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The hdbscan library is a suite of tools to use unsupervised learning to find clusters, or dense regions, of a dataset.
The primary algorithm is HDBSCAN* as proposed by Campello, Moulavi, and Sander. The library provides a high
performance implementation of this algorithm, along with tools for analysing the resulting clustering.
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2 Contents



CHAPTER 1

User Guide / Tutorial

1.1 Basic Usage of HDBSCAN* for Clustering

We have some data, and we want to cluster it. How exactly do we do that, and what do the results look like? If you are
very familiar with sklearn and it’s API, particularly for clustering, then you can probably skip this tutorial – hdbscan
implements exactly this API, so you can use it just as you would any other sklearn clustering algorithm. If, on the
other hand, you aren’t that familiar with sklearn, fear not, and read on. Let’s start with the simplest case first – we
have data in a nice tidy dataframe format.

1.1.1 The Simple Case

Let’s generate some data with, say 2000 samples, and 10 features. We can put it in a dataframe for a nice clean table
view of it.

blobs, labels = make_blobs(n_samples=2000, n_features=10)

pd.DataFrame(blobs).head()

So now we need to import the hdbscan library.

import hdbscan

Now, to cluster we need to generate a clustering object.

clusterer = hdbscan.HDBSCAN()

We can then use this clustering object and fit it to the data we have. This will return the clusterer object back to you –
just in case you want do some method chaining.

clusterer.fit(blobs)

HDBSCAN(algorithm='best', alpha=1.0, approx_min_span_tree=True,
gen_min_span_tree=False, leaf_size=40, memory=Memory(cachedir=None),
metric='euclidean', min_cluster_size=5, min_samples=None, p=None)

At this point we are actually done! We’ve done the clustering! But where are the results? How do I get the clusters?
The clusterer object knows, and stores the result in an attribute labels_.

clusterer.labels_

array([2, 2, 2, ..., 2, 2, 0])
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So it is an array of integers. What are we to make of that? It is an array with an integer for each data sample. Samples
that are in the same cluster get assigned the same number. The cluster labels are 0 up numbers. We can thus determine
the number of clusters found by checking what the largest cluster label is.

clusterer.labels_.max()

2

So we have a total of three clusters, with labels 0, 1, and 2. Importantly HDBSCAN is noise aware – it has a notion
of data samples that are not assigned to any cluster. This is handled by assigning these samples the label -1. But
wait, there’s more. The hdbscan library implements soft clustering, where wach data point is assigned a cluster
membership score ranging from 0.0 to 1.0. A score of 0.0 represents a sample that is not in the cluster at all (all noise
points will get this score) while a score of 1.0 represents a sample that is at the heart of the cluster (note that this is not
the spatial centroid notion of core). You can access these scores via the probabilities_ attribute.

clusterer.probabilities_

array([ 0.83890858, 1. , 0.72629904, ..., 0.79456452,
0.65311137, 0.76382928])

1.1.2 What about different metrics?

That is all well and good, but even data that is embedded in a vector space may not want to consider distances between
data points to be pure Euclidean distance. What can we do in that case? We are still in good shape, since hdbscan
supports a wide variety of metrics, which you can set when creating the clusterer object. For example we can do the
following:

clusterer = hdbscan.HDBSCAN(metric='manhattan')
clusterer.fit(blobs)
clusterer.labels_

array([1, 1, 1, ..., 1, 1, 0])

What metrics are supported? Because we simply steal metric computations from sklearn we get a large number of
metrics readily available.

hdbscan.dist_metrics.METRIC_MAPPING

{'braycurtis': hdbscan.dist_metrics.BrayCurtisDistance,
'canberra': hdbscan.dist_metrics.CanberraDistance,
'chebyshev': hdbscan.dist_metrics.ChebyshevDistance,
'cityblock': hdbscan.dist_metrics.ManhattanDistance,
'dice': hdbscan.dist_metrics.DiceDistance,
'euclidean': hdbscan.dist_metrics.EuclideanDistance,
'hamming': hdbscan.dist_metrics.HammingDistance,
'haversine': hdbscan.dist_metrics.HaversineDistance,
'infinity': hdbscan.dist_metrics.ChebyshevDistance,
'jaccard': hdbscan.dist_metrics.JaccardDistance,
'kulsinski': hdbscan.dist_metrics.KulsinskiDistance,
'l1': hdbscan.dist_metrics.ManhattanDistance,
'l2': hdbscan.dist_metrics.EuclideanDistance,
'mahalanobis': hdbscan.dist_metrics.MahalanobisDistance,
'manhattan': hdbscan.dist_metrics.ManhattanDistance,
'matching': hdbscan.dist_metrics.MatchingDistance,
'minkowski': hdbscan.dist_metrics.MinkowskiDistance,
'p': hdbscan.dist_metrics.MinkowskiDistance,
'pyfunc': hdbscan.dist_metrics.PyFuncDistance,
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'rogerstanimoto': hdbscan.dist_metrics.RogersTanimotoDistance,
'russellrao': hdbscan.dist_metrics.RussellRaoDistance,
'seuclidean': hdbscan.dist_metrics.SEuclideanDistance,
'sokalmichener': hdbscan.dist_metrics.SokalMichenerDistance,
'sokalsneath': hdbscan.dist_metrics.SokalSneathDistance,
'wminkowski': hdbscan.dist_metrics.WMinkowskiDistance}

1.1.3 Distance matrices

What if you don’t have a nice set of points in a vector space, but only have a pairwise distance matrix providing the
distance between each pair of points? This is a common situation. Perhaps you have a complex custom distance
measure; perhaps you have strings and are using Levenstein distance, etc. Again, this is all fine as hdbscan supports
a special metric called precomputed. If you create the clusterer with the metric set to precomputed then the
clusterer will assume that, rather than being handed a vector of points in a vector space, it is recieving an all pairs
distance matrix.

distance_matrix = pairwise_distances(blobs)
clusterer = hdbscan.HDBSCAN(metric='precomputed')
clusterer.fit(distance_matrix)
clusterer.labels_

array([1, 1, 1, ..., 1, 1, 2])

Note that this result only appears different due to a different labelling order for the clusters.

1.2 Getting More Information About a Clustering

Once you have the basics of clustering sorted you may want to dig a little deeper than just the cluster labels returned
to you. Fortunately the hdbscan library provides you with the facilities to do this. During processing HDBSCAN*
builds a hierarchy of potential clusters, from which is extracts the flat clustering returned. It can be informative to look
at that hierarchy, and potentially make use of the extra information contained therein.

Suppose we have a dataset for clustering

1.2. Getting More Information About a Clustering 5



hdbscan Documentation, Release 0.8.1

We can cluster the data as normal, and visualize the labels with different colors (and even the cluster membership
strengths as levels of saturation)

clusterer = hdbscan.HDBSCAN(min_cluster_size=15).fit(data)
color_palette = sns.color_palette('deep', 8)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*data.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)
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1.2.1 Condensed Trees

The question now is what does the cluster hierarchy look like – which clusters are near each other, or could perhaps
be merged, and which are far apart. We can access the basic hierarchy via the condensed_tree_ attribute of the
clusterer object.

clusterer.condensed_tree_

<hdbscan.plots.CondensedTree at 0x10ea23a20>

This merely gives us a CondensedTree object. If we want to visualize the hierarchy we can call the plot method:

clusterer.condensed_tree_.plot()

1.2. Getting More Information About a Clustering 7
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We can now see the hierarchy as a dendrogram, the width (and color) or each branch representing the number of
points in the cluster at that level. If we wish to know which branches were selected by the HDBSCAN* algorithm we
can pass select_clusters=True. You can even pass a selection palette to color the selections according to the
cluster labelling.

clusterer.condensed_tree_.plot(select_clusters=True,
selection_palette=sns.color_palette('deep', 8))
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From this we can see, for example, that the yellow cluster, at the center of the plot, forms early (breaking off from the
pale blue and purple clusters) and persists for a long time. By comparison the green cluster, which also forming early,
quickly breaks apart and then vanishes altogether (shattering into clusters all smaller than the min_cluster_size
of 15).

You can also see that the pale blue cluster breaks apart into several subclusters that in turn persist for quite some time
– so there is some interesting substructure to the pale blue cluster that is not present, for example, in the dark blue
cluster.

In this was a simple visual analysis of the condensed tree can tell you a lot more about the structure of your data.
This is not all we can do with condensed trees however. For larger and more complex datasets the tree itself may be
very complex, and it may be desireable to run more interesting analytics over the tree itself. This can be achieved via
several converter methods: to_networkx, to_pandas, and to_numpy.

First we’ll consider to_networkx

clusterer.condensed_tree_.to_networkx()

<networkx.classes.digraph.DiGraph at 0x11d8023c8>

As you can see we get a networkx directed graph, which we can then use all the regular networkx tools and analytics
on. The graph is richer than the visual plot above may lead you to believe however:

g = clusterer.condensed_tree_.to_networkx()
g.number_of_nodes()

2338

The graph actually contains nodes for all the points falling out of clusters as well as the clusters themselves. Each
node has an associated size attribute, and each edge has a weight of the lambda value at which that edge forms.

1.2. Getting More Information About a Clustering 9
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This allows for much more interesting analyses.

Next we have the to_pandas method, which returns a panda dataframe where each row corresponds to an edge of
the networkx graph:

clusterer.condensed_tree_.to_pandas().head()

Here the parent denotes the id of the parent cluster, the child the id of the child cluster (or, if the child is a single
data point rather than a cluster, the index in the dataset of that point), the lambda_val provides the lambda value at
which the edge forms, and the child_size provides the number of points in the child cluster. As you can see the
start of the dataframe has singleton points falling out of the root cluster, with each child_size equal to 1.

Finally we have the to_numpy function, which returns a numpy record array:

clusterer.condensed_tree_.to_numpy()

array([(2309, 2048, 5.016525967983049, 1),
(2309, 2006, 5.076503128308643, 1),
(2309, 2024, 5.279133057912248, 1), ...,
(2318, 1105, 86.5507370650292, 1), (2318, 965, 86.5507370650292, 1),
(2318, 954, 86.5507370650292, 1)],

dtype=[('parent', '<i8'), ('child', '<i8'), ('lambda_val', '<f8'), ('child_size', '<i8')])

This is equivalent to the pandas dataframe, but is in pure numpy and hence has no pandas dependencies if you do not
wish to use pandas.

1.2.2 Single Linkage Trees

We have still more data at our disposal however. As noted in the How HDBSCAN Works section, prior to
providing a condensed tree the algorithm builds a complete dendrogram. We have access to this too via the
single_linkage_tree attribute of the clusterer.

clusterer.single_linkage_tree_

<hdbscan.plots.SingleLinkageTree at 0x121d4b128>

Again we have an object which we can then query for relevant information. The most basic approach is the plot
method, just like the condensed tree.

clusterer.single_linkage_tree_.plot()
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As you can see we gain a lot from condensing the tree in terms of better presenting and summarising the data. There
is a lot less to be gained from visual inspection of a plot like this (and it only gets worse for larger datasets). The plot
function support most of the same fucntionality as the dendrogram plotting from scipy.cluster.hierarchy,
so you can view various truncations of th tree if necessary. In practice, however, you are more likely to be interested in
access the raw data for further analysis. Again we have to_networkx, to_pandas and to_numpy. This time the
to_networkx provides a direct networkx version of what you see above. The numpy and pandas results conform
to the single linkage hierarchy format of scipy.cluster.hierarchy, and can be passed to routines there if
necessary.

1.3 Parameter Selection for HDBSCAN*

While the HDBSCAN class has a large number of parameters that can be set on initialization, in practice there are a
very small number of parameters that have significant practical effect on clustering. We will first consider those major
parameters, and consider how one may go about choosing them effectively. With that out of the way we’ll look at the
remaining parameters and see what their effects are – many just effect performance for various different use cases.

1.3.1 Selecting min_cluster_size

The primary parameter to effect the resulting clustering is min_cluster_size. Ideally this is a relatively intuitive
parameter to select – set it to the smallest size grouping that you wish to consider a cluster. It can have slightly non-
obvious effects however. Let’s consider the digits dataset from sklearn. We can project the data into two dimensions
to visualize it via t-SNE.

digits = datasets.load_digits()
data = digits.data

1.3. Parameter Selection for HDBSCAN* 11
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projection = TSNE().fit_transform(data)
plt.scatter(*projection.T, **plot_kwds)

If we cluster this data in the full 64 dimensional space with HDBSCAN* we can see some effects from varying the
min_cluster_size.

We start with a min_cluster_size of 15.

clusterer = hdbscan.HDBSCAN(min_cluster_size=15).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)
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Increasing the min_cluster_size to 30 reduces the number of clusters, merging some together. This is a result
of HDBSCAN* reoptimizing which flat clustering provides greater stability under a slightly different notion of what
constitutes a cluster.

clusterer = hdbscan.HDBSCAN(min_cluster_size=30).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)

1.3. Parameter Selection for HDBSCAN* 13
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Doubling the min_cluster_size again to 60 gives us just two clusters – the really core clusters. This is somewhat
as expected, but surely some of the other clusters that we had previously had more than 60 members? Why are they
being considered noise? The answer is that HDBSCAN* has a second parameter min_samples. The implementa-
tion defaults this value (if it is unspecified) to whatever min_cluster_size is set to. We can recover some of our
original clusters by explicitly providing min_samples at the original value of 15.

clusterer = hdbscan.HDBSCAN(min_cluster_size=60).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)
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clusterer = hdbscan.HDBSCAN(min_cluster_size=60, min_samples=15).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)

1.3. Parameter Selection for HDBSCAN* 15
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As you can see this results in us recovering something much closer to our original clustering, only now with some of
the smaller clusters pruned out. Thus min_cluster_size does behave more closely to our intuitions, but only if
we fix min_samples. If you wish to explore different min_cluster_size settings with a fixed min_samples
value, especially for larger dataset sizes, you can cache the hard computation, and recompute only the relatively cheap
flat cluster extraction using the memory parameter, which makes use of joblib [link].

1.3.2 Selecting min_samples

Since we have seen that min_samples clearly has a dramatic effect on clustering, the question becomes: how do we
select this parameter? The simplest intuition for what min_samples does is provide a measure of how conservative
you want you clustering to be. The larger the value of min_samples you provide, the more conservative the
clustering – more points will be declared as noise, and clusters will be restricted to progressively more dense areas.
We can see this in practice by leaving the min_cluster_size at 60, but reducing min_samples to 1.

clusterer = hdbscan.HDBSCAN(min_cluster_size=60, min_samples=1).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)

<matplotlib.collections.PathCollection at 0x120978438>
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Now most points are clustered, and there are much fewer noise points. Steadily increasing min_samples will, as
we saw in the examples above, make the clustering progressivly more conservative, culminating in the example above
where min_samples was set to 60 and we had only two clusters with most points declared as noise.

1.3.3 Selecting alpha

A further parameter that effects the resulting clustering is alpha. In practice it is best not to mess with this paramter
– ultimately it is part of the RobustSingleLinkage code, but flows naturally into HDBSCAN*. If, for some
reason, min_samples is not providing you what you need, stop, rethink things, and try again with min_samples.
If you still need to play with another parameter (and you shouldn’t), then you can try setting alpha. The alpha
parameter provides a slightly different approach to determining how conservative the clustering is. By default alpha
is set to 1.0. Increasing alpha will make the clustering more conservative, but on a much tighter scale, as we can see
by setting alpha to 1.3.

clusterer = hdbscan.HDBSCAN(min_cluster_size=60, min_samples=15, alpha=1.3).fit(data)
color_palette = sns.color_palette('Paired', 12)
cluster_colors = [color_palette[x] if x >= 0

else (0.5, 0.5, 0.5)
for x in clusterer.labels_]

cluster_member_colors = [sns.desaturate(x, p) for x, p in
zip(cluster_colors, clusterer.probabilities_)]

plt.scatter(*projection.T, s=50, linewidth=0, c=cluster_member_colors, alpha=0.25)

1.3. Parameter Selection for HDBSCAN* 17
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1.4 Outlier Detection

The hdbscan library supports the GLOSH outlier detection algorithm, and does so within the HDBSCAN clustering
class. The GLOSH outlier detection algorithm is related to older outlier detection methods such as LOF and LOCI.
It is a fast and flexible outlier detection system, and supports a notion of local outliers. This means that it can detect
outliers that may be noticeably different from points in its local region (for example points not on a local submanifold)
but that are not necessarily outliers globally. So how do we find outliers? We proceed identically to the basic use of
HDBSCAN*. We start with some data, and fit it with an HDBSCAN object.

plt.scatter(*data.T, s=50, linewidth=0, c='b', alpha=0.25)
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clusterer = hdbscan.HDBSCAN(min_cluster_size=15).fit(data)

The clusterer object now has an attribute (computed when first accessed) called outlier_scores_. This provides
a numpy array with a value for each sample in the original dataset that was fit with the clusterer. The higher the score,
the more likely the point is to be an outlier. In practice it is often best to look at the distributions of outlier scores.

clusterer.outlier_scores_

array([ 0.14791852, 0.14116731, 0.09171929, ..., 0.62050534,
0.56749298, 0.20681685])

sns.distplot(clusterer.outlier_scores_[np.isfinite(clusterer.outlier_scores_)], rug=True)

1.4. Outlier Detection 19
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We can pull off upper quantiles to detect outliers, which we can then plot.

threshold = pd.Series(clusterer.outlier_scores_).quantile(0.9)
outliers = np.where(clusterer.outlier_scores_ > threshold)[0]
plt.scatter(*data.T, s=50, linewidth=0, c='gray', alpha=0.25)
plt.scatter(*data[outliers].T, s=50, linewidth=0, c='red', alpha=0.5)

20 Chapter 1. User Guide / Tutorial
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Note that not only are the outlying border points highlighted as outliers, but points at the edge of the central ball like
cluster, and just below the vertical band cluster, are also designated as outliers. This is because those two clusters are
extremely dense, and the points at the edge of this cluster are close enough to the cluster that they should be part of it,
but far enough from the being core parts of the cluster that they are extremely unlikely and hence anomalous.

1.4. Outlier Detection 21
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CHAPTER 2

Background on Clustering with HDBSCAN

2.1 How HDBSCAN Works

HDBSCAN is a clustering algorithm developed by Campello, Moulavi, and Sander. It extends DBSCAN by converting
it into a hierarchical clustering algorithm, and then using a technique to extract a flat clustering based in the stability of
clusters. The goal of this notebook is to give you an overview of how the algorithm works and the motivations behind
it. In contrast to the HDBSCAN paper I’m going to describe it without reference to DBSCAN. Instead I’m going to
explain how I like to think about the algorithm, which aligns more closely with Robust Single Linkage with flat cluster
extraction on top of it.

Before we get started we’ll load up most of the libraries we’ll need in the background, and set up our plotting (because
I believe the best way to understand what is going on is to actually see it working in pictures).

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.datasets as data
%matplotlib inline
sns.set_context('poster')
sns.set_style('white')
sns.set_color_codes()
plot_kwds = {'alpha' : 0.5, 's' : 80, 'linewidths':0}

The next thing we’ll need is some data. To make for an illustrative example we’ll need the data size to be fairly small
so we can see what is going on. It will also be useful to have several clusters, preferably of different kinds. Fortunately
sklearn has facilities for generating sample clustering data so I’ll make use of that and make a dataset of one hundred
data points.

moons, _ = data.make_moons(n_samples=50, noise=0.05)
blobs, _ = data.make_blobs(n_samples=50, centers=[(-0.75,2.25), (1.0, 2.0)], cluster_std=0.25)
test_data = np.vstack([moons, blobs])
plt.scatter(test_data.T[0], test_data.T[1], color='b', **plot_kwds)

23
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Now, the best way to explain HDBSCAN is actually just use it and then go through the steps that occurred along the
way teasing out what is happening at each step. So let’s load up the hdbscan library and get to work.

import hdbscan

clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True)
clusterer.fit(test_data)

HDBSCAN(algorithm='best', alpha=1.0, approx_min_span_tree=True,
gen_min_span_tree=True, leaf_size=40, memory=Memory(cachedir=None),
metric='euclidean', min_cluster_size=5, min_samples=None, p=None)

So now that we have clustered the data – what actually happened? We can break it out into a series of steps

1. Transform the space according to the density/sparsity.

2. Build the minimum spanning tree of the distance weighted graph.

3. Construct a cluster hierarchy of connected components.

4. Condense the cluster hierarchy based on minimum cluster size.

5. Extract the stable clusters from the condensed tree.

2.1.1 Transform the space

To find clusters we want to find the islands of higher density amid a sea of sparser noise – and the assumption of noise
is important: real data is messy and has outliers, corrupt data, and noise. The core of the clustering algorithm is single
linkage clustering, and it can be quite sensitive to noise: a single noise data point in the wrong place can act as a bridge
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between islands, gluing them together. Obviously we want our algorithm to be robust against noise so we need to find
a way to help ‘lower the sea level’ before running a single linkage algorithm.

How can we characterize ‘sea’ and ‘land’ without doing a clustering? As long as we can get an estimate of density
we can consider lower density points as the ‘sea’. The goal here is not to perfectly distinguish ‘sea’ from ‘land’ – this
is an initial step in clustering, not the ouput – just to make our clustering core a little more robust to noise. So given
an identification of ‘sea’ we want to lower the sea level. For practical purposes that means making ‘sea’ points more
distant from each other and from the ‘land’.

That’s just the intuition however. How does it work in practice? We need a very inexpensive estimate of density, and
the simplest is the distance to the kth nearest neighbor. If we have the distance matrix for our data (which we will need
imminently anyway) we can simply read that off; alternatively if our metric is supported (and dimension is low) this is
the sort of query that kd-trees are good for. Let’s formalise this and (following the DBSCAN, LOF, and HDBSCAN
literature) call it the core distance defined for parameter k for a point x and denote as core𝑘(𝑥). Now we need a way to
spread apart points with low density (correspondingly high core distance). The simple way to do this is to define a new
distance metric between points which we will call (again following the literature) the mutual reachability distance.
We define mutual reachability distance as follows:

𝑑mreach−𝑘(𝑎, 𝑏) = max{core𝑘(𝑎), core𝑘(𝑏), 𝑑(𝑎, 𝑏)}

where 𝑑(𝑎, 𝑏) is the original metric distance between a and b. Under this metric dense points (with low core distance)
remain the same distance from each other but sparser points are pushed away to be at least their core distance away
from any other point. This effectively ‘lowers the sea level’ spreading sparse ‘sea’ points out, while leaving ‘land’
untouched. The caveat here is that obviously this is dependent upon the choice of k; larger k values interpret more
points as being in the ‘sea’. All of this is a little easier to understand with a picture, so let’s use a k value of five.
Then for a given point we can draw a circle for the core distance as the circle that touches the sixth nearest neighbor
(counting the point itself), like so:

Pick another point and we can do the same thing, this time with a different set of neighbors (one of them even being
the first point we picked out).

And we can do that a third time for good measure, with another set of six nearest neighbors and another circle with
slightly different radius again.

Now if we want to know the mutual reachability distance between the blue and green points we can start by drawing
in and arrow giving the distance between green and blue:

This passes through the blue circle, but not the green circle – the core distance for green is larger than the distance
between blue and green. Thus we need to mark the mutual reachability distance between blue and green as larger –
equal to the radius of the green circle (easiest to picture if we base one end at the green point).

On the other hand the mutual reachablity distance from red to green is simply distance from red to green since that
distance is greater than either core distance (i.e. the distance arrow passes through both circles).

In general there is underlying theory to demonstrate that mutual reachability distance as a transform works well in
allowing single linkage clustering to more closely approximate the hierarchy of level sets of whatever true density
distribution our points were sampled from.

2.1.2 Build the minimum spanning tree

Now that we have a new mutual reachability metric on the data we want start finding the islands on dense data. Of
course dense areas are relative, and different islands may have different densities. Conceptually what we will do is the
following: consider the data as a weighted graph with the data points as vertices and an edge between any two points
with weight equal to the mutual reachability distance of those points.

Now consider a threshold value, starting high, and steadily being lowered. Drop any edges with weight above that
threshold. As we drop edges we will start to disconnect the graph into connected components. Eventually we will have
a hierarchy of connected components (from completely connected to completely disconnected) at varying threshold
levels.
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In practice this is very expensive: there are 𝑛2 edges and we don’t want to have to run a connected components
algorithm that many times. The right thing to do is to find a minimal set of edges such that dropping any edge from the
set causes a disconnection of components. But we need more, we need this set to be such that there is no lower weight
edge that could connect the components. Fortunately graph theory furnishes us with just such a thing: the minimum
spanning tree of the graph.

We can build the minimum spanning tree very efficiently via Prim’s algorithm – we build the tree one edge at a time,
always adding the lowest weight edge that connects the current tree to a vertex not yet in the tree. You can see the tree
HDBSCAN constructed below; note that this is the minimum spanning tree for mutual reachability distance which is
different from the pure distance in the graph. In this case we had a k value of 5.

In the case that the data lives in a metric space we can use even faster methods, such as Dual Tree Boruvka to build
the minimal spanning tree.

clusterer.minimum_spanning_tree_.plot(edge_cmap='viridis',
edge_alpha=0.6,
node_size=80,
edge_linewidth=2)

2.1.3 Build the cluster hierarchy

Given the minimal spanning tree, the next step is to convert that into the hierarchy of connected components. This
is most easily done in the reverse order: sort the edges of the tree by distance (in increasing order) and then iterate
through, creating a new merged cluster for each edge. The only difficult part here is to identify the two clusters each
edge will join together, but this is easy enough via a union-find data structure. We can view the result as a dendrogram
as we see below:
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clusterer.single_linkage_tree_.plot(cmap='viridis', colorbar=True)

This brings us to the point where robust single linkage stops. We want more though; a cluster hierarchy is good, but
we really want a set of flat clusters. We could do that by drawing a a horizontal line through the above diagram and
selecting the clusters that it cuts through. This is in practice what DBSCAN effectively does (declaring any singleton
clusters at the cut level as noise). The question is, how do we know where to draw that line? DBSCAN simply leaves
that as a (very unintuitive) parameter. Worse, we really want to deal with variable density clusters and any choice of
cut line is a choice of mutual reachability distance to cut at, and hence a single fixed density level. Ideally we want to
be able to cut the tree at different places to select our clusters. This is where the next steps of HDBSCAN begin and
create the difference from robust single linkage.

2.1.4 Condense the cluster tree

The first step in cluster extraction is condensing down the large and complicated cluster hierarchy into a smaller tree
with a little more data attached to each node. As you can see in the hierarchy above it is often the case that a cluster
split is one or two points splitting off from a cluster; and that is the key point – rather than seeing it as a cluster splitting
into two new clusters we want to view it as a single persistent cluster that is ‘losing points’. To make this concrete
we need a notion of minimum cluster size which we take as a parameter to HDBSCAN. Once we have a value for
minimum cluster size we can now walk through the hierarchy and at each split ask if one of the new clusters created by
the split has fewer points than the minimum cluster size. If it is the case that we have fewer points than the minimum
cluster size we declare it to be ‘points falling out of a cluster’ and have the larger cluster retain the cluster identity of
the parent, marking down which points ‘fell out of the cluster’ and at what distance value that happened. If on the
other hand the split is into two clusters each at least as large as the minimum cluster size then we consider that a true
cluster split and let that split persist in the tree. After walking through the whole hierarchy and doing this we end up
with a much smaller tree with a small number of nodes, each of which has data about how the size of the cluster at that
node descreases over varying distance. We can visualize this as a dendrogram similar to the one above – again we can
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have the width of the line represent the number of points in the cluster. This time, however, that width varies over the
length of the line as points fall our of the cluster. For our data using a minimum cluster size of 5 the result looks like
this:

clusterer.condensed_tree_.plot()

This is much easier to look at and deal with, particularly in as simple a clustering problem as our current test dataset.
However we still need to pick out clusters to use as a flat clustering. Looking at the plot above should give you some
ideas about how one might go about doing this.

2.1.5 Extract the clusters

Intuitively we want the choose clusters that persist and have a longer lifetime; short lived clusters are ultimately
probably merely artifcacts of the single linkage approach. Looking at the previous plot we could say that we want to
choose those clusters that have the greatest area of ink in the plot. To make a flat clustering we will need to add a
further requirement that, if you select a cluster, then you cannot select any cluster that is a descendant of it. And in fact
that intuitive notion of what should be done is exactly what HDBSCAN does. Of course we need to formalise things
to make it a concrete algorithm.

First we need a different measure than distance to consider the persistence of clusters; instead we will use 𝜆 = 1
distance .

For a given cluster we can then define values 𝜆birth and 𝜆death to be the lambda value when the cluster split off and
became it’s own cluster, and the lambda value (if any) when the cluster split into smaller clusters respectively. In turn,
for a given cluster, for each point p in that cluster we can define the value 𝜆𝑝 as the lambda value at which that point
‘fell out of the cluster’ which is a value somewhere between 𝜆birth and 𝜆death since the point either falls out of the
cluster at some point in the cluster’s lifetime, or leaves the cluster when the cluster splits into two smaller clusters.
Now, for each cluster compute the stability to as
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∑︀
𝑝∈cluster(𝜆𝑝 − 𝜆birth).

Declare all leaf nodes to be selected clusters. Now work up through the tree (the reverse topological sort order). If the
sum of the stabilities of the child clusters is greater than the stability of the cluster then we set the cluster stability to
be the sum of the child stabilities. If, on the other hand, the cluster’s stability is greater than the su of it’s children then
we declare the cluster to be a selected cluster, and unselect all its descendants. Once we reach the root node we call
the current set of selected clusters our flat clsutering and return that.

Okay, that was wordy and complicated, but it really is simply performing our ‘select the clusters in the plot with the
largest total ink area’ subject to descendant constraints that we explained earlier. We can select the clusters in the
condensed tree dendrogram via this algorithm, and you get what you expect:

clusterer.condensed_tree_.plot(select_clusters=True, selection_palette=sns.color_palette())

Now that we have the clusters it is a simple enough matter to turn that into cluster labelling as per the sklearn API. Any
point not in a selected cluster is simply a noise point (and assigned the label -1). We can do a little more though: for
each cluster we have the 𝜆𝑝 for each point p in that cluster; If we simply normalize those values (so they range from
zero to one) then we have a measure of the strength of cluster membership for each point in the cluster. The hdbscan
library returns this as a probabilities_ attribute of the clusterer object. Thus, with labels and membership
strengths in hand we can make the standard plot, choosing a color for points based on cluster label, and desaturating
that color according the strength of membership (and make unclustered points pure gray).

palette = sns.color_palette()
cluster_colors = [sns.desaturate(palette[col], sat)

if col >= 0 else (0.5, 0.5, 0.5) for col, sat in
zip(clusterer.labels_, clusterer.probabilities_)]

plt.scatter(test_data.T[0], test_data.T[1], c=cluster_colors, **plot_kwds)
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And that is how HDBSCAN works. It may seem somewhat complicated – there are a fair number of moving parts
to the algorithm – but ultimately each part is actually very straightforward and can be optimized well. Hopefully
with a better understanding both of the intuitions and some of the implementation details of HDBSCAN you will
feel motivated to try it out. The library continues to develop, and will provide a base for new ideas including a near
parameterless Persistent Density Clustering algorithm, and a new semi-supervised clustering algorithm.

2.2 Comparing Python Clustering Algorithms

There are a lot of clustering algorithms to choose from. The standard sklearn clustering suite has thirteen different
clustering classes alone. So what clustering algorithms should you be using? As with every question in data science
and machine learning it depends on your data. A number of those thirteen classes in sklearn are specialised
for certain tasks (such as co-clustering and bi-clustering, or clustering features instead data points). Obviously an
algorithm specializing in text clustering is going to be the right choice for clustering text data, and other algorithms
specialize in other specific kinds of data. Thus, if you know enough about your data, you can narrow down on the
clustering algorithm that best suits that kind of data, or the sorts of important properties your data has, or the sorts of
clustering you need done. All well and good, but what if you don’t know much about your data? If, for example, you
are ‘just looking’ and doing some exploratory data analysis (EDA) it is not so easy to choose a specialized algorithm.
So, what algorithm is good for exploratory data analysis?

2.2.1 Some rules for EDA clustering

To start, lets’ lay down some ground rules of what we need a good EDA clustering algorithm to do, then we can set
about seeing how the algorithms available stack up.
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• Don’t be wrong!: If you are doing EDA you are trying to learn and gain intuitions about your data. In that case
it is far better to get no result at all than a result that is wrong. Bad results lead to false intuitions which in turn
send you down completely the wrong path. Not only do you not understand your data, you misunderstand your
data. This means a good EDA clustering algorithm needs to conservative in int’s clustering; it should be willing
to not assign points to clusters; it should not group points together unless they really are in a cluster; this is true
of far fewer algorithms than you might think.

• Intuitive Parameters: All clustering algorithms have parameters; you need some knobs to turn to adjust things.
The question is: how do you pick settings for those parameters? If you know little about your data it can be hard
to determine what value or setting a parameter should have. This means parameters need to be intuitive enough
that you can hopefully set them without having to know a lot about your data.

• Stable Clusters: If you run the algorithm twice with a different random initialization, you should expect to
get roughly the same clusters back. If you are sampling your data, taking a different random sample shouldn’t
radically change the resulting cluster structure (unless your sampling has problems). If you vary the clustering
algorithm parameters you want the clustering to change in a somewhat stable predictable fashion.

• Performance: Data sets are only getting bigger. You can sub-sample (but see stability), but ultimately you need
a clustering algorithm that can scale to large data sizes. A clustering algorithm isn’t much use if you can only
use it if you take such a small sub-sample that it is no longer representative of the data at large!

There are other nice to have features like soft clusters, or overlapping clusters, but the above desiderata is enough to
get started with because, oddly enough, very few clustering algorithms can satisfy them all!

2.2.2 Getting set up

If we are going to compare clustering algorithms we’ll need a few things; first some libraries to load and cluster the
data, and second some visualisation tools so we can look at the results of clustering.

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.cluster as cluster
import time
%matplotlib inline
sns.set_context('poster')
sns.set_color_codes()
plot_kwds = {'alpha' : 0.25, 's' : 80, 'linewidths':0}

Next we need some data. In order to make this more interesting I’ve constructed an artificial dataset that will give
clustering algorithms a challenge – some non-globular clusters, some noise etc.; the sorts of things we expect to crop
up in messy real-world data. So that we can actually visualize clusterings the dataset is two dimensional; this is not
something we expect from real-world data where you generally can’t just visualize and see what is going on.

data = np.load('clusterable_data.npy')

So let’s have a look at the data and see what we have.

plt.scatter(data.T[0], data.T[1], c='b', **plot_kwds)
frame = plt.gca()
frame.axes.get_xaxis().set_visible(False)
frame.axes.get_yaxis().set_visible(False)
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It’s messy, but there are certainly some clusters that you can pick out by eye; determining the exact boundaries of those
clusters is harder of course, but we can hope that our clustering algorithms will find at least some of those clusters. So,
on to testing ...

2.2.3 Testing Clustering Algorithms

To start let’s set up a little utility function to do the clustering and plot the results for us. We can time the clustering
algorithm while we’re at it and add that to the plot since we do care about performance.

def plot_clusters(data, algorithm, args, kwds):
start_time = time.time()
labels = algorithm(*args, **kwds).fit_predict(data)
end_time = time.time()
palette = sns.color_palette('deep', np.unique(labels).max() + 1)
colors = [palette[x] if x >= 0 else (0.0, 0.0, 0.0) for x in labels]
plt.scatter(data.T[0], data.T[1], c=colors, **plot_kwds)
frame = plt.gca()
frame.axes.get_xaxis().set_visible(False)
frame.axes.get_yaxis().set_visible(False)
plt.title('Clusters found by {}'.format(str(algorithm.__name__)), fontsize=24)
plt.text(-0.5, 0.7, 'Clustering took {:.2f} s'.format(end_time - start_time), fontsize=14)

Before we try doing the clustering, there are some things to keep in mind as we look at the results.

• In real use cases we can’t look at the data and realise points are not really in a cluster; we have to take the
clustering algorithm at its word.

• This is a small dataset, so poor performance here bodes very badly.
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On to the clustering algorithms.

2.2.4 K-Means

K-Means is the ‘go-to’ clustering algorithm for many simply because it is fast, easy to understand, and available
everywhere (there’s an implementation in almost any statistical or machine learning tool you care to use). K-Means
has a few problems however. The first is that it isn’t a clustering algorithm, it is a partitioning algorithm. That is to
say K-means doesn’t ‘find clusters’ it partitions your dataset into as many (assumed to be globular) chunks as you ask
for by attempting to minimize intra-partition distances. That leads to the second problem: you need to specify exactly
how many clusters you expect. If you know a lot about your data then that is something you might expect to know. If,
on the other hand, you are simply exploring a new dataset then ‘number of clusters’ is a hard parameter to have any
good intuition for. The usually proposed solution is to run K-Means for many different ‘number of clusters’ values
and score each clustering with some ‘cluster goodness’ measure (usually a variation on intra-cluster vs inter-cluster
distances) and attempt to find an ‘elbow’. If you’ve ever done this in practice you know that finding said elbow is
usually not so easy, nor does it necessarily correlate as well with the actual ‘natural’ number of clusters as you might
like. Finally K-Means is also dependent upon initialization; give it multiple different random starts and you can get
multiple different clusterings. This does not engender much confidence in any individual clustering that may result.

So, in summary, here’s how K-Means seems to stack up against out desiderata: * Don’t be wrong!: K-means is going
to throw points into clusters whether they belong or not; it also assumes you clusters are globular. K-Means scores
very poorly on this point. * Intuitive parameters: If you have a good intuition for how many clusters the dataset your
exploring has then great, otherwise you might have a problem. * Stability: Hopefully the clustering is stable for your
data. Best to have many runs and check though. * Performance: This is K-Means big win. It’s a simple algorithm and
with the right tricks and optimizations can be made exceptionally efficient. There are few algorithms that can compete
with K-Means for performance. If you have truly huge data then K-Means might be your only option.

But enough opinion, how does K-Means perform on our test dataset? Let’s have look. We’ll be generous and use our
knowledge that there are six natural clusters and give that to K-Means.

plot_clusters(data, cluster.KMeans, (), {'n_clusters':6})
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We see some interesting results. First, the assumption of perfectly globular clusters means that the natural clusters
have been spliced and clumped into various more globular shapes. Worse, the noise points get lumped into clusters
as well: in some cases, due to where relative cluster centers ended up, points very distant from a cluster get lumped
in. Having noise pollute your clusters like this is particularly bad in an EDA world since they can easily mislead your
intuition and understanding of the data. On a more positive note we completed clustering very quickly indeed, so at
least we can be wrong quickly.

2.2.5 Affinity Propagation

Affinity Propagation is a newer clustering algorithm that uses a graph based approach to let points ‘vote’ on their
preferred ‘exemplar’. The end result is a set of cluster ‘exemplars’ from which we derive clusters by essentially doing
what K-Means does and assigning each point to the cluster of it’s nearest exemplar. Affinity Propagation has some
advantages over K-Means. First of all the graph based exemplar voting means that the user doesn’t need to specify
the number of clusters. Second, due to how the algorithm works under the hood with the graph representation it
allows for non-metric dissimilarities (i.e. we can have dissimilarities that don’t obey the triangle inequality, or aren’t
symmetric). This second point is important if you are ever working with data isn’t naturally embedded in a metric
space of some kind; few clustering algorithms support, for example, non-symmetric dissimilarities. Finally Affinity
Propagation does, at least, have better stability over runs (but not over parameter ranges!).

The weak points of Affinity Propagation are similar to K-Means. Since it partitions the data just like K-Means we
expect to see the same sorts of problems, particularly with noisy data. While Affinity Propagation eliminates the need
to specify the number of clusters, it has ‘preference’ and ‘damping’ parameters. Picking these parameters well can
be difficult. The implementation in sklearn default preference to the median dissimilarity. This tends to result in a
very large number of clusters. A better value is something smaller (or negative) but data dependent. Finally Affinity
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Propagation is slow; since it supports non-metric dissimilarities it can’t take any of the shortcuts available to other
algorithms, and the basic operations are expensive as data size grows.

So, in summary, over our desiderata we have:

• Don’t be wrong: The same issues as K-Means; Affinity Propagation is going to throw points into clusters
whether they belong or not; it also assumes you clusters are globular.

• Intuitive Parameters: It can be easier to guess at preference and damping than number of clusters, but since
Affinity Propagation is quite sensitive to preference values it can be fiddly to get “right”. This isn’t really that
much of an improvement over K-Means.

• Stability: Affinity Propagation is deterministic over runs.

• Performance: Affinity Propagation tends to be very slow. In practice running it on large datasets is essen-
tially impossible without a carefully crafted and optimized implementation (i.e. not the default one available in
sklearn).

And how does it look in practice on our chosen dataset? I’ve tried to select a preference and damping value that gives
a reasonable number of clusters (in this case six) but feel free to play with the parameters yourself and see if you can
come up with a better clustering.

plot_clusters(data, cluster.AffinityPropagation, (), {'preference':-5.0, 'damping':0.95})

The result is eerily similar to K-Means and has all the same problems. The globular clusters have lumped together
splied parts of various ‘natural’ clusters. The noise points have been assigned to clusters regardless of being significant
outliers. In other words, we’ll have a very poor intuitive understanding of our data based on these ‘clusters’. Worse
still it took us several seconds to arrive at this unenlightening conclusion.
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2.2.6 Mean Shift

Mean shift is another option if you don’t want to have to specify the number of clusters. It is centroid based, like
K-Means and affinity propagation, but can return clusters instead of a partition. The underlying idea of the Mean Shift
algorithm is that there exists some probability density function from which the data is drawn, and tries to place cen-
troids of clusters at the maxima of that density function. It approximates this via kernel density estimation techniques,
and the key parameter is then the bandwidth of the kernel used. This is easier to guess than the number of clusters,
but may require some staring at, say, the distributions of pairwise distances between data points to choose success-
fully. The other issue (at least with the sklearn implementation) is that it is fairly slow depsite potentially having good
scaling!

How does Mean Shift fare against out criteria? In principle proming, but in practice ...

• Don’t be wrong!: Mean Shift doesn’t cluster every point, but it still aims for globular clusters, and in practice it
can return less than ideal results (see below for example). Without visual validation it can be hard to know how
wrong it may be.

• Intuitive parameters: Mean Shift has more intuitive and meaningful parameters; this is certainly a strength.

• Stability: Mean Shift results can vary a lot as you vary the bandwidth parameter (which can make selection
more difficult than it first appears. It also has a random initialisation, which means stability under runs can vary
(if you reseed the random start).

• Performance: While Mean Shift has good scalability in principle (using ball trees) in practice the sklearn
implementation is slow; this is a serious weak point for Mean Shift.

Let’s see how it works on some actual data. I spent a while trying to find a good bandwidth value that resulted in a
reasonable clustering. The choice below is about the best I found.

plot_clusters(data, cluster.MeanShift, (0.175,), {'cluster_all':False})
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We at least aren’t polluting our clusters with as much noise, but we certainly have dense regions left as noise and
clusters that run across and split what seem like natural clusters. There is also the outlying yellow cluster group that
doesn’t make a lot of sense. Thus while Mean Shift had good promise, and is certainly better than K-Means, it’s still
short of our desiderata. Worse still it took over 4 seconds to cluster this small dataset!

2.2.7 Spectral Clustering

Spectral clustering can best be thought of as a graph clustering. For spatial data one can think of inducing a graph based
on the distances between points (potentially a k-NN graph, or even a dense graph). From there spectral clustering will
look at the eigenvectors of the Laplacian of the graph to attempt to find a good (low dimensional) embedding of the
graph into Euclidean space. This is essentially a kind of manifold learning, finding a transformation of our original
space so as to better represent manifold distances for some manifold that the data is assumed to lie on. Once we have
the transformed space a standard clustering algorithm is run; with sklearn the default is K-Means. That means
that the key for spectral clustering is the transformation of the space. Presuming we can better respect the manifold
we’ll get a better clustering – we need worry less about K-Means globular clusters as they are merely globular on the
transformed space and not the original space. We unfortunately retain some of K-Means weaknesses: we still partition
the data instead of clustering it; we have the hard to guess ‘number of clusters’ parameter; we have stability issues
inherited from K-Means. Worse, if we operate on the dense graph of the distance matrix we have a very expensive
initial step and sacrifice performance.

So, in summary:

• Don’t be wrong!: We are less wrong, in that we don’t have a purely globular cluster assumption; we do still
have partitioning and hence are polluting clusters with noise, messing with our understanding of the clusters and
hence the data.
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• Intuitive parameters: We are no better than K-Means here; we have to know the correct number of clusters, or
hope to guess by clustering over a range of parameter values and finding some way to pick the ‘right one’.

• Stability: Slightly more stable than K-Means due to the transformation, but we still suffer from those issues.

• Performance: For spatial data we don’t have a sparse graph (unless we prep one ourselves) so the result is a
somewhat slower algorithm.

Let’s have a look at how it operates on our test dataset. Again, we’ll be generous and give it the six clusters to look
for.

plot_clusters(data, cluster.SpectralClustering, (), {'n_clusters':6})

Spectral clustering performed better on the long thin clusters, but still ended up cutting some of them strangely and
dumping parts of them in with other clusters. We also still have the issue of noise points polluting our clusters, so again
our intuitions are going to be led astray. Performance was a distinct improvement of Affinity Propagation however.
Over all we are doing better, but are still a long way from achieving our desiderata.

2.2.8 Agglomerative Clustering

Agglomerative clustering is really a suite of algorithms all based on the same idea. The fundamental idea is that
you start with each point in it’s own cluster and then, for each cluster, use some criterion to choose another cluster
to merge with. Do this repeatedly until you have only one cluster and you get get a hierarchy, or binary tree, of
clusters branching down to the last layer which has a leaf for each point in the dataset. The most basic version of this,
single linkage, chooses the closest cluster to merge, and hence the tree can be ranked by distance as to when clusters
merged/split. More complex variations use things like mean distance between clusters, or distance between cluster
centroids etc. to determine which cluster to merge. Once you have a cluster hierarchy you can choose a level or cut
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(according to some criteria) and take the clusters at that level of the tree. For sklearn we usually choose a cut based
on a ‘number of clusters’ parameter passed in.

The advantage of this approach is that clusters can grow ‘following the underlying manifold’ rather than being pre-
sumed to be globular. You can also inspect the dendrogram of clusters and get more information about how clusters
break down. On the other hand, if you want a flat set of clusters you need to choose a cut of the dendrogram, and that
can be hard to determine. You can take the sklearn approach and specify a number of clusters, but as we’ve already
discussed that isn’t a particularly intuitive parameter when you’re doing EDA. You can look at the dendrogram and
try to pick a natural cut, but this is similar to finding the ‘elbow’ across varying k values for K-Means: in principle
it’s fine, and the textbook examples always make it look easy, but in practice on messy real world data the ‘obvious’
choice is often far from obvious. We are also still partitioning rather than clustering the data, so we still have that
persistent issue of noise polluting our clusters. Fortunately performance can be pretty good; the sklearn implemen-
tation is fairly slow, but ‘fastcluster <https://pypi.python.org/pypi/fastcluster>‘__ provides high performance
agglomerative clustering if that’s what you need.

So, in summary:

• Don’t be wrong!: We have gotten rid of the globular assumption, but we are still assuming that all the data
belongs in clusters with no noise.

• Intuitive parameters: Similar to K-Means we are stuck choosing the number of clusters (not easy in EDA),
or trying to discern some natural parameter value from a plot that may or may not have any obvious natural
choices.

• Stability: Agglomerative clustering is stable across runs and the dendrogram shows how it varies over parameter
choices (in a reasonably stable way), so stability is a strong point.

• Performance: Performance can be good if you get the right implementation.

So, let’s see it clustering data. I chose to provide the correct number of clusters (six) and use Ward as the linkage/merge
method. This is a more robust method than say single linkage, but it does tend toward more globular clusters.

plot_clusters(data, cluster.AgglomerativeClustering, (), {'n_clusters':6, 'linkage':'ward'})
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Similar to the spectral clustering we have handled the long thin clusters much better than K-Means or Affinity Prop-
agation. We in fact improved on spectral clustering a bit on that front. We do still have clusters that contain parts
of several different natural clusters, but those ‘mis-clusterings’ are smaller. We also still have all the noise points
polluting our clusters. The end result is probably the best clustering we’ve seen so far, but given the mis-clustering
and noise issues we are still not going to get as good an intuition for the data as we might reasonably hope for.

2.2.9 DBSCAN

DBSCAN is a density based algorithm – it assumes clusters for dense regions. It is also the first actual clustering
algorithm we’ve looked at: it doesn’t require that every point be assigned to a cluster and hence doesn’t partition the
data, but instead extracts the ‘dense’ clusters and leaves sparse background classified as ‘noise’. In practice DBSCAN
is related to agglomerative clustering. As a first step DBSCAN transforms the space according to the density of the
data: points in dense regions are left alone, while points in sparse regions are moved further away. Applying single
linkage clustering to the transformed space results in a dendrogram, which we cut according to a distance parameter
(called epsilon or eps in many implementations) to get clusters. Importantly any singleton clusters at that cut level are
deemed to be ‘noise’ and left unclustered. This provides several advantages: we get the manifold following behaviour
of agglomerative clustering, and we get actual clustering as opposed to partitioning. Better yet, since we can frame
the algorithm in terms of local region queries we can use various tricks such as kdtrees to get exceptionally good
performance and scale to dataset sizes that are otherwise unapproachable with algorithms other than K-Means. There
are some catches however. Obviously epsilon can be hard to pick; you can do some data analysis and get a good guess,
but the algorithm can be quite sensitive to the choice of the parameter. The density based transformation depends on
another parameter (min_samples in sklearn). Finally the combination of min_samples and eps amounts to
a choice of density and the clustering only finds clusters at or above that density; if your data has variable density
clusters then DBSCAN is either going to miss them, split them up, or lump some of them together depending on your
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parameter choices.

So, in summary:

• Don’t be wrong!: Clusters don’t need to be globular, and won’t have noise lumped in; varying density clusters
may cause problems, but that is more in the form of insufficient detail rather than explicitly wrong. DBSCAN
is the first clustering algorithm we’ve looked at that actually meets the ‘Don’t be wrong!’ requirement.

• Intuitive parameters: Epsilon is a distance value, so you can survey the distribution of distances in your dataset
to attempt to get an idea of where it should lie. In practice, however, this isn’t an especially intuitive parameter,
nor is it easy to get right.

• Stability: DBSCAN is stable across runs (and to some extent subsampling if you re-parameterize well); stability
over varying epsilon and min samples is not so good.

• Performance: This is DBSCAN’s other great strength; few clustering algorithms can tackle datasets as large as
DBSCAN can.

So how does it cluster our test dataset? I played with a few epsilon values until I got somethign reasonable, but there
was little science to this – getting the parameters right can be hard.

plot_clusters(data, cluster.DBSCAN, (), {'eps':0.025})

This is a pretty decent clustering; we’ve lumped natural clusters together a couple of times, but at least we didn’t
carve them up to do so. We also picked up a few tiny clusters in amongst the large sparse cluster. These problems are
artifacts of not handling variable density clusters – to get the sparser clusters to cluster we end up lumping some of
the denser clusters with them; in the meantime the very sparse cluster is still broken up into several clusters. All in all
we’re finally doing a decent job, but there’s still plenty of room for improvement.
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2.2.10 HDBSCAN

HDBSCAN is a recent algorithm developed by some of the same people who write the original DBSCAN paper.
Their goal was to allow varying density clusters. The algorithm starts off much the same as DBSCAN: we transform
the space according to density, exactly as DBSCAN does, and perform single linkage clustering on the transformed
space. Instead of taking an epsilon value as a cut level for the dendrogram however, a different approach is taken: the
dendrogram is condensed by viewing splits that result in a small number of points splitting off as points ‘falling out
of a cluster’. This results in a smaller tree with fewer clusters that ‘lose points’. That tree can then be used to select
the most stable or persistent clusters. This process allows the tree to be cut at varying height, picking our varying
density clusters based on cluster stability. The immediate advantage of this is that we can ave varying density clusters;
the second benefit is that we have eliminated the epsilon parameter as we no longer need it to choose a cut of the
dendrogram. Instead we have a new parameter min_cluster_size which is used to determine whether points are
‘falling out of a cluster’ or splitting to form two new clusters. This trades an unintuitive parameter for one that is not
so hard to choose for EDA (what is the minimum size cluster I am willing to care about?).

So, in summary:

• Don’t be wrong!: We inherited all the benefits of DBSCAN and removed the varying density clusters issue.
HDBSCAN is easily the strongest option on the ‘Don’t be wrong!’ front.

• Intuitive parameters: Choosing a mimnimum cluster size is very reasonable. The only remaining parameter
is min_samples inherited from DBSCAN for the density based space transformation. Sadly min_samples
is not that intuitive; HDBSCAN is not that sensitive to it and we can choose some sensible defaults, but this
remains the biggest weakness of the algorithm.

• Stability: HDBSCAN is stable over runs and subsampling (since the variable density clustering will still cluster
sparser subsampled clusters with the same parameter choices), and has good stability over parameter choices.

• Performance: When implemented well HDBSCAN can be very efficient. The current implementation has sim-
ilar performance to fastcluster‘s agglomerative clustering (and will use fastcluster if it is available),
but we expect future implementations that take advantage of newer data structure such as cover trees to scale
significantly better.

How does HDBSCAN perform on our test dataset? Unfortunately HDBSCAN is not part of sklearn. Fortunately
we can just import the hdbscan library and use it as if it were part of sklearn.

import hdbscan

plot_clusters(data, hdbscan.HDBSCAN, (), {'min_cluster_size':15})
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I think the picture speaks for itself.

2.3 Benchmarking Performance and Scaling of Python Clustering Al-
gorithms

There are a host of different clustering algorithms and implementations thereof for Python. The performance and scal-
ing can depend as much on the implementation as the underlying algorithm. Obviously a well written implementation
in C or C++ will beat a naive implementation on pure Python, but there is more to it than just that. The internals
and data structures used can have a large impact on performance, and can even significanty change asymptotic perfor-
mance. All of this means that, given some amount of data that you want to cluster your options as to algorithm and
implementation maybe significantly constrained. I’m both lazy, and prefer empirical results for this sort of thing, so
rather than analyzing the implementations and deriving asymptotic performance numbers for various implementations
I’m just going to run everything and see what happens.

To begin with we need to get together all the clustering implementations, along with some plotting libraries so we can
see what is going on once we’ve got data. Obviously this is not an exhaustive collection of clustering implementations,
so if I’ve left off your favourite I apologise, but one has to draw a line somewhere.

The implementations being test are:

• Sklearn (which implements several algorithms):

• K-Means clustering

• DBSCAN clustering
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• Agglomerative clustering

• Spectral clustering

• Affinity Propagation

• Scipy (which provides basic algorithms):

• K-Means clustering

• Agglomerative clustering

• Fastcluster (which provides very fast agglomerative clustering in C++)

• DeBaCl (Density Based Clustering; similar to a mix of DBSCAN and Agglomerative)

• HDBSCAN (A robust hierarchical version of DBSCAN)

Obviously a major factor in performance will be the algorithm itself. Some algorithms are simply slower – often, but
not always, because they are doing more work to provide a better clustering.

import hdbscan
import debacl
import fastcluster
import sklearn.cluster
import scipy.cluster
import sklearn.datasets
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set_context('poster')
sns.set_palette('Paired', 10)
sns.set_color_codes()

:0: FutureWarning: IPython widgets are experimental and may change in the future.

Now we need some benchmarking code at various dataset sizes. Because some clustering algorithms have performance
that can vary quite a lot depending on the exact nature of the dataset we’ll also need to run several times on randomly
generated datasets of each size so as to get a better idea of the average case performance.

We also need to generalise over algorithms which don’t necessarily all have the same API. We can resolve that by
taking a clustering function, argument tuple and keywords dictionary to let us do semi-arbitrary calls (fortunately all
the algorithms do at least take the dataset to cluster as the first parameter).

Finally some algorithms scale poorly, and I don’t want to spend forever doing clustering of random datasets so we’ll
cap the maximum time an algorithm can use; once it has taken longer than max time we’ll just abort there and leave
the remaining entries in our datasize by samples matrix unfilled.

In the end this all amounts to a fairly straightforward set of nested loops (over datasizes and number of samples) with
calls to sklearn to generate mock data and the clustering function inside a timer. Add in some early abort and we’re
done.

def benchmark_algorithm(dataset_sizes, cluster_function, function_args, function_kwds,
dataset_dimension=10, dataset_n_clusters=10, max_time=45, sample_size=2):

# Initialize the result with NaNs so that any unfilled entries
# will be considered NULL when we convert to a pandas dataframe at the end
result = np.nan * np.ones((len(dataset_sizes), sample_size))
for index, size in enumerate(dataset_sizes):

for s in range(sample_size):
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# Use sklearns make_blobs to generate a random dataset with specified size
# dimension and number of clusters
data, labels = sklearn.datasets.make_blobs(n_samples=size,

n_features=dataset_dimension,
centers=dataset_n_clusters)

# Start the clustering with a timer
start_time = time.time()
cluster_function(data, *function_args, **function_kwds)
time_taken = time.time() - start_time

# If we are taking more than max_time then abort -- we don't
# want to spend excessive time on slow algorithms
if time_taken > max_time:

result[index, s] = time_taken
return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size),

result.flatten()]).T, columns=['x','y'])
else:

result[index, s] = time_taken

# Return the result as a dataframe for easier handling with seaborn afterwards
return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size),

result.flatten()]).T, columns=['x','y'])

2.3.1 Comparison of all ten implementations

Now we need a range of dataset sizes to test out our algorithm. Since the scaling performance is wildly different
over the ten implementations we’re going to look at it will be beneficial to have a number of very small dataset sizes,
and increasing spacing as we get larger, spanning out to 32000 datapoints to cluster (to begin with). Numpy provides
convenient ways to get this done via arange and vector multiplication. We’ll start with step sizes of 500, then shift
to steps of 1000 past 3000 datapoints, and finally steps of 2000 past 6000 datapoints.

dataset_sizes = np.hstack([np.arange(1, 6) * 500, np.arange(3,7) * 1000, np.arange(4,17) * 2000])

Now it is just a matter of running all the clustering algorithms via our benchmark function to collect up all the requsite
data. This could be prettier, rolled up into functions appropriately, but sometimes brute force is good enough. More
importantly (for me) since this can take a significant amount of compute time, I wanted to be able to comment out
algorithms that were slow or I was uninterested in easily. Which brings me to a warning for you the reader and
potential user of the notebook: this next step is very expensive. We are running ten different clustering algorithms
multiple times each on twenty two different dataset sizes – and some of the clustering algorithms are slow (we are
capping out at forty five seconds per run). That means that the next cell can take an hour or more to run. That doesn’t
mean “Don’t try this at home” (I actually encourage you to try this out yourself and play with dataset parameters and
clustering parameters) but it does mean you should be patient if you’re going to!

k_means = sklearn.cluster.KMeans(10)
k_means_data = benchmark_algorithm(dataset_sizes, k_means.fit, (), {})

dbscan = sklearn.cluster.DBSCAN(eps=1.25)
dbscan_data = benchmark_algorithm(dataset_sizes, dbscan.fit, (), {})

scipy_k_means_data = benchmark_algorithm(dataset_sizes,
scipy.cluster.vq.kmeans, (10,), {})

scipy_single_data = benchmark_algorithm(dataset_sizes,
scipy.cluster.hierarchy.single, (), {})
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fastclust_data = benchmark_algorithm(dataset_sizes,
fastcluster.linkage_vector, (), {})

hdbscan_ = hdbscan.HDBSCAN()
hdbscan_data = benchmark_algorithm(dataset_sizes, hdbscan_.fit, (), {})

debacl_data = benchmark_algorithm(dataset_sizes,
debacl.geom_tree.geomTree, (5, 5), {'verbose':False})

agglomerative = sklearn.cluster.AgglomerativeClustering(10)
agg_data = benchmark_algorithm(dataset_sizes,

agglomerative.fit, (), {}, sample_size=4)

spectral = sklearn.cluster.SpectralClustering(10)
spectral_data = benchmark_algorithm(dataset_sizes,

spectral.fit, (), {}, sample_size=6)

affinity_prop = sklearn.cluster.AffinityPropagation()
ap_data = benchmark_algorithm(dataset_sizes,

affinity_prop.fit, (), {}, sample_size=3)

Now we need to plot the results so we can see what is going on. The catch is that we have several datapoints for
each dataset size and ultimately we would like to try and fit a curve through all of it to get the general scaling trend.
Fortunately seaborn comes to the rescue here by providing regplot which plots a regression through a dataset,
supports higher order regression (we should probably use order two as most algorithms are effectively quadratic) and
handles multiple datapoints for each x-value cleanly (using the x_estimator keyword to put a point at the mean
and draw an error bar to cover the range of data).

sns.regplot(x='x', y='y', data=k_means_data, order=2,
label='Sklearn K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=dbscan_data, order=2,
label='Sklearn DBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=scipy_k_means_data, order=2,
label='Scipy K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=hdbscan_data, order=2,
label='HDBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=fastclust_data, order=2,
label='Fastcluster Single Linkage', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=scipy_single_data, order=2,
label='Scipy Single Linkage', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=debacl_data, order=2,
label='DeBaCl Geom Tree', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=spectral_data, order=2,
label='Sklearn Spectral', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=agg_data, order=2,
label='Sklearn Agglomerative', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=ap_data, order=2,
label='Sklearn Affinity Propagation', x_estimator=np.mean)

plt.gca().axis([0, 34000, 0, 120])
plt.gca().set_xlabel('Number of data points')
plt.gca().set_ylabel('Time taken to cluster (s)')
plt.title('Performance Comparison of Clustering Implementations')
plt.legend()

<matplotlib.legend.Legend at 0x1125dee50>
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A few features stand out. First of all there appear to be essentially two classes of implementation, with DeBaCl
being an odd case that falls in the middle. The fast implementations tend to be implementations of single linkage
agglomerative clustering, K-means, and DBSCAN. The slow cases are largely from sklearn and include agglomerative
clustering (in this case using Ward instead of single linkage).

For practical purposes this means that if you have much more than 10000 datapoints your clustering options are
significantly constrained: sklearn spectral, agglomerative and affinity propagation are going to take far too long.
DeBaCl may still be an option, but given that the hdbscan library provides “robust single linkage clustering” equivalent
to what DeBaCl is doing (and with effectively the same runtime as hdbscan as it is a subset of that algorithm) it is
probably not the best choice for large dataset sizes.

So let’s drop out those slow algorithms so we can scale out a little further and get a closer look at the various algorithms
that managed 32000 points in under thirty seconds. There is almost undoubtedly more to learn as we get ever larger
dataset sizes.

2.3.2 Comparison of fast implementations

Let’s compare the six fastest implementations now. We can scale out a little further as well; based on the curves above
it looks like we should be able to comfortably get to 60000 data points without taking much more than a minute per
run. We can also note that most of these implementations weren’t that noisy so we can get away with a single run per
dataset size.

large_dataset_sizes = np.arange(1,16) * 4000

hdbscan_boruvka = hdbscan.HDBSCAN(algorithm='boruvka_kdtree')
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large_hdbscan_boruvka_data = benchmark_algorithm(large_dataset_sizes,
hdbscan_boruvka.fit, (), {},

max_time=90, sample_size=1)

k_means = sklearn.cluster.KMeans(10)
large_k_means_data = benchmark_algorithm(large_dataset_sizes,

k_means.fit, (), {},
max_time=90, sample_size=1)

dbscan = sklearn.cluster.DBSCAN(eps=1.25, min_samples=5)
large_dbscan_data = benchmark_algorithm(large_dataset_sizes,

dbscan.fit, (), {},
max_time=90, sample_size=1)

large_fastclust_data = benchmark_algorithm(large_dataset_sizes,
fastcluster.linkage_vector, (), {},
max_time=90, sample_size=1)

large_scipy_k_means_data = benchmark_algorithm(large_dataset_sizes,
scipy.cluster.vq.kmeans, (10,), {},
max_time=90, sample_size=1)

large_scipy_single_data = benchmark_algorithm(large_dataset_sizes,
scipy.cluster.hierarchy.single, (), {},
max_time=90, sample_size=1)

Again we can use seaborn to do curve fitting and plotting, exactly as before.

sns.regplot(x='x', y='y', data=large_k_means_data, order=2,
label='Sklearn K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_dbscan_data, order=2,
label='Sklearn DBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_scipy_k_means_data, order=2,
label='Scipy K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_hdbscan_boruvka_data, order=2,
label='HDBSCAN Boruvka', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_fastclust_data, order=2,
label='Fastcluster Single Linkage', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_scipy_single_data, order=2,
label='Scipy Single Linkage', x_estimator=np.mean)

plt.gca().axis([0, 64000, 0, 150])
plt.gca().set_xlabel('Number of data points')
plt.gca().set_ylabel('Time taken to cluster (s)')
plt.title('Performance Comparison of Fastest Clustering Implementations')
plt.legend()

<matplotlib.legend.Legend at 0x116038bd0>
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Clearly something has gone woefully wrong with the curve fitting for the scipy single linkage implementation, but
what exactly? If we look at the raw data we can see.

large_scipy_single_data.tail(10)

It seems that at around 44000 points we hit a wall and the runtimes spiked. A hint is that I’m running this on a laptop
with 8GB of RAM. Both single linkage algorithms use scipy.spatial.pdist to compute pairwise distances
between points, which returns an array of shape (n(n-1)/2, 1) of doubles. A quick computation shows that that
array of distances is quite large once we nave 44000 points:

size_of_array = 44000 * (44000 - 1) / 2 # from pdist documentation
bytes_in_array = size_of_array * 8 # Since doubles use 8 bytes
gigabytes_used = bytes_in_array / (1024.0 ** 3) # divide out to get the number of GB
gigabytes_used

7.211998105049133

If we assume that my laptop is keeping much other than that distance array in RAM then clearly we are going to spend
time paging out the distance array to disk and back and hence we will see the runtimes increase dramatically as we
become disk IO bound. If we just leave off the last element we can get a better idea of the curve, but keep in mind that
the scipy single linkage implementation does not scale past a limit set by your available RAM.

sns.regplot(x='x', y='y', data=large_k_means_data, order=2,
label='Sklearn K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_dbscan_data, order=2,
label='Sklearn DBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=large_scipy_k_means_data, order=2,
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label='Scipy K-Means', x_estimator=np.mean)
sns.regplot(x='x', y='y', data=large_hdbscan_boruvka_data, order=2,

label='HDBSCAN Boruvka', x_estimator=np.mean)
sns.regplot(x='x', y='y', data=large_fastclust_data, order=2,

label='Fastcluster Single Linkage', x_estimator=np.mean)
sns.regplot(x='x', y='y', data=large_scipy_single_data[:8], order=2,

label='Scipy Single Linkage', x_estimator=np.mean)

plt.gca().axis([0, 64000, 0, 150])
plt.gca().set_xlabel('Number of data points')
plt.gca().set_ylabel('Time taken to cluster (s)')
plt.title('Performance Comparison of Fastest Clustering Implementations')
plt.legend()

/Users/leland/.conda/envs/hdbscan_dev/lib/python2.7/site-packages/numpy/lib/polynomial.py:595: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)

<matplotlib.legend.Legend at 0x118843210>

If we’re looking for scaling we can write off the scipy single linkage implementation – if even we didn’t hit the RAM
limit the 𝑂(𝑛2) scaling is going to quickly catch up with us. Fastcluster has the same asymptotic scaling, but is heavily
optimized to being the constant down much lower – at this point it is still keeping close to the faster algorithms. It’s
asymtotics will still catch up with it eventually however.

In practice this is going to mean that for larger datasets you are going to be very constrained in what algorithms you
can apply: if you get enough datapoints only K-Means, DBSCAN, and HDBSCAN will be left. This is somewhat
disappointing, paritcularly as K-Means is not a particularly good clustering algorithm, paricularly for exploratory data
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analysis.

With this in mind it is worth looking at how these last several implementations perform at much larger sizes, to see,
for example, when fastscluster starts to have its asymptotic complexity start to pull it away.

2.3.3 Comparison of high performance implementations

At this point we can scale out to 200000 datapoints easily enough, so let’s push things at least that far so we can start
to really see scaling effects.

huge_dataset_sizes = np.arange(1,11) * 20000

k_means = sklearn.cluster.KMeans(10)
huge_k_means_data = benchmark_algorithm(huge_dataset_sizes,

k_means.fit, (), {},
max_time=120, sample_size=2, dataset_dimension=10)

dbscan = sklearn.cluster.DBSCAN(eps=1.5)
huge_dbscan_data = benchmark_algorithm(huge_dataset_sizes,

dbscan.fit, (), {},
max_time=120, sample_size=2, dataset_dimension=10)

huge_scipy_k_means_data = benchmark_algorithm(huge_dataset_sizes,
scipy.cluster.vq.kmeans, (10,), {},
max_time=120, sample_size=2, dataset_dimension=10)

hdbscan_boruvka = hdbscan.HDBSCAN(algorithm='boruvka_kdtree')
huge_hdbscan_data = benchmark_algorithm(huge_dataset_sizes,

hdbscan_boruvka.fit, (), {},
max_time=240, sample_size=4, dataset_dimension=10)

huge_fastcluster_data = benchmark_algorithm(huge_dataset_sizes,
fastcluster.linkage_vector, (), {},
max_time=240, sample_size=2, dataset_dimension=10)

sns.regplot(x='x', y='y', data=huge_k_means_data, order=2,
label='Sklearn K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=huge_dbscan_data, order=2,
label='Sklearn DBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=huge_scipy_k_means_data, order=2,
label='Scipy K-Means', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=huge_hdbscan_data, order=2,
label='HDBSCAN', x_estimator=np.mean)

sns.regplot(x='x', y='y', data=huge_fastcluster_data, order=2,
label='Fastcluster', x_estimator=np.mean)

plt.gca().axis([0, 200000, 0, 240])
plt.gca().set_xlabel('Number of data points')
plt.gca().set_ylabel('Time taken to cluster (s)')
plt.title('Performance Comparison of K-Means and DBSCAN')
plt.legend()

<matplotlib.legend.Legend at 0x11d2aff50>
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Now the some differences become clear. The asymptotic complexity starts to kick in with fastcluster failing to keep
up. In turn HDBSCAN and DBSCAN, while having sub-𝑂(𝑛2) complexity, can’t achieve 𝑂(𝑛 log(𝑛)) at this dataset
dimension, and start to curve upward precipitously. Finally it demonstrates again how much of a difference implemen-
tation can make: the sklearn implementation of K-Means is far better than the scipy implementation. Since HDBSCAN
clustering is a lot better than K-Means (unless you have good reasons to assume that the clusters partition your data
and are all drawn from Gaussian distributions) and the scaling is still pretty good I would suggest that unless you have
a truly stupendous amount of data you wish to cluster then the HDBSCAN implementation is a good choice.

2.3.4 But should I get a coffee?

So we know which implementations scale and which don’t; a more useful thing to know in practice is, given a dataset,
what can I run interactively? What can I run while I go and grab some coffee? How about a run over lunch? What if
I’m willing to wait until I get in tomorrow morning? Each of these represent significant breaks in productivity – once
you aren’t working interactively anymore your productivity drops measurably, and so on.

We can build a table for this. To start we’ll need to be able to approximate how long a given clustering implementation
will take to run. Fortunately we already gathered a lot of that data; if we load up the statsmodels package we can
fit the data (with a quadratic or 𝑛 log 𝑛 fit depending on the implementation; DBSCAN and HDBSCAN get caught
here, since while they are under 𝑂(𝑛2) scaling, they don’t have an easily described model, so I’ll model them as 𝑛2

for now) and use the resulting model to make our predictions. Obviously this has some caveats: if you fill your RAM
with a distance matrix your runtime isn’t going to fit the curve.

I’ve hand built a time_samples list to give a reasonable set of potential data sizes that are nice and human readable.
After that we just need a function to fit and build the curves.
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import statsmodels.formula.api as sm

time_samples = [1000, 2000, 5000, 10000, 25000, 50000, 75000, 100000, 250000, 500000, 750000,
1000000, 2500000, 5000000, 10000000, 50000000, 100000000, 500000000, 1000000000]

def get_timing_series(data, quadratic=True):
if quadratic:

data['x_squared'] = data.x**2
model = sm.ols('y ~ x + x_squared', data=data).fit()
predictions = [model.params.dot([1.0, i, i**2]) for i in time_samples]
return pd.Series(predictions, index=pd.Index(time_samples))

else: # assume n log(n)
data['xlogx'] = data.x * np.log(data.x)
model = sm.ols('y ~ x + xlogx', data=data).fit()
predictions = [model.params.dot([1.0, i, i*np.log(i)]) for i in time_samples]
return pd.Series(predictions, index=pd.Index(time_samples))

Now we run that for each of our pre-existing datasets to extrapolate out predicted performance on the relevant dataset
sizes. A little pandas wrangling later and we’ve produced a table of roughly how large a dataset you can tackle in each
time frame with each implementation. I had to leave out the scipy KMeans timings because the noise in timing results
caused the model to be unrealistic at larger data sizes. Note how the 𝑂(𝑛 log 𝑛) algorithms utterly dominate here. In
the meantime, for medium sizes data sets you can still get quite a lot done with HDBSCAN.

ap_timings = get_timing_series(ap_data)
spectral_timings = get_timing_series(spectral_data)
agg_timings = get_timing_series(agg_data)
debacl_timings = get_timing_series(debacl_data)
fastclust_timings = get_timing_series(large_fastclust_data.ix[:10,:].copy())
scipy_single_timings = get_timing_series(large_scipy_single_data.ix[:10,:].copy())
hdbscan_boruvka = get_timing_series(huge_hdbscan_data, quadratic=True)
#scipy_k_means_timings = get_timing_series(huge_scipy_k_means_data, quadratic=False)
dbscan_timings = get_timing_series(huge_dbscan_data, quadratic=True)
k_means_timings = get_timing_series(huge_k_means_data, quadratic=False)

timing_data = pd.concat([ap_timings, spectral_timings, agg_timings, debacl_timings,
scipy_single_timings, fastclust_timings, hdbscan_boruvka,
dbscan_timings, k_means_timings

], axis=1)
timing_data.columns=['AffinityPropagation', 'Spectral', 'Agglomerative',

'DeBaCl', 'ScipySingleLinkage', 'Fastcluster',
'HDBSCAN', 'DBSCAN', 'SKLearn KMeans'

]
def get_size(series, max_time):

return series.index[series < max_time].max()

datasize_table = pd.concat([
timing_data.apply(get_size, max_time=30),
timing_data.apply(get_size, max_time=300),
timing_data.apply(get_size, max_time=3600),
timing_data.apply(get_size, max_time=8*3600)
], axis=1)

datasize_table.columns=('Interactive', 'Get Coffee', 'Over Lunch', 'Overnight')
datasize_table
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2.3.5 Conclusions

Performance obviously depends on the algorithm chosen, but can also vary significantly upon the specific imple-
mentation (HDBSCAN is far better hierarchical density based clustering than DeBaCl, and sklearn has by far the best
K-Means implementation). For anything beyond toy datasets, however, your algorithm options are greatly constrained.
In my (obviously biased) opinion HDBSCAN is the best algorithm for clustering. If you need to cluster data beyond
the scope that HDBSCAN can reasonably handle then the only algorithm options on the table are DBSCAN and K-
Means; DBSCAN is the slower of the two, especially for very large data, but K-Means clustering can be remarkably
poor – it’s a tough choice.
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CHAPTER 3

API Reference

3.1 API Reference

Major classes are HDBSCAN and RobustSingleLinkage.

3.1.1 HDBSCAN

class hdbscan.hdbscan_.HDBSCAN(min_cluster_size=5, min_samples=None, met-
ric=’euclidean’, alpha=1.0, p=None, algorithm=’best’,
leaf_size=40, memory=Memory(cachedir=None), ap-
prox_min_span_tree=True, gen_min_span_tree=False,
core_dist_n_jobs=4, allow_single_cluster=False,
match_reference_implementation=False, **kwargs)

Perform HDBSCAN clustering from vector array or distance matrix.

HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN
over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon.
This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter
selection.

min_cluster_size [int, optional (default=5)] The minimum size of clusters; single linkage splits that contain
fewer points than this will be considered points “falling out” of a cluster rather than a cluster splitting into
two new clusters.

min_samples [int, optional (default=None)] The number of samples in a neighbourhood for a point to be con-
sidered a core point.

metric [string, or callable, optional (default=’euclidean’)] The metric to use when calculating distance between
instances in a feature array. If metric is a string or callable, it must be one of the options allowed by
metrics.pairwise.pairwise_distances for its metric parameter. If metric is “precomputed”, X is assumed to
be a distance matrix and must be square.

p [int, optional (default=None)] p value to use if using the minkowski metric.

alpha [float, optional (default=1.0)] A distance scaling parameter as used in robust single linkage. See 3 for
more information.

algorithm [string, optional (default=’best’)] Exactly which algorithm to use; hdbscan has variants specialised
for different characteristics of the data. By default this is set to best which chooses the “best” algorithm
given the nature of the data. You can force other options if you believe you know better. Options are:

3 Chaudhuri, K., & Dasgupta, S. (2010). Rates of convergence for the cluster tree. In Advances in Neural Information Processing Systems (pp.
343-351).
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• best

• generic

• prims_kdtree

• prims_balltree

• boruvka_kdtree

• boruvka_balltree

leaf_size: int, optional (default=40) If using a space tree algorithm (kdtree, or balltree) the number of points
ina leaf node of the tree. This does not alter the resulting clustering, but may have an effect on the runtime
of the algorithm.

memory [Instance of joblib.Memory or string (optional)] Used to cache the output of the computation of the
tree. By default, no caching is done. If a string is given, it is the path to the caching directory.

approx_min_span_tree [bool, optional (default=True)] Whether to accept an only approximate minimum
spanning tree. For some algorithms this can provide a significant speedup, but the resulting clustering
may be of marginally lower quality. If you are willing to sacrifice speed for correctness you may want to
explore this; in general this should be left at the default True.

gen_min_span_tree: bool, optional (default=False) Whether to generate the minimum spanning tree with re-
gard to mutual reachability distance for later analysis.

core_dist_n_jobs [int, optional (default=4)] Number of parallel jobs to run in core distance computa-
tions (if supported by the specific algorithm). For core_dist_n_jobs below -1, (n_cpus + 1 +
core_dist_n_jobs) are used.

allow_single_cluster [bool, optional (default=False)] By default HDBSCAN* will not produce a single cluster,
setting this to True will override this and allow single cluster results in the case that you feel this is a valid
result for your dataset.

match_reference_implementation [bool, optional (default=False)] There exist some interpretational differ-
ences between this HDBSCAN* implementation and the original authors reference implementation in
Java. This can result in very minor differences in clustering results. Setting this flag to True will, at a some
performance cost, ensure that the clustering results match the reference implementation.

**kwargs [optional] Arguments passed to the distance metric

labels_ [ndarray, shape (n_samples, )] Cluster labels for each point in the dataset given to fit(). Noisy samples
are given the label -1.

probabilities_ [ndarray, shape (n_samples, )] The strength with which each sample is a member of its assigned
cluster. Noise points have probability zero; points in clusters have values assigned proportional to the
degree that they persist as part of the cluster.

cluster_persistence_ [ndarray, shape (n_clusters, )] A score of how persistent each cluster is. A score of 1.0
represents a perfectly stable cluster that persists over all distance scales, while a score of 0.0 represents a
perfectly ephemeral cluster. These scores can be guage the relative coherence of the clusters output by the
algorithm.

condensed_tree_ [CondensedTree object] The condensed tree produced by HDBSCAN. The object has meth-
ods for converting to pandas, networkx, and plotting.

single_linkage_tree_ [SingleLinkageTree object] The single linkage tree produced by HDBSCAN. The object
has methods for converting to pandas, networkx, and plotting.

minimum_spanning_tree_ [MinimumSpanningTree object] The minimum spanning tree of the mutual reach-
ability graph generated by HDBSCAN. Note that this is not generated by default and will only be available
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if gen_min_span_tree was set to True on object creation. Even then in some optimized cases a tre may not
be generated.

outlier_scores_ [ndarray, shape (n_samples, )] Outlier scores for clustered points; the larger the score the
more outlier-like the point. Useful as an outlier detection technique. Based on the GLOSH algorithm by
Campello, Moulavi, Zimek and Sander.

fit(X, y=None)
Perform HDBSCAN clustering from features or distance matrix.

X [array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples,
n_samples)] A feature array, or array of distances between samples if metric=’precomputed’.

self [object] Returns self

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

X [array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples,
n_samples)] A feature array, or array of distances between samples if metric=’precomputed’.

y [ndarray, shape (n_samples, )] cluster labels

3.1.2 RobustSingleLinkage

class hdbscan.robust_single_linkage_.RobustSingleLinkage(cut=0.4, k=5, al-
pha=1.4142135623730951,
gamma=5, met-
ric=’euclidean’, al-
gorithm=’best’,
core_dist_n_jobs=4,
**kwargs)

Perform robust single linkage clustering from a vector array or distance matrix.

Roust single linkage is a modified version of single linkage that attempts to be more robust to noise. Specifically
the goal is to more accurately approximate the level set tree of the unknown probability density function from
which the sample data has been drawn.

X [array or sparse (CSR) matrix of shape (n_samples, n_features), or \]

array of shape (n_samples, n_samples)

A feature array, or array of distances between samples if metric=’precomputed’.

cut [float] The reachability distance value to cut the cluster heirarchy at to derive a flat cluster labelling.

k [int, optional (default=5)] Reachability distances will be computed with regard to the k nearest neighbors.

alpha [float, optional (default=np.sqrt(2))] Distance scaling for reachability distance computation. Reachability
distance is computed as $max { core_k(a), core_k(b), 1/alpha d(a,b) }$.

gamma [int, optional (default=5)] Ignore any clusters in the flat clustering with size less than gamma, and
declare points in such clusters as noise points.

metric [string, or callable, optional (default=’euclidean’)] The metric to use when calculating distance between
instances in a feature array. If metric is a string or callable, it must be one of the options allowed by
metrics.pairwise.pairwise_distances for its metric parameter. If metric is “precomputed”, X is assumed to
be a distance matrix and must be square.
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algorithm [string, optional (default=’best’)] Exactly which algorithm to use; hdbscan has variants specialised
for different characteristics of the data. By default this is set to best which chooses the “best” algorithm
given the nature of the data. You can force other options if you believe you know better. Options are:

• small

• small_kdtree

• large_kdtree

• large_kdtree_fastcluster

core_dist_n_jobs [int, optional] Number of parallel jobs to run in core distance computations (if supported by
the specific algorithm). For core_dist_n_jobs below -1, (n_cpus + 1 + core_dist_n_jobs) are used.
(default 4)

labels_ [ndarray, shape (n_samples, )] Cluster labels for each point. Noisy samples are given the label -1.

cluster_hierarchy_ [SingleLinkageTree object] The single linkage tree produced during clustering. This object
provides several methods for:

• Plotting

• Generating a flat clustering

• Exporting to NetworkX

• Exporting to Pandas

fit(X, y=None)
Perform robust single linkage clustering from features or distance matrix.

X [array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples,
n_samples)] A feature array, or array of distances between samples if metric=’precomputed’.

self [object] Returns self

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

X [array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples,
n_samples)] A feature array, or array of distances between samples if metric=’precomputed’.

y [ndarray, shape (n_samples, )] cluster labels
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Indices and tables

• genindex

• modindex

• search
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