
hdlmake Documentation
Release 3.0

Javier D. Garcia-Lasheras

May 26, 2017

Contents

1 Introduction 2
1.1 Contribute . 2
1.2 Support . 2
1.3 Copyright notice . 3
1.4 License . 3

2 Features 4
2.1 Supported Tools . 4
2.2 Supported Operating Systems . 5
2.3 Supported Python Version . 5

3 Installing hdlmake 6
3.1 Linux deployment . 6
3.2 Windows specific guidelines . 7

4 Learn by example 9
4.1 Overview . 9
4.2 The simplest hdlmake module . 10
4.3 A basic testbench . 10
4.4 Running a simulation . 11
4.5 Constraining a design for synthesis . 12
4.6 Synthesizing a bitstream . 13
4.7 Handling remote modules . 16
4.8 Custom Makefile commands . 17
4.9 Custom variables and conditional execution . 19
4.10 Advanced examples . 20

5 hdlmake supported actions/commands 25
5.1 Makefile generation (makefile) . 25
5.2 Fetching submodules for a top module (fetch) . 26
5.3 Cleaning the fetched repositories (clean) . 26
5.4 List modules (list-mods) . 26
5.5 List files (list-files) . 27
5.6 Print manifest file variables description (manifest-help) . 27

6 Manifest variables description 28
6.1 Top Manifest variables . 28

i

6.2 Universal variables . 28
6.3 Simulation variables . 28
6.4 Synthesis variables . 29

7 Optional arguments for hdlmake 30
7.1 -h, --help . 30
7.2 -v, --version . 30
7.3 --log LOG . 30
7.4 -p, --prefix ARBITRARY_CODE . 31
7.5 -s, --sufix ARBITRARY_CODE . 31

ii

hdlmake Documentation, Release 3.0

• genindex

• modindex

• search

Contents 1

CHAPTER 1

Introduction

A tool designed to help FPGA designers to manage and share their HDL code by automatically finding file dependen-
cies, writing synthesis & simulation Makefiles, and fetching IP-Core libraries from remote repositories.

Contribute

• Wiki Pages: http://www.ohwr.org/projects/hdl-make/wiki

• Issue Tracker: http://www.ohwr.org/projects/hdl-make/issues

• Source Code: http://www.ohwr.org/projects/hdl-make/repository

Support

If you are experiencing any issues, please let us know. We have a mailing list located at:

• http://www.ohwr.org/mailing_list/show?project_id=hdl-make

If you are seeking for consultancy and training services on advanced hdlmake use cases, you can get commercial
support from GL Research, the company on charge of maintaining and developing the tool.

• Company web site: https://gl-research.com

• Project manager: Javier Garcia Lasheras <jgarcia@gl-research.com>

2

http://www.ohwr.org/projects/hdl-make/wiki
http://www.ohwr.org/projects/hdl-make/issues
http://www.ohwr.org/projects/hdl-make/repository
http://www.ohwr.org/mailing_list/show?project_id=hdl-make
https://gl-research.com
mailto:jgarcia@gl-research.com
https://gl-research.com

hdlmake Documentation, Release 3.0

Copyright notice

CERN, the European Organization for Nuclear Research, is the first and sole owner of all copyright of both this
document and the associated source code deliverables.

License

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit: http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

The source code for the hdlmake project is licensed under the GPL license version 3 or later. To get more info about
this license, visit the following link: http://www.gnu.org/copyleft/gpl.html

1.3. Copyright notice 3

http://home.web.cern.ch/
http://home.web.cern.ch/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

CHAPTER 2

Features

• Synthesis Makefile generation

• Simulation Makefile generation

• HDL parser and dependency solver

• GIT/SVN Support

• Multiple HDL Languages

• Multiple Tools

• Multiple Operating Systems

Supported Tools

Tool Synthesis Simulation
Xilinx ISE Yes n.a.
Xilinx PlanAhead Yes No
Xilinx Vivado Yes Yes
Altera Quartus Yes n.a.
Microsemi (Actel) Libero Yes n.a.
Lattice Semi. Diamond Yes n.a.
Xilinx ISim Yes n.a.
Mentor Graphics Modelsim n.a. Yes
Aldec Active-HDL n.a. Yes
Project IceStorm Yes n.a.
Icarus Verilog n.a. Yes
GHDL n.a. VHDL

4

hdlmake Documentation, Release 3.0

Supported Operating Systems

hdlmake is supported in both 32 and 64 bits operating systems.

From version 3.0 onwards, hdlmake supports native Windows shells too, so you don’t need to cheat the system by
using Cygwin like environments.

Operating System Comments
Linux tested on Ubuntu Precise/Trusty, CentOS 6/7
Windows tested on Windows 7/8/8.1/10 CMD and PowerShell

Supported Python Version

Version Comments
Python 2 Runs on 2.7.x
Python 3 Runs on 3.x

2.2. Supported Operating Systems 5

CHAPTER 3

Installing hdlmake

Linux deployment

hdlmake is a Python application and is distributed as an easy to build and deploy source code Python package. In
order to run hdlmake as a shell command, the next process has to be followed.

As a prerequisite, you must have the following programs installed in your host machine:

• python: you need a compatible Python deployment

• git: you need git for both fetching the hdlmake code and accessing to remote HDL repositories.

• svn: svn will only be used when accessing to remote SVN HDL repositories.

Note: In order to support Python 2.7.x and 3.x with a single codebase, the six Python package is now required to
run hdlmake 3.0 version.

There are two methods to obtain and install hdlmake: via git repository or PyPI. PyPI is the preferred method if you
are only interested in releases. Git may be preferred if you are a developer, or would like to stay in sync with active
development.

PyPI and pip

Installing hdlmake via PyPI is straightforward assuming that you have pip already installed in your local Python
environment.

Note: For directions on installing pip see the pip documentation.

To install directly from PyPI simply run:

6

https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi

hdlmake Documentation, Release 3.0

pip install hdlmake

Alternatively, if you have already downloaded a source distribution, you can install it as follows:

pip install hdlmake-X.X.tar.gz

At this point, hdlmake is now installed into your active Python environment and can be run simply by executing
hdlmake in your shell.

Git

Fetch the code from the official hdlmake git repository, that can be found at the next link: - http://www.ohwr.org/
projects/hdl-make/repository

Once you have a valid hdlmake source tree, you can install hdlmake into your Python site-packages directly via
setup.py install:

cd /path_to_hdlmake_sources/hdl-make
python2.7 setup.py install

hdlmake is now installed into your active Python environment and can be run simply by executing hdlmake in your
shell.

As a developer, you may wish to avoid installing hdlmake directly into your site-packages, but can instead link
directly to the sources instead:

cd /path_to_hdlmake_sources/hdl-make
python2.7 setup.py develop

Alternatively, you may choose to forgo installing anything in your Python environment and simply directly run from
the source by creating a launch script. Create a launch script in /usr/bin or any other available location at shell $PATH.
You can name the script as you prefer so, by doing this, multiple hdlmake versions can easily be used in the same
machine. In any case, in this documentation we will consider that the name for this launch script is just hdlmake.

#!/usr/bin/env bash
PYTHONPATH=/path_to_hdlmake_sources/hdl-make python2.7 -m hdlmake $@

Once the launch script has been created, the appropriate execution rights must be set:

chmod +x /usr/bin/hdlmake

In the above examples the following nomenclature is used:

• python2.7 is the executable of the Python deployment we want to use with hdlmake.

• path_to_hdlmake_sources is the absolute path in which the hdlmake source code has been fetched.

• hdl-make is the name of the folder created when you checked out the repo.

• hdlmake is the actual hdlmake package (this is not binary or a file, this is folder name).

Windows specific guidelines

From the new 3.0 version onwards, hdlmake supports execution on native Windows shell, including both the old
cmd and the new PowerShell. In this section, you’ll find instructions on how to install and configure the tool and
the required versions of the programs (Git and Make).

3.2. Windows specific guidelines 7

http://www.ohwr.org/projects/hdl-make/repository
http://www.ohwr.org/projects/hdl-make/repository

hdlmake Documentation, Release 3.0

Make

Install GNU Make Win32:

• https://sourceforge.net/projects/gnuwin32/files/make/3.81

Then, we need to add to PATH system variable the Make bin folder, e.g.:

c:\Program Files (x86)\GnuWin32\bin

Git

Install Git-scm for Windows. If the bin dir is not added to the PATH, you’ll need it to update the system environmental
variable.

• https://git-scm.com/download/win

Python

Install Python (2.7 or 3.x) for Windows:

• https://www.python.org/downloads/windows/

To make it available on the command line, add this to PATH (e.g. for Python 2.7):

c:\Python27

Before running hdlmake 3.0, you’ll need to instal six package to work with Hdlmake (six is required to support
Python 2.7 and 3.x with a single code base).

We can install six by just using the pip tool that comes with the Python deployment:

pip install six

Install hdlmake package

Install hdlmake using the Python installation mechanism:

python setup.py install

And be sure the following directory is in the PATH, as it will contain hdlmake.exe

c:\Python27\scripts

3.2. Windows specific guidelines 8

https://sourceforge.net/projects/gnuwin32/files/make/3.81
https://git-scm.com/download/win
https://www.python.org/downloads/windows/

CHAPTER 4

Learn by example

As a companion of hdlmake, we can find a folder containing some easy design examples that can serve us as both tests
and design templates. This folder is named hdl-make/tests/``and is automatically downloaded
when the ``hdlmake git repository is fetched.

Overview

Inside the tests folder, you’ll find a project called counter. This project has been specifically designed to serve
as an easy template/test for the following features:

• Testbench simulation

• Bitstream synthesis

• Verilog/VHDL support

The first level of the counter directory structure is the following:

user@host:~$ tree -d -L 1 counter/
counter/
|-- modules
|-- sim
|-- syn
|-- testbench
`-- top

where each folder has the following role:

• modules contains the code of the design, a very simple 8-bit counter.

• sim contain a set of top manifests targeted to simulation by using different tools.

• syn contain a set of top manifests targeted to synthesis by using different tools.

• testbench contains a testbench for the design, covering the 8-bit counter.

9

hdlmake Documentation, Release 3.0

• top contains a top module wrapper attaching the counter design to the pushbuttons & LEDs of a real FPGA
design.

For each simulation or synthesis that can be executed, we have both Verilog and VHDL source codes for the module,
testbench and top. So in every of the previous folder, we will have as children a verilog and an vhdl folder (note that
ghdl only supports VHDL and iverilog only supports Verilog).

The simplest hdlmake module

If we take a deeper look to the modules folder we find that we really have two different hdlmake modules, one
describing the counter as Verilog and other as VHDL.

user@host:~$ tree counter/modules/
counter/modules/
`-- counter

|-- verilog
| |-- counter.v
| `-- Manifest.py
`-- vhdl

|-- counter.vhd
`-- Manifest.py

Each of the modules contains a single file, so in the VHDL case the associated Manifest.py is just:

files = [
"counter.vhd",

]

While in the Verilog one the Manifest.py is:

files = [
"counter.v",

]

A basic testbench

Now, if we focus on the testbench folder, we have that we have again two modules, targeted to cover both the
VHDL and the Verilog based counter modules we have just seen.

user@host:~$ tree counter/testbench/
counter/testbench/
`-- counter_tb

|-- verilog
| |-- counter_tb.v
| `-- Manifest.py
`-- vhdl

|-- counter_tb.vhd
`-- Manifest.py

Each of the modules contains a single testbench file written in the appropriated language, but in order to define the
real project structure, the Manifest.py must include a reference to the modules under test. Thus, in the case of VHDL,
the Manifest.py is:

4.2. The simplest hdlmake module 10

hdlmake Documentation, Release 3.0

files = [
"counter_tb.vhd",

]

modules = {
"local" : ["../../../modules/counter/vhdl"],

}

While in Verilog the Manifest.py is:

files = [
"counter_tb.v",

]

modules = {
"local" : ["../../../modules/counter/verilog"],

}

Note that, in both cases, the children modules are local.

Running a simulation

Now, we have all that we need to run a simulation for our simple design. If we take a look to the sim folder contents,
we see that there is one folder for each of the supported simulations tools:

user@host:~$ tree -d -L 1 counter/sim
counter/sim
|-- active_hdl
|-- ghdl
|-- isim
|-- iverilog
|-- modelsim
|-- riviera
`-- vivado

As an example, let’s focus on the modelsim folder:

user@host:~$ tree counter/sim/modelsim/
counter/sim/modelsim/
|-- verilog
| `-- Manifest.py
|-- vhdl
| `-- Manifest.py
`-- vsim.do

We can see that there is a top Manifest.py for both Verilog and VHDL languages. In addition, we have a vsim.do
file that contains Modelsim specific commands that are common for both HDL languages.

In the VHDL case, the top Manifest.py for Modelsim simulation is:

action = "simulation"
sim_tool = "modelsim"
sim_top = "counter_tb"

sim_post_cmd = "vsim -do ../vsim.do -i counter_tb"

4.4. Running a simulation 11

hdlmake Documentation, Release 3.0

modules = {
"local" : ["../../../testbench/counter_tb/vhdl"],

}

And in the Verilog case, the associated Manifest.py is:

action = "simulation"
sim_tool = "modelsim"
sim_top = "counter_tb"

sim_post_cmd = "vsim -do ../vsim.do -i counter_tb"

modules = {
"local" : ["../../../testbench/counter_tb/verilog"],

}

In both cases, we can see that the modules parameter points to the specific VHDL or Verilog testbench, while the
other fields remain the same for both of the languages.

The following common top specific Manifest variables describes the simulation:

• action: indicates that we are going to perform a simulation.

• sim_tool: indicates that modelsim is going to be the simulation we are going to use.

• sim_top: indicates the name of the top HDL entity/instance that is going to be simulated.

• sim_post_cmd: indicates a command that must be issued after the simulation process has finnished.

Now, if we want to launch the simulation, we must follow the next steps. First, get into the folder containing the top
Manifest.py we want to execute and run hdlmake without arguments. e.g. for VHDL:

user@host:~$ cd counter/sim/modelsim/vhdl
user@host:~$ hdlmake

This generates a simulation Makefile that can be executed by issuing the well known make command. When doing
this, the appropriated HDL files are compiled in order following the hierachy described in the modules/Manifest.py
tree. Now, once the design is compiled, if we want to run an actual simulation we need to issue a specific Modelsim
command:

user@host:~$ make
user@host:~$ vsim -do ../vsim.do -i counter_tb

But, because we have already defined a post simulation command into the Manifest.py, the generated Makefile allows
us to combine the compilation and the test run in a single command. In this way, the second command is not required:

user@host:~$ make

If everything goes well, a graphical viewer should appear showing the simulated waveform. Note that every simula-
tion top Manifest.py in the sim folder includes a tool specific sim_post_command, so all the simulations in this
example can be generated by using the same simple command sequence that has been exposed here.

Constraining a design for synthesis

The top folder contains the a series of HDL files describing how to attach the counter design to the PushButtons &
LEDs of real FPGA powered design. The set has been chosed so that we have an example of every FPGA vendor
supported by the hdlmake tool.

4.5. Constraining a design for synthesis 12

hdlmake Documentation, Release 3.0

user@host:~$ tree -d -L 1 counter/top
counter/top
|-- brevia2_dk
|-- cyclone3_sk
|-- icestick
|-- proasic3_sk
|-- spec_v4
`-- zedboard

If we focus on the spec_v4 folder, we can see that we have the following contents:

user@host:~$ tree counter/top/spec_v4/
counter/top/spec_v4/
|-- spec_top.ucf
|-- verilog
| |-- Manifest.py
| `-- spec_top.v
`-- vhdl

|-- Manifest.py
`-- spec_top.vhd

We can see that we have two different modules, one for VHDL and one for Verilog, each one containing a top module
that links the counter design module to the outer world. In addition, we have a common spec_top.ucf constraints
file that defines the specific FPGA pins that are connected with each HDL design port.

In this way, the VHDL Manifest.py is:

files = ["spec_top.vhd", "../spec_top.ucf"]

modules = {
"local" : ["../../../modules/counter/vhdl"],

}

And the Verilog one is:

files = ["spec_top.v", "../spec_top.ucf"]

modules = {
"local" : ["../../../modules/counter/verilog"],

}

Synthesizing a bitstream

Once we have a constrained design targeted to a real FPGA board, we can generate a valid bitstream configuration
file that can be downloaded into the FPGA configuration memory. In order to do that, we can use hdlmake to
generate a synthesis Makefile that is able to perform the complete process by running a step-by-step flow that starts
with the project generation and ends with the bitstream compiling. The main advantage of this approach is that, when
synthesizing complex designs, the process can be resumed if it fails or is halted and the already performed jobs don’t
need to be re-launched again.

The following are the different target names a synthesis Makefile may feature. The names are taken from Xilinx ISE,
a synthesis tools that goes through all of the potential synthesis stages, but will apply to all other available tools too:

• project: Create the synthesis tool specific project.

• synthesize: Synthesize the HDL source code.

4.6. Synthesizing a bitstream 13

hdlmake Documentation, Release 3.0

• translate: Translate to synthesis tool format.

• map: Map the translated design into FPGA building blocks.

• par: Execute Place & Route for the selected FPGA device.

• bitstream: Generate the bitstream for FPGA programming.

For each of the potential synthesis targets, a Tool Command Language (TCL) file will be created as a dependency in
the Makefile. These TCL files include the tool specific commands that are then sourced to the selected tool to perform
the different synthesis stages. We have chosen to use TCL files as the intermediate format as this is the de-facto
standard language that has been selected by the FPGA vendors.

A TCL file associated to a specific synthesis stage can be generated without sourcing it to the tool by just calling Make
with the associated target name (project.tcl, synthesize.tcl, translate.tcl, map.tcl, par.tcl,
bitstream.tcl). In this way, this files can be integrated into other custom development flows.

Note: note that we have an additional files.tcl target. This is a dependency target for the project, and includes
the TCL commands that are required all of the different design files to the tool in an appropriated way.

As a quick-start for synthesis projects development, in the syn folder we can find examples of top Manifest.py
targeted to perform a bitstream generation by using all of the synthesis tools supported by hdlmake:

user@host:~$ tree -d -L 1 counter/syn
counter/syn
|-- brevia2_dk_diamond
|-- cyclone3_sk_quartus
|-- icestick_icestorm
|-- proasic3_sk_libero
|-- spec_v4_ise
|-- spec_v4_planahead
`-- zedboard_vivado

Note that we have a different tool associated to each of the different supported vendor specific FPGA boards. The only
exception is the spec_v4 design, that can be synthesized by using both Xilinx ISE and Xilinx PlanAhead.

If we focus on the spec_v4_ise test case, we can see the following contents in the associated folder:

user@host:~$ tree -d -L 1 counter/syn/spec_v4_ise
counter/syn/spec_v4_ise/
|-- verilog
| `-- Manifest.py
`-- vhdl

`-- Manifest.py

As we can see, we have a top synthesis Manifest.py for Verilog and another one for VHDL. If we take a look to the
VHDL Manifest.py, we have:

target = "xilinx"
action = "synthesis"

syn_device = "xc6slx45t"
syn_grade = "-3"
syn_package = "fgg484"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"

4.6. Synthesizing a bitstream 14

hdlmake Documentation, Release 3.0

modules = {
"local" : ["../../../top/spec_v4/vhdl"],

}

And for the Verilog synthesis top Manifest.py:

action = "synthesis"

syn_device = "xc6slx45t"
syn_grade = "-3"
syn_package = "fgg484"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"

modules = {
"local" : ["../../../top/spec_v4/verilog"],

}

We can see that the only difference is that each of the top synthesis Manifest.py points to its specific Verilog/VHDL
top module describing the interface for the constrained FPGA design. The other Manifest.py variables are common
for both languages and they means:

• action: indicates that this is a synthesis process

• syn_device: indicates the specific FPGA device

• syn_family: indicates the specific FPGA family

• syn_grade: indicates the specific FPGA speed grade

• syn_package: indicates the specific FPGA package

• syn_top: indicates the name of the top HDL instance/module to be synthesized.

• syn_project: indicates the name of the FPGA project that is going to be created.

• syn_tool: indicates the specific synthesis tool that is going to be used.

Now, in order to generate the bitstream for our board, we just get into the folder containing the specific top Manifest.py
for synthesis and run hdlmake without arguments to create the desired Makefile, e.g. for VHDL:

user@host:~$ cd counter/syn/spec_v4_ise/vhdl
user@host:~$ hdlmake

So, once hdlmake has already generated the Makefile, issuing a simple make command is enough to synthesize a
valid bitstream. Then, we can issue a clean target for make in order to erase the most of the intermediate generated
stuff and even a mrproper one to remove everything included the generated bitstreams.

user@host:~$ make
user@host:~$ make clean
user@host:~$ make mrproper

Note that hdlmake and the examples included in the counter test have been designed in order to be regular across
the different toolchains. In this way, every top Manifest.py for synthesis in the syn folder can be executed to build a
valid bitstream by using the same command sequence we have seen in this section.

4.6. Synthesizing a bitstream 15

hdlmake Documentation, Release 3.0

Handling remote modules

Let’s take a simple example of how hdlmake handles repositories.

First, consider that we have a project consisting on four HDL modules and one testbench. The project root folder looks
like this:

user@host:~/test/proj$ tree -d
.
`-- hdl

|-- module1
|-- module2
|-- module3
|-- module4
`-- tb

Supposing that all of the modules are local to the development machine, i.e. the contents of the modules are available
in the local host, the Manifest.py in tb directory should look like this:

modules = {
"local":["../module1","../module2","../module3","../module4"]

}

We only have the local key and an asociated four elements list containing the path to the respective local folders
where the modules are stored.

This case was very trivial. Let’s try now to complicate the situation a bit. Let say, module1 is stored as a local module,
module2 and module3 are stored in remote SVN repositories, and module4 is stored in a GIT repository. Here
we have how a sample module declaration including remote repositories would look like:

modules = {
"local": "../module1"
"svn":[

"http://path.to.repo/module2",
"http://path.to.repo/module3@25"

],
"git":"git@github.com:user/module4.git"

}

Now we can see that the local key just has an associated path (i.e. this is a 1-element list), while we have two
additional key identifiers: svn, pointing to a list of two remote SVN repositories, and git, pointing to a single
remote GIT repository.

Regarding the SVN repositories, module2 is pointing to the default/head revision while module3 SVN repos-
itory is pointing to revision number 25 by appending the @25 sufix to the repository URL..

Finally, the Git repository module4 is the only entry for the GIT module list and it is pointing to the default/
master branch, but we can introduce the following extra modifiers to force a specific branch, tag or commit:

• [::] | Point to a specific branch (e.g. “develop”)

e.g.: target branch is "develop"
"git":"git@github.com:user/module4.git::develop"

• [@@] | Point to a specific tag or commit

e.g.: target tag is "v1.0"
"git":"git@github.com:user/module4.git@@v1.0"

4.7. Handling remote modules 16

hdlmake Documentation, Release 3.0

e.g.: target commit is "a964df3d84f84ef1f87acb300c4946d8c33e526a"
"git":"git@github.com:user/module4.git@@a964df3d84f84ef1f87acb300c4946d8c33e526a"

Note: if the requested Git repository is declared as a git submodule too and we do not provide an extra :: or @@
modifier in the Manifest.py, hdlmake will read the desired commit id from the respective submodule declaration
and will checkout this code revision right after the repository is cloned.

Now, if we run the hdlmake fetch command from inside the folder where the top Manifest.py is stored, hdlmake
will read the local, SVN and GIT module lists and will automatically clone/fetch the remote SVN and GIT repositories.
The only issue is that the modules would be fetched to the directory in which we are placed, which is not very elegant.
To make the process more flexible, we can add the fetchto option to the manifest in order to point to the actual
folder in which we want to store our remotely hosted modules.

fetchto = "../../ip_cores"

Custom Makefile commands

As we have already seen in the simulation example, hdlmake allows for the injection of optional external shell
commands that are executed just before and/or just after the selected action has been executed. By using this feature,
we can automate other custom tasks in addition to the hdlmake specific ones.

If a external command has been defined in the top Manifest, this is automatically written by hdlmake into the
generated Makefile. In this way, the external commands are automatically executed in order when a make command
is issued.

Synthesis commands

Depending on the tool you are going to use, you’ll be able to run specific pre/post commands for all the available
fine grained synthesis targets: {project, synthesize, translate, map, par, bitstream}. This
is how these custom commands works:

• syn_pre_<stage>_cmd: this command is executed before executing the <stage> synthesis step.

• syn_post_<stage>_cmd: this command is executed after executing the <stage> synthesis step.

Name Type Description Default
syn_pre_project_cmd str Command to be executed before synthesis: project ‘’
syn_post_project_cmd str Command to be executed after synthesis: project ‘’
syn_pre_synthesize_cmd str Command to be executed before synthesis: synthesize ‘’
syn_post_synthesize_cmd str Command to be executed after synthesis: synthesize ‘’
syn_pre_translate_cmd str Command to be executed before synthesis: translate ‘’
syn_post_translate_cmd str Command to be executed after synthesis: translate ‘’
syn_pre_map_cmd str Command to be executed before synthesis: map ‘’
syn_post_map_cmd str Command to be executed after synthesis: map ‘’
syn_pre_par_cmd str Command to be executed before synthesis: par ‘’
syn_post_par_cmd str Command to be executed after synthesis: par ‘’
syn_pre_bitstream_cmd str Command to be executed before synthesis: bitstream ‘’
syn_post_bitstream_cmd str Command to be executed after synthesis: bitstream ‘’

As a very simple example, we can introduce in the Manifest.py from a Xilinx ISE design a hello world! command
that will be executed just before the first synthesis target (project) and a bye, bye world! that will be executed just
after the last synthesis target (bitstream):

4.8. Custom Makefile commands 17

hdlmake Documentation, Release 3.0

target = "xilinx"
action = "synthesis"

syn_device = "xc6slx45t"
syn_grade = "-3"
syn_package = "fgg484"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"

syn_pre_project_cmd = "echo hello world!"
syn_post_bitstream_cmd = "echo bye, bye world!"

modules = {
"local" : ["../../../top/spec_v4/verilog"],

}

Simulation commands

Now, if we want to add external commands to a simulation top makefile, the following parameters must be introduced:

Name Type Description Default
sim_pre_cmd str Command to be executed before simulation None
sim_post_cmd str Command to be executed after simulation None

As a very simple example, we can introduce both extra commands in the top simulation makefile we have previously
seen:

action = "simulation"
sim_tool = "modelsim"
sim_top = "counter_tb"

sim_pre_cmd = "echo This is executed just before the simulation"
sim_post_cmd = "echo This is executed just after the simulation"

modules = {
"local" : ["../../../testbench/counter_tb/verilog"],

}

Multiline commands

If you need to execute a more complex action from the pre/post synthesis/simulation commands, you can point to an
external shell script or program. As an alternative, you can use a multiline string in order to inject multiple commands
into the Makefile.

As a first option, multiple commands can be launched by spliting a single long string into one piece per command. The
drawback for this approach is that the original single line is reconstructed an inserted into the Makefile, so the specific
external command Makefile target include just a single entry. This is why, in the following example, semicolons are
used in order to separate the sequential commands:

syn_pre_cmd = (
"mkdir /home/user/Workspace/test1;"
"mkdir /home/user/Workspace/test2;"
"mkdir /home/user/Workspace/test3;"
"mkdir /home/user/Workspace/test4;"

4.8. Custom Makefile commands 18

hdlmake Documentation, Release 3.0

"mkdir /home/user/Workspace/test5"
)

A cleaner alternative, is using a multiline text in which line return and tabulation characters has been introduced in
order to separate in different lines each of the commans when they are written into the Makefiles. In the following
example, this approach is exemplified:

syn_pre_cmd = (
"mkdir /home/user/Workspace/test1\n\t\t"
"mkdir /home/user/Workspace/test2\n\t\t"
"mkdir /home/user/Workspace/test3\n\t\t"
"mkdir /home/user/Workspace/test4\n\t\t"
"mkdir /home/user/Workspace/test5"

)

Custom variables and conditional execution

In order to give an extra level of flexibility when defining the files and modules that are going to be used in a specific
project, hdlmake allows for the introduction of custom Python variables and code in the Manifest.py hierarchy.
This is a very handy feature when different synthesis or simulation configurations in complex designs should be
selected from the top level Manifest when running hdlmake.

As a very simple example of how this mechanism can be used, suppose that we want to simulate a design that uses a
module for which two different harware descriptions are available, one in VHDL and one in Verilog (mixed language
is a common feature of commercial simulation tools and is an under-development feature for Icarus Verilog).

For this purpose, we introduce an if clause inside a children Manifest in which the simulate_vhdl boolean
variable is used to select the content of the following modules to be scanned:

if simulate_vhdl:
print("We are using the VHDL module")
modules = {

"local" : ["../../../modules/counter/vhdl"],
}

else:
print("We are using the Verilog module")
modules = {

"local" : ["../../../modules/counter/verilog"],
}

Now, in order to define the simulate_vhdl variable value, we can use two different approachs. The first one is to
include this as a new variable in the top Manifest.py, i.e.:

action = "simulation"
sim_tool = "modelsim"
sim_top = "counter_tb"

simulate_vhdl = False

modules = {
"local" : ["../../../testbench/counter_tb/verilog"],

}

But we can also define the variable value by injecting custom prefix or sufix Python code from the command line when
hdlmake is executed, e.g.:

4.9. Custom variables and conditional execution 19

hdlmake Documentation, Release 3.0

hdlmake --sufix "simulate_vhdl = False" makefile

Advanced examples

Xilinx ISE

As a non-trivial design example of a real use case of hdlmake with Xilinx ISE, we have chosen the White Rabbit
PTP Core reference design the European Organization for Nuclear Research (CERN) provides for the Simple PCIe
FMC Carrier (SPEC). This open-hardware platform is powered by a Xilinx Spartan-6 and is used in multiple
experimental physics facilities around the world.

• WR PTP Core: http://www.ohwr.org/projects/wr-cores/wiki/Current_release

• Simple PCIe FMC Carrier: http://www.ohwr.org/projects/spec/wiki

In the following instructions, we will see how easy is to build the bitstream from the command line (tested on both
Windows and Linux hosts).

We start by cloning the repository and getting into the SPEC reference design (tested with Release v4.0):

git clone git://ohwr.org/hdl-core-lib/wr-cores.git
cd wr-cores/syn/spec_ref_design/

Now, the WR PTP Core requires a series of HDL libraries that are provided under hdlmake format in the CERN
Open Hardware repository. In this example, you have the option of fetching all of the dependencies for all of the
reference designs provided in the downloaded source code by using the git submodule mechanism, this is:

git submodule init
git submodule update

Alternatively, if you only want to download the design submodule dependencies the design needs, we can use the
hdlmake fetch feature as the required remote modules are already listed in the provided Manifest.py. As the
Git remote modules directives doesn’t point to a specific branch or commit id, hdlmake will only clone the listed
repositories in the fetchto folder and then will checkout the appropriated commits by previously interrogating the
git submodule mechanism.

hdlmake fetch

Once we have all the dependencies, we can run hdlmake to automatically generate a synthesis Makefile. Once
we have done this, we can just run Make to automatically generate the bitstream:

hdlmake
make

If you experience any problem, please perform a make clean before running Make. The synthesis should run fine
after doing this – the design comes out of the box with an Xilinx *.ise project created with hdlmake 2.1, while
in hdlmake 3.0 the synthesis project file is created by the Makefile.

If you want to regenerate the ISE project by using your custom Xilinx ISE properties, you may replace the provided
Manifest.py with the following one and edit it accordingly. By using this code, you can exactly reproduce the
CERN’s team setup:

target = "xilinx"
action = "synthesis"

4.10. Advanced examples 20

http://www.ohwr.org/projects/wr-cores/wiki/Current_release
http://www.ohwr.org/projects/spec/wiki

hdlmake Documentation, Release 3.0

syn_device = "xc6slx45t"
syn_grade = "-3"
syn_package = "fgg484"
syn_top = "spec_wr_ref_top"
syn_project = "spec_wr_ref.xise"
syn_tool = "ise"
syn_properties = [

["Auto Implementation Compile Order", "false"],
["Manual Implementation Compile Order", "true"],
["Manual Implementation Compile Order", "true"],
["Pack I/O Registers/Latches into IOBs", "For Outputs Only"],
["Generate Detailed MAP Report", "true"]]

modules = { "local" : "../../top/spec_ref_design/"}

Xilinx Vivado

As an advanced example for Xilinx Vivado, we have chosen the Beam Position Monitor (BPM) design from the
Beam Diagnostics group of the Brazilian Synchrotron Light Laboratory (LNLS) for the AMC FMC Carrier (AFC).
Equiped in Xilinx Artix-7 FPGA, it allows to connect clock source to any clock input.

• BPM Design: https://github.com/lnls-dig/bpm-gw

• AMC FMC Carrier (AFC): http://www.ohwr.org/projects/afc/wiki

In the following instructions, we will see how easy is to build the bitstream from the command line (tested on both
Windows and Linux hosts).

We start by cloning the repository and getting into the AFC reference design:

git clone https://github.com/lnls-dig/bpm-gw.git
cd bpm-gw/hdl/syn/afc_v3/vivado/dbe_bpm2/

Now, the Beam Position Monitor requires a series of HDL libraries that are provided under hdlmake format in
both the CERN Open Hardware repository and GitHub. In this example, you have the option of fetching all of the
dependencies for all of the reference designs provided in the downloaded source code by using the git submodule
mechanism, this is:

git submodule init
git submodule update

Alternatively, if you only want to download the design submodule dependencies the design needs, we can use the
hdlmake fetch, but we will need to modify the bpm-gw/hdl/Manifest.py so that its new content is:

fetchto = "ip_cores"

modules = { "local": ["modules/dbe_wishbone",
"modules/dbe_common",
"modules/fabric",
"modules/fmc_adc_common",
"modules/utils",
"modules/pcie",
"platform"],

"git" : ["git://ohwr.org/hdl-core-lib/etherbone-core.git",
"https://github.com/lnls-dig/general-cores.git",
"https://github.com/lnls-dig/dsp-cores.git"] }

4.10. Advanced examples 21

https://github.com/lnls-dig/bpm-gw
http://www.ohwr.org/projects/afc/wiki

hdlmake Documentation, Release 3.0

Note: In order to allow the use of IP-XACT IP Core libraries for Vivado, the fetcho variable in the Manifest.py
hierarchy is not only used as the folder to store remote hdlmake modules, but it’s automatically assigned as the value
for the ip_repo_paths Vivado project property.

Once this is done, hdlmake will only clone the listed repositories in the fetchto folder and then will checkout the
appropriated commits by previously interrogating the git submodule mechanism. In this example, doing

hdlmake fetch

Once we have all the dependencies, we can run hdlmake to automatically generate a synthesis Makefile. Once
we have done this, we can just run Make to automatically generate the bitstream:

hdlmake
make

This project makes use of custom Xilinx Vivado properties and custom Python code, so it is a very valuable example
as a template for custom setups. Here, you can see a copy of the top Manifest.py contents for the BPM design:

target = "xilinx"
action = "synthesis"

syn_device = "xc7a200t"
syn_grade = "-2"
syn_package = "ffg1156"
syn_top = "dbe_bpm2"
syn_project = "dbe_bpm2"
syn_tool = "vivado"
syn_properties = [

["steps.synth_design.args.more options", "-verbose"],
["steps.synth_design.args.retiming", "1"],
["steps.synth_design.args.assert", "1"],
["steps.opt_design.args.verbose", "1"],
["steps.opt_design.args.directive", "Explore"],
["steps.opt_design.is_enabled", "1"],
["steps.place_design.args.directive", "Explore"],
["steps.place_design.args.more options", "-verbose"],
["steps.phys_opt_design.args.directive", "AlternateFlowWithRetiming"],
["steps.phys_opt_design.args.more options", "-verbose"],
["steps.phys_opt_design.is_enabled", "1"],
["steps.route_design.args.directive", "Explore"],
["steps.route_design.args.more options", "-verbose"],
["steps.post_route_phys_opt_design.args.directive", "AddRetime"],
["steps.post_route_phys_opt_design.args.more options", "-verbose"],
["steps.post_route_phys_opt_design.is_enabled", "1"],
["steps.write_bitstream.args.verbose", "1"]]

import os
import sys
if os.path.isfile("synthesis_descriptor_pkg.vhd"):

files = ["synthesis_descriptor_pkg.vhd"];
else:

sys.exit("Generate the SDB descriptor before using HDLMake (./build_synthesis_sdb.
→˓sh)")

machine_pkg = "uvx_250M";

4.10. Advanced examples 22

hdlmake Documentation, Release 3.0

modules = { "local" : ["../../../../top/afc_v3/vivado/dbe_bpm2"] };

Intel Quartus

In the same source code design the CERN provides for the White Rabbit PTP Core, it is also included an example
for the VME FMC Carrier HPC-DDR3 (VFC-HD). The VFC-HD is an Intel Arria V based VME64x carrier for
one High Pin Count (HPC) FPGA Mezzanine Card (FMC, VITA 57). It is has six SFP+ transceivers compatible with
support for rad-hard GBT links, CERN Beam Synchronous Timing (BST), White Rabbit and Ethernet.

• WR PTP Core: http://www.ohwr.org/projects/wr-cores/wiki/Current_release

• VME FMC Carrier HPC-DDR3 (VFC-HD): http://www.ohwr.org/projects/vfc-hd/wiki

We start by cloning the repository and getting into the VFC-HD reference design (tested with Release v4.0):

git clone git://ohwr.org/hdl-core-lib/wr-cores.git
cd wr-cores/syn/vfchd_ref_design/

Now, the WR PTP Core requires a series of HDL libraries that are provided under hdlmake format in the CERN
Open Hardware repository. In this example, you have the option of fetching all of the dependencies for all of the
reference designs provided in the downloaded source code by using the git submodule mechanism, this is:

git submodule init
git submodule update

Alternatively, if you only want to download the design submodule dependencies the design needs, we can use the
hdlmake fetch feature as the required remote modules are already listed in the provided Manifest.py. As the
Git remote modules directives doesn’t point to a specific branch or commit id, hdlmake will only clone the listed
repositories in the fetchto folder and then will checkout the appropriated commits by previously interrogating the
git submodule mechanism.

hdlmake fetch

Once we have all the dependencies, we can run hdlmake to automatically generate a synthesis Makefile. Once
we have done this, we can just run Make to automatically generate the bitstream:

hdlmake
make

It’s important to know that this design relies on versioned Intel IP-Cores, so it will only work just out of the box with
the appropriated Intel Quartus version (WR PTP Core v4.0 requires Intel Quartus 16.0).

If you want to use a different Intel Quartus version, you will need to fix the IP-Core versions. This is an example patch
for upgrading WR PTP Core v4.0 from Intel Quartus 16.0 to Intel Quartus 16.1:

diff --git a/platform/altera/wr_arria5_phy/arria5_phy16.txt b/platform/altera/wr_
→˓arria5_phy/arria5_phy16.txt
index c0db187..8040f12 100644
--- a/platform/altera/wr_arria5_phy/arria5_phy16.txt
+++ b/platform/altera/wr_arria5_phy/arria5_phy16.txt
@@ -1,6 +1,6 @@
--- megafunction wizard: %Deterministic Latency PHY v16.0%
+-- megafunction wizard: %Deterministic Latency PHY v16.1%
-- Retrieval info: <?xml version="1.0"?>

--- Retrieval info: <instance entity-name="altera_xcvr_det_latency" version="16.0" >
+-- Retrieval info: <instance entity-name="altera_xcvr_det_latency" version="16.1" >

4.10. Advanced examples 23

http://www.ohwr.org/projects/wr-cores/wiki/Current_release
http://www.ohwr.org/projects/vfc-hd/wiki

hdlmake Documentation, Release 3.0

-- Retrieval info: <generic name="device_family" value="Arria V" />
-- Retrieval info: <generic name="operation_mode" value="Duplex" />
-- Retrieval info: <generic name="lanes" value="1" />

diff --git a/platform/altera/wr_arria5_phy/arria5_phy8.txt b/platform/altera/wr_
→˓arria5_phy/arria5_phy8.txt
index 5b52cba..2993643 100644
--- a/platform/altera/wr_arria5_phy/arria5_phy8.txt
+++ b/platform/altera/wr_arria5_phy/arria5_phy8.txt
@@ -1,6 +1,6 @@
--- megafunction wizard: %Deterministic Latency PHY v16.0%
+-- megafunction wizard: %Deterministic Latency PHY v16.1%
-- Retrieval info: <?xml version="1.0"?>

--- Retrieval info: <instance entity-name="altera_xcvr_det_latency" version="16.0" >
+-- Retrieval info: <instance entity-name="altera_xcvr_det_latency" version="16.1" >
-- Retrieval info: <generic name="device_family" value="Arria V" />
-- Retrieval info: <generic name="operation_mode" value="Duplex" />
-- Retrieval info: <generic name="lanes" value="1" />

diff --git a/platform/altera/wr_arria5_phy/arria5_phy_reconf.txt b/platform/altera/wr_
→˓arria5_phy/arria5_phy_reconf.txt
index 78e0f2f..d698be2 100644
--- a/platform/altera/wr_arria5_phy/arria5_phy_reconf.txt
+++ b/platform/altera/wr_arria5_phy/arria5_phy_reconf.txt
@@ -1,6 +1,6 @@
--- megafunction wizard: %Transceiver Reconfiguration Controller v16.0%
+-- megafunction wizard: %Transceiver Reconfiguration Controller v16.1%
-- Retrieval info: <?xml version="1.0"?>

--- Retrieval info: <instance entity-name="alt_xcvr_reconfig" version="16.0" >
+-- Retrieval info: <instance entity-name="alt_xcvr_reconfig" version="16.1" >
-- Retrieval info: <generic name="device_family" value="Arria V" />
-- Retrieval info: <generic name="number_of_reconfig_interfaces" value="2" />
-- Retrieval info: <generic name="gui_split_sizes" value="" />

4.10. Advanced examples 24

CHAPTER 5

hdlmake supported actions/commands

Makefile generation (makefile)

This is the default command for hdlmake and its basic behaviour will be defined by the value of the action
manifest parameter in the hierachy Manifest.py. action can be set to simulation or synthesis, and the
associated command sequence will be:

• simulation: generate a simulation makefile including all the files required for the defined testbench

• synthesis: generate a synthesis makefile including all the files required for bitstream generation

By using the -f FILENAME, --filename FILENAME optional argument for the makefile command, we can
choose the name of the synthesis or simulation Makefile that will be generated by hdlmake.

In order to allow for a more agile development, we have included these shortcuts when using the hdlmake
makefile command:

These commands are equivalent
hdlmake makefile
hdlmake

These commands are equivalent
hdlmake makefile -f FILENAME
hdlmake -f FILENAME

Note: in any case, it’s supposed that all the required modules have been previously fetched. Otherwise, the process
will fail.

25

hdlmake Documentation, Release 3.0

Fetching submodules for a top module (fetch)

Fetch and/or update remote modules listed in Manifest. It is assumed that a projects can consist of modules, that are
stored in different places (locally or a repo). The same thing is about each of those modules - they can be based on
other modules. Hdlmake can fetch all of them and store them in specified places. For each module one can specify a
target catalog with manifest variable fetchto. Its value must be a name (existent or not) of a folder. The folder may
be located anywhere in the filesystem. It must be then a relative path (hdlmake support solely relative paths).

Cleaning the fetched repositories (clean)

remove all modules fetched for direct and indirect children of this module

List modules (list-mods)

List all the modules involved in the design described by the top manifest and its children hierarchy. The output list
will be printed in stdout, being each of the modules represented by a single text line made up of two entries separated
by a tab. The first entry in a line associated to a module is the relative path to the specific directory where the module
is stored, while the second entry is a identifier indicating the origin of the module.

Note: the hierarchy will be built considering that the Manifest.py stored in the folder from which we all launching
the command is the root one.

If we provide the --with-files argument to list-mods, the files being directly included by a specific module
will be printed just after the line pointing to this specific module. Each of the printed lines associated to a file will be
composed by two entries too, the first one pointing to the relative path to the file and the second one indicating that the
resource is a file.

In addition to the lines representing modules and files, list-mods will also print to standard output some comments
providing additional information about the structure of the module hierarchy. This modules will start with a # sign,
following in this way the usual shell convention. By providing the --terse argument to list-mods, the comment
lines won’t be printed to stdout, being only printed those lines representing an actual resource (module or file).

Summing everything up, the following table compiles the different kind of resources that can be printed when listing
the modules:

Code Origin
local this module is stored in the local host
git this is a module hosted in a GIT repository
svn this is a module hosted in a SVN repository
file this is a file (included by the module that has been previously printed)

Now, here we have some examples of the outputs we should expect when using the list-mods command:

user@host:~/hdl-make/tests/counter/syn/spec_v4_ise/vhdl$ hdlmake list-mods --with-
→˓files
MODULE START -> git@ohwr.org:misc/hdl-make.git
* This is the root module
. local
* This module has no files
MODULE END -> git@ohwr.org:misc/hdl-make.git

MODULE START -> /home/javi/Workspace/hdl-make-test/tests/counter/top/spec_v4/vhdl

5.2. Fetching submodules for a top module (fetch) 26

hdlmake Documentation, Release 3.0

* The parent for this module is: git@ohwr.org:misc/hdl-make.git
../../../top/spec_v4/vhdl local
../../../top/spec_v4/spec_top.ucf file
../../../top/spec_v4/vhdl/spec_top.vhd file
MODULE END -> /home/javi/Workspace/hdl-make-test/tests/counter/top/spec_v4/vhdl

MODULE START -> /home/javi/Workspace/hdl-make-test/tests/counter/modules/counter/
→˓vhdl
* The parent for this module is: /home/javi/Workspace/hdl-make-test/tests/counter/
→˓top/spec_v4/vhdl
../../../modules/counter/vhdl local
../../../modules/counter/vhdl/counter.vhd file
MODULE END -> /home/javi/Workspace/hdl-make-test/tests/counter/modules/counter/vhdl

user@host:~/hdl-make/tests/counter/syn/spec_v4_ise/vhdl$ hdlmake list-mods --with-
→˓files --terse
. local
../../../top/spec_v4/vhdl local
../../../top/spec_v4/spec_top.ucf file
../../../top/spec_v4/vhdl/spec_top.vhd file
../../../modules/counter/vhdl local
../../../modules/counter/vhdl/counter.vhd file

user@host:~/hdl-make/tests/counter/syn/spec_v4_ise/vhdl$ hdlmake list-mods --terse
. local
../../../top/spec_v4/vhdl local
../../../modules/counter/vhdl local

List files (list-files)

List all the files that are defined inside all of the modules included in the hierachy in the form of a string of elements
separated by a DELIMITER and print this list to stdout.

The DELIMITER is defaulted to a white space, but it can be defined by using the --delimiter DELIMITER
argument for the list-files command.

Note: the file list will be built considering that the Manifest.py stored in the folder from which we are launching the
command is the root one.

In order to build the file list, hdlmake will parse the HDL files to find the required dependencies that a top entity
needs to be successfuly compiled. We can configure the name of the HDL module that will be considered as the top
entity to build the required file hierarchy by using the --top TOP optional argument to the list-files command.
If no top entity is defined, all of the design files will be listed.

Finally, by using the --reverse optional argument we are able to reverse the order of the listed files.

Print manifest file variables description (manifest-help)

Print manifest file variables description

5.5. List files (list-files) 27

CHAPTER 6

Manifest variables description

Top Manifest variables

Name Type Description Default
action str What is the action that should be taken (simulation/synthesis) “”
incl_makefiles list, str List of .mk files appended to toplevel makefile []

Universal variables

Name Type Description Default
fetchto str Destination for fetched modules None
modules dict List of local modules {}
files str, list List of files from the current module []
library str Destination library for module’s VHDL files work
include_dirs list, str Include dirs for Verilog sources None

Simulation variables

Basic simulation variables:

Name Type Description Default
sim_top str Top level module for simulation None
sim_tool str Simulation tool to be used (e.g. isim, vsim, iverilog) None
sim_pre_cmd str Command to be executed before simulation None
sim_post_cmd str Command to be executed after simulation None

Modelsim/VSim specific variables:

28

hdlmake Documentation, Release 3.0

Name Type Description Default
vsim_opt str Additional options for vsim “”
vcom_opt str Additional options for vcom “”
vlog_opt str Additional options for vlog “”
vmap_opt str Additional options for vmap “”

Icarus Verilog specific variables:

Name Type Description Default
iverilog_opt str Additional options for iverilog “”

Synthesis variables

Basic synthesis variables:

Name Type Description Default
syn_top str Top level module for synthesis None
syn_tool str Tool to be used in the synthesis None
syn_device str Target FPGA device None
syn_family str Target FPGA family None
syn_grade str Speed grade of target FPGA None
syn_package str Package variant of target FPGA None
syn_project str Project file name None
syn_pre_synthesize_cmd str Command to be executed before synthesis: synthesize ‘’
syn_post_synthesize_cmd str Command to be executed after synthesis: synthesize ‘’
syn_pre_translate_cmd str Command to be executed before synthesis: translate ‘’
syn_post_translate_cmd str Command to be executed after synthesis: translate ‘’
syn_pre_map_cmd str Command to be executed before synthesis: map ‘’
syn_post_map_cmd str Command to be executed after synthesis: map ‘’
syn_pre_par_cmd str Command to be executed before synthesis: par ‘’
syn_post_par_cmd str Command to be executed after synthesis: par ‘’
syn_pre_bitstream_cmd str Command to be executed before synthesis: bitstream ‘’
syn_post_bitstream_cmd str Command to be executed after synthesis: bitstream ‘’

Altera Quartus II / Prime specific variables:

Name Type Description Default
quartus_preflow str Quartus pre-flow script file None
quartus_postmodule str Quartus post-module script file None
quartus_postflow str Quartus post-flow script file None

6.4. Synthesis variables 29

CHAPTER 7

Optional arguments for hdlmake

Hdlmake can be run with several arguments. The way of using them is identical with the standard one in Linux
systems. The order of the arguments is not important. Hereafter you can find each argument with a short description.

-h, --help

Shows help message that is automatically generated with Python’s optparse module. Gives a short description of each
available option.

-v, --version

Print the version of the hdlmake instance on execution an quit.

--log LOG

Set logging level for the Python logger facility. You can choose one of the levels in the following tables, in which the
the associated internal logging numeric value is also included:

Log Level Numeric Value
critical 50
error 40
warning 30
info 20
debug 10
not provided 0

30

hdlmake Documentation, Release 3.0

-p, --prefix ARBITRARY_CODE

Add arbitrary Python code from the command line that will be evaluated before each Manifest.py parse action across
the hierarchy.

As an example, this command will generate the Makefile and will try to print Hello hdlmake before each
Manifest.py run:

hdlmake -p "print('Hello hdlmake')"

-s, --sufix ARBITRARY_CODE

Add arbitrary Python code from the command line that will be evaluated after each Manifest.py parse action across
the hierarchy.

As an example, this command will generate the Makefile but will try to print Bye, bye hdlmake after each
Manifest.py run:

hdlmake -s "print('Bye, bye hdlmake')"

7.4. -p, --prefix ARBITRARY_CODE 31

	Introduction
	Contribute
	Support
	Copyright notice
	License

	Features
	Supported Tools
	Supported Operating Systems
	Supported Python Version

	Installing hdlmake
	Linux deployment
	Windows specific guidelines

	Learn by example
	Overview
	The simplest hdlmake module
	A basic testbench
	Running a simulation
	Constraining a design for synthesis
	Synthesizing a bitstream
	Handling remote modules
	Custom Makefile commands
	Custom variables and conditional execution
	Advanced examples

	hdlmake supported actions/commands
	Makefile generation (makefile)
	Fetching submodules for a top module (fetch)
	Cleaning the fetched repositories (clean)
	List modules (list-mods)
	List files (list-files)
	Print manifest file variables description (manifest-help)

	Manifest variables description
	Top Manifest variables
	Universal variables
	Simulation variables
	Synthesis variables

	Optional arguments for hdlmake
	-h, --help
	-v, --version
	--log LOG
	-p, --prefix ARBITRARY_CODE
	-s, --sufix ARBITRARY_CODE

