
hdl-component-manager
Documentation

Release 0.14

Jeremiah C Leary

Aug 11, 2019

Contents:

1 Overview 1
1.1 Why HCM? . 1
1.2 Key Benefits . 1
1.3 Key Features . 2

2 Installation 3
2.1 PIP . 3
2.2 Git Hub . 3

3 Usage 5
3.1 browse . 5
3.2 create . 6
3.3 install . 6
3.4 uninstall . 6
3.5 list . 7
3.6 publish . 7
3.7 show . 7
3.8 validate . 8
3.9 version . 8
3.10 Environment Variables . 8

4 Browsing Components 9
4.1 Example: listing available components . 9
4.2 Example: listing versions of a component . 9

5 Create Component Directory 13
5.1 Creating a component directory . 13

6 Downloading Components 15
6.1 Example: Downloading a Component . 15

7 Installing Components 17
7.1 Example: Installing a Component . 17
7.2 Example: Installing the latest version of a component . 17
7.3 Example: installing component when files under the component directory are not committed 18
7.4 Example: installing from an external repo . 18
7.5 Example: Installing using an external . 19

i

7.6 Example: Installing Component and It’s Dependents . 19
7.7 Example: Installing Component and Install the Latest Version of Dependents 20

8 Uninstalling Components 21
8.1 Example: Uninstalling a Component . 21
8.2 Example: Uninstalling an externalled component . 21

9 Listing Components 23
9.1 Example: listing installed components . 23

10 Publishing Components 25
10.1 Example: Publishing a new component . 25
10.2 Example: Publishing an update to a component . 26
10.3 Example: Using a file for the commit message . 26

11 Showing Components 27
11.1 Example: Viewing information about rook . 27
11.2 Example: Viewing manifest . 27
11.3 Example: Viewing available upgrades . 28
11.4 Example: Viewing available updates . 29
11.5 Example: Viewing modifications . 30

12 Theory of Operation 33
12.1 Component Directory Structure . 33
12.2 Repository Considerations . 34
12.3 HCM configuration file . 36
12.4 Publishing . 37
12.5 Installing . 38
12.6 Uninstalling . 39
12.7 Dependencies . 41
12.8 Dependencies file . 42
12.9 Browsing . 42
12.10 Downloading . 43
12.11 Listing . 45
12.12 Detecting Modifications . 45
12.13 Staging . 45
12.14 Merging Staged Updates . 47
12.15 Releasing Staged Component . 48

13 Scenarios 51
13.1 Scenario 1: Share component between projects in same repo . 53
13.2 Scenario 2: Project needs to make an update but does not want to use a newer version 54
13.3 Scenario 3: Project needs to make an update but sees an upgraded version 55
13.4 Scenario 4: Bringing in a component from a long lived branch . 56

14 Contributing 59
14.1 Bug Reports . 59
14.2 Code Base Improvements . 59
14.3 Feature Requests . 59
14.4 Pull Requests . 60

15 Indices and tables 61

ii

CHAPTER 1

Overview

HDL Component Manager (HCM) is a tool to manage Hardware Description Language (HDL) IP blocks in an SVN
repository. It simplifies the sharing of hdl components between projects without having to perform merges.

With HCM you can:

1. Add new components

2. Switch between versions components

3. Publish updates to existing components

4. Track pedigree of components

5. Manage multiple versions of components

1.1 Why HCM?

HCM was created after attempting to share components between two programs. A merge was attempted from one
program to another, and it did not go cleanly. There were multiple instances where I thought a merge was successful,
only to find out it was not.

I noticed support for packaging of HDL code lags software implementations. Software has many package managers,
e.g. PIP, APT, RPM, and YUM. HCM is an attempt to provide similar capabilities of those package managers for
HDL development.

1.2 Key Benefits

• Provides a method to control versions of IP

• Controls the distribution of HDL code

• Can be used to control vendor IP

1

hdl-component-manager Documentation, Release 0.14

1.3 Key Features

• Follows the Major.Minor.Patch method of version control

• Works with SVN repositories

• Automates publishing of code to a central location

• Automates installing and upgrading of code

• Supports multiple repositories

• Supports externals

• Language independent (VHDL, Verilog, System Verilog)

2 Chapter 1. Overview

CHAPTER 2

Installation

There are two methods to install HCM: PIP and Git Hub.

2.1 PIP

The most recent released version is hosted on PyPI. It can be installed using pip.

pip install hcm

This is the preferred method for installing HCM.

2.2 Git Hub

The latest development version can be cloned from the git hub repo.

git clone https://github.com/jeremiah-c-leary/hdl-component-manager.git

Then installed using the setup.py file.

python setup.py install

3

hdl-component-manager Documentation, Release 0.14

4 Chapter 2. Installation

CHAPTER 3

Usage

HCM can be invoked by issuing hcm at the command line prompt:

$ hcm
usage: hcm [-h]

{browse,create,download,install,uninstall,list,publish,show,validate,
→˓version}

...

Provides configuration management for HDL components.

positional arguments:
{browse,create,download,install,uninstall,list,publish,show,validate,version}
browse List components available for installation.
create Creates a component repo
download Downloads components without installing them.
install Adds a component from the component repo
uninstall Removes installed components
list Lists components and their versions
publish Adds components to the component repo
show Displays information about installed components
validate Verifies manifest of installed component
version Displays HCM version information

optional arguments:
-h, --help show this help message and exit

HCM has ten subcommands: browse, create, download, install, uninstall, list, publish, show, validate, and version.

3.1 browse

Use the browse subcommand to list components available for installation. The arguments for the subcommand can be
listed using the -h option:

5

hdl-component-manager Documentation, Release 0.14

$ hcm browse -h
usage: hcm browse [-h] [component]

positional arguments:
component Component to browse

optional arguments:
-h, --help show this help message and exit

3.2 create

Use the create subcommand to create a component directory in the repository. The arguments for the subcommand
can be listed using the -h option:

$ hcm create -h
usage: hcm create [-h] url

positional arguments:
url location to create the base component repo

optional arguments:
-h, --help show this help message and exit

3.3 install

Use the install subcommand to add or upgrade a component from a repository. The arguments for the subcommand
can be listed using the -h option:

$ bin/hcm install -h
usage: hcm install [-h] [--version VERSION] [--url URL] [--force] [--external]

[--dependencies] [--upgrade]
component

positional arguments:
component Component name to install

optional arguments:
-h, --help show this help message and exit
--version VERSION Major.Minor.Patch version of component to install.
--url URL location of component directory in repo
--force Install component ignoring any local changes
--external Install as an external
--dependencies Install dependencies
--upgrade Upgrade dependencies to latest version

3.4 uninstall

Use the uninstall subcommand to remove installed components. The arguments for the subcommand can be listed
using the -h option:

6 Chapter 3. Usage

hdl-component-manager Documentation, Release 0.14

$ hcm uninstall -h
usage: hcm uninstall [-h] component

positional arguments:
component Installed Component name to install

optional arguments:
-h, --help show this help message and exit

3.5 list

Use the list subcommand to check the versions of components you have installed. The arguments for the subcommand
can be listed using the -h option:

$ hcm list -h
usage: hcm list [-h] [--all]

optional arguments:
-h, --help show this help message and exit
--all Includes directories that are not under HCM control

3.6 publish

Use the publish subcommand to push a version of a component to a repository. The arguments for the subcommand
can be listed using the -h option:

$ hcm publish -h
usage: hcm publish [-h] -m M [--url URL] component version

positional arguments:
component Component name to publish
version Major.Minor.Patch version to publish

optional arguments:
-h, --help show this help message and exit
-m M Commit message
--url URL Base URL of the component repository

3.7 show

Use the show subcommand to display information about an installed component. The arguments for the subcommand
can be listed using the -h options:

$ hcm show -h
usage: hcm show [-h] [--manifest] [--upgrades] [--updates] [--modifications]

component

positional arguments:
component Component to display information

(continues on next page)

3.5. list 7

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--manifest Displays manifest for all files in component
--upgrades Lists upgrade versions and their log entries
--updates Lists versions with newer publishes and their log entries
--modifications Lists committed modifications for component

3.8 validate

Use the validate subcommand to compare the component manifest against what is currently installed. The arguments
for the subcommand can be listed using the -h options:

$ hcm validate -h
usage: hcm validate [-h] [--report] component

positional arguments:
component Component to display information

optional arguments:
-h, --help show this help message and exit
--report Reports differences

3.9 version

Use the version subcommand to display version information for HCM.

3.10 Environment Variables

HCM will use the HCM_URL_PATHS environment variable as a replacement for the –url command line option.
HCM uses the paths in the variable to know which component repositories to interact with.

8 Chapter 3. Usage

CHAPTER 4

Browsing Components

Use the browse subcommand to view information about components available for installation.

4.1 Example: listing available components

$ hcm browse

Component Version URL
--------- -------- -------------------------------
bishop 1.1.0 http://svn/my_repo/comps
castle 1.0.0 http://svn/external_repo/blocks
pawn 1.0.0 http://svn/external_repo/blocks
rook 3.0.0 http://svn/my_repo/comps

Column Description
Component The name of the component installed.
Version The latest version available for the component.
URL The URL the component can be installed from.

4.2 Example: listing versions of a component

Adding a component name to the end of the command will list all the versions and their log entries.

$ hcm browse rook
rook versions available:

Version: 3.0.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

(continues on next page)

9

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

Updating hcm.json files to correct format.

--

Version: 1.6.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.5.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.4.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.3.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.2.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.1.0
--
r59 | jeremiah | 2019-06-16 08:26:14 -0500 (Sun, 16 Jun 2019) | 2 lines

Updating hcm.json files to correct format.

--

Version: 1.0.0
--
r10 | jeremiah | 2019-05-20 21:39:51 -0500 (Mon, 20 May 2019) | 1 line

(continues on next page)

10 Chapter 4. Browsing Components

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

initial release
--

4.2. Example: listing versions of a component 11

hdl-component-manager Documentation, Release 0.14

12 Chapter 4. Browsing Components

CHAPTER 5

Create Component Directory

HCM will create the component directory and place it in an existing SVN repository. This top level directory can be
anywhere. However, it is commonly placed either at the root or under the tags directory.

5.1 Creating a component directory

Use the create subcommand to create the component directory in a repository:

$ hcm create http://svn/my_repo/components
INFO:Creating component directory http://svn/my_repo/components
INFO:Add "http://svn/my_repo/components" to the HCM_URL_PATHS environment variable.

HCM will create any level of hierarchy necessary to create the given URL path.

Warning: If the URL already exists, an error will be reported

Adding the URL to the HCM_URL_PATHS environment variable will give HCM visibility to those repositories.

$ export HCM_URL_PATHS=http://svn/acme/components,$HCM_URL_PATHS

Note: The separator is a comma and not a colon.

13

hdl-component-manager Documentation, Release 0.14

14 Chapter 5. Create Component Directory

CHAPTER 6

Downloading Components

Use the download subcommand to pull down a specific version of a component without installing it. This can be
useful when trying to merge two versions of a component.

6.1 Example: Downloading a Component

After viewing the component repository, we decide to download version 1.1.0 of the component rook.

$ hcm download rook 1.1.0
INFO:Downloading component rook version 1.1.0
INFO:Download complete

HCM will use the paths in the HCM_URL_PATHS environment variable. It will search each path for a matching
component name and version.

15

hdl-component-manager Documentation, Release 0.14

16 Chapter 6. Downloading Components

CHAPTER 7

Installing Components

Use the install subcommand to add a component to your current working copy. The URL path to the component
and the version are required to install a new component. This can be found using a repository browser or the svn ls
subcommand.

7.1 Example: Installing a Component

After viewing the component repository, we decide to pull in version 3.0.0 of the rook component.

$ hcm install rook --version 3.0.0
INFO:Installing component rook version 3.0.0
INFO:Validating all files for component rook are committed.
INFO:Removing local component directory
INFO:Installation complete

HCM will use the paths in the HCM_URL_PATHS environment variable. It will search each path for a matching
component name and version.

7.2 Example: Installing the latest version of a component

If the version argument is not use, then HCM will install the latest version of the component.

$ hcm install rook
INFO:Installing component rook
INFO:Validating all files for component rook are committed.
INFO:Removing local component directory
INFO:Installation complete

17

hdl-component-manager Documentation, Release 0.14

7.3 Example: installing component when files under the component
directory are not committed

HCM validates every file under the local component directory is checked in. If this is not the case, then HCM will not
install over the existing directory.

$../../bin/hcm install rook --version 3.0.0
INFO:Installing component rook version 3.0.0
INFO:Validating all files for component rook are committed.
ERROR:The following files must be committed or removed:
M rook/rtl/rook.vhd

This behavior can be overridden by using the –force command line option.

$ hcm install rook --version 3.0.0 --force
INFO:Installing component rook version 3.0.0
INFO:Removing local component directory
INFO:Installation complete

7.4 Example: installing from an external repo

When installing from an external repo, HCM must use the svn export command.

$ hcm install pawn --version 1.0.0 --url http://svn/external_repo/blocks
INFO:Installing component pawn version 1.0.0
INFO:Validating all files for component pawn are committed.
INFO:Removing local component directory
INFO:Installation complete

Performing an svn status command shows a new directory has been created.

$ svn status
? pawn

The directory must be added using the svn add command. . .

$ svn add pawn
A pawn
A pawn/hcm.json
A pawn/rtl
A pawn/rtl/pawn.vhd

. . . and then committed.

$ svn commit pawn

Note: The last two steps are left to the user to perform.

18 Chapter 7. Installing Components

hdl-component-manager Documentation, Release 0.14

7.5 Example: Installing using an external

HCM can install components using externals. An external is a essentially a pointer to directory in a repository.

$ hcm install pawn --version 3.0.0 --external
INFO:Installing component pawn version 3.0.0
INFO:Validating all files for component pawn are committed.
INFO:Removing local component directory
INFO:Updating externals
INFO:Installation complete

Checking the svn status of the current directory. . .

$ svn status
M .

X castle
X pawn

. . . shows the properties of the existing directory have been modified and pawn is an external. The directory must be
committed to keep the change to 3.0.0 of pawn.

7.6 Example: Installing Component and It’s Dependents

HCM can keep track of dependencies between components using dependency file. This file is generated by the user
and committed with the component before it is published. If HCM detects this file, it install any of the components
listed.

$ hcm install rook --dependencies
INFO:Installing component rook
INFO:Removing local component directory
INFO:Installing dependencies
INFO:Checking for dependencies of rook
INFO:Installing component king
INFO:Removing local component directory
INFO:Checking for dependencies of king
INFO:Installing component castle
INFO:Removing local component directory
INFO:Checking for dependencies of castle
INFO: No Dependencies found
INFO:Installing component pawn
INFO:Removing local component directory
INFO:Checking for dependencies of pawn
INFO: No Dependencies found
INFO:Installing component queen
INFO:Removing local component directory
INFO:Checking for dependencies of queen
INFO:Installation complete

In this example the dependencies.yaml file for rook contained the following:

requires:

queen:
king:

7.5. Example: Installing using an external 19

hdl-component-manager Documentation, Release 0.14

and the queen component contained a dependencies.yaml file:

requires:

rook:
king:
pawn:

and the king component contained a dependencies.yaml file:

requires:

pawn:
castle:

HCM will break an circular dependencies and only install a component once.

7.7 Example: Installing Component and Install the Latest Version of
Dependents

If a component has already been installed, HCM will not install over it. This behavior can be modified by using the
–upgrade command line argument. HCM will install the latest version of every dependent component if this argument
is used.

$ hcm install rook --dependencies --upgrade
INFO:Installing component rook
INFO:Removing local component directory
INFO:Installing dependencies
INFO:Checking for dependencies of rook
INFO:Installing component king
INFO:Removing local component directory
INFO:Checking for dependencies of king
INFO:Installing component castle
INFO:Removing local component directory
INFO:Checking for dependencies of castle
INFO: No Dependencies found
INFO:Installing component pawn
INFO:Removing local component directory
INFO:Checking for dependencies of pawn
INFO: No Dependencies found
INFO:Installing component queen
INFO:Removing local component directory
INFO:Checking for dependencies of queen
INFO:Installation complete

20 Chapter 7. Installing Components

CHAPTER 8

Uninstalling Components

Use the uninstall subcommand to remove components from your current working copy.

8.1 Example: Uninstalling a Component

We have decided we no longer need the component bishop.

$ hcm uninstall bishop
INFO:Uninstalled component bishop

The component must be committed for the change to be permanent:

$ svn commit -m "Removed bishop component"

8.2 Example: Uninstalling an externalled component

HCM will modify the svn:externals attribute and perform an update.

$ hcm uninstall rook
INFO:Uninstalled component rook

The parent directory must be committed for the change to be permanent:

$ svn commit . -m "Removed bishop component"

21

hdl-component-manager Documentation, Release 0.14

22 Chapter 8. Uninstalling Components

CHAPTER 9

Listing Components

Use the list subcommand to view information about installed components.

9.1 Example: listing installed components

$ hcm list

Component Version Upgrade Status URL
--------- -------- -------- ------ -------------------------------
bishop 1.1.0 None U http://svn/my_repo/comps
castle 1.0.0 None E U http://svn/external_repo/blocks
pawn 1.0.0 3.1.0 E U http://svn/external_repo/blocks
rook 3.0.0 3.0.3 MU http://svn/my_repo/comps
new_comp ----- ----- N -----

The upgrade column shows the latest published version available. There may be several versions between what is
installed and what is published. Use a repository browser to decide whether to upgrade a component.

23

hdl-component-manager Documentation, Release 0.14

Col-
umn

Description

Com-
po-
nent

The name of the component installed.

Ver-
sion

The version of the installed component.

Up-
grade

The latest published version of the component.

Sta-
tus

Flags indicating information about the component.
E = Component was installed as an external.
M = Component has commited modifications.
U = Component has uncommitted modifications.
N = Directory is not under SVN control.

URL The base URL the component was installed from.

24 Chapter 9. Listing Components

CHAPTER 10

Publishing Components

Use the publish subcommand to add or update components in a repository.

There are a couple of requirements before a component can be published.

1. component directory must be checked into SVN

2. component directory must be status clean

3. HCM_URL_PATHS should be defined

HCM uses svn copy commands to publish components. This ensures a history is maintained for the component
development.

10.1 Example: Publishing a new component

A new component can be published, but HCM must be told where to publish the component. This can be done by
setting the HCM_URL_PATHS environment variable or using the –url command line argument. If only one path is
defined in HCM_URL_PATHS, then HCM will use it as the publish location. Using the –url command line argument
will override HCM_URL_PATHS.

Note: Publishing is restricted to the current repository.

$ hcm publish bishop 1.0.0 --url http://svn/acme/chess/components -m "Initial release
→˓of bishop."

INFO:Publishing component bishop as version 1.0.0
INFO:Validating all files for component bishop are committed.
INFO:Validating component exists in component directory...
INFO:Creating component in component directory.
INFO:Searching for hcm.json file...
WARNING:Did not find hcm.json for component bishop.
INFO:Creating default hcm.json file...

(continues on next page)

25

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

INFO:Updating version...
INFO:Updating source URL...
INFO:Creating manifest...
INFO:Writing configuration file bishop/hcm.json
INFO:Adding configuration file to component directory
INFO:Committing bishop/hcm.json file
INFO:Component published

HCM will create a configuration file named hcm.json and commit it to the working copy. This file contains information
related to the component.

10.2 Example: Publishing an update to a component

If a component has been updated, the updates can be published. Since the hcm.json file exists, the –url argument is
not required. HCM will use the information in the hcm.json file to determine where the component will be published.

$ hcm publish bishop 1.1.0 -m "Fixing movement bug."

INFO:Publishing component bishop as version 1.1.0
INFO:Validating all files for component bishop are committed.
INFO:Searching for hcm.json file...
INFO:Validating component exists in component directory...
INFO:Updating version...
INFO:Updating source URL...
INFO:Creating manifest...
INFO:Writing configuration file bishop/hcm.json
INFO:Adding configuration file to component directory
INFO:Committing bishop/hcm.json file
INFO:Component published

HCM will update the hcm.json file with the new version and commit it to the working copy before it is committed to
the component directory.

10.3 Example: Using a file for the commit message

Publishing supports using a file for the commit message. This is used instead of the -m command line option

$ hcm publish bishop 1.1.0 -F release_notes.txt

INFO:Publishing component bishop as version 1.1.0
INFO:Validating all files for component bishop are committed.
INFO:Searching for hcm.json file...
INFO:Validating component exists in component directory...
INFO:Updating version...
INFO:Updating source URL...
INFO:Creating manifest...
INFO:Writing configuration file bishop/hcm.json
INFO:Adding configuration file to component directory
INFO:Committing bishop/hcm.json file
INFO:Component published

26 Chapter 10. Publishing Components

CHAPTER 11

Showing Components

Use the show subcommand to view detailed information about a component. This includes the component name, it’s
version, URL. Optionally, every file that makes up the component can be listed along with it’s md5sum.

11.1 Example: Viewing information about rook

$ hcm show bishop
---------- ---
→˓---
Component bishop
Version 1.1.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/bishop@26
---------- ---
→˓---

11.2 Example: Viewing manifest

$ hcm show rook --manifest
---------- ---
→˓-
Component rook
Version 3.0.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/rook@15
---------- ---
→˓-

Manifest

(continues on next page)

27

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

10019aef04979acfac88673bc5dc6133 rook/lay/filelist.tcl
a461fa565f1f7822bcdbda0b450df476 rook/rtl/rook.vhd

Note: The manifest is extracted from the hcm.json file. It does not include any local changes to the files. Use the
validate subcommand to compare the manifest against what is installed.

11.3 Example: Viewing available upgrades

All available upgrades and their log entries can be listed.

$ hcm show rook --upgrades
------------ ---
→˓---
Component rook
Version 3.0.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/rook@41
Dependencies king, queen
------------ ---
→˓---

Available Upgrades
==================

Version: 4.0.0
--
r42 | jeremiah | 2019-06-11 19:09:53 -0500 (Tue, 11 Jun 2019) | 1 line

"testing dependencies"
--

Version: 3.0.5
--
r51 | jeremiah | 2019-06-13 19:37:16 -0500 (Thu, 13 Jun 2019) | 1 line

"Updating hcm config to the latest version."
--

Version: 3.0.4
--
r49 | jeremiah | 2019-06-12 20:02:38 -0500 (Wed, 12 Jun 2019) | 1 line

"Adding invalid component to test how HCM handles it."
--

Version: 3.0.3
--
r35 | jeremiah | 2019-05-30 22:00:03 -0500 (Thu, 30 May 2019) | 1 line

"testing -m works"
--

(continues on next page)

28 Chapter 11. Showing Components

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

Version: 3.0.2
--
r34 | jeremiah | 2019-05-30 21:58:38 -0500 (Thu, 30 May 2019) | 6 lines

This is a test of using the -F argument when publishing.

It should allow the use of a file instead of a single line for the commit message.

--

Version: 3.0.1
--
r33 | jeremiah | 2019-05-30 21:57:37 -0500 (Thu, 30 May 2019) | 6 lines

This is a test of using the -F argument when publishing.

It should allow the use of a file instead of a single line for the commit message.

--

11.4 Example: Viewing available updates

Updates are slightly different than upgrades. Updates include all versions that were committed after the currently
installed version.

$ hcm show rook --updates
------------ ---
→˓---
Component rook
Version 3.0.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/rook@41
Dependencies king, queen
------------ ---
→˓---

Available Upgrades
==================

Version: 3.0.5
--
r51 | jeremiah | 2019-06-13 19:37:16 -0500 (Thu, 13 Jun 2019) | 1 line

"Updating hcm config to the latest version."
--

Version: 3.0.4
--
r49 | jeremiah | 2019-06-12 20:02:38 -0500 (Wed, 12 Jun 2019) | 1 line

(continues on next page)

11.4. Example: Viewing available updates 29

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

"Adding invalid component to test how HCM handles it."
--

Version: 4.0.0
--
r42 | jeremiah | 2019-06-11 19:09:53 -0500 (Tue, 11 Jun 2019) | 1 line

"testing dependencies"
--

Version: 3.0.3
--
r35 | jeremiah | 2019-05-30 22:00:03 -0500 (Thu, 30 May 2019) | 1 line

"testing -m works"
--

Version: 3.0.2
--
r34 | jeremiah | 2019-05-30 21:58:38 -0500 (Thu, 30 May 2019) | 6 lines

This is a test of using the -F argument when publishing.

It should allow the use of a file instead of a single line for the commit message.

--

Version: 3.0.1
--
r33 | jeremiah | 2019-05-30 21:57:37 -0500 (Thu, 30 May 2019) | 6 lines

This is a test of using the -F argument when publishing.

It should allow the use of a file instead of a single line for the commit message.

--

11.5 Example: Viewing modifications

Modifications made to a component after installation can be viewed. The –modifications argument will display the
log entries for every change since the last install. Both committed and uncommitted modifications will be shown.

$ hcm show rook --modifications
------------ ---
→˓---
Component rook
Version 4.0.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/rook@41
Dependencies king, queen

(continues on next page)

30 Chapter 11. Showing Components

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

------------ ---
→˓---

Uncommitted Modifications
=========================
A + rook
? rook/rtl/movement.vhd
M + rook/rtl/rook-rtl.vhd

Committed Modifications
=======================
--
r63 | jeremiah | 2019-06-21 06:13:40 -0500 (Fri, 21 Jun 2019) | 2 lines

Minor change to rook entity.

--
r62 | jeremiah | 2019-06-21 06:05:24 -0500 (Fri, 21 Jun 2019) | 2 lines

Adding architecture.

--

HCM will also indicate if no modifications were detected.

$ hcm show rook --modifications
------------ ---
→˓---
Component rook
Version 4.0.0
URL http://svn/my_repo/comps
Source http://svn/my_repo/trunk/project_chess/components/rook@41
Dependencies king, queen
------------ ---
→˓---

Uncommitted Modifications
=========================
No Uncommitted Modifications

Committed Modifications
=======================
No Committed Modifications

11.5. Example: Viewing modifications 31

hdl-component-manager Documentation, Release 0.14

32 Chapter 11. Showing Components

CHAPTER 12

Theory of Operation

This section details how HCM performs it’s tasks.

12.1 Component Directory Structure

HCM can create the component directory and place it in your repository. It is commonly placed either at the root of
the repository or under the tags directory.

The component directory contains individual directories for each component. Under each individual component
name are the releases for that component. Each release directory follows the form of a three dot number: <Ma-
jor>.<Minor>.<Patch>

The example below shows a component directory with three components: rook, king, and queen.

The rook component has three releases: 1.0.0, 1.1.0, and 2.0.0.

The king component has four releases: 1.0.0, 2.0.0, 2.1.0, and 3.0.0.

The queen component has four releases: 1.0.0, 2.0.0, 2.1.0, and 3.0.0.

components
|
+-- rook
| |
| +-- 1.0.0
| +-- 1.1.0
| +-- 2.0.0
|
+-- king
| |
| +-- 1.0.0
| +-- 2.0.0
| +-- 2.1.0
| +-- 3.0.0
|

(continues on next page)

33

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

+-- queen
|
+-- 1.0.0
+-- 2.0.0
+-- 2.1.0
+-- 3.0.0

Differences between releases can be easily determined by comparing the two release URLs.

12.2 Repository Considerations

HCM makes several assumptions about the workflow with regards to repositories. The diagram below shows the
workflow assuming there are three repositories.

34 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

The workflow makes these assumptions:

1. Publishing is restricted to within the local repo.

12.2. Repository Considerations 35

hdl-component-manager Documentation, Release 0.14

2. Installing can be performed from either a local or remote repo.

12.2.1 Ownership Considerations

Components should only be developed and published in a single repository. This ensures a single source of truth for
the component.

In the diagram above:

• Code in the yellow repository is developed using the yellow working copy.

• Code in the blue repository is developed using the blue working copy.

• Code in the green repository is developed using the green working copy.

You can not develop blue components in the yellow working copy. Revision control tools do not handle crossing
repositories well.

12.3 HCM configuration file

The HCM configuration file is a JSON file which contains information about the component. There is an HCM
configuration file for each component and is updated with every version released.

{
"name" : "rook",
"version" : "1.0.0",
"publish" : {

"url" : "http://svn/my_repo/components"
},
"source" : {

"url" : "http://svn/my_repo/chess_project/components/rook@1276",
"manifest" : {

"rook/rtl/rook.vhd" : "93ffadcc3b73c6292de35564192a99b4",
"rook/lay/filelist.tcl" : "10019aef04979acfac88673bc5dc6133"

}
}

}

The JSON file starts with a single hash key named hcm. This uniquely identifies the information as belonging to
HCM. It contains five other keys: url, name, version, source_url, and manifest.

Key Description
name name of the component.
version version of the component that has been published.
publish:url location of the component directory where this component has been published.
source:url current URL path and revision where the component was published from.
source:manifestkey value pair of every file that makes up the component. The key is the name of the file relative.

The value is an md5sum hash of that file.

The manifest provides a quick method to validate any component to see if anything has changed. It can also assist in
transferring components between repos.

36 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

12.4 Publishing

Publishing uses the svn copy command to take snapshots of a component. The command can only work within a
repository.

In the diagram above, you can see all the publish actions take place between a repository and it’s respective working
copy.

To publish manually you would follow these steps:

1. Ensure requested component directory exists

2. Validate all files in a component to be published directory are committed.

a. Any unversioned files must be deleted

b. it must come back with a clean status

12.4. Publishing 37

hdl-component-manager Documentation, Release 0.14

3. Create individual component directory in component directory if it does not exist.

4. Generate the hcm.json file if it does not exist

a. Read hcm.json file it is does exist

b. Update version and manifest fields

5. Add hcm.json file to the component directory

6. Commit hcm.json file to working copy

7. svn copy the local component directory to the published directory under the correct version

HCM will validate step 2 has been completed before performing steps 3 through 6.

12.5 Installing

Installing can take place from a local repo or a remote repo. If an install is performed from a local repo, then the svn
copy command will be used. This provides history between what is installed and what has been published.

If an install is performed from a remote repo, then the svn export command will be used. This pulls the component
from the other repo and copies it into the working copy. The files need to be added and then committed. History is not
lost in this case, but it is a little more difficult to follow.

12.5.1 Local Install

This is the workflow for a local install:

1. Check if component version exists in repo

2. Check if local component directory is svn status clean

3. Delete component directory in working copy

4. SVN copy component version directory from local repo

HCM will perform all these steps.

Note: Committing the install is the responsibility of the user.

12.5.2 Remote Install

This is the workflow for a remote install:

1. Check if component version exists in repo

2. Check if local component directory is svn status clean

3. Delete component directory in working copy

4. Export component from external repo

5. Add exported component to working copy

38 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

HCM will perform all these steps.

Note: Committing the install is the responsibility of the user.

12.5.3 External Install

A component can be installed using an external instead of an svn copy or export. When using an external, the type of
repo (external or local) does not matter.

This is the workflow for an external install:

1. Read externals from svn:externals property on current directory

2. Check the status of the local component directory

3. Check if component version exists in repo

4. Update svn:externals property with new component version

5. Update component directory

12.6 Uninstalling

Uninstalling removes an installed component. If the component was not an external install, then HCM will just use
svn delete to remove the component. If the componet was an external install, then HCM will modify the svn:externals
property to remove the component.

In either case, the user is responsible for the final commit to make the uninstall official.

12.6.1 Normal Uninstall

This is the workflow for a normal uninstall:

12.6. Uninstalling 39

hdl-component-manager Documentation, Release 0.14

1. SVN delete component

Note: Committing the uninstall is the responsibility of the user.

12.6.2 External Uninstall

Uninstalling an external requires modifying the svn:externals property of the parent directory.

This is the workflow for an external uninstall:

40 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

1. Read externals from svn:externals property on current directory

2. Remove component from svn:externals property

3. Update svn:externals property with new component version

4. Update component directory

Note: Committing the uninstall is the responsibility of the user.

12.7 Dependencies

Dependencies between components can be indicated using a file named dependencies.yaml. This file is generated by
hand by the user. This is an example dependency file for the rook component:

requires:
queen:

(continues on next page)

12.7. Dependencies 41

hdl-component-manager Documentation, Release 0.14

(continued from previous page)

king:
castle:

When rook is installed, HCM will also install queen, king, and castle if they are not already installed.

12.7.1 Install with dependencies

This is the workflow for a local install:

1. Check if component version exists in repo

2. Check if local component directory is svn status clean

3. Delete component directory in working copy

4. SVN copy component version directory from local repo

5. Read dependencies.yaml file

6. Check if components in YAML file have been installed

7. Read dependencies.yaml file for those components that have been installed

8. Install components that have not been installed

This process repeats until all dependencies have been installed. Any duplicate dependencies are ignored. All circular
dependencies are broken.

Note: HCM will install the latest version of a component when it is listed as a dependency.

12.8 Dependencies file

The HCM Dependencies file is a YAML file listing other components required.

requires:

component1:
component2:

componentn:

Each component entry is a key that currently does not have a value. This format was chosen to allow for easy extension
of the dependency feature.

This file must be named dependencies.yaml and placed at the root of the component. HCM will search for this file
when installing to see if any other components must be installed.

12.9 Browsing

Browsing checks the versions of the components available for installation.

The workflow for listing is shown below:

42 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

1. Get a listing of all directories in each path in the HCM_URL_PATHS environment variable

2. Get the latest version of each component

The information is then displayed for the user.

12.10 Downloading

Downloading can take place from a local repo or a remote repo.

If an install is performed from a remote repo, then the svn export command will be used. This pulls the component
from the other repo and copies it into the working copy. The files need to be added and then committed. History is not
lost in this case, but it is a little more difficult to follow.

This is the workflow for downloading:

12.10. Downloading 43

hdl-component-manager Documentation, Release 0.14

1. Check if component version exists in repo

2. Removing existing download directory if it exists

3. Export component to using component name and version number

44 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

12.11 Listing

Listing checks the versions of the components currently installed.

The workflow for listing is shown below:

1. Get a listing of all directories

2. Read version from each hcm.json file

The information is then displayed for the user.

12.12 Detecting Modifications

Modifications to installed components is important in making several decisions:

1) When to publish

2) Whether to install

This is the workflow for checking is an installed component has modifications:

1. Perform an svn status and check for uncommitted modifications

2. Perform an svn log -R and parse out all the Last Changed Rev values.

3. Extract the Last Changed Rev of the hcm.json file

4. Compare the Last Changed Rev of every file and directory against the hcm.json file

1. Any file with a rev higher than hcm.json is a committed modified file.

12.13 Staging

Note: This is still under development.

Staging is the first step in the Staging-Release method of publishing components. It uses svn diffs to transfer local
changes to staging area for inclusion into a future component version. This command will work between repositories.

The following diagram shows the steps necessary to stage a component:

12.11. Listing 45

hdl-component-manager Documentation, Release 0.14

1. Read hcm.json file of component

2. Lock the version directory of the component in the staging repository

3. Perform an svn ls command to get a list of all directories

4. Perform svn checkout of staging version directory with the –depth empty option

5. Create new staging directory to hold staging information

6. Create diff of component and store under new staging directory

7. Update hcm.json file and include staging information

8. Add new staging directory

9. Commit new staging directory

10. Remove staging directory

11. Remove lock.

Note: This is still under development

46 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

12.14 Merging Staged Updates

Note: This is still under development.

This is the second step in the Staging-Release method of publishing components. At this step, there are one or more
updates to an existing version of a component. These updates must be vetted and any desired updates incorporated
into a new version.

Given the nature of the effort, this step is entirely manual. HCM can not help at this step.

The following diagram shows the steps necessary to stage a component:

1. ??? Forgot what this step was. I don’t think it was a lock.

2. Check out component that has staged updates

3. Review staged updates and svn add a new version directory based on the updates

4. svn copy the working directory on the current version

5. Apply the first patch to the new working directory and review the results.

12.14. Merging Staged Updates 47

hdl-component-manager Documentation, Release 0.14

6. Apply the successive patches to the new working directory and review the results.

7. Commit final updates to the new version

8. svn delete the stages that were incorporated

Note: This is still under development

12.15 Releasing Staged Component

Note: This is still under development.

This is the final step in the Staging-Release method of publishing components. At this step, all updates for a component
version have been merged. The component is now ready to be released.

The following diagram shows the steps necessary to stage a component:

48 Chapter 12. Theory of Operation

hdl-component-manager Documentation, Release 0.14

1. Check out staged component version to be released.

2. Update hcm.json file

3. Publish component to the new version directory

Note: This is still under development

12.15. Releasing Staged Component 49

hdl-component-manager Documentation, Release 0.14

50 Chapter 12. Theory of Operation

CHAPTER 13

Scenarios

This section will cover various sitiations and how to handle them with HCM. Each scenario is assuming the repository
structure shown below:

51

hdl-component-manager Documentation, Release 0.14

• The repository represent a product line

• The components directory is at the base of the repository

– This is where components between products will be shared

• There are two projects under the trunk directory

• Under each project is a components directory

– This is where components will be developed

52 Chapter 13. Scenarios

hdl-component-manager Documentation, Release 0.14

13.1 Scenario 1: Share component between projects in same repo

13.1.1 Setup

In this scenario there are two projects: Project A (PA) and Project B (PB). PA has been in development for several
months and has a stable code base. The code has been through several Quality Control Tools (QCTs), verification and
has been tested on hardware.

PB has started up and wants to re-use the rook component PA has developed.

13.1.2 Goals

1. Show how a single component can be transferred between PA and PB

2. Show how updates from PB can be fed back to PA

3. Show how this can be accomplished without merging

13.1.3 Workflow

The following diagram shows the steps in this scenario:

1. Project A publishes the rook component version 1.0.0 to the component directory.

2. Project B installs version 1.0.0 of the rook component to it’s project working copy.

3. Project B finds a bug and commits local changes until the bug is fixed.

4. Project B publishes version 1.1.0 of the updated rook component to the component directory.

5. Project A sees there is an update and decides to install version 1.1.0 of the rook component.

These are the commands

13.1. Scenario 1: Share component between projects in same repo 53

hdl-component-manager Documentation, Release 0.14

Task Project A Project B
PA Publishes
rook

hcm publish rook 1.0.0 –url
$REPO_URL/components -f release_notes.txt

PB installs
rook

hcm install rook
svn ci rook -m “Installing rook version
1.0.0”

PB fixes bug vim rook/rtl/rook.vhd
svn ci rook -m “Fixed bug.”

PB publishes
rook

hcm publish rook 1.1.0 -f release_notes.txt

PA looks for
updates

hcm list
hcm show rook –upgrades

PA installs
rook

hcm install rook
svn ci rook -m “Installing rook version 1.1.0”

13.2 Scenario 2: Project needs to make an update but does not want
to use a newer version

13.2.1 Setup

In this scenario Project A (PA) is getting ready to release code to production. PA is at version 1.0.0 of the rook
component. PA has to make some minor changes to the rook component. PA checks for any updates to the rook
component and finds a version 1.1.0. Due to the phase of the program, PA does not want to bring in the changes for
version 1.1.0.

13.2.2 Goals

1. Show how Project A can still make local changes

2. Show how Project A can publish without affecting 1.1.0

13.2.3 Workflow

The following diagram shows the steps in this scenario:

1. Project A checks for updates to the rook component

54 Chapter 13. Scenarios

hdl-component-manager Documentation, Release 0.14

2. Project A makes and commits changes locally

3. Project A publishes version 1.0.1 of the updated rook component to the component directory.

These are the commands

Task Project A
PA looks for updates hcm list

hcm show rook –upgrades
PA makes changes vim rook/rtl/rook.vhd

svn ci rook -m “Added header.”
PA Publishes rook hcm publish rook 1.0.1 -f release_notes.txt

13.3 Scenario 3: Project needs to make an update but sees an up-
graded version

13.3.1 Setup

In this scenario Project A (PA) wants to make a change to a component. PA is at version 1.0.0 of the rook component.
PA has to make some changes to the rook component. PA checks for any updates to the rook component and finds a
version 1.0.1. PA wants to include changes from 1.0.1.

13.3.2 Goals

1. Show how Project A can make changes to an upgraded version of a component

2. Show how Project A can make changes available to other projects

13.3.3 Workflow

The following diagram shows the steps in this scenario:

1. Project A checks for updates to the rook component

2. Project A installs version 1.0.1

3. Project A makes and commits changes locally

4. Project A publishes version 1.1.0 of the updated rook component to the component directory.

5. Project A installs published version

13.3. Scenario 3: Project needs to make an update but sees an upgraded version 55

hdl-component-manager Documentation, Release 0.14

These are the commands

Task Project A
PA looks for updates hcm list

hcm show rook –upgrades
PA installs rook hcm install rook

svn ci rook -m “Installing rook version 1.0.1”
PA makes changes vim rook/rtl/rook.vhd

svn ci rook -m “Fixing bug with movement.”
PA Publishes rook hcm publish rook 1.1.0 -f release_notes.txt

13.4 Scenario 4: Bringing in a component from a long lived branch

13.4.1 Setup

In this scenario Project A (PA) has a component it has modified on it’s own branch.

• The component is not under HCM control.

• There is a similar component that is under HCM control.

• The published version of the component is 1.1.0

• PA wants to merge their changes with what is published.

13.4.2 Goals

1. Show how Project A can merge their changes with the published version.

2. Show how Project A can make changes available to other projects

3. Show how Project A can start to use HCM to control the component

13.4.3 Workflow

The following diagram shows the steps in this scenario:

56 Chapter 13. Scenarios

hdl-component-manager Documentation, Release 0.14

1. Project A checks the repository for the component

2. Project A copies the existing component directory to a backup

3. Project A installs the latest version of the component

4. Project A compares the contents of the backup and installed version

5. Project A merges the changes from the backup to the installed version manually

6. Project A commits changes locally

7. Project A publishes version 1.2.0 of the updated component to the component directory.

These are the commands

Task Project A
PA checks repository Use a repo browser or a web browser to check what version of the component is

installed.
PA makes backup component cp -r rook rook_backup
PA installs component hcm install rook

svn ci rook -m “Installing version 1.1.0 of rook”
PA compares backup to in-
stalled component

Using a tool specifically made for comparing directories will help.

PA merges backup and in-
stalled component

Move, add, modify, and/or delete files as necessary to change the installed version
to the version you want to publish.

PA commits merged compo-
nent

svn ci rook -m “Merged rook with version 1.1.0 of “rook”

PA publishes merged compo-
nent

hcm publish rook 1.2.0 -f release_notes.txt

13.4. Scenario 4: Bringing in a component from a long lived branch 57

hdl-component-manager Documentation, Release 0.14

58 Chapter 13. Scenarios

CHAPTER 14

Contributing

I welcome any contributions to this project.

There are several ways to contribute:

1. Bug reports

2. Code base improvements

3. Feature requests

4. Pull requests

14.1 Bug Reports

If you run into anything that is not handled correctly, please submit an issue. When creating the issue, use the bug
label to highlight it. Fixing bugs is prioritized over feature enhancements.

14.2 Code Base Improvements

HCM started out to solve a problem and improve my Python skills. The learning part is still on going, and I am sure the
code base could be improved. I run the code through Codacy and Code Climate, and they are very helpful. However,
I would appreciate any suggestions to improve the code base.

Create an issue and use the refactor label for any code which could be improved.

14.3 Feature Requests

Let me know if there is anything I could add to make HCM easier to use.

If you have an idea for a new feature, create an issue with the enhancement label.

59

hdl-component-manager Documentation, Release 0.14

14.4 Pull Requests

Pull requests are always welcome. I am trying to follow a Test Driven Development (TDD) process. If you do add a
new feature or fix a bug, I would appreciate a new or updated test to go along with the change. If not, then I will add a
test to cover any updates.

I use Travis CI to run all the tests. Codacy and Code Climate are my quality control tools. Code coverage is reported
by Codcov.

Travis CI will run these tools when a pull request is made. The results will be available on the pull request Github
page.

60 Chapter 14. Contributing

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

61

	Overview
	Why HCM?
	Key Benefits
	Key Features

	Installation
	PIP
	Git Hub

	Usage
	browse
	create
	install
	uninstall
	list
	publish
	show
	validate
	version
	Environment Variables

	Browsing Components
	Example: listing available components
	Example: listing versions of a component

	Create Component Directory
	Creating a component directory

	Downloading Components
	Example: Downloading a Component

	Installing Components
	Example: Installing a Component
	Example: Installing the latest version of a component
	Example: installing component when files under the component directory are not committed
	Example: installing from an external repo
	Example: Installing using an external
	Example: Installing Component and It’s Dependents
	Example: Installing Component and Install the Latest Version of Dependents

	Uninstalling Components
	Example: Uninstalling a Component
	Example: Uninstalling an externalled component

	Listing Components
	Example: listing installed components

	Publishing Components
	Example: Publishing a new component
	Example: Publishing an update to a component
	Example: Using a file for the commit message

	Showing Components
	Example: Viewing information about rook
	Example: Viewing manifest
	Example: Viewing available upgrades
	Example: Viewing available updates
	Example: Viewing modifications

	Theory of Operation
	Component Directory Structure
	Repository Considerations
	HCM configuration file
	Publishing
	Installing
	Uninstalling
	Dependencies
	Dependencies file
	Browsing
	Downloading
	Listing
	Detecting Modifications
	Staging
	Merging Staged Updates
	Releasing Staged Component

	Scenarios
	Scenario 1: Share component between projects in same repo
	Scenario 2: Project needs to make an update but does not want to use a newer version
	Scenario 3: Project needs to make an update but sees an upgraded version
	Scenario 4: Bringing in a component from a long lived branch

	Contributing
	Bug Reports
	Code Base Improvements
	Feature Requests
	Pull Requests

	Indices and tables

