
headintheclouds Documentation
Release 0.3.7

Andreas Jansson

August 07, 2014

Contents

1 Install 3

2 Docs 5
2.1 Tutorial . 5
2.2 Providers . 6
2.3 Tasks . 7
2.4 Docker . 9
2.5 Ensemble . 11

Python Module Index 17

i

ii

headintheclouds Documentation, Release 0.3.7

headintheclouds is a bunch of Fabric tasks for managing cloud servers and orchestrating Docker containers. Currently
EC2 and Digital Ocean are supported.

Contents 1

http://fabfile.org/

headintheclouds Documentation, Release 0.3.7

2 Contents

CHAPTER 1

Install

headintheclouds has been tested on Linux and OSX. Installation should be as simple as

pip install headintheclouds

3

headintheclouds Documentation, Release 0.3.7

4 Chapter 1. Install

CHAPTER 2

Docs

2.1 Tutorial

In this tutorial we’ll create a Wordpress server in EC2. First, create a new directory for the project. In that directory,
create fabfile.py with the contents

fabfile.py
from headintheclouds.tasks import *
from headintheclouds import ec2
from headintheclouds import ensemble
from headintheclouds import docker

Define environment variables with your EC2 credentials:

export AWS_ACCESS_KEY_ID=...
export AWS_SECRET_ACCESS_KEY=...
export AWS_SSH_KEY_FILENAME=...
export AWS_KEYPAIR_NAME=...

On the command line, type

fab nodes

The nodes task lists all the running nodes you’ve created. Since we haven’t created any yet the output will look
something like

ec2 name size ip internal_ip state created

Done.

In the same directory, create a file called wordpress.yml with the contents

wordpress.yml
wordpress:

provider: ec2
image: ubuntu 14.04
size: m1.small
containers:
wordpress:

image: jbfink/docker-wordpress
ports:

- 80

5

headintheclouds Documentation, Release 0.3.7

On the command line, type

fab ensemble.up:wordpress

The ensemble task figures out what needs to change in order to meet the wordpress.yml manifest. Since we don’t
have any servers yet, it will (with your permission) create a new m1.small server in EC2 and install Docker. Once
that’s done it will download and start the jbfink/docker-wordpress Docker container, exposing port 80.

Now if we type fab nodes again, we’ll see the new server running

ec2 name size ip internal_ip state created
wordpress m1.small 54.198.33.85 10.207.25.187 running 2014-03-16 17:21:41-04:00

We can see all the running docker processes with

fab -R wordpress docker.ps

This will output

[54.198.33.85] Executing task ’docker.ps’
name ip ports created image
wordpress 172.17.0.6 80:80, 22:None 2014-03-16 21:53:22 jbfink/docker-wordpress

If we open that IP (54.198.33.85 in this case) in a browser we see the Wordpress welcome page.

If we type fab ensemble.up:wordpress again, headintheclouds will realise that no changes need to be made
and will just exit. We can kill the wordpress process with

fab -R wordpress docker.kill:wordpress

Now if we do fab ensemble.up:wordpress it will only run the container but it won’t start a new server.

That’s pretty much it for a super basic tutorial. Let’s kill the server

fab -R wordpress terminate

Now fab nodes will be empty again.

A more interesting Wordpress example can be found in the /examples directory.

2.2 Providers

At the moment headintheclouds supports

• EC2

• Digital Ocean

• “Unmanaged” servers (machines you provision yourself, e.g. bare metal boxes)

In order for commands like fab nodes to list servers for a specific provider you need to import the cloud providers
you plan to use:

fabfile.py
from headintheclouds.tasks import *
from headintheclouds import ec2
from headintheclouds import digitalocean
from headintheclouds import unmanaged

6 Chapter 2. Docs

https://index.docker.io/u/jbfink/docker-wordpress/
https://github.com/andreasjansson/head-in-the-clouds/blob/master/examples/wordpress.yml

headintheclouds Documentation, Release 0.3.7

2.2.1 Provider-specific setup

EC2

To manage EC2 servers you need to define the following environment variables:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

• AWS_SSH_KEY_FILENAME

• AWS_KEYPAIR_NAME

Digital Ocean

To manage EC2 servers you need these environment variables:

• DIGITAL_OCEAN_CLIENT_ID

• DIGITAL_OCEAN_API_KEY

• DIGITAL_OCEAN_SSH_KEY_FILENAME

• DIGITAL_OCEAN_SSH_KEY_NAME

Unmanaged servers

You can’t really “manage” unmanaged servers, but in order to be able to log in to them and run commands, you may
need to define

• HITC_SSH_USER (defaults to root)

• HITC_KEY_FILENAME (defaults to ~/.ssh/id_rsa)

Since headintheclouds has no way of finding out which servers it doesn’t manage, you should put the public
ips/hostnames of your servers in a file called unmanaged_servers.txt in the same directory as your fabfile.
The servers should be one per line, e.g.

116.152.12.61
116.152.12.62
116.152.19.17

2.3 Tasks

All tasks are executed from the command line as

fab TASK_NAME:ARGUMENT_1,ARGUMENT_2,ARG_NAME_1=ARG_VALUE_1

To only execute the task on specific servers, use

fab -H PUBLIC_IP_ADDRESS TASK_NAME

to run the task on that one server, or

fab -R NAME TASK_NAME

to run the task on all servers with name NAME. This includes servers with names like NAME-1, NAME-2, etc.

2.3. Tasks 7

headintheclouds Documentation, Release 0.3.7

2.3.1 Global tasks

headintheclouds.tasks.nodes
List running nodes on all enabled cloud providers. Automatically flushes caches

headintheclouds.tasks.create
Create one or more cloud servers

Args:

• provider (str): Cloud provider, e.g. ec2, digitalocean

• count (int) =1: Number of instances

• name (str) =None: Name of server(s)

• **kwargs: Provider-specific flags

headintheclouds.tasks.terminate
Terminate server(s)

headintheclouds.tasks.reboot
Reboot server(s)

headintheclouds.tasks.rename
Rename server(s)

Args: new_name (str): New name

headintheclouds.tasks.uncache
Flush the cache

headintheclouds.tasks.ssh
SSH into the server(s) (sequentially if more than one)

Args: cmd (str) =’‘: Command to run on the server

headintheclouds.tasks.upload
Copy a local file to one or more servers via scp

Args: local_path (str): Path on the local filesystem remote_path (str): Path on the remote filesystem

headintheclouds.tasks.pricing
Print pricing tables for all enabled providers

2.3.2 Provider-specific create flags

EC2

• size=’m1.small’: See fab pricing for details

• placment=’us-east-1b’

• bid=None: Define this to make spot requests

• image=’ubuntu 14.04’: Either an AMI ID or a shorthand Ubuntu version. The defined shorthands are ‘ubuntu
14.04’, ‘ubuntu 14.04 ebs’, ‘ubuntu 14.04 hvm’, where no ‘ebs’ or ‘hvm’ suffix indicate instance backing.

• security_group=’default’

8 Chapter 2. Docs

headintheclouds Documentation, Release 0.3.7

Digital Ocean

• size=‘512MB’: Can be 512MB, 1GB, 2GB, [...], 96GB. See fab pricing for details

• placement=’New York 1’: Any Digital Ocean region, e.g. ‘Singapore 1’, ‘Amsterdam 2’

• image=’Ubuntu 14.04 x64’: Can be any Digital Ocean image name, e.g. ‘Ubuntu 14.04 x64’, ‘Fedora 19 x64’,
‘Arch Linux 2013.05 x64’, etc.

2.3.3 Caching

headintheclouds caches some data in PyDbLite, most importantly the list of active nodes. This is so that calls like fab
ssh doesn’t take several seconds to run before actually logging in. It’s possible to get into weird situations when other
users create servers and you have the old cache. To flush the cache you can run fab uncache. fab nodes and
fab ensemble.up both flush the cache indirectly.

2.3.4 Namespacing

By default, all cloud servers created by headintheclouds will have their names prefixed by HITC-. This is so that
headintheclouds-managed infrastructure doesn’t interfere with other servers you might have. You can change this
prefix by putting the line

env.name_prefix = ’MYPREFIX-’

after you import * from fabric.api, but before importing headintheclouds. So, for example

from fabric.api import *

env.name_prefix = ’INFRA-’

from headintheclouds import ec2
from headintheclouds import digitalocean
from headintheclouds import unmanaged
from headintheclouds import docker
from headintheclouds import ensemble
from headintheclouds.tasks import *

2.4 Docker

2.4.1 Working with private repositories

If you want to run containers from private Docker repos, you will have to be signed in to that repo. Authentication
sessions are stored in a file called ~/.dockercfg and are created by docker login.

headintheclouds can take care of most of this for you. If you create a file called dot_dockercfg that’s a copy of your
~/.dockercfg, the fab docker.setup command will upload this file to the remote host as ~/.dockercfg.

2.4.2 Tasks

headintheclouds.docker.ssh
SSH into a running container, using the host as a jump host. This requires the container to have a running sshd
process.

2.4. Docker 9

http://www.pydblite.net/en/index.html

headintheclouds Documentation, Release 0.3.7

Args:

• container: Container name or ID

• cmd=’‘: Command to run in the container

• user=’root’: SSH username

• password=’root’: SSH password

headintheclouds.docker.ps
Print a table of all running containers on a host

headintheclouds.docker.bind
Bind one or more ports to the container.

Args:

• container: Container name or ID

• *ports: List of items in the format CONTAINER_PORT[:EXPOSED_PORT][/PROTOCOL]

Example: fab docker.bind:mycontainer,80,”3306:3307”,”12345/udp”

headintheclouds.docker.unbind
Unbind one or more ports from the container.

Args:

• container: Container name or ID

• *port: List of items in the format CONTAINER_PORT[:EXPOSED_PORT][/PROTOCOL]

Example: fab docker.unbind:mycontainer,80,”3306:3307”,”12345/udp”

headintheclouds.docker.setup
Prepare a vanilla server by installing docker, curl, and sshpass. If a file called dot_dockercfg exists in the
current working directory, it is uploaded as ~/.dockercfg.

Args:

• version=None: Docker version. If undefined, will install 0.7.6. You can also specify this in
env.docker_version

headintheclouds.docker.run
Run a docker container.

Args:

• image: Docker image to run, e.g. orchardup/redis, quay.io/hello/world

• name=None: Container name

• command=None: Command to execute

• environment: Comma separated environment variables in the format NAME=VALUE

• ports=None: Comma separated port specs in the format CON-
TAINER_PORT[:EXPOSED_PORT][/PROTOCOL]

• volumes=None: Comma separated volumes in the format HOST_DIR:CONTAINER_DIR

Examples:

• fab docker.run:orchardup/redis,name=redis,ports=6379

• fab docker.run:quay.io/hello/world,name=hello,ports=”80:8080,1000/udp”,volumes=”/docker/hello/log:/var/log”

• fab docker.run:andreasjansson/redis,environment=”MAX_MEMORY=4G,FOO=bar”,ports=6379

10 Chapter 2. Docs

headintheclouds Documentation, Release 0.3.7

headintheclouds.docker.kill
Kill a container

Args:

• container: Container name or ID

• rm=True: Remove the container or not

headintheclouds.docker.pull
Pull down an image from a repository (without running it)

Args: image: Docker image

headintheclouds.docker.inspect
Inspect a container. Same as running docker inspect CONTAINER on the host.

Args: container: Container name or ID

headintheclouds.docker.tunnel
Set up an SSH tunnel into the container, using the host as a gateway host.

Args:

• container: Container name or ID

• local_port: Local port

• remote_port=None: Port on the Docker container (defaults to local_port)

• gateway_port=None: Port on the gateway host (defaults to remote_port)

2.5 Ensemble

This is really the sugar on the doughnut. headintheclouds.ensemble is an orchestration tool for Docker that will manage
dependencies between containers, intelligently figure out what needs to change to meet the desired configuration, start
servers and containers, and manage firewalls. It uses a simple YAML-based config format, and it’s doing as much as
possible in parallel.

I built ensemble on top of headintheclouds to manage thisismyjam.com. We’re using it now for our production setup
and it seems to hang together so far. The configuration format is heavily influenced by Orchard’s Fig.

2.5.1 Tasks

headintheclouds.ensemble.up
Create servers and containers as required to meet the configuration specified in _name_.

Args:

• name: The name of the yaml config file (you can omit the .yml extension for convenience)

Example: fab ensemble.up:wordpress

2.5.2 Configuration YAML schema

The name of the server. If count > 1, the names will be
SERVER_NAME, SERVER_NAME-1, SERVER_NAME-2, [...].
If SERVER_NAME is an IP address, it is implied that it is
"unmanaged".

2.5. Ensemble 11

http://www.thisismyjam.com
http://orchardup.github.io/fig/

headintheclouds Documentation, Release 0.3.7

SERVER_NAME:

An optional template, see below.
template: TEMPLATE

Provider is required unless SERVER_NAME is an IP address.
Valid options are currently ec2 and digitalocean
provider: PROVIDER

Optional. The number of copies of this server will
be created. Default=1.
count: COUNT

Provider-specific settings, see the section on
provider-specific create flags in the Tasks section
Examples for an EC2 instance:
size: m1.small
image: ubuntu 14.04
security_group: web_ssh

The containers to run
containers:

The name of the container. Again, if container count > 1,
names will be suffixed with ’’, ’-1’, ’-2’, etc.
CONTAINER_NAME:

Required. E.g. orchardup/redis.
image: IMAGE

Optional. A list of ports to open in the format
CONTAINER_PORT[:EXPOSED_PORT][/PROTOCOL]
ports:

Examples:
- 80
- 3306:3366
- 1234/tcp
- 1234:2345/udp

Optional hash of environment variables to pass to
docker run
environment:

Optional template for env vars
template: TEMPLATE

Examples:
FOO: BAR
hello: 123

Optional hash of volumes to bound mount in the
format HOST_DIR:CONTAINER_DIR
volumes:

Examples:
/docker-vol/web/tmp: /tmp
/data/logs: /var/log

12 Chapter 2. Docs

headintheclouds Documentation, Release 0.3.7

The number of instances of this container to run.
Default=1
count: COUNT

Optional firewall configuration. If defined, only the
ports specified here will be open, all others will be
closed.
firewall:

firewall also accepts an optional template
template: TEMPLATE

The open ports are defined as a hash of PORT[/PROTOCOL]
to IP or list of IPs or "*" or $internal_ips, e.g.:
3306: 10.1.1.12
8125/udp: 10.1.1.15

"*" opens a port to the world
22: "*"

$internal_ips is a special variable (see Variables and
dependencies below) that will expand to a list of all
internal IPs for the servers in the same configuration
file, effectively opening a port to all of them.
6379: $internal_ips

Ports can also be wildcarded, like this
"*/*": $internal_ips

templates:
TEMPLATE_NAME:
anything goes here

2.5.3 Templates

To avoid having to write the same chunk of YAML over and over again, templates can be used as a sort of preprocessor
macro. Anything that is defined in the main configuration will override the value in the template. For example, if you
have a config that looks like this

myserver:
template: foo
containers:
template: bar

yourserver:
template: foo
containers:
template: bar
image: hello/world:other
environment:

template: baz

templates:
foo:
provider: digitalocean
size: 1GB

2.5. Ensemble 13

headintheclouds Documentation, Release 0.3.7

bar:
image: hello/world
ports:

- 80:9000
environment:

HELLO: 123
baz:
WORLD: 456

it will expand to

myserver:
provider: digitalocean
size: 1GB
containers:
image: hello/world
ports:

- 80:9000
environment:

HELLO: 123

yourserver:
provider: digitalocean
size: 1GB
containers:
image: hello/world:other
ports:

- 80:9000
environment:

WORLD: 456

2.5.4 Variables and dependencies

Often you want to connect containers and servers, but you probably don’t know the address of the server or container
in advance. Enter variables and dependency management!

Here’s an example:

web:
provider: ec2
containers:
web:

image: hello/web
ports:

- 80
environment:

REDIS_HOST: ${redis.ip}

redis:
provider: ec2
containers:
redis:

image: orchardup/redis
ports:

- 6379

When you “up” this ensemble manifest from a vanilla setup with no running servers, the order of operations will be:

• Start “web” and “redis” servers in parallel

14 Chapter 2. Docs

headintheclouds Documentation, Release 0.3.7

• Resolve ${redis.ip} to the actual IP of the redis server

• Start the redis and web containers in parallel

If the web container would need to wait for the redis container to start, you could put in an environment variable like

[snip]
web:

environment:
REDIS_HOST: ${redis.ip}
_DEPENDS: ${redis.containers.redis.ip}

headintheclouds.ensemble abstracts all the scheduling and will complain if you try to set up cyclical dependencies, so
you can set up pretty complex dependency graphs without thinking too much about what’s going on behind the scenes.

As a side note, headintheclouds doesn’t use docker links, instead you point containers to the IPs of other servers and
containers.

2.5.5 Idempotence and statelessness

The only state that headintheclouds keeps is the internal caches, and these can be wiped without any negative side
effects. Instead of storing state locally, the state of servers and containers is interrogated on the fly by logging in to the
servers and checking what is actually running.

When you run fab ensemble.up:myensemble, it will log in to any existing servers with the same names as in
the manifest, and check if they’re equivalent to what the configuration says. Then it will check the Docker containers
and firewall rules on each host to see if they match the manifest.

This is how headintheclouds.ensemble is idempotent. You can run fab ensemble.up:myensemble any number
of times with no effect on your servers, provided you don’t change myensemble.yml.

Before going out starting servers and containers, headintheclouds will prompt you to confirm the changes that will be
made.

The only caveat is that headintheclouds doesn’t currently delete servers and containers if you remove them from the
manifest, you have to do that manually with the terminate and docker.kill commands. That’s just so you
don’t go and tear things don’t by accident.

2.5.6 Server names and roles

If you have a conf YAML file like this

foo:
provider: ec2
[snip]

bar:
[snip]
containers:
blah:

image: some/image
environment:

FOO_NAME: ${foo.name}
count: 2

foo and bar are the names of the servers. But when using Fabric, role is synonymous with name. So you could do

2.5. Ensemble 15

headintheclouds Documentation, Release 0.3.7

fab -R bar ping

to ping both of the bar server. To access a single one, you’d have to use the -H Fabric flag, e.g.

fab -H 123.45.67.89 ssh

(assuming 123.45.67.89 is the IP of one of the bar servers).

16 Chapter 2. Docs

Python Module Index

h
headintheclouds.docker, 9
headintheclouds.ensemble, 11
headintheclouds.tasks, 8

17

	Install
	Docs
	Tutorial
	Providers
	Tasks
	Docker
	Ensemble

	Python Module Index

