no job shutdown is foreseen. The job needs to have
finished all of its processing when the shutdown time has arrived.
(Use case1.)

	grace_secs_job

	If the resource provider announces a shutdowntime_job to the job,
it will not be less than grace_secs_job seconds after the moment
the shutdown time is set. This allows jobs to begin packages of work
knowing that there will be sufficient time for them to be completed
even if a shutdown time is announced. This value is static and
required if a shutdown time will be set or changed after the job has
started.

	jobstart_secs

	UNIX time stamp in seconds of the time when the job started on the
worker node. For a pilot job scenario, this is when the batch system
started the pilot job, not when the user payload started to run.
(Use case2.)

	job_id

	A string of printable non-whitespace ASCII characters used by the
resource provider to identify the job at the site. In batch
environments, this should simply be the job ID. In virtualized
environments, job_id will typically contain the UUID of the VM.

	wall_limit_secs

	Elapsed time limit in seconds, starting from jobstart_secs. This is
not scaled up for multiprocessor jobs. (Use case1.)

	cpu_limit_secs

	CPU time limit in seconds. For multiprocessor jobs this is the total
for all processes started by the job. (Use case1.)

	max_rss_bytes

	Resident memory usage limit, if any, in bytes for all processes
started by this job. (Use case8.)

	max_swap_bytes

	Swap limit, if any, in bytes for all processes started by this job.
(Use case8)

	scratch_limit_bytes

	Scratch space limit if any. If no quotas are used on a shared
system, this corresponds to the full scratch space available to all
jobs which run on the host. User jobs from EGI-registered VOs expect
the “max size of scratch space used by jobs” value on their VO ID
Card:raw-latex:cite{VOIDCARD} to be available to each job in the
worst case. If there is a recognised procedure for informing the job
of the location of the scratch space (eg EGI’s $TMPDIR
policy:raw-latex:cite{EGITMPDIR}), then this value refers to that
space. (Use case7.)

Summary

This note describes how the $MACHINEFEATURES and $JOBFEATURES variables
may be set and used by jobs to obtain meta information from resource
providers in a uniform way across different batch and virtual machine
systems.

The following key/value pairs have been defined:

	$MACHINEFEATURES
	$JOBFEATURES
	

	total_cpu
	allocated_cpu
	

	hs06
	hs06_job
	

	shutdowntime
	shutdowntime_job
	

	grace_secs
	grace_secs_job
	

	
	jobstart_secs
	

	
	job_id
	

	
	wall_limit_secs
	

	
	cpu_limit_secs
	

	
	max_rss_bytes
	

	
	max_swap_bytes
	

	
	scratch_limit_bytes
	

9 T. Cass, “Environmental Information on WN”, Grid Deployment Board,
CERN, 13 June 2012, retrieved from https://indico.cern.ch/event/155069/

“Machine / Job Features Task Force”,

https://twiki.cern.ch/twiki/bin/view/LCG/MachineJobFeatures

“HEP-SPEC06 Benchmark”, https://w3.hepix.org/benchmarks/

“The VO ID Card system”, http://operations-portal.egi.eu/vo/help

P. Solagna, “EGI policy for the TMPDIR environment variable usage”, EGI
Document 1119, retrieved from
https://documents.egi.eu/public/ShowDocument?docid=1119

 Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	HSF Technical Notes 1.0 documentation

Index

 Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		HSF Technical Notes 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Michel Jouvin.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

